
The University of Akron
IdeaExchange@UAkron

Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2017

Forget-Me-Not
Daniel Barber-Cironi
The University of Akron, dab150@zips.uakron.edu

Shawn Nicholson
The University of Akron, spn11@zips.uakron.edu

Jake Kruse
The University of Akron, jek63@zips.uakron.edu

Nicole Dent
The University of Akron, cnd18@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects

Part of the Computer Engineering Commons, and the Geriatrics Commons

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of
IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

Recommended Citation
Barber-Cironi, Daniel; Nicholson, Shawn; Kruse, Jake; and Dent, Nicole, "Forget-Me-Not" (2017). Honors
Research Projects. 564.
http://ideaexchange.uakron.edu/honors_research_projects/564

http://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F564&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F564&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F564&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F564&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=http://ideaexchange.uakron.edu/honors_research_projects/564
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F564&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F564&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/688?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F564&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects/564?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F564&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Forget-Me-Not

Project Design Report

Design Team Number: 7

Daniel Barber-Cironi

 Jake Kruse

Nicole Dent

Shawn Nicholson

 Dr. Carletta

5/1/2017

ii

Table of Contents

LIST OF FIGURES ... V

TABLE OF TABLES .. VI

ABSTRACT .. 1

KEY FEATURES ... 1

PROBLEM STATEMENT ... 2

NEED [SN, JK, DBC] .. 2

OBJECTIVE [ND, SN, JK, DBC] ... 2

BACKGROUND [SN, DBC, JK] .. 3

Patent Search .. 3

Article Search .. 3

MARKETING REQUIREMENTS [ND, DBC, JK] .. 5

OBJECTIVE TREE [SN] ... 5

DESIGN REQUIREMENTS [DBC] .. 6

ACCEPTED TECHNICAL DESIGN ... 7

HARDWARE ... 8

Part List ... 8
Design ... 8
Implementation .. 8

System Block Diagram [DBC, ND].. 9

Bracelet Block Diagram [ND, DBC] .. 10

Display System Design [DBC] .. 10

Bracelet Design [ND, DBC] .. 14

Bracelet Schematic [ND] ... 18

SOFTWARE .. 21

Introduction [SN] ... 21

User Interface Design Pattern Overview: MVVM [SN, JK] ... 21

Other Useful Design Patterns for this Section ... 22
Favoring Composition to Inheritance ... 22
The Communicator Design Pattern .. 23

Display Software Design [SN, JK] .. 23

Display UML Diagram: [JK, SN] ... 25

Mobile Application [JK] ... 26

RESTful Web Server Design Pattern Overview [SN] ... 32
Decorator Design Pattern ... 33

RESTful API Design [SN] ... 34

API Endpoints and Examples [SN] ... 35
Example Endpoints ... 35

API Backend [SN] ... 36
API Documentation .. 37
Google App Engine: A Reactive Cloud Server ... 37
Datastore .. 38

iii

Notification Class .. 38
TESTING AND DEVELOPMENT STRATEGIES [SN] .. 39

Three Methods to Test Code ... 39
Unit Testing .. 39
Integration Testing ... 39
End To End Testing ... 40

Display and Mobile App Testing Tools .. 40
Google’s Testing Framework .. 40
Microsoft Visual Studio and Xamarin Studio .. 40

API Testing Tools ... 40
Postman ... 40
Jenkins .. 41

OPERATION AND MAINTENANCE INSTRUCTIONS .. 42

OPERATION OF SYSTEM ... 42

MAINTENANCE OF SYSTEM ... 42

PROJECT SCHEDULES .. 44

GANTT CHART - DESIGN .. 44

GANTT CHART – IMPLEMENTATION ... 44

GANTT CHART - ACTUAL .. 44

FINANCIAL BUDGET ... 45

DESIGN TEAM INFORMATION .. 47

REFERENCES ... 48

APPENDICES... 49

DATASHEET REFERENCE ... 49

API DOCUMENTATION .. 49

YAML Code to Produce Interactive Documentation .. 56

PRIMARY DISPLAY SOURCE CODE .. 59

mainWindow.h .. 59

alarm.h .. 60

alarmDismissal.h ... 61

apiInterface.h .. 62

bluetoothManager.h ... 62

message.h ... 62

weather.h .. 63

MOBILE APPLICATION SOURCE CODE ... 64

Alarm Editor Page ... 64

DashBoard Page .. 69

Communication Page .. 71

Settings Page .. 73

API View Model ... 73

Alarm Model ... 76

Settings Model .. 79

API SOURCE CODE ... 80

iv

Notifications class (API push-notification service implementation): ... 80

Alarm and Message Entity Classes .. 80

RESTful API Endpoints ... 81

BRACELET CODE ... 85

v

List of Figures
FIGURE 1 - OBJECTIVE TREE .. 5

FIGURE 2 - FULL SYSTEM LAYOUT .. 9

FIGURE 3 - BRACELET LAYOUT ... 10

FIGURE 4 - DISPLAY SYSTEM FLOWCHART .. 12

FIGURE 5 - DISPLAY MOCKUP ... ERROR! BOOKMARK NOT DEFINED.

FIGURE 6 - BRACELET SYSTEM FLOWCHART ... 15

FIGURE 7 - BRACELET SCHEMATIC .. 18

FIGURE 8 - MVVM .. 22

FIGURE 9 - DISPLAY SOFTWARE DESIGN .. 23

FIGURE 10 - DISPLAY UML DIAGRAM .. ERROR! BOOKMARK NOT DEFINED.

FIGURE 11 - MOBILE APPLICATION FLOW CHART.. 27

FIGURE 12 - MOBILE APPLICATION UML DIAGRAM .. 28

FIGURE 13 - DASHBOARD PAGE .. ERROR! BOOKMARK NOT DEFINED.

FIGURE 14 - COMMUNICATION PAGE MOCKUP .. ERROR! BOOKMARK NOT DEFINED.

FIGURE 15 - SETTINGS PAGE MOCKUP ... ERROR! BOOKMARK NOT DEFINED.

FIGURE 16 - API CLOUD SERVER ... ERROR! BOOKMARK NOT DEFINED.

FIGURE 17 - GANTT CHART - DESIGN ... 44

vi

Table of Tables
TABLE 1 - MARKETING REQUIREMENTS ... 5

TABLE 2 - DESIGN REQUIREMENTS ... 6

TABLE 3 - DESIGN PARTS LIST ... 8

TABLE 4 - IMPLEMENTATION PARTS LIST ... 8

TABLE 5 - BRACELET POWER CALCULATIONS .. 16

TABLE 6 - BRACELET POWER CALCULATIONS CONTINUED ... 17

TABLE 7 - BRACELET COMMAND PROTOCOL .. 20

TABLE 8 - API ENDPOINTS .. 33

TABLE 9 - INITIAL FINANCIAL BUDGET ... 45

TABLE 10 - ADDITIONAL FINANCIAL BUDGET .. 46

1

Abstract
The purpose of Forget-Me-Not is to provide another level of care and comfort to those

suffering from mild dementia, as well as provide further assistance for a friend, family member,

or caretaker who may look after them. Research shows that timely reminders and persistent

information can greatly improve the quality of life for those afflicted with mild dementia

(Mokhtari et al.). Forget-Me-Not’s persistent display and wearable smart-bracelet offer a

customizable and well connected system to provide these reminders. For the caretaker, a mobile

application is provided in order to maintain the display and notify them of emergencies or critical

events from virtually anywhere. The system is composed of four primary elements: a high

contrast and easily understood display that remains in the patient’s home, a mobile application

wielded by the caretaker that can control aspects of the patient’s display, a web server that holds

persistent information for the system, and a wearable smart-bracelet equipped with attention

grabbing elements to warn the patient of an ongoing alarm. The system is designed to be

modular and extensible, thus leaving massive margins for expansion and future integration with

trending technologies such as smart houses and appliances.

Key Features

● A persistent display in the patient’s home.

● A wireless bracelet to supplement the display’s alarms and notifications.

● A web server to hold key information for the display

● A mobile application for the care taker to control and monitor the display.

● A modular design, allowing for expansion in hardware and software to accommodate

new technologies.

2

Problem Statement
Need [SN, JK, DBC]

Taking care of an aging family member can be a daunting task. This is especially true if

this family member is one of the 5.3 million Americans afflicted with Alzheimer's or some other

form of dementia (2016 Alzheimer's Disease Facts and Figures, 2016). Even the mildest cases

require constant attention - from the seemingly mundane tasks like forgetting household chores,

to more serious matters such as remembering to take medication or preparing meals. Performing

a job alongside providing care is taxing, paying for personal nurses to do the job is expensive,

and turning a family member over to the care of a nursing home is a last resort. Our loved ones

want to spend their time in their home. They need some means to help organize and plan the day

or set reminders for medication without paying excessive medical fees. Moreover, they need to

do so in an easy, interactive way that they cannot easily forget or overlook.

Objective [ND, SN, JK, DBC]

A simple solution to the problem illustrated above is an interactive display positioned in a

noticeable point in the person’s home. The display would fetch important information and

display it in a clear and concise manner for the patient each day. Information such as weather,

calendar events, and even messages from the caretaker will be available right at the patient’s

fingertips. The display could even warn caretakers if the patient has failed to respond to an alarm

or message so that they know to check on the patient immediately. The caretaker would also

have the option of setting up lists and alerts and even customizing the display via an interactive

application for Android or iOS. The display would help patients live a more independent life in

their own homes and would quickly prove itself to be a convenient tool for the person providing

care. To enhance the aid of the display even further, the patient will also have a wireless bracelet

that gives off an alert light and vibration when an alarm needs to be acknowledged and it will be

equipped with a “Help” pushbutton. This will be an additional reminder for the patient and allow

them to be in other rooms of the house and still be notified. On top of this, the bracelet will also

allow the display to track whether the patient has left the home or not. The functionality of both

the display and the bracelet will be crucial for both the caretaker and patient alike.

3

Background [SN, DBC, JK]

Patent Search
Telecare or Telehealth Communication (PAT.NO. 9.286.442) is a system that uses a

health monitoring control unit and predefined messages to ask questions or provide feedback to

patients. This method of remotely providing care is similar to Forget-Me-Not in that the patient

is notified of critical events in a clear and concise method that is done automatically. In this case

this is done with predefined audio signals and voice recognition. The difference is that Forget-

Me-Not will not use predefined responses and algorithms to attempt to administer care to the

patient. Instead it will be more of a reminder and communication tool. Forget-Me-Not is going to

be an internet enabled simplistic window showing only important information, not just a voice

speaking to the patient.

