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INTRODUCTION

This paper intends to present an overview of the RSA cryptosystem. Cryptosystems

are mathematical algorithms that disguise information so that only the people for whom the

information is intended can read it. The invention of the RSA cryptosystem in 1977 was a

significant event in the history of cryptosystems. We will describe in detail how the RSA

cryptosystem works and then illustrate the process with a realistic example using fictional

characters. In addition, we will discuss how cryptosystems worked prior to the invention of

RSA and the advantage of using RSA over any of the previous cryptosystems. This will help

us understand the significance of the invention of the RSA in the world of security. We will

also explain how RSA was created and who the inventors are.

The RSA algorithm has  become the standard  cryptosystem for  industrial-strength

encryption, especially for data sent over the Internet. At the present time, RSA is one of the

most convenient, widely used and strongest cryptosystems available.
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CRYPTOSYSTEMS

In order  to  understand how the RSA cryptosystem works,  first  it  is  necessary to

understand how cryptosystems work. First of all, what is a cryptosystem? Suppose that a

certain person wishes to send a message to another person, but does not want anyone else

other than this second person to know the information in the message. A cryptosystem is a

method which puts a disguise on the message, so that only the second person is able to

remove the disguise and therefore read the message.  The message that  does not have a

disguise on it is called the plaintext, and the disguised form of the message is called the

ciphertext. The process in which the plaintext is converted into the ciphertext is called the

encryption process. Likewise, the process in which the ciphertext is turned back to plaintext

is called the decryption process.

For a better understanding we will use the following fictional characters: Alice, Bob,

and Eve. Now imagine the situation where Bob desires to send a message to Alice, but he

doesn’t want anyone other than Alice to read the message.  Like in the real world there may

be someone interested in eavesdropping and reading the content of the message. Let’s call

this person Eve. Bob decides to use a certain cryptosystem which will put a disguise on his

message. Thereby, even if Eve intercepts Bob’s message she should not be able to read it. As

we  just  said,  the  encryption  is  the  process  in  which  a  disguise  is  put  on  the  plaintext

converting it into ciphertext. Now, imagine the situation where more people start to use the

same cryptosystem. But, what happens if Bob and all these people go through the exact

same encryption process every time one of them needs to send a message? If all of them do

that, all the messages they send will be disguised the same way. Therefore, if Eve manages

to intercept the messages and somehow works out a way to reverse that particular process of
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encryption, then she will be able to read the content of every message encrypted with that

particular cryptosystem. In other words, if someone finds out how to reverse the encryption

process, then the corresponding cryptosystem is no longer helpful. Hence, in order to avoid

this hypothetical case, the process of encrypting a message involves the use of a piece of

specific data (generally a number), called the encryption key, which will produce different

forms of disguised messages when varied. Therefore, if Bob and someone else happen to

use the same cryptosystem they will  input different encryption keys in their  encryption

process and thus generate different disguised forms for their messages. Likewise, a piece of

specific information, called the decryption key, is also needed in the process of decryption,

this  key  will  be  input  in  the  corresponding  decryption  process  to  remove  the  disguise

created with a certain encryption key. Therefore, Bob will use an encryption key during the

process  of  encryption,  and  Alice  will  use  the  corresponding  decryption  key  during  the

decryption process. Note that Alice can never let Eve know what her decryption key is.

Because if she does so, Eve will only have to intercept Bob’s messages to be able to read

them. 
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MATHEMATICAL BACKGROUND AND DEFINITIONS

We will  introduce  some mathematical  definitions  and  formulas  that  will  help  us

understand the RSA encryption and decryption processes.

We are going to begin with a basic definition: Assume that d and n are two positive

integers. What does it mean to say that d is a divisor of n? It means that there exists an

integer k such that n = (d)(k). For instance, 5 is a divisor of 35 because there exists an

integer k such that 35 = (5)(k), namely k = 7. Indeed, 1, 5, 7, and 35 are all the divisors of

35.