A computer-based method and system for providing active and automatic personal

assistance (PAT.NO. 9.223.837) is described. The system will use a sensor to sense data about a

person or environment, then use that data along with a learning algorithm to assist the individual

at home, in an automobile or on a mobile device. The patent does not specify how it will assist

the patient, but it does note that a display or speaker can be used to convey information. Review

of the “Other References” section alludes to the fact that the assistance will be similar to that

offered by the “Siri” and “Google” personal assistants of modern smartphones. Though this

system is similar to Forget-Me-Not in that it will attempt to assist the patient with daily

activities, it does so in a much different manner and for a much different application. Forget-Me-

Not may have some simple sensors, but these will not be used to learn behavioral patterns of the

patient. The application of the display will be directed at those afflicted with dementia not

general assistance while driving or on a mobile device.

Article Search

Karger Medical and Scientific Publishers, Vol. 58, No. 6, October 2012.

 This article details the efficacy of timely prompts, alarms and reminders in helping

elderly people suffering from dementia improve the quality of their lives. Through

experimentation with television sets, tablets, sensors and speakers, researchers were able to show

a major improvement in those patients suffering from mild dementia. The article focuses mainly

4

on the type of interaction and how effective it is depending on the severity of their dementia.

Researched showed an improvement in four areas of focus; information - managing the patient’s

agenda, communication - maintaining social links, action - controlling home devices and

leisure - games, music and movies.

 Computers and Human Behavior, Vol.25, Issue 3, May 2009

 Researchers explore the benefits of an interactive device for creating music for patients

suffering from dementia. The device takes advantage of a simple interface for creating single

notes and complex chords. The purpose of this device to engage a patient to curb tendencies such

as aggression, difficulties communicating and depression by eliciting creativity in the form of

music. The device requires the patient to have no musical experience to create something that

sounds pleasant. Participants in the study report the experience as enjoyable, even showing an

increased interest in communication. Future experiments with the device plan to assess the

patient’s musical ability and potentially direct rehabilitation and treatment.

5

Marketing Requirements [ND, DBC, JK]

Marketing

Requirement
Description

1 Affordable and reliable.

2 Able to display useful information in a sleek, concise, and organized manner without

overwhelming the patient.

3 Accompanied by a mobile application that is intuitive and reliable so that a caretaker can

easily send information to the patient using Forget-Me-Not.

4 Sized just right so that the placement of the device remains flexible, allowing the patient to

place the device in a convenient, secure location of their choosing.

5 Easily portable between standard power outlets in order to support the needs of different

users.

6 Paired with a wireless bracelet that adds considerable functionality to the system.

Table 1 - Marketing Requirements

Objective Tree [SN]

Figure 1 - Objective Tree

6

Design Requirements [DBC]

Marketing

Requirement
Engineering Requirement Justification

1 The display must be operational 24 hours a day / 7

days a week with maintenance downtime of no more

than one hour each month.

This is an expected design trait of a

system of this nature, achieved

through redundancy and error

detection.

2 The display system must display a clear, noticeable

alarm to the patient at pre-programmed times.
Comparable to similar products

targeted to this demographic.

2 The display must maintain basic alarm functionality

even without an internet connection.
Based on common issue of

inconsistent internet connections in

most homes.

3 The screen must connect to the internet and be updated

within 30 seconds of making a change through the

mobile application.

This is a standard expected

response time for similarly

designed digital signage systems.

3 The mobile application must be compatible with

Android 4.4+ as well as iOS 8+.
This covers over 90% of mobile

device users on each platform.

4 The screen must be 18-22 inches in size with a bright,

high contrast display.
Standard size of personal, semi-

portable display screens.

5 The display and embedded computer must be powered

through a single standard wall outlet.
Common standard for personal

electronic devices.

6 The wearable peripheral device must operate for 20

hours between charges.
Matches the upper end of battery

life for modern wearable devices.

6 The wireless bracelet must alert the patient through

two separate methods when they have received a

notification.

Redundancy is a key requirement

in regards to the relay of critical

information and alarms.

6 The wireless bracelet will have a range of 150 feet

from the main display.
This is safely beyond the range

that people can expect to travel

throughout a personal home.

Table 2 - Design Requirements

7

Accepted Technical Design

Forget-Me-Not’s main hardware design is broken into a small number of primary

sections. These primary sections include the display itself, a small embedded computer with an

operating system to drive the display, and finally the wearable bracelet. The main power supply,

which will be an off-the-shelf solution, will provide power to two of the three primary sections,

those being the display and the embedded computer.

 Similar to the power supply, the display will be an off-the-shelf solution. After reviewing

various options this seemed to meet the proper requirements pertaining to budget, size, features,

and connectivity. The display will be around 20 inches in size with a high contrast, high

brightness display with large viewing angles to provide the best display to the patient. It will be

powered in parallel with the embedded computer from the same power source.

Along with the power input, inputs to the embedded computer will include: a hardwired

Ethernet connection for quick communication to the cloud based server, a wireless connection to

communicate with the bracelet, and a simple pushbutton in order for the patient to acknowledge

and dismiss notifications as they are displayed on the screen. As for the outputs, from the

embedded computer: there will again be a wireless output to communicate with the bracelet, a

simple LED to relay to the patient that a notification is available, a speaker to add yet another

method of alerting the patient of a notification, and finally the video output to connect to the

display.

8

Hardware

Part List

Design

Below is a list of parts ordered at the time of the initial design before the implementation had

begun. These parts covered the primary functionality of the system, as described in our design

requirements.

Table 3 - Design Parts List

Implementation

Below is a list of parts that were ordered after the implementation of the design had begun. These

parts were selected and added to the project in order to add further polish and reliability to the

initial design.

Table 4 - Implementation Parts List

9

System Block Diagram [DBC, ND]

Figure 2 - Full System Layout

10

Bracelet Block Diagram [ND, DBC]

Figure 3 - Bracelet Layout

Display System Design [DBC]

 The display system will consist of two primary components: an LCD display and a

Raspberry Pi 3 Model B to drive said display. The LCD display will be an off-the-shelf solution

in order to meet the requirements for affordability and upgradeability. It will connect to the

Raspberry Pi over an HDMI cable connection as well as provide power to the Raspberry Pi

through a built in USB 3.0 port. The USB 3.0 port will be sufficient to provide the necessary

power requirements of 5V DC and up to 2A current draw, and it will allow us to power both the

display and the Raspberry Pi through a single standard wall outlet, as designated in the design

requirements.

 There are several reasons that a Raspberry Pi 3 Model B was chosen as opposed to other

similar systems such as a PIC microcontroller or an Arduino Uno. The first reason is the

Raspberry Pi is an affordable and very widely supported system. Secondly, the Raspberry Pi has

built in GPIO pins that will allow connectivity to devices such as buttons, LEDs, speakers, etc.

that will accompany the primary display to make the use of the system simpler for the patient.

The Raspberry Pi also has enough computing power to handle running a graphically based

operating system, which is crucial for this design as it is built on creating a visually appealing

11

and visually clear display. Another benefit of the Raspberry Pi is that it has several

communication standards built directly into the main board such as Wi-Fi, Ethernet, and

Bluetooth Low Energy. Wi-Fi and Ethernet will be of obvious importance as the device will need

an internet connection for full functionality, and the Bluetooth Low Energy will be crucial for

communication between the Raspberry Pi and the wireless bracelet, which will be described

below.

 The standard operating procedure of the Raspberry Pi can be seen in the flowchart below.

It can be seen that the device will primarily be displaying persistent information such as weather

information and calendar events. It will then be polling the API on the cloud server every 30

seconds to check for new alerts that need to be displayed. If there is a new alert available, such as

a new message from the caretaker, the Raspberry Pi will blink the notification LED, sound a tone

over the speaker, and display a message on the LCD display. The patient will then have to

dismiss these notifications using the physical button connected to the GPIO of the Raspberry Pi.

If the patient fails to dismiss the notification after fifteen minutes then the Raspberry Pi will alert

the caretaker by pushing an alert to the cloud API, so that the caretaker is aware that the patient

is not responding and there may be an emergency.

12

Figure 4 - Display System Flowchart

13

Figure 5 - Primary Display

Figure 6 - Primary Display with Active Alarm

14

Bracelet Design [ND, DBC]

 The final piece of primary hardware for this project is the wireless bracelet. The purpose

of the bracelet is to supplement the display’s notifications to the patient. It utilizes a vibrating

disc motor and LED to alert the patient of alarms sounding at the display. It also features a push

button that the patient can activate if they are in immediate need of help. To achieve this, the

bracelet’s embedded computer receives frequent updates from the display containing information

about current alarms or notifications. The low power microcontroller lays dormant to save power

and wakes up when the display dictates a notification. If the bracelet’s push button is pressed for

more than 3 seconds it will force a notification to the display. This notification causes the display

to push another notification to the API, which the mobile application will receive. The mobile

application will trigger an alert for the caretaker so they can check on the patient. The flowchart

for the bracelet is pictured below.

15

Figure 7 - Bracelet System Flowchart

16

The bracelet design and its components are heavily dependent upon power consumption

and battery drain. The intended use of the bracelet requires it to be powered for 20 hour intervals

between charges. Power consumption due to communication with the main embedded computer

will determine the most efficient design. A Bluetooth Low Energy (BLE) connection is an

excellent protocol to transmit the small amount of data over the 150 feet range required.

Estimated power consumption for the Bluetooth LE is 0.01 to 0.5 watts. The power consumption

calculations are done for the Arduino Pro Mini microcontroller Atmega328P. It can operate on a

range of voltages and has optional low power clock mode (clock speed reduced by half and

lowest working voltage). Below in Table 3 are the ratings the microcontroller will run at for the

wireless bracelet.

Microcontroller Voltage Current

ATMEGA328P 3.3V 3.73mA (@3.3V and 8MHz clock)

Table 5 - Bracelet Power Calculations

When powering the remote circuit selecting a battery with the appropriate capacity is the

first step. A 3.7V lithium ion polymer 2200mAh battery was chosen. Along with considering the

weight and size of the battery, after calculations it has provided the desired design specifications.

To determine the battery capacity needed the normal current the circuit will draw was calculated.

To find the power consumption/current draw values Equation (1) was used. In addition to current

draw for the ATmega328P calculated the current draw of each component added in the circuit in

Table 4.

Equation 1 - Power = Voltage x Current

 3.3𝑉 ∗ 3.73𝑚𝐴 = 12.3𝑚𝑊

Main Components Voltage Current Draw Size/Weight

17

Microcontroller-ATMEGA328P 3.3V 3.73mA @3.3V and 8 MHz clock 33mm x 18mm

Bluetooth Low Energy 3.7 10.1uA 5mm x 5mm

LED 3.7V 10mA 3-5mm

Vibrating Mini Disc Motor 2-5V 60mA 10mm diameter,

2.7mm thick/.9g

Table 6 - Bracelet Power Calculations Continued

After calculating each current draw simplifying summing them all up would get a general

total power consumption. With power consumption value known the battery can be selected

based off battery life calculations.

Total Power Consumption = 75mA

Battery life is dependent upon the hardware, distance, and duty cycle. The Bluetooth LE

can last up to 34 months on a single battery when only sending periodic impulse signals. The

vibrating disc motor and LED will also be used periodically reducing the battery drainage.

Battery calculations can be seen below using Equation 2. Using a 2200 mAh battery and for the

3.3v regulator:

Equation 2 - Battery Capacity (Ah)/Current Draw (A) = Battery Life (Hours)

2200𝑚𝐴ℎ

75𝑚𝑊
≈ 30ℎ𝑜𝑢𝑟𝑠

We would ideally get about 30 hours of battery life from the LiPo battery. Due to

efficiency consideration of 85%, the battery life is about 25 hours. The bracelet power battery

18

life exceeds the 24 hour design requirement and allows for a functional wireless bracelet for the

patient that needs charged daily.

The wireless bracelet will be constructed of a flexible plastic band and a small

rectangular compartment to hold all the components. In order to reduce the possibility of water

damage the bracelet will be coated in a silicone mixture allowing it to be water resistant. The

length of bracelet band will vary depending upon user. The wireless bracelet is intended to be

comfortable, conveniently small and easy to use.

Bracelet Schematic [ND]

Figure 8 - Bracelet Schematic

19

The bracelet schematic in Figure 6 shows the detailed connections of each component in

the circuit. The circuit layout consists of the following main components: lithium ion polymer

battery, Arduino Pro Mini microcontroller, Bluetooth module, vibrating disc, LED and

momentary pushbutton switch. The 3.7V LiPo battery powers the microcontroller, vibrating disc

and the Bluetooth module, while the microcontroller controls the entire circuit. Due to the

limited output current for each pin on the microcontroller a 2N2222A transistor is used to

amplify the current and switch on/off to drive the vibrating mini motor disc. To ensure too much

current does not flow from the output of the transistor a resistor is in series with the base. This

attenuates the current to a reasonable amount so too much current isn’t flowing through the

motor. A reversed biased diode is also put in place in parallel with the motor to act as a surge

protector against negative voltage spikes. This will protect the other components in the circuit.

Each GPIO pin has a resistor in place before all components to control current flow. Along with

the vibrating motor to alert the patient wearing the bracelet in a different form a LED is

connected to a pin. The LED will blink when an alert comes through. The final feature on the

bracelet is the “Help” button. In the schematic a pushbutton is connected. When the pushbutton

is un-pressed/open there is no connection between it so the pin is grounded and read as high.

When the button is pressed/closed a connection is made and the pin will read low to signal a help

alert to be sent to the main system. Both reset pins on the microcontroller and Bluetooth module

will be controlled with a high from the respective pins.

Bracelet Communication [DBC, SN]

As discussed above the wireless bracelet and the Raspberry Pi that powers the primary

display will communicate over Bluetooth Low Energy. This addresses the communication in

terms of hardware, however there also exists a simple command system that allows the display to

control various functions of the bracelet.

20

The structure of the command system that will facilitate control of the bracelet is as follows:

Action Operation Triggered Response to Display

Send bracelet a ‘0’ Cancel current alarm protocol “Alarm canceled early.”

Send bracelet a ‘1’ Begin passive alarm protocol “Passive alarm ran its course”

Send bracelet a ‘2’ Begin active (priority) alarm

protocol

“Active alarm left unhandled”

Hold bracelet push-button for 5

seconds

Send panic signal to display “Panic signal activated”

Table 7 - Bracelet Command Protocol

The bracelet operation is quite simple. It waits for the display to send a command and

executes a protocol for some predefined amount of time depending on the type of operation

being requested. Otherwise, the bracelet can trigger a push notification to any authenticated

mobile device with the Forget-Me-Not application installed by sending the display a panic

signal. The display uses this panic signal to trigger the push notification via “Firebase,” a google

app engine push notification service When sent a character one (‘1’), the bracelet begins

vibrating according to the passive alarm protocol for five minutes. Five minutes is the timeout

for passive alarms on the display. That is, after five minutes the alarm will dismiss itself. Upon

completing the passive alarm protocol the bracelet sends the display an acknowledgement. The

passive alarm protocol generates a lighter less urgent vibration pattern. When sent a character

two (‘2’) the bracelet begins vibrating according to the active (priority) alarm protocol for five

minutes. It is important to note that for the active alarms the bracelet stops vibrating after its

timeout and sends a timeout notification to the display. The display does not automatically

dismiss active alarms due to the fact that they are of particular importance. The active alarm

protocol generates a more urgent vibration pattern. At any point during an alarm protocol the

character zero (‘0’) can be sent to cancel the current running protocol. If no protocol is active,

then the zero is dismissed. Upon successfully canceling the bracelet sends an acknowledgment to

the display, otherwise no response is sent.

The active and passive alarm protocols are defined as follows:

1.) Active Alarm Protocol - repeated until five total minutes have passed.

21

● Vibration period:

○ Vibrate continuously for three seconds then stop for two seconds (repeat

three times for a total of three long buzzes)

● Sleep Period:

○ Bracelet stops vibration and waits for 30 seconds

2.) Passive Alarm Protocol - repeated until five total minutes have passed

● Vibration period:

○ Vibrate for one second the off for one second (repeat five time for a total

of five short buzzes)

● Sleep Period:

○ Bracelet stops vibration and waits for a minute

Software

Introduction [SN]

Forget-Me-Not’s software design is broken into three main pieces: a display, the web API

and a mobile application. Each piece follows the accepted best practices in its design to allow for

adequate testing and to ensure a robust final product. This section details the design patterns that

are used as well as the final implementations of those patterns in the form of software diagrams

for each of the three sections.

User Interface Design Pattern Overview: MVVM [SN, JK]

MVVM is a design pattern first showcased by Microsoft which allows programmers to

eliminate tightly coupled classes from their user interfaces or user facing application. When

developing a UI - or any other complex class structure - it is imperative to create a distinction

between the various sub-parts of the system. Loosely coupled designs carry a multitude of

benefits such as testability, extensibility and reliability. MVVM allows for this loose coupling by

defining three main roles in which a project’s class structure must fill. Forget-Me-Not’s UI

design will follow this pattern for the display and mobile application as it is considered a “best

practice” in many programming communities for applications dealing largely with user

interaction. Diagram 3 below shows how these roles are organized in relation to each other.

22

Figure 9 - MVVM

The view encapsulates everything that a user will interact with directly. It has no

knowledge or ties to the data it needs to represent; it only knows how to represent data it is

given. This makes the view unit testable and easily to debug, as the programmer only needs to

worry about data representation rather than storage and manipulation.

 The view-model is like a controller between the view and the model it represents.

Because loose coupling is desired, programmers don’t want the model to be aware of the view’s

functionality. Rather, the model gives raw data to the view-model (the controller) when

requested and then the view-model informs the view that it must update or refresh what it is

showing the user. In Forget-Me-Not’s design this section will also be in charge of initiating

HTTP requests from the web server discussed later and storing the response data in the model

object.

 Finally, the model is a simple container for the data the programmer is trying to

represent. It holds information and should do very little, if not, nothing else. Note how this

pattern is used in the following diagrams.

Other Useful Design Patterns for this Section

Favoring Composition to Inheritance

Some figures may abstract away the complexity of the underlying classes. Each block in

the software diagram may represent several classes. This pattern keeps object oriented programs

from abusing their inheritance capabilities when constructing potentially dependent classes. This

method couples classes loosely by coding to abstract classes rather than concrete

implementations.

23

The Communicator Design Pattern

The communicator design pattern allows various functions and objects to send messages

to each other. This is advantageous when two classes that have little in common need to share

some bit of information. Rather than coupling them concretely and spreading bad dependencies

throughout the code base, communication is performed via lightweight signals.

Display Software Design [SN, JK]

Figure 10 - Display Software Design

The display’s software design adheres to MVVM’s decoupled format allowing for a very

modular arrangement. Only three modules were added for the final iteration of the display,

however, the modular nature enables us to add or remove modules while having to alter only a

small part of the code base. In fact, the only existing files that would need to be altered are those

the module directly touches (e.g. the Display View and the Display View-Model). The Alarm,

Messages and Weather modules are an example of Forget-Me-Not’s minimum viable product,

but with little effort the system can be expanded to include much more functionality. Designing a

24

product for extensibility is necessary to reduce overhead and keep a lean codebase for future

iterations of the product.

 The view section of Forget-Me-Not’s software design consists of the main display view

and the modules that it manages. The main Display View is responsible for laying out the various

modules cleanly on the screen. Ideally, each module would be granted a section of the main view

on which to display its information. Should there be too many modules to fit on the screen the

main display view will be responsible for re-formatting or paginating the modules’ view in a

clean and attractive manner. The latter case is currently unnecessary as the minimal feature set

created for the final iteration of the display fits cleanly without pages.

 The view-model section of the design is similar to the view section in that it has a main

Display View-Model class and various other module classes that it manages. Again, in the name

of extensibility, these sub-modules are in charge of knowing all the behavior for their own view

and model in the system. This ensures that if this module is removed, no other dependencies will

be broken. This set of classes will contain most of the control logic for the display. One sub-

module will contain the behavior for communicating with the web server and other will handle

passing information between model and view.

 The model section is the simplest section of the display’s software design. Its purpose is

to hold the raw data that is to be represented. However, the model still must have structure. Data

contained in the model is stored in variables such that its structure is logical to the programmer.

For example, a file model may contain a name field and a data field among many others – it is

not ideal to have to parse some contiguous array of information to get a name or path versus the

data segment of interest.

 The primary code that drives the application on the display was written in C++ using the

QT Creator development environment, and can be seen below.