Using the previous definition, we are going to define the greatest common divisor of

a pair of integers a and b. The greatest common divisor of a and b, denoted g.c.d. (a, b), is

the largest positive integer that divides both a and b. For example the greatest common

divisor of 35 and 45 is 5,  One way to see that is by listing all possible divisors of each

number. The divisors of 35 are 1, 5, 7, and 35 (as we saw before), and the divisors of 45 are

1, 3, 5, 9, 15, and 45. Note that 1 and 5 are the only two common divisors, but 5 > 1; thus,

g.c.d. (35,45) = 5. Nonetheless, RSA deals with much larger numbers; therefore, finding all

the divisors of every pair of integers is not very efficient. RSA uses the Euclidean Algorithm

to find the greatest common divisor of two numbers, which is much more efficient.

A positive integer greater than 1 is said to be prime if its only positive divisors are 1

and itself. For example 31 is a prime number, but 35 is not.

A pair of integers a and b are said to be relatively prime if the greatest common

divisor of a and b is 1. For instance, the only divisors of 33 are 1, 3, 11, and 33; thus, 33 and

35 are relatively prime since g.c.d. (33, 35) = 1.
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If n is a positive integer, then the totient of n, denoted ɸ(n), is the number of integers

m such that 1 ≤ m ≤ n, and such that m and n are relatively prime. There is a well-known

formula, that we shall not include in this paper, to calculate the totient ɸ(n) of any positive

integer n. For our purposes we only need to know that if n = (p)(q), for distinct primes p and

q, then ɸ(n) = (p – 1) (q – 1).

Later in section How RSA Works, we are going to illustrate the Extended Euclidean

Algorithm, which computes integers x and y such that: ax + by = g.c.d. (a, b), for a given

pair of integers a and b. This algorithm is very quick and efficient. It can be done within

seconds with a computer even when the integers a and b have many digits.

Given  two positive  integers  n  and  k,  the  Division  Algorithm produces  a  pair  of

positive integers q and r that are unique such that n = (k)(q) + r, for 0 ≤ r < k. The integer q

is the quotient when n is divided by k, and the integer r is the remainder.

Lastly, let us define modular arithmetic. Modular arithmetic is a system of arithmetic

for integers, which considers the remainder. In other words, given two positive integers N

and x, such that N > 0, the number x mod N is the equivalent of asking for the remainder

when x is divided by N.

Two integers a and b are said to be congruent modulo N if a and b have the same

remainder when they are divided by N. In such a case, we say that a ≡ b (mod N). Indeed,

we use modular arithmetic very often in a regular day, specially when we talk about time.

Let us say that it is 11 o’clock and that a basketball game starts in 7 hours. Then, we would

say that the game starts at 6 o’clock, not at 18 o’clock. We mentally calculate 11+7 in (mod

12). 11 + 7 = 18 ≡ 6 (mod 12).
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Given the integers n and m, such that m is greater than zero and n is relatively prime

to m, a modular multiplicative inverse of n with respect to modulus m is  an integer a,

denoted n-1, such that: n * a ≡ 1 (mod m).

For instance, a multiplicative inverse of 5 modulo 11 is 9 because (5)(9) = 45, and 45

=  (4)(11) + 1 ≡ 1 (mod 11).

Allow us to also mention Euler's Totient Theorem now that we know about modular

arithmetic,  totient functions and greatest  common divisor.   Euler's  Totient Theorem is  a

generalization of Fermat's Little Theorem. It states that if an integer n is relatively prime to

an integer a, then a^ɸ(n) ≡ 1 (mod n).
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HOW RSA WORKS

In  this  section  we are  going to  describe  in  detail  and  illustrate  the  processes  of

encryption and decryption of the RSA cryptosystem. 

Suppose that we have a community of people and we would like every member to

have a convenient way to send a message to any other member in such a way that only the

intended recipient should be able to read the content of the message. The RSA cryptosystem

offers us a way to achieve that. Thus, our community is going to use the RSA cryptosystem.

The first step for setting up the RSA cryptosystem is that each person in the community

creates his/her own encryption key and decryption key. The encryption key is created by

selecting a pair of distinct large primes and multiplying them together to get a number. Let

us call this number n; thus, n = (p)(q), for p and q primes. Since the two prime factors of n

are known, it is easy to calculate the totient ϕ(n). As we explained before if n = (p)(q), then

ϕ(n) = (p−1) (q−1). After that, each person picks a prime e which satisfies g.c.d.(ϕ(n), e) =1.