25

Display UML Diagram: [JK, SN]

Figure 11 - Display UML Diagram

26

Mobile Application [JK]

The mobile application will give the caretaker the ability to interact with the display

without being on site. This helps the caretaker feel better about their patient’s day, as well as

assist in the patient feeling more grounded. The remote interaction with the display includes

setting alarms for the patient, sending messages to the display, and getting important updates.

There are 4 different pages in the application: the dashboard, alarm editor,

communications, and settings pages. The dashboard page (shown in Figure 13) is a landing page

for any urgent information that the caretaker should know. This includes information such as the

patient failing to respond to a configured alarm, or the patient pressing the panic button on the

bracelet for 5 seconds. In both of these cases there will be a generated push notification sent to

the mobile device that will alert the caretaker via a dynamic label at the top of the dashboard

page. This page also doubles as a visual list of any configured alarms. There exists two lists, one

for alarms with repeating preferences and one for alarms without repeating preferences. If the

caretaker taps on one of the alarms they will be brought to the alarm editor page that will be pre-

populated with that specific alarms information. Finally, the dashboard page will have a button

where the caretaker can add a brand new alarm.

On the alarm editor page (shown in Figure 14) the patient can create new alarms/ edit old

alarms. This includes changing the title, message, repeating preferences, priority, and date/time

associated with that alarm. When the save button is tapped an http request is sent to the API to

save that alarm in the API’s database. If the alarm is an existing alarm, there is be an option to

delete that alarm which will also send an http request to delete that specified alarm from the

API’s database.

The communications page (shown in Figure 15) provides the caretaker a way to send

messages to the display for the patient to read. This is presenting in the same fashion as many

messaging applications. Having this ability as the caretaker makes it much easier to reach the

patient for small reminders such as someone's birthday, an event coming up in their lives, etc.

The settings page (shown in Figure 16) is screen used to configure of the general setting

for the mobile application of the display. As of the current design the only settings that exist

there are the patients name and their phone number. This settings screen can be expanded upon

27

to add in numerous other settings such as the color scheme of the display, the default weather

unit (Fahrenheit or Celsius), etc.

The design of the application follows the aforementioned MVVM design pattern, so there

is a Model, View-Model, and View for each of the pages on the mobile application. The only

exception is that a Model for the communications page is not needed. This is because instead of

saving the messages to the mobile device’s onboard memory, the messages will be stored on the

cloud server and will be accessed as needed through HTML requests.

Figure 12 - Mobile Application Flow Chart

28

Figure 13 - Mobile Application UML Diagram

29

Figure 14 - Dashboard Page

30

Figure 15 - Alarm Editor Page

31

Figure 16 - Communications Page

32

Figure 17 - Settings Page

RESTful Web Server Design Pattern Overview [SN]

REST is a web API design pattern that details how HTTP requests are handled. It utilizes

the commands GET, PUT, POST and DELETE to transfer information to and from a server.

REST is not a clearly defined pattern as there are numerous ways to adhere to its stipulations.

The only concretely defined components are the aforementioned commands as well as the idea of

“statelessness”. The atomicity of requests and responses form a very simply structured

communication protocol. The commands are detailed in table 4 below.

● REST stands for Representational State Transfer. It is considered a “best practice” to

construct a web API that follows a RESTful pattern.

● Requires a stateless client server. This means that each request to the web server contains

all the necessary information for that request.

33

● Almost always executed using HTTP protocol.

● Relies on four main commands to manipulate “endpoints” and their data

 Command Description

1 GET Get data or object at specified endpoint.

2 POST Create data or object at specified endpoint.

3 PUT Update existing data or object at specified endpoint.

4 DELETE Delete data or object at specified endpoint.

Table 8 - API Endpoints

Decorator Design Pattern

The decorator design pattern describes how using function decorator capabilities of a

programming language can simplify code. In the case of Forget-Me-Not, decorators will be used

to define HTTP endpoints. See Example Endpoints at the end of this section for examples.

34

RESTful API Design [SN]

Figure 18 - API Cloud Server

Forget-Me-Not’s API is responsible for all the persistent storage of the system details. It

contains all the data that is to be represented on the phone and display. Each of the devices still

have a local copy of the information, but regularly pull information from the API so that all local

information is up to date. If a change is made by a user of the mobile device, that device will

send a request to the API to update information. Currently, best practices recommend using a

Python Bottle server for lightweight web API architecture. It allows for a clean logical definition

of HTTP endpoints. Bottle is the library responsible for all of the HTTP functionality of the API.

It uses function decorators to define an endpoint. If that endpoint is reached, it executes the

function it is wrapping to perform some task. Google’s built in “datastore” feature is used to

store all information. The datastore is based on Google’s GQL framework. GQL is a reference to

SQL, as google based its framework largely on the functionality of SQL databases. All items

stored in the database are referred to as “entities”. A Notification class supplements this RESTful

API by allowing push notifications to be sent to any authenticated mobile device. Because

pushing information to a client is not a RESTful practice, the Notification class takes care of all

35

pushing tasks. It watches the api and if the warnings endpoint is updated the Notification class

uses Google’s cloud messaging service, Firebase, to push the desired notification. Each of these

components is described in detail in the following subsections.

API Endpoints and Examples [SN]

The following table lists each endpoint and summarizes its function. Complete API

documentation containing all necessary details to use the API can be found in the appendix.

NOTE: each endpoint URL is preceded by the host URL of the Forget-Me-Not API web

application: “https://forgetmenotapi-145619.appspot.com/”

 Endpoint URL Request

Operation

Summary of Endpoint’s responsibilities

/api/v1/alarms GET Returns a JSON object containing all alarm

entities in the datastore.

/api/v1/alarms POST Creates a new alarm entity and places it in the

datastore.

/api/v1/alarms/{alarmId} PUT Pulls a specific alarm from the datastore,

updates its value and returns it to the datastore.

/api/v1/alarms/{alarmId} DELETE Deletes a specific alarm from the datastore.

/api/v1/messages GET Returns a JSON object containing all message

objects

/api/v1/messages POST Creates a new message entity and places it in

the datastore.

/api/v1/messages/{messageId} DELETE Deletes a specific message from the datastore.

/api/v1/tokens POST Adds an authentication token to the datastore if

it does not already exist.

/api/v1/warnings POST Adds a warning message for the Notification

class to push to any authenticated device.

Example Endpoints

● https://forgetmenotapi-145619.appspot.com//api/v1/alarms

36

○ The alarms endpoint

○ GET to this endpoint returns JSON data structure containing all saved alarms.

○ No DELETE, POST, or PUT defined for this endpoint –ideally, operations will

not be performed on all alarms at once, other than returning them to the devices.

● https://forgetmenotapi-145619.appspot.com//api/v1/alarms/{alarmID}

○ The endpoint for a specific alarm (differentiated from all others by its unique ID).

○ GET to this endpoint returns a specific alarm object in JSON data structure form.

○ Similarly the other operations PUT, POST and DELETE are defined for this

endpoint.

Code for an Endpoint

@app.get("/api/v1/alarms")

@app.get("/api/v1/alarms/")

def get_alarms():

 allAlarms = Alarm.get_all()

 if allAlarms == None:

 response.status = 204

 return None

 else:

 #Wraps array in JSON object for

convenience with QT functions

 jsonReturn = {"alarms":allAlarms}

 response.status = 200

 return json.dumps(jsonReturn)

Note the “@” - this is the portion known as the decorator. The decorator wraps the function to be

executed when the endpoint is reached.

API Backend [SN]

 A well-defined and constructed API can crumble if it lacks the proper platform on which

to run. The Forget-Me-Not design team has produced a functional product, which means all

subsystems are designed with future expansion in mind. Creating a product with no room to

breathe or grow is synonymous with setting it up for failure. Currently, the API is so tiny that

nearly any functioning computer could serve its functions to users adequately. However, if

37

demand increases or fluctuates a more powerful system would be necessary to react without

crashing or slowing down. In a system that is designed to monitor and care for loved ones, room

for error or malfunction is sparse.

API Documentation

 Any API must be well documented, even if it will only be used internally. Public APIs

must be designed so that any developer may learn to use the interface. Likewise, internal APIs

such as the one under development for Forget-Me-Not, must still be easily accessible to the

engineers using it. YAML is a recursively defined acronym for Yaml Ain’t Markup Language. It

is often used for storing object trees, but also lends itself very well to documentation. It is often

considered easier to read than JSON or XML. The complete API documentation can be found in

the appendix.

Google App Engine: A Reactive Cloud Server

 Google has a massive server infrastructure that they allow people to use for any sort of

project they can think of. This system is known as Google App Engine (GAE). These servers

react to the current load and allocate more resources if necessary, never consuming more than

they need. Moreover, if a large spike in users attempting to access the server occurs there will be

no crash or slowdown. Zero hardware maintenance and an easy to use interface make GAE the

perfect choice for a small project with lots of budget constraints.

● Cost

○ GAE is free until a certain threshold is reached. This threshold is so high that the

design team will have to pay absolutely nothing to use this server infrastructure.

○ Future iterations of Forget-Me-Not will be able to expand within a nearly infinite

server space, paying only for the amount used.

○ Zero hardware maintenance means easy and cheap upkeep for a small team.

● Reliability

○ Forget-Me-Not has very little room for failure, so the robustness provided by a

professional server system is a must.

○ Any crashes will quickly be corrected. GAE will sense that the app has crashed,

spin up another virtual machine in its place and continue to serve the API. This

minimizes downtime and allows developers to serve the API while performing

38

maintenance.

Datastore

 Forget-Me-Not’s API provides all the data permanence for the system. To do this GAE’s

datastore, a database application based largely on SQL, integrates with the python API via a

class called NDB. The datastore is the recommended platform for database applications within

Google’s App Engine such as Forget-Me-Not. The datastore stores objects as entities. These

entities can define any number of fields they wish to store as well of the type of that field. The

entity is its own class, so it can define functions to abstract the details of storage and retrieval

from the API. The datastore has filtering and sorting features so that objects can be added and

retrieved from the datastore with ease. The API defines three entities for storage: Alarm,

Message and Notification. The Alarm and Message entities simply store the JSON key-value

pairs associated with that object. The Notification class uses the datastore, but has other

functionality and should be discussed on its own

Notification Class

 The Notification class handles all push notification related actions. The class is notified

whenever the warnings or tokens endpoint is reached in the REST API. Upon receiving the

signal, the Notification object checks its list of authorized tokens and contacts the Firebase API

to push the notification to each device. Firebase is a large utility with much functionality. Most

of its details are abstracted away from the Forget-Me-Not project and do not belong in this

report.