Then, the encryption key (n, e) is created. It consists of a large integer n, and an exponent, e.

In RSA, the encryption key is also known as the public key because it is made public.

Imagine  that  Alice  already  created  her  own  encryption  key,  then  she  made  it  public.

Thereby, if Bob wants to send a message to Alice, he can use Alice’s encryption key to put a

disguise on the message that he is sending to Alice since he (like everyone else) has access

to Alice’s encryption key. Anyone who wishes to send a message to Alice (Bob in this case)

will use Alice’s encryption key to encrypt his/her message.  

After the encryption keys have been created, each member still needs to find his/her

corresponding  decryption  key,  which  as  we  stated  before,  can  be  used  to  remove  the

disguise from messages that have been encrypted using the corresponding encryption key. In
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RSA, the decryption key is also known as the private key because it has to be kept private or

secret. The decryption key is created by finding the private exponent d, which is calculated

using the Extended Euclidean Algorithm to find the multiplicative inverse of e with respect

to ϕ(n) = (p−1) (q−1). Thus, the decryption key is mathematically related to the encryption

key, but it is still different. 

Therefore, once everyone in the community has generated his/her own encryption

key  and  decryption  key,  all  members  in  the  community  publish  their  encryption  keys.

Thereby, from now on if any member from the community wishes to send a message to any

other  member,  he  or  she  can  put  a  disguise  on  the  message  using  the  corresponding

encryption key since every member’s encryption key is now available.

Now, suppose that Bob is in the community and wishes to send a message to Alice

who is also in the community. Just like before, Eve will be a person interested in reading the

message that Bob is sending to Alice. Like any other member in that community, Alice and

Bob have each already generated their own encryption and decryption keys, and published

the  encryption  keys.  Then,  Bob  obtains  Alice’s  encryption  key  which  is  available  to

everyone (including Eve),  encrypts  his  plaintext  using that  key,  and sends the  resulting

ciphertext to Alice. Note that after Bob encrypts his message using Alice’s encryption key,

neither  he,  nor  Eve,  nor  anyone  would  be  able  to  reverse  the  process  and decrypt  the

message  using  that  encryption  key.  Only  Alice,  who  has  the  corresponding  (secret)

decryption key,  is going to be able to decrypt the message that she received from Bob.  

Thus, although Eve has access to see Alice’s encryption key and even in case that she

could somehow intercept the ciphertext message that is being sent from Bob to Alice, she
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still will not be able to read Bob’s message because it has a disguise on and she does not

have enough information to remove it.

We now present an example to illustrate how RSA is used. We will use “very small”

prime numbers so it is easier to understand. Remember that Alice, like any other member of

the community, has already generated and published her encryption key. Let us say that she

picked the following primes for her encryption key: p = 61 and q = 53; hence, n = (p)(q) =

3233. Then, Alice calculated the totient namely ϕ(n) = (p−1) (q−1) = (60) (52) = 3120.

Thus, ϕ(n) = 3120.

After  that,  Alice  must  choose  a  positive  integer  e  such that  g.c.d.  (3120,  e)  =1.

Suppose that then Alice chose e = 7. 

Alice then calculates the multiplicative inverse of e modulo ϕ(n), which is denoted by

d. This means that d is an integer such that (e)(d)  ≡ 1 (mod ϕ(n)). Note that  e = 7 and ϕ(n)

= 3120. In order to find d Alice uses the Extended Euclidean Algorithm:

The first step of the Extended Euclidean Algorithm is to use the Division Algorithm

with n1 = ϕ(n) and k1 = e to produce the unique integer values q1 and r1, such that:

3120 = (7)(q1) + r1, for 0 ≤ r1 < 7.

By dividing 3120 by 7 we get the quotient, q1 = 445, with a remainder, r1 = 5. Thus,

we obtain the equation:

3120 = (7 )(445) + 5.

We replicate the process; however, now our n2 = k1 = 7 and k2 = r1 = 5. We get the

quotient, q2 = 1, with a remainder, r2 = 2. Thus, we obtain the equation:

7 = (5)(1) + 2.
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We replicate the process over and over by substituting n i  for ki-1 and ki for ri-1 every

time until we get remainder rn = 1. In this case we only need another division to obtain r3 =

1. Since,

5 =  (2)(2) + 1.