39

Testing and Development Strategies [SN]

 Forget-Me-Not’s design consists of many small modules, each with a concise set of

responsibilities. This style of design solves some very large and overarching problems for

software systems, but also introduces other challenges. Common low level coding mistakes,

complex object interactions, various submodules communicating with each other all lead to

inevitable problems. A well-structured testing strategy can alleviate these challenges and

provide a robust debugging platform for current development and future iterations.

Three Methods to Test Code

Note that each section (Display, Mobile App and API) will provide details for specific

tools and strategies that help execute these test procedures.

Unit Testing

Unit testing is the verification of the smallest possible unit of testable code, such as a

specific function within a class. This helps surface low level bugs that often plague complex

systems by helping pinpoint precisely where a bug has occurred. These tests are designed to be

run in a vacuum. That is, all external factors are removed from the system under test (SUT).

Actual objects or classes that the function depends on should be mocked with stand-in objects. A

mock object is designed to be a perfect clone from the perspective of the SUT, but it behaves

exactly as the developer expects. Moreover, future changes to the dependent classes may result

in tests failing with very inconclusive results. Mocks ensure that external changes will never

break a functioning unit test. Various tools and mocking libraries exist to solve this problem,

though mocks must be manually constructed in some instances. Frequently run unit tests will

comprise that majority of this project’s testing platform.

Integration Testing

Integration testing focuses on larger modules or classes as they are brought together.

Integration tests highlight higher level bugs such as failures between the View, View-Model and

the Model. This will be performed by writing larger scale test cases where actual objects are used

rather than mocks. However, care must still be taken to construct atomic test cases. Testing more

40

than one function or feature will lead to inconclusive results. Integration tests will be run each

time a new module is added or an existing one altered.

End To End Testing

End to end testing requires developers to use the device verifying that the end to end

experience meets design requirements. For a complex user facing system, testing will have to be

done manually for the most part. End to end testing is the most expensive and time consuming

method. Therefore, the need for end to end testing will be minimized by maximizing unit and

integration testing.

Display and Mobile App Testing Tools

Google’s Testing Framework

● Allows unit tests to be constructed as features are developed

● Provides a robust and simple means to mock objects and organize tests with scripts or

within most IDEs

● Libraries implemented in most modern programming languages allows the same

framework to be used for all other sections

Microsoft Visual Studio and Xamarin Studio

● IDEs with support for testing frameworks

● Can easily run all tests from a single location, helping to lighten the burden of testing.

API Testing Tools

Postman

 Postman is a tool designed to help with the development and testing of APIs that use the

HTTP protocol. It provides a set of tools that allows users to easily send requests without having

to type out every part of the request such as headers and body statements. Postman also has a

testing suite which allows testers to construct string of various request types and confirm valid

results. These tests cases can be easily developed within Postman’s GUI interface then exported

as JSON. Exporting the tests as JSON allows us to incorporate the tests with a script or

automation service so that they can be run without the need for a human to trigger them

manually.

41

Jenkins

Testing can be a very taxing aspect of a product’s development. Developers must

constantly remember to run tests when it is appropriate, which is not always as simple as clicking

a run button. This leads to lazy testing practices and more bugs making their way into production

code. Jenkins is a test automation tool that can integrate with git, a software version control

system. Each time a new piece of code is committed to a feature branch on git, Jenkins will be

notified. This allows Jenkins to trigger any test suites it has been given. Once tests pass or fail

the developers receive notifications from Jenkins with the results. Passing code is ready to be

merged from the feature branch to the main development trunk. Jenkins does not care what

language the code is in so it will be able to run any test that is written for any part of the project.

The Forget-Me-Not team was focused on developing features and unfortunately were not able to

incorporate a development operations platform such as jenkins into the project. However, if

development continues, the groundwork is in place to add Jenkins functionality.

42

Operation and Maintenance Instructions

Operation of System

 As described in more detail previously in this report, the system is composed of three

primary components: the primary display, the wearable bracelet, and the mobile application.

Standard operation of the system would involve the primary display being placed in a convenient

location in the patient’s home and the wearable bracelet being worn on the patient’s wrist. As for

patient interaction with the screen, it would be minimal. There are no necessary updates, no input

beyond basic alarm dismissals, and no need for the patient to ever worry about the display

portion of the system. As for the wearable bracelet, it is also very maintenance free, however it

will require the patient to charge it every 24 hours. The charging is very simple and requires the

patient to turn off the bracelet with the power switch and plug it into a standard micro USB

charger. When the device finishes charging, the patient can turn the switch back on and the

bracelet will auto connect to the display within twenty seconds.

 The mobile application is a bit more advanced than the display due to the fact that it will

be used by the caretaker and it is responsible for the majority of the operation of the display. The

mobile application can be run like any other application and maintains an intuitive user interface

that allows the caretaker to set alarms and send messages to the display, as well as receive push

notifications of critical events from the display. The application does not need to be running in

the foreground in order for the functionality to remain working, so there is very little

involvement from the caretaker once the alarms are setup properly.

 Finally, as discussed previously, the system as a whole relies heavily on Google’s

Application Engine (GAE) to receive, send, and store data such as alarms and messages. At the

time of demonstration an account was setup in order to have the functionality of the display as

we needed for demonstration purposes. This account will no longer be active in a short time.

Therefore, in order for the device to continue to be used, a GAE account must be setup with

credentials and credit card information in order to use the services associated with this system.

Maintenance of System

 The system is very reliable when left to run as intended, however there are certain cases

where minor maintenance may be required by the caretaker. In case of a power cycle for

43

instance, the system will shut down and upon restarting, the program may need to be restarted as

well if it fails to auto start at boot. This can be done by simply running the “Forget-Me-Not”

executable file located on the desktop of the display. Once the program has started it will handle

connecting to the bracelet and updating the information on the display.

 Another small issue that often arises after an irregular restart is with the Bluetooth

adapter on the Raspberry Pi that is driving the display. After a reboot it is often necessary to

unplug and plug the USB Bluetooth adapter back into the Pi in order to reset it. Again, once this

is done it should auto connect to the bracelet and everything will run smoothly.

44

Project Schedules
Gantt Chart - Design

Figure 19 - Gantt Chart - Design

Gantt Chart – Implementation

Gantt Chart - Actual

45

Financial Budget
The maximum budget for this design was $400.00. After the initial design phase the

estimated budget for this project was $126.35, as can be seen below in the initial part order form:

Table 9 - Initial Financial Budget

46

However, after the implementation of the design as underway, there were a few more

parts that were necessary to complete the project. These were small things that allowed the

design to be better polished, such as a case for the Raspberry Pi, and added more reliability, such

as a better Bluetooth adapter, to the design for a small cost. This secondary part order was for the

amount of $63.75, as seen below:

Table 10 - Additional Financial Budget

Therefore, while the estimated budget was $126.35, the actual budget ended up being

$190.10 – a difference of $63.75. This number was still well below the maximum budget allotted

of $400.00.

47

Design Team Information

Shawn Nicholson - Team Lead

Daniel Barber - Cironi - Archivist

Jake Kruse - Software Lead

Nicole Dent - Hardware Lead

Dr. Joan Carletta - Faculty Advisor

48

References

1. Mokhtari M, Aloulou H, Tiberghien T, Biswas J, Racoceanu D, Yap P, New Trends to Support

Independence in Persons with Mild Dementia – A Mini-Review. Gerontology

2012;58:554-563

2. Philippa Riley, Norman Alm, Alan Newell, An Interactive Tool to Promote Musical Creativity

in People With Dementia, Computers in Human Behavior, Volume 25, Issue 3, May

2009, Pages 599-608, ISSN 0747-5632, http://dx.doi.org/10.1016/j.chb.2008.08.014.

 (http://www.sciencedirect.com/science/article/pii/S0747563208001672)

3. Atmega328 Run for a Year on Batteries. (2012, November 8). Retrieved October 23, 2016,

from http://electronics.stackexchange.com/questions/49182/how-can-i-get-my-

atmega328-to-run-for-a-year-on-batteries.

(http://electronics.stackexchange.com/questions/49182/how-can-i-get-my-atmega328-to-

run-for-a-year-on-batteries)

4. The Hitchhikers Guide to iBeacon Hardware. (2015, May 4). Retrieved October 24, 2016,

from (http://www.aislelabs.com/reports/beacon-guide/)

5. 2016 Alzheimer's Disease Facts and Figures. (2016, December 6). Retrieved from

Alzheimer's Association: (http://www.alz.org/facts/)

http://dx.doi.org/10.1016/j.chb.2008.08.014
http://www.sciencedirect.com/science/article/pii/S0747563208001672
http://electronics.stackexchange.com/questions/49182/how-can-i-get-my-
http://electronics.stackexchange.com/questions/49182/how-can-i-get-my-
http://electronics.stackexchange.com/questions/49182/how-can-i-get-my-atmega328-to-
http://electronics.stackexchange.com/questions/49182/how-can-i-get-my-atmega328-to-
http://www.aislelabs.com/reports/beacon-guide/
http://www.alz.org/facts/

49

Appendices
Datasheet Reference

Component Link to Datasheet/Schematics
Raspberry Pi 3 Model B https://cdn.sparkfun.com/datasheets/Dev/RaspberryPi/2020826.pdf
RN42 Bluetooth Module https://www.sparkfun.com/datasheets/Wireless/Bluetooth/rn-42-ds.pdf
Arduino Pro Mini 3.3V https://www.arduino.cc/en/uploads/Main/Arduino-Pro-Mini-schematic.pdf

API Documentation

https://cdn.sparkfun.com/datasheets/Dev/RaspberryPi/2020826.pdf
https://www.sparkfun.com/datasheets/Wireless/Bluetooth/rn-42-ds.pdf
https://www.arduino.cc/en/uploads/Main/Arduino-Pro-Mini-schematic.pdf

50

51

52

53

54

55

56

YAML Code to Produce Interactive Documentation

swagger: '2.0'

info:

 title: Forget-Me-Not API

 description: Providing data permanence and device communication for the Forget-Me-Not display system.

 version: "1.0.0"

host: cloud.google.com

schemes:

 - https

basePath: /v1

produces:

 - application/json

paths:

 /alarms:

 get:

 summary: List of all alarms.

 description: |

 The alarms endpoint returns information about the current existing alarms. The responses include the alarm