Now we are going to used the previous centered equations to find two integers x and

y such that 1 =(3120)(x) + (7)(y). Note that: 1 = (3120)(x) + (7)(y)  ≡ (7)(y) (mod 3120).

Thus, y is a multiplicative inverse of 7 with respect to modulus 3120, which is what we

need for our decryption exponent d.

Therefore,  from the third centered equation, we have that: 5 =  (2)(2) + 1.

We may rewrite this equation as: 1 = 5 – (2)(2). (1)

From the second centered equation, we have that: 7 = (5)(1) + 2.

We may rewrite the previous equation as: 2 = 7 – (5)(1). (2)

By using equation (2) to substitute for 2 in equation (1) we obtain: 1 = 5 –  (2)(7 – (5)(1)).

We may rewrite the previous equation as: 1 = (-2)(7) + (3)(5). (3)

Also, from the first centered equation, we have that: 3120 = (7)(445) + 5.

We may rewrite the previous equation as: 5 = 3120 – (7)(445). (4)

By using equation (4) to substitute for 5 in equation (3) we obtain: 1 = (-2)(7) + (3)(3120 –

(7)(445)).

We may rewrite the previous equation as: 1 = (3)(3120) – ((445)(3) + 2)(7) = (3)(3120) +

(– 1337)(7).

Thus, by the definition of modular arithmetic we have that: 1 = (3)(3120) + (-1337)

(7) ≡     (-1337)(7)  (mod 3120).
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Thus, y = -1337 (mod 3120). To make it easier to understand we are going to avoid

using a negative value for our exponent d; thus, we pick a positive multiplicative inverse for

Alice’s decryption exponent d. Recall that, d ≡ y (mod 3120).

Thus, since -1337 ≡  – 1337 + 3120 = 1783 (mod 3120), we obtain d = 1783.

We can check if d = 1783 works for Alice ’s decryption exponent d by computing (d)

(e) (mod n): (1783)(7) = 12481 = 1 + (3120)(4) ≡ 1 (mod 3120). 

Thus, d = 1783 works.

Then Alice, who has already published her encryption key (n, e) = (3233, 7), needs to

keep her decryption key (n, d) = (3233, 1783) secret. Note that even though Alice publishes

n, she also needs to keep the prime factors p and q secret. Because if Eve finds what prime

factors Alice used to obtain n, she will be able to calculate ɸ(n) and thus reproduce the

process we just did to calculate the decryption exponent d. That will enable her to remove

the disguise from the messages sent to Alice.

Let us go back to the situation where Bob wanted to send a message to Alice. Then,

Bob obtains Alice’s encryption key (n, e) which is (3233, 7). Let us say that Bob’s message

is “HI”.

When using a cryptosystem to put a disguise on a message, all characters from the

message  must  be  turned  into  numbers  using  a  substitution  table.  (This  conversion  is

generally  done  with  the  ASCII  table,  which  stands  for  American  Standard  Code  for

Information Interchange). This is because the encryption and decryption algorithms only

work on numbers.
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To make it simple, we will use the following table to convert each letter into a two

digit number, and then we will put the numbers together. Therefore, the message will be

turned into a string of numbers, which will be Bob’s plaintext:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

TABLE 1

Hence, Bob’s message, “HI”, will be turn into “0708”. Thus, our plaintext now is P =

0708.  After  turning the  original  message into a  string  of  numbers,  Bob is  now able  to

encrypt the plaintext with Alice’s encryption key (3233, 7) to obtain the ciphertext:

Thus, (P)^e = (0708)^7 ≡ 663 (mod 3233) = C. (5)

Therefore, Bob obtains the following ciphertext: C = 663.

Then, Bob sends Alice the disguised form of the message or ciphertext (C = 663),

which only Alice can turn back to the original plaintext using her secret decryption key (n,

d) which is (3233,  1783). Let us check if the decryption key works by computing C^d:

From equation (5) we have that: (C)^d ≡ ((P)^e)^d (mod n)

We may rewrite the previous equation as: C^d  ≡ P^(ed) (mod n)

Recall that: ed  ≡ 1 (mod ϕ(n)). Therefore, ed = 1 + (ϕ(n))(k), for some positive integer k.

Hence, we have that: C^d  ≡ P^(ed) = P^(1 + (ϕ(n))(k)) = [P^1] [P^(ϕ(n) k)] (mod n)

We may rewrite the previous equation as: C^d  ≡  [P^1] [(P^ϕ(n))^k] (mod n)

By Euler's Totient Theorem, P^ϕ(n)  ≡ 1 (mod n), since g.c.d.(P, n) = 1.

Thus, we have that: [P^1] [(P^ϕ(n))^k] ≡  [P^1] [(1)^k] (mod n)

Since k is a positive integer, we have that 1^k = 1. 

Therefore, we finally obtain that: C^d  ≡  [P^1] [(1)^k] = (P)(1) = P (mod n).
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Thus, Alice decrypts the message with her decryption key (n, d) and recovers the

plaintext P which is equal to 0708. Then, she uses the same table to turn the plaintext back

into Bob’s message, and she obtains: 0708 = “HI”.

If Eve was able to factor n by finding the primes p and q such that n = (p)(q), then

Eve would know the value ϕ(n) = (p-1)(q-1), which she could use (along with the value of e

which is public) to calculate the decryption exponent d and thereby be able to decrypt all

messages sent to Alice. However, factoring n is computationally difficult, which means that

this path may not be available for Eve. We shall discuss this issue later in this paper.
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FEATURES AND HISTORY OF RSA

In this section we will discuss how cryptosystems worked prior to the invention of

RSA. Then we will describe some of the inconveniences of using pre-RSA cryptosystems.

These inconveniences served as a motivation for the invention of RSA and a new type of

cryptosystems that changed the world.  We will also describe how RSA was created, who

the authors are, and some features that make the RSA cryptosystem different from all other

cryptosystem that existed before RSA.

Before the RSA cryptosystem was created, cryptosystems had a completely different

structure from the modern cryptosystems, and thus worked differently. All these previous

cryptosystems are examples of what are called symmetric cryptosystems. In a symmetric

cryptosystem knowing what the encryption key is and how to encrypt allows you to easily

or quickly find the decryption key. For that reason, when using a symmetric cryptosystem

both encryption and decryption keys have to be kept secret.

In order to understand this new concept, we are going to illustrate how symmetric

cryptosystems work by presenting a very simple example. Allow us to describe the Caesar

cryptosystem, also known as the shift cryptosystem. This cryptosystem was named after

Julius Caesar, who used it in his correspondence over 2 thousand years ago (this might give

a small idea of the significance of cryptosystems in human history). Now, imagine that Bob

wants to send a message to Alice and again he does not want Eve (or anyone other than

Alice) to know the content of the message. Then, Bob meets with Alice in a secret place and

whispers in her ear that he is going to use the Caesar cryptosystem and the number 3 for the

encryption key.  Thus,  only Alice and Bob have knowledge of  the encryption key.  Now
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imagine that Bob wants to send the following message: “S E C R E T”. Assume that Bob

uses the same table that we used before to convert his message into numbers.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

TABLE 2

Therefore, Bob obtains the following string of numbers (which is going to be his

plaintext): “18 04 02 17 04 19”. Bob now uses the Caesar cryptosystem to turn his plaintext

into ciphertext.

Let Plaintext = P = P1  P2  P3  …  Pn.

Then, ciphertext = C = C1  C2  C3  … Cn. Where, Ci = (Pi  + “encryption key”)     mod

26,  for  i  =  1,  2,  3,  …,  n    (This  is  known  as  the  encryption  process  in  the  Caesar

cryptosystem).  In this  case  we are  using 26 because there are  26 letters  in the English

alphabet. We use modulo 26 so that when we convert our plaintext into ciphertext we obtain

a  number  from  0  to  25  which  we  can  use  to  convert  back  to  letters  using  the  same

conversion table. (This is known as the encryption process in the Caesar cryptosystem).

Similarly, Pi = (Ci  + “decryption key”)     mod m, for i = 1, 2, 3, …, n  (This is known

as the encryption process in the Caesar cryptosystem).