ID and a alarm name. Currently, the API only supports a single alarm, so this endpoint will always return an array

with a single alarm element containing {"alarmId" = "1","alarmName":"defaultAlarm"}. This will be expanded

upon in future versions.

 tags:

 - alarm

 responses:

 200:

 description: Success. Return an array of alarms.

 schema:

 title: Alarms

 type: array

 items:

 $ref: '#/definitions/AlarmSummary'

 204:

 description: No existing alarms.

 post:

 summary: Creates new alarm (or replaces current existing one).

 description: Adds a new alarm to the display.

 tags:

 - alarm

 parameters:

 - in: body

 name: body

57

 description: Alarm that needs to be added to the display.

 required: false

 schema:

 $ref: "#/definitions/Alarm"

 responses:

 201:

 description: alarm created and returned.

 schema:

 $ref: '#/definitions/AlarmRecord'

 400:

 description: Invalid request. (malformed body)

 schema:

 $ref: '#/definitions/Error'

 /alarms/{alarmId}:

 get:

 tags:

 - alarm

 summary: Find alarm by ID

 produces:

 - application/json

 parameters:

 - in: path

 name: alarmId

 description: ID of alarm that needs to be fetched.

 required: true

 type: integer

 format: int64

 responses:

 200:

 description: Alarm found. Return alarm.

 schema:

 $ref: "#/definitions/Alarm"

 404:

 description: Alarm not found.

 put:

 tags:

 - alarm

 summary: Update alarm by ID

 parameters:

 - in: path

 name: alarmId

 description: id that needs to be updated

 required: true

 type: string

 - in: body

 name: body

 description: updated alarm object

 required: false

 schema:

 $ref: "#/definitions/Alarm"

 responses:

 201:

 description: alarm successfully updated.

 schema:

 $ref: '#/definitions/Alarm'

58

 400:

 description: Invalid request. (malformed body)

 404:

 description: alarm not found.

 delete:

 tags:

 - alarm

 summary: Delete alarm

 parameters:

 - in: path

 name: alarmId

 description: The ID of the alarm being processed.

 required: true

 type: string

 responses:

 204:

 description: No Content.

 404:

 description: Alarm not found.

 500:

 description: Internal server error. (request was good, but something went wrong)

definitions:

 AlarmSummary:

 properties: &ALARM

 alarmId:

 type: string

 description: Unique identifier representing a specific alarm.

 alarmName:

 type: string

 description: Display name of alarm.

 Alarm:

 properties:

 alarmName:

 type: string

 description: Any id/number/string used to identify the alarm

 alarmTime:

 type: string

 description: The time at which the alarm is meant to sound.

 alarmMessage:

 type: string

 description: Unique identifier representing a specific Tech.

 AlarmRecord:

 properties:

 <<: *ALARM

 alarmId:

 type: string

 description: Any id/number/string used to identify the alarm.

 alarmTime:

 type: string

 description: The time at which the alarm is meant to sound.

 alarmMessage:

 type: string

 description: Unique identifier representing a specific Tech.

 Error:

59

 type: object

 properties:

 message:

 type: string

Primary Display Source Code

Note that the entire source code can be found in an online repository at

https://bitbucket.org/jaguar_224/forgetmenot. Below are the header files that illustrate the

functionality of the code.

mainWindow.h
#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>
#include <QObject>
#include <qtimer.h>
#include <QAbstractItemDelegate>
#include <QHash>
#include "ui_mainwindow.h"
#include "weather.h"
#include "message.h"
#include "alarm.h"
#include "bluetoothmanager.h"
#include "alarmdismissal.h"
#include "apiinterface.h"
#include <wiringPi.h>

namespace Ui {
class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();
 Ui::MainWindow *ui;
 void connectToBT();
 int _buttonState = 0;
 const QColor c = QColor(0, 0, 149);

private:
 weather _weather;
 QList<message> _messages;
 QList<alarm> _alarms;
 QList<alarm> _activeAlarms;
 QList<alarm> _passiveAlarms;
 //_isAlarmSounded is a QHash that pairs the keyid with a bool that determines whether or not the alarm
has sounded
 QHash<QString, bool> _isAlarmSounded;
 BluetoothManager * _bluetooth;
 AlarmDismissal *_alarmDismissalWindow;
 int _isAlarmActive;

https://bitbucket.org/jaguar_224/forgetmenot

60

 int _isPassiveAlarmActive;

 QTimer * clockTimer;
 QTimer * weatherTimer;
 QTimer * getAlarmsTimer;
 QTimer * getMessagesTimer;
 QTimer * alarmCheckTimer;
 QTimer * buttonPressTimer;
 QTimer * _passiveAlarmTimer;
 QTimer * _activeAlarmTimer;

public slots:
 void getMessages();
 void getAlarms();
 void getWeather();
 void updateDateTime();
 void dismissActiveAlarm();
 void dismissPassiveAlarm();
 void checkForAlert();
 void cycleGpio();
 void sendAlert();
 void dismissAlert();
 void checkForButtonPress();
 void sendEmergencyNotification();
};

#endif // MAINWINDOW_H

alarm.h
#ifndef ALARM_H

#define ALARM_H

#include <QWidget>

#include <QListWidget>

#include <QObject>

#include <QString>

#include <QDateTime>

#include <vector>

#include "ui_mainwindow.h"

class alarm : public QListWidgetItem

{

private:

 QString _keyId;

 QString _name;

 QString _message;

 std::vector<bool> _repeat;

 bool _priority;

 QDateTime _dateAndTime;

public:

 alarm();

 alarm(QString name, QString message, std::vector<bool> repeat, bool priority, QDateTime

dateAndTime);

 alarm(QString keyId, QString name, QString message, std::vector<bool> repeat, bool priority,

QDateTime dateAndTime);

 ~alarm();

 void setName(QString name);

 void setMessage(QString message);

 void setRepeat(std::vector<bool> repeat);

 void setDateAndTime(QDateTime dateAndTime);

 void setPriority(bool priority);

 QString getKeyId() const;

 QString getName() const;

 QString getMessage() const;

 std::vector<bool> getRepeat() const;

61

 bool getPriority() const;

 QDateTime getDateAndTime() const;

 QString getDateAndTimeString();

 bool repeatingPrefSetForToday();

};

#endif // ALARM_H

#ifndef ALARMDELAGATE_H

#define ALARMDELAGATE_H

#include <QPainter>

#include <QStyledItemDelegate>

#include <QAbstractItemDelegate>

//This is the code for the custom Alarm Delagate

//The custom Alarm Delagte defines how the message is rendered in the QListView

class alarmDelagate: public QStyledItemDelegate

{

public:

 alarmDelagate(); //: QAbstractItemDelegate(parent);

 void paint(QPainter* painter, const QStyleOptionViewItem& option, const QModelIndex& index)

const;

 QSize sizeHint(const QStyleOptionViewItem &option, const QModelIndex &index) const;

 virtual ~alarmDelagate();

};

#endif // ALARMDELAGATE_H

alarmDismissal.h
#ifndef ALARMDISMISSAL_H

#define ALARMDISMISSAL_H

#include <QDialog>

#include <QTimer>

#include <wiringPi.h>

#include "alarm.h"

namespace Ui {

class AlarmDismissal;

}

class AlarmDismissal : public QDialog

{

 Q_OBJECT

public:

 AlarmDismissal(alarm a);

 ~AlarmDismissal();

private:

 Ui::AlarmDismissal *ui;

 alarm _alarm;

 int _buttonStateAlarmScreen;

 QTimer * buttonPressTimer;

 QTimer * closeTimer;

private slots:

 void checkForButtonPress();

 void closeScreen();

};

#endif // ALARMDISMISSAL_H

62

apiInterface.h
#ifndef APIINTERFACE_H

#define APIINTERFACE_H

#include <QObject>

#include <QJsonObject>

class ApiInterface : public QObject

{

 Q_OBJECT

public:

 explicit ApiInterface(QObject *parent = 0);

 static QJsonObject sendRequest(QString url);

 static QJsonObject postAlert(QString messageString);

 static QPixmap iconRequest(QString imageUrl);

 static QJsonDocument sendRequestForMessages(QString url);

};

#endif // APIINTERFACE_H

bluetoothManager.h
#ifndef BLUETOOTHMANAGER_H

#define BLUETOOTHMANAGER_H

#include <QObject>

#include <QTimer>

#include <QBluetoothDeviceDiscoveryAgent>

#include <QBluetoothAddress>

#include <QBluetoothSocket>

#include "apiinterface.h"

class BluetoothManager : public QObject

{

 Q_OBJECT

public:

 explicit BluetoothManager(QObject *parent = 0);

 ~BluetoothManager();

 void startDeviceDiscovery();

 void sendMessage(const QString &message);

public slots:

private:

 QBluetoothDeviceDiscoveryAgent *discoveryAgent;

 const QBluetoothAddress * dongleAddress;

 const QBluetoothAddress * braceletAddress;

 QBluetoothSocket * socket;

 void setupSocket();

 QTimer * bluetoothReconnect;

private slots:

 void deviceDiscovered(const QBluetoothDeviceInfo &device);

 void readSocket();

 void connected();

 void disconnected();

 void reconnect();

};

#endif // BLUETOOTHMANAGER_H

message.h
#ifndef MESSAGES_H

63

#define MESSAGES_H

#include <QWidget>

#include <QListWidget>

#include <QObject>

#include <QDateTime>

#include <string>

#include "ui_mainwindow.h"

#include "apiinterface.h"

class message : public QListWidgetItem

{

public:

 message();

 message(QString content, QDateTime dateTime);

 void setContent(QString content);

 void setDateTime(QDateTime datetime);

 QString getContent();

 QDateTime getDateTime();

 QString getDateTimeString();

 ~message();

private:

 QString content;

 QDateTime dateAndTime;

};

#endif // MESSAGES_H

#ifndef MESSAGEDELAGATE_H

#define MESSAGEDELAGATE_H

#include <QPainter>

#include <QStyledItemDelegate>

#include <QAbstractItemDelegate>

//This is the code for the custom Message Delagate

//The custom Message Delagte defines how the message is rendered in the QListView

class messageDelagate: public QStyledItemDelegate

{

public:

 messageDelagate(); //: QAbstractItemDelegate(parent);

 void paint(QPainter* painter, const QStyleOptionViewItem& option, const QModelIndex& index)

const;

 QSize sizeHint(const QStyleOptionViewItem &option, const QModelIndex &index) const;

 virtual ~messageDelagate();