Note that in this case the decryption key is equal to the encryption key times negative

one. 

Thus,  as  we said above knowing the encryption key allows us to  easily  find the

decryption key.

For instance if Pj = 25, then Cj = 25 + 3 ≡ 2 (mod 26).

Similarly, if Cj = 2, then Pj = 2 – 3 = – 1 ≡ 25 (mod 26).
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Therefore, Bob applies the Caesar cryptosystem and obtains the following ciphertext:

“21 07 05 20 07 22” (= V H F U H W). Then, Bob sends this ciphertext to Alice.

Alice, who knows that Bob used the Caesar cryptosystem and 3 for his encryption key can

easily find the decryption key. Hence, she can reverse the process of encryption and thus

obtain Bob’s original plaintext by simply imputing the decryption key (– 3 in this case) with

Bob’s ciphertext into the decryption process. 

As  we just  saw with  the  Caesar  cryptosystem,  knowing the  encryption  key of  a

symmetric cryptosystem is enough information to easily or quickly calculate the decryption

key. One of the issues with that characteristic is that every time a certain person wants to use

this kind of cryptosystem to put a disguise on a message he/she is going to need to agree

secretly  on  an  encryption  key  with  the  person  whom  the  message  is  being  sent  to.

Communicating  with  someone  via  phone  call,  messages,  or  any  other  channel  of

communication is not secure enough since there might be someone else intercepting the

messages or listening to their conversation. Recall that learning about the encryption key in

symmetric  cryptosystems  entails  finding  the  decryption  key  and  thus  breaking  the

cryptosystem. Thus, most of the times, the only truly safe way to agree on a secret key was

that the sender and receiver meet in person.

Now, let us imagine that we are the owners of a big bank, and we decide to use a

symmetric cryptosystem to put a disguise on every message that is being sent to each of our

clients. Thereby, every client can feel reassured that no one else will be able read his/her

personal bank information. However, as we said we can not simply send the encryption keys

in messages to our clients because there might be someone intercepting the messages. Thus,

our only option to keep our clients’ privacy safe is to meet in person with each of them
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individually and hand him/her the encryption key. The problem is that if our bank is really

big, it causes this process to be extremely expensive. Likewise, we will also have to keep

track of every single client’s encryption key which implies more cost. This issue of having

to meet in person to agree on a key is known as the key distribution problem.

Whitfield  Diffie  and  Martin  Hellman,  two  Stanford  University  researchers  in

cryptography, together with Ralph Merkle, a computer scientist, worked for years trying to

find a way to fix the problem of key distribution. After years of hard work, they published a

system in 1976 that allows two people two agree on a key without having to meet in person.

This system uses modular arithmetic functions and allows the two people to agree on an

encryption  key,  while  making  sure  that  even  if  someone  were  to  be  listening  to  their

conversation, he/she still will not have enough information to find out about the encryption

key. The only requirement with this system is that the two people that are agreeing on a key

have to be available at the same time.

Suppose that we are back to the situation where we are the owners of the big bank. In

order to save money and time we decide to use the system to establish an encryption key for

each client. Combining the symmetric cryptosystem with the system to agree on keys is a

big improvement for our bank. However,  we still  have to keep track of all  keys of our

clients and also there is another inconvenience:

Let us now imagine that we make a new client from the Middle East and that our

bank is located in Ohio. Imagine that we need to contact him urgently about some private

information. Hence, first we need to agree on an encryption key with him. Nonetheless, we

can not use the system because he is in the Middle East and they have a different time zone.

We want the message to be received in a timely manner. However, by the time that he may
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be available it might be already late. Therefore, our new system is very useful, but is not

very convenient. 

The  two  Stanford  University  researchers,  Whitfield  Diffie  and  Martin  Hellman,

became aware of that and tried to find a new solution. They worked for years in a new idea

that could represent a very important innovation with regard to cryptosystems. They thought

about  a  completely  new  kind  of  cryptosystem,  one  that  would  overcome  all  the

disadvantages  that  the  symmetric  cryptosystems  had  even  with  the  aid  of  the  key

establishment system. This new kind of cryptosystem is called an asymmetric cryptosystem.

In asymmetric cryptosystems knowing the encryption key does not easily lead to knowledge

of the decryption key. Indeed, it would require an unreasonable amount of time and/or effort

to calculate the decryption key based solely on the knowledge of the encryption key. They

suggested that, although this had never been done before, there might be a way to encrypt

messages using an encryption key that could be made public without affecting the strength

of the cryptosystem. Then, the decryption would be done using a decryption key (a secret or

private key) which only the people for whom the messages are intended would have access

to.

Let us go back to the example of Alice, Bob, and Eve. Just as before, assume that

Bob wants to send a message to Alice, but does not want Eve to know the content of it.  Bob

decides to use an asymmetric cryptosystem to put a disguise on his message. Then, he just

needs to obtain Alice’s public key which has been published before and so is available to

everyone (including Eve), encrypt the message using that key, and send it to Alice. After

this, Alice who has the secret decryption key is the only person that is going to be able to
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decrypt  Bob’s  message.  Thus,  Eve  can  not  decrypt  the  encrypted  message  if  the

cryptosystem is strong enough.

This was a powerful new idea. With this kind of cryptosystem the whole problem of

the key distribution was avoided since the encryption keys do not enable anyone to find the

decryption keys, so they can be made public. Thus, there is no need to meet secretly in

person  to  avoid  eavesdropping.  Because  of  that  reason,  everyone  using  this  kind  of

cryptosystem could publish his/her encryption keys, and thus there will be no need for big

companies (like our bank) to establish an individual encryption key with each client and to

keep track of all them. 

ASYMMETRIC KEY ENCRYPTION SYMMETRIC KEY ENCRYPTION

  

     VS 

FIGURE 1 FIGURE 2

For a while the idea worked perfectly fine in theory, but seemed unfeasible in practice.

Since the cryptosystem needed to be secure enough, the challenge was to find a suitable

mathematical function that would make the encryption process simple for anyone, while
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making  exceedingly  difficult  for  anyone  to  reverse  the  encryption  process  even  with

knowledge of the encryption key. Recall that in other to be useful,  in any cryptosystem

having knowledge of a decryption key should be enough to easily or quickly reverse the

encryption process. There are some functions in mathematics that fit this prior description;

they are  called one-way functions.  These are  functions  that  are  “easy” to  do (encrypt);

nonetheless, extremely difficult to undo (decrypt).

Modular  arithmetic is  an area of  mathematics rich in one-way functions.  A good

example to see how modular arithmetic functions fit as one-way function is the following:

Let us say we have the following function: y = 55^x (mod 111,111,111). We could pick

different values for x and get the corresponding values of y fairly easy. For instance, let x =

5,  then  the  result  of  the  function  is  y  =  55^5  =  503,284,375  ≡  58,839,931  (mod

111,111,111).

However,  if  we just  say that  the  result  of  55^x is  for  example  y =  88888 (mod

111,111,111),  it  will  be  extremely  difficult  to  find  the  value  of  x.  It  would  require  an

unreasonable amount of computer time for this calculation.

Thus, as we just saw in this modular arithmetic function, the first direction (finding y

for a value of x) was significantly simple to do, but it was extremely difficult to reverse

(finding x for a value of y). Thus, the function we described above is an example of a one

way function.

Whitfield  Diffie  and Martin  Hellman worked for  years  trying to  find  a one way

function that would fulfill the requirements for the asymmetric cryptosystem. However, they

could  not  find  such a  function.  In  1976 they published a  scientific  paper  called  “New

Directions in Cryptography,” for the purpose of calling on other  researchers around the
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world to  look for  a function that  would make this  possible.  Since such a  function had

potential to make an important change in the world of cryptosystems; many mathematicians

and scientists from all over the world tried very hard to find a suitable function. 

For a short period of time it seemed that Diffie and Hellman’s idea worked only in

theory. No one seemed to be able to find a one-way function that worked well in practice.