};

#endif // MESSAGEDELAGATE_H

weather.h
#ifndef WEATHER_H

#define WEATHER_H

#include <QWidget>

#include <QObject>

#include <string>

#include "ui_mainwindow.h"

#include "apiinterface.h"

class weather

{

public:

 weather();

 void setTemp(double temp);

 void setStation(QString station);

64

 double getTemp();

 QString getStation();

 ~weather();

private:

 double temp;

 QString station;

};

#endif // WEATHER_H

Mobile Application Source Code

Alarm Editor Page
class AlarmEditorViewModel : INotifyPropertyChanged, IDisposable
 {

 public const int DAYSINAWEEK = 7;

 private Alarm _alarm;
 private bool _newAlarm;

 public delegate void UnhandledExceptionEventHandler(object sender, EventArgs e);

 public event UnhandledExceptionEventHandler UnhandledException;

 public delegate void PopupPageCloseEventHandler(object sender, EventArgs e);

 public event PopupPageCloseEventHandler ClosePopupPage;

 public delegate void ShowMessageEvent(string message, EventArgs e);

 public event ShowMessageEvent ShowMessage;

 public event PropertyChangedEventHandler PropertyChanged;

 private void OnPropertyChanged(string nameOfProperty)

 {
 if (PropertyChanged != null)

 PropertyChanged(this, new PropertyChangedEventArgs(nameOfProperty));

 }
 public AlarmEditorViewModel()

 {

 _newAlarm = true;
 _alarm = new Alarm();

 SaveTappedCommand = new Command<object>((key) => OnSaveTapped());

 DeleteTappedCommand = new Command<object>((key) => OnDeleteTapped());
 CancelTappedCommand = new Command<object>((key) => OnCancelTapped());

 RepeatDayTappedCommand = new Command<object>((key) => OnRepeatDayTapped(key));

 }

 public AlarmEditorViewModel(Alarm alarm)

 {

 _newAlarm = false;

 SaveTappedCommand = new Command<object>((key) => OnSaveTapped());

 DeleteTappedCommand = new Command<object>((key) => OnDeleteTapped());
 CancelTappedCommand = new Command<object>((key) => OnCancelTapped());

 RepeatDayTappedCommand = new Command<object>((key) => OnRepeatDayTapped(key));

 _alarm = new Alarm();
 _alarm = alarm;

 }

 ~AlarmEditorViewModel()

 {

 this.Dispose();
 }

65

 public Alarm Alarm

 {

 get
 {
 return _alarm;

 }

 set
 {

 _alarm = value;

 OnPropertyChanged("Alarm");
 }

 }

 public DateTime CurrentDate

 {

 get
 {

 return DateTime.Now;

 }

 set
 {

 }

 }

 public TimeSpan AlarmTime

 {

 get
 {

 return _alarm.dateAndTime.TimeOfDay;

 }

 set
 {

 //adds the selected date with the timespan selected by the user
 _alarm.dateAndTime = _alarm.dateAndTime.Date + value;

 }

 }

 public DateTime AlarmDate

 {

 get
 {

 return _alarm.dateAndTime.Date;
 }

 set
 {
 DateTime tmp = value;

 _alarm.dateAndTime = tmp + _alarm.dateAndTime.TimeOfDay;

 }
 }

 public bool DateIsVisible

 {

 get
 {

 if (_alarm.repeat.All(day => day == false))

 return true;

 else
 return false;

 }
 set { }

 }

 public bool DeleteButtonVisible

 {

 get
 {

 //If the alarm is a brand new alarm there should not be a delete functionallity

 //as it does not exist in the api yet
 return !_newAlarm;

66

 }

 set { }

 }

 public string SundayImage

 {

 get
 {

 if (_alarm.repeat[(int)DaysOfTheWeek.Sunday])

 return "SundayChecked.png";

 else
 return "SundayUnChecked.png";

 }
 set { }

 }

 public string MondayImage

 {

 get
 {

 if (_alarm.repeat[(int)DaysOfTheWeek.Monday])

 return "MondayChecked.png";

 else
 return "MondayUnChecked.png";

 }
 set { }

 }

 public string TuesdayImage

 {

 get
 {

 if (_alarm.repeat[(int)DaysOfTheWeek.Tuesday])

 return "TuesdayChecked.png";

 else
 return "TuesdayUnChecked.png";

 }

 set { }

 }

 public string WednesdayImage

 {

 get
 {

 if (_alarm.repeat[(int)DaysOfTheWeek.Wednesday])

 return "WednesdayChecked.png";

 else
 return "WednesdayUnChecked.png";

 }
 set { }

 }

 public string ThursdayImage

 {

 get
 {

 if (_alarm.repeat[(int)DaysOfTheWeek.Thursday])
 return "ThursdayChecked.png";

 else
 return "ThursdayUnChecked.png";
 }

 set { }

 }

 public string FridayImage

 {

 get
 {

 if (_alarm.repeat[(int)DaysOfTheWeek.Friday])
 return "FridayChecked.png";

67

 else
 return "FridayUnChecked.png";

 }

 set { }
 }

 public string SaturdayImage
 {

 get
 {
 if (_alarm.repeat[(int)DaysOfTheWeek.Saturday])

 return "SaturdayChecked.png";

 else
 return "SaturdayUnChecked.png";

 }

 set { }
 }

 public ICommand SaveTappedCommand { get; set; }

 public async void OnSaveTapped()

 {
 if (_alarm != null)

 {

 if (string.IsNullOrEmpty(_alarm.name))
 {

 ShowMessage("The alarm must have a title.", null);

 return;
 }

 try
 {

 if (_newAlarm)

 {
 JsonValue json = await ApiViewModel.PostAsync(_alarm, ApiClasses.Alarms);

 }

 else
 {

 JsonValue json = await ApiViewModel.PutAsync(_alarm, ApiClasses.Alarms);

 }
 }

 catch (Exception ex)

 {
 UnhandledException?.Invoke(ex, null);

 }

 }

 if (ClosePopupPage != null)

 ClosePopupPage(this, EventArgs.Empty);
 }

 public ICommand DeleteTappedCommand { get; set; }

 public async void OnDeleteTapped()
 {

 try

 {
 JsonValue response = await ApiViewModel.DeleteAsync(_alarm.keyId, ApiClasses.Alarms);

 if (ClosePopupPage != null)

 ClosePopupPage(this, EventArgs.Empty);
 }

 catch (Exception ex)

 {
 UnhandledException?.Invoke(ex, null);

 }

 }

 public ICommand CancelTappedCommand { get; set; }

 public void OnCancelTapped()

68

 {

 try
 {

 if (ClosePopupPage != null)
 ClosePopupPage(this, EventArgs.Empty);

 }

 catch (Exception ex)
 {

 UnhandledException?.Invoke(ex, null);

 }
 }

 public ICommand RepeatDayTappedCommand { get; set; }

 public void OnRepeatDayTapped(object day)

 {

 try
 {

 switch (int.Parse(day.ToString()))

 {

 case 0:

 _alarm.repeat[(int)DayOfWeek.Sunday] = !_alarm.repeat[(int)DayOfWeek.Sunday];
 OnPropertyChanged("SundayImage");

 OnPropertyChanged("DateIsVisible");

 break;

 case 1:

 _alarm.repeat[(int)DayOfWeek.Monday] = !_alarm.repeat[(int)DayOfWeek.Monday];
 OnPropertyChanged("MondayImage");

 OnPropertyChanged("DateIsVisible");

 break;

 case 2:

 _alarm.repeat[(int)DayOfWeek.Tuesday] = !_alarm.repeat[(int)DayOfWeek.Tuesday];
 OnPropertyChanged("TuesdayImage");

 OnPropertyChanged("DateIsVisible");

 break;

 case 3:

 _alarm.repeat[(int)DayOfWeek.Wednesday] = !_alarm.repeat[(int)DayOfWeek.Wednesday];
 OnPropertyChanged("WednesdayImage");

 OnPropertyChanged("DateIsVisible");

 break;

 case 4:

 _alarm.repeat[(int)DayOfWeek.Thursday] = !_alarm.repeat[(int)DayOfWeek.Thursday];
 OnPropertyChanged("ThursdayImage");

 OnPropertyChanged("DateIsVisible");

 break;

 case 5:
 _alarm.repeat[(int)DayOfWeek.Friday] = !_alarm.repeat[(int)DayOfWeek.Friday];

 OnPropertyChanged("FridayImage");

 OnPropertyChanged("DateIsVisible");
 break;

 case 6:
 _alarm.repeat[(int)DayOfWeek.Saturday] = !_alarm.repeat[(int)DayOfWeek.Saturday];

 OnPropertyChanged("SaturdayImage");

 OnPropertyChanged("DateIsVisible");
 break;

 default:
 break;

 }

 }
 catch (Exception ex)

 {

 UnhandledException?.Invoke(ex, null);
 }

69

 }

 public void Dispose()

 {

 PropertyChanged = null;
 Alarm = null;

 SundayImage = MondayImage = TuesdayImage = WednesdayImage = ThursdayImage = FridayImage = SaturdayImage = null;

 _alarm = null;
 SaveTappedCommand = null;

 DeleteTappedCommand = null;

 CancelTappedCommand = null;
 RepeatDayTappedCommand = null;

 ShowMessage = null;

 ClosePopupPage = null;
 UnhandledException = null;

 }

 }

DashBoard Page
class DashBoardViewModel : INotifyPropertyChanged, IDisposable

 {

 private ObservableCollection<Alarm> _alarmList;
 private ObservableCollection<Alarm> _alarmListRepeating;

 private ObservableCollection<Alarm> _alarmListNonRepeating;

 private SettingsDatabase _settingsDatabase;

 public delegate void UnhandledExceptionEventHandler(object sender, EventArgs e);

 public event UnhandledExceptionEventHandler UnhandledException;

 public event PropertyChangedEventHandler PropertyChanged;

 private void OnPropertyChanged(string nameOfProperty)
 {

 if (PropertyChanged != null)

 PropertyChanged(this, new PropertyChangedEventArgs(nameOfProperty));
 }

 public DashBoardViewModel(SettingsDatabase settingsDatabase)
 {

 _settingsDatabase = settingsDatabase;

 _alarmList = new ObservableCollection<Alarm>();
 _alarmListRepeating = new ObservableCollection<Alarm>();

 _alarmListNonRepeating = new ObservableCollection<Alarm>();

 this.GetAlarmsCommand = new Command(OnGetAlarms);