Nonetheless, this would all change in 1977:

A group of three researchers of the MIT Laboratory of Computer Science was very

interested  in  finding  the  function  that  satisfies  the  requirements  of  an  asymmetric

cryptosystem and willing to solve the problem. Their names are Ronald Rivest, Adi Shamir

and  Leonard  Adleman.  The  three  of  them together  formed  a  perfect  team.  Rivest  is  a

computer scientist with a fantastic ability to assimilate new ideas and apply them in unlikely

places.  He  was  always  bringing innovative  ideas  and coming up with  all  sorts  of  new

candidates for the function. Shamir, also a computer scientist, had a lightning intellect and

an ability to see through the debris and focus on the core of the problem. He often came up

with ideas for formulating an asymmetric cipher as well. Adleman, a mathematician with

tremendous stamina, rigor and patience, was mainly in charge of spotting the flaws in the

ideas of Rivest and Shamir, making sure that they do not waste time following false leads.

Rivest  and Shamir  spent  almost  a  year  coming up with  new ideas  for  the  system,  and

Adleman spent a year shooting them down.

One  night  in  April  1977,  Rivest,  unable  to  sleep,  started  to  read  a  mathematics

textbook. Suddenly,  he came up with a new idea, he worked on that for the entire night. The

morning after he showed it to Adleman, who as usual went through his process trying to tear

it  apart;  however,  surprisingly,  he  did  not  find  any  mistakes.  They  named it  the  RSA
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cryptosystem (Rivest, Shamir, Adleman). Before we continue with Rivest’s idea, allow us to

review the requirements that Diffie and Hellman set:

• Alice  needs  to  have  an  encryption  key  which  could  be  made  public  without

compromising the security of the decryption key. Then, Alice would publish the key

so that Bob (or anyone) can use it to encrypt his messages and send them to her.

Since the process of encryption corresponds to a one-way function it would take an

unreasonable amount of time and/or effort to anyone (like Eve) to undo the process

of encryption and/or find the decryption key.

• Alice must have a secret decryption key (different than the encryption key) that can

reverse the process. That way, Alice can read messages encrypted with her encryption

key.

As  we  just  saw  (in  section  How  RSA  Works),  RSA  perfectly  fulfill  these

requirements.  However,  one  may  think  that  this  cryptosystem  is  not  very  safe  since

everyone has access to the encryption key and thus to the number n. Recall that in RSA the

decryption key is calculated by finding the multiplicative inverse of the public exponent e

modulo the totient ɸ(n), and ɸ(n) = (p – 1)(q – 1). Therefore, basically, if a person wants to

read a message encrypted with RSA, all he/she needs to do is find the two prime factors of

the number n. Because, as we just said, knowing the two prime factors enables to easily

calculate  the  private  decryption  key.  We can  quickly  find  the  prime  factors  when  n  is

relatively small. For instance, it is not hard to say that the factor primes of 55 are 5 and 11.

Nonetheless, factoring and multiplying large primes is also a one way function. Multiplying

very large prime numbers is relatively fast (or easy) for a big computer. However, if the two
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primes are large enough (hundreds of digits long) it would take an enormous amount of time

for any computer to factor n. For example, for important banking transactions n tends to be

at least 10^308. The combined efforts of a hundred million personal computers would take

more  than  a  thousand  years  to  find  the  two  prime  factors;  and  thus,  crack  such  a

cryptosystem. The reality is that, nowadays, with sufficiently large values of p and q, RSA is

invulnerable.

This is also one of the best features about RSA, its strength depends on how large the

public key (encryption key) is. In other words, the larger the pair of prime factors are, the

longer it takes to break it because it implies that more computations are needed to be done.

For instance, back in the 80’s when RSA was starting to become popular, a public key n of

50 digits was considered secure enough because computers were not as fast as they are now.

Hence,  the  amount  of  time  that  those  computers  needed  to  factor  n  of  50  digits  was

unreasonable. However, as technology evolves, computers become more efficient and thus

they can do more computation in less amount of time. For example, nowadays almost any

modern personal computer can factor n of 50 digits in a reasonable amount of time. That is

the reason why nowadays the public key n tends to have many more digits (hundreds of

digits long). 

Even  though  technology  keeps  evolving,  and  thus  computers  become  faster  and

faster, a regular computer will never be able to break the RSA cryptosystem. No matter how

fast a computer is, we can always pick larger primes for our encryption key n (there are

infinitely many prime numbers).
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