 }

 ~DashBoardViewModel() { this.Dispose(); }

 public ObservableCollection<Alarm> RepeatingAlarmsList
 {

 get
 {
 return _alarmListRepeating;

70

 }

 set { _alarmListRepeating = value; }

 }

 public ObservableCollection<Alarm> NonRepeatingAlarmsList

 {

 get
 {

 return _alarmListNonRepeating;

 }
 set { _alarmListNonRepeating = value; }

 }

 public ICommand GetAlarmsCommand { protected set; get; }

 private async void OnGetAlarms()
 {

 try
 {

 JsonValue jsonAlarms = await ApiViewModel.GetAsync(ApiClasses.Alarms);

 if (jsonAlarms != null)
 {

 JArray jArray = JArray.Parse(jsonAlarms["alarms"].ToString());

 _alarmList.Clear();
 foreach (JObject o in jArray.Children())

 {

 //Parse out the messages and add the top like 25 of them
 DateTime tempDate = new DateTime();

 DateTime.TryParse((string)o["dateAndTime"], out tempDate);

 _alarmList.Add(new Alarm((string)o["keyId"], (string)o["name"], (string)o["message"], o["repeat"].ToObject<bool[]>(),
(bool)o["priority"], tempDate));

 }

 }
 _alarmListRepeating = new ObservableCollection<Alarm>(_alarmList.Where(a => a.HasRepeatingPrefs()));

 _alarmListNonRepeating = new ObservableCollection<Alarm>(_alarmList.Where(a => !a.HasRepeatingPrefs()));

 }

 catch (Exception ex)

 {
 UnhandledException?.Invoke(ex, null);

 }

 OnPropertyChanged("AlarmsList");
 OnPropertyChanged("RepeatingAlarmsList");

 OnPropertyChanged("NonRepeatingAlarmsList");

 }

 public void Dispose()

 {
 PropertyChanged = null;

 UnhandledException = null;
 _alarmList = null;

 _alarmListRepeating = null;

 _alarmListNonRepeating = null;
 _settingsDatabase = null;

 RepeatingAlarmsList = null;

 NonRepeatingAlarmsList = null;
 GetAlarmsCommand = null;

 }

 }

 public class AlarmPageEventArgs : EventArgs
 {

 public AlarmPageEventArgs()

 {
 this.Alarm = new Alarm();

 }

 public AlarmPageEventArgs(Alarm alarm)
 {

71

 this.Alarm = alarm;

 }

 public Alarm Alarm { get; set; }

}

Communication Page
class CommunicationPageViewModel : INotifyPropertyChanged, IDisposable

 {

 private ObservableCollection<Message> _messageList;
 private string _currentMessage;

 private SettingsDatabase _settingsDatabase;

 public CommunicationPageViewModel(SettingsDatabase settingsDatabase)

 {

 _settingsDatabase = settingsDatabase;
 MainText = "Type your message: ";

 _currentMessage = "";

 _messageList = new ObservableCollection<Message>();
 this.SendMessageCommand = new Command(SendMessage);

 this.GetMessagesCommand = new Command(GetMessages);

 }

 ~CommunicationPageViewModel() { this.Dispose(); }

 public delegate void SendButtonPressedEventHandler(object sender, EventArgs e);

 public event SendButtonPressedEventHandler SendButtonPressed;

 public delegate void UnhandledExceptionEventHandler(object sender, EventArgs e);

 public event UnhandledExceptionEventHandler UnhandledException;

 public event PropertyChangedEventHandler PropertyChanged;

 protected virtual void OnPropertyChanged(string nameOfProperty)

 {
 if (PropertyChanged != null)

 PropertyChanged(this, new PropertyChangedEventArgs(nameOfProperty));

 }

 public string MainText { get; set; }

 /// <summary>

 /// This list will hold a previously sent messages to display to the caretaker

 /// </summary>
 public ObservableCollection<Message> MessageList

 {

 get
 {

 return _messageList;

 }

 set
 {

 _messageList = value;
 OnPropertyChanged("MessageList");

 }

 }

 /// <summary>
 /// The Message that will be added to the List of messages and sent to the forgetMeNot display.

 /// </summary>

 public string CurrentMessage
 {

 get
 {
 return _currentMessage;

 }

 set
 {

 _currentMessage = value;

72

 OnPropertyChanged("CurrentMessage");

 }

 }

 /// <summary>

 /// Command used to send the Message String to the forgetMeNot display.

 /// </summary>
 public ICommand SendMessageCommand { protected set; get; }

 /// <summary>
 /// Sends the message to the API

 /// </summary>

 private async void SendMessage()
 {

 if (!string.IsNullOrEmpty(_currentMessage))

 {

 Message myMessage = new Message(_currentMessage, DateTime.Now);

 try
 {

 JsonValue json = await ApiViewModel.PostAsync(myMessage, ApiClasses.Messages);
 }

 catch (Exception ex)

 {
 UnhandledException?.Invoke(ex, null);

 }

 _currentMessage = "";

 OnPropertyChanged("CurrentMessage");

 GetMessages();
 }

 }

 public ICommand GetMessagesCommand { protected set; get; }

 private async void GetMessages()

 {

 try
 {
 JsonValue jsonMessages = await ApiViewModel.GetAsync(ApiClasses.Messages);

 if (jsonMessages != null)
 {

 JArray jArray = JArray.Parse(jsonMessages["messages"].ToString());

 _messageList.Clear();
 foreach (JObject o in jArray.Children())

 {

 //Parse out the messages and add the top like 25 of them
 _messageList.Add(new Message((string)o["body"], DateTime.Parse(((string)o["dateAndTime"]))));

 }
 }

 SendButtonPressed?.Invoke(this, null);

 }
 catch (Exception ex)

 {

 UnhandledException?.Invoke(ex, null);
 }

 OnPropertyChanged("MessageList");

 }

 public void Dispose()

 {
 PropertyChanged = null;

 _messageList = null;

 _currentMessage = null;
 _settingsDatabase = null;

 MainText = null;

 MessageList = null;
 CurrentMessage = null;

73

 UnhandledException = null;

 SendMessageCommand = null;

 GetMessagesCommand = null;

 }

Settings Page
public class SettingsPageViewModel : INotifyPropertyChanged

 {

 private SettingsDatabase _settingsDatabase;
 private Settings _settings;

 public SettingsPageViewModel(SettingsDatabase settingsDatabase)
 {

 _settingsDatabase = settingsDatabase;

 _settings = _settingsDatabase.GetSettings();

 this.UpdateSettingsCommand = new Command(OnUpdateSettings);

 }

 public event PropertyChangedEventHandler PropertyChanged;

 protected virtual void OnPropertyChanged(string nameOfProperty)
 {

 if (PropertyChanged != null)

 PropertyChanged(this, new PropertyChangedEventArgs(nameOfProperty));
 }

 public string PatientPhoneNumber
 {

 get
 {
 return _settings.PatientPhoneNumber;

 }

 set
 {

 _settings.PatientPhoneNumber = value;

 OnPropertyChanged("PatientPhoneNumber");
 }

 }

 public string PatientName

 {

 get
 {

 return _settings.PatientName;

 }

 set
 {

 _settings.PatientName = value;
 OnPropertyChanged("PatientName");

 }

 }

 public ICommand UpdateSettingsCommand { protected set; get; }

 private void OnUpdateSettings()

 {
 _settingsDatabase.UpdateSettings(_settings);

 }

API View Model
class ApiViewModel

 {

 private const string _forgetMeNotURL = "https://forgetmenotapi-145619.appspot.com/api/v1/";

74

 // Gets weather data from the passed URL.

 public static async Task<JsonValue> FetchWeatherAsync(string url)

 {
 // Create an HTTP web request using the URL:

 HttpWebRequest request = (HttpWebRequest)HttpWebRequest.Create(new Uri(url));

 request.ContentType = "application/json";
 request.Method = "GET";

 // Send the request to the server and wait for the response:
 using (WebResponse response = await request.GetResponseAsync())

 {

 // Get a stream representation of the HTTP web response:
 using (Stream stream = response.GetResponseStream())

 {

 // Use this stream to build a JSON document object:
 JsonValue jsonDoc = await Task.Run(() => JsonObject.Load(stream));

 // Return the JSON document:

 return jsonDoc;

 }

 }
 }

 /// <summary>
 /// returns a json string from the forget me not API

 /// </summary>

 /// <param name="apiClass"></param>
 /// <returns></returns>

 public static async Task<JsonValue> GetAsync(ApiClasses apiClass)

 {

 try
 {

 using (HttpClient httpClient = new HttpClient())
 {

 string url = _forgetMeNotURL;

 switch (apiClass)

 {

 case ApiClasses.Alarms:

 url += "alarms/";
 break;

 case ApiClasses.Messages:

 url += "messages/";
 break;

 case ApiClasses.Settings:

 url += "settings/";
 break;

 default:

 throw new NotImplementedException();
 break;

 }

 var response = await httpClient.GetAsync(url);

 if (response.StatusCode != HttpStatusCode.NoContent)

 {

 response.EnsureSuccessStatusCode();

 string content = await response.Content.ReadAsStringAsync();

 JsonValue jsonDoc = await Task.Run(() => JsonObject.Parse(content));
 return jsonDoc;

 }

 }
 return null;

 }

 catch (Exception ex)
 {

 throw ex;
 }

75

 }

 public static async Task<JsonValue> PostAsync(object data, ApiClasses apiClass)

 {

 try
 {

 using (HttpClient httpClient = new HttpClient())

 {

 string url = _forgetMeNotURL;
 switch (apiClass)

 {

 case ApiClasses.Alarms:
 url += "alarms/";

 break;

 case ApiClasses.Messages:
 url += "messages/";

 break;

 case ApiClasses.Settings:

 url += "settings/";

 break;

 default:
 throw new NotImplementedException();

 break;

 }

 string jsonObject = JsonConvert.SerializeObject(data, Formatting.None, new IsoDateTimeConverter() { DateTimeFormat =

"MM/dd/yyyy hh:mm:ss tt" });
 var response = await httpClient.PostAsync(url, new StringContent(jsonObject));

 response.EnsureSuccessStatusCode();

 string content = await response.Content.ReadAsStringAsync();

 JsonValue jsonDoc = await Task.Run(() => JsonObject.Parse(content));
 return jsonDoc;

 }

 }

 catch (Exception ex)

 {
 throw ex;

 }

 }

 public static async Task<JsonValue> PutAsync(object data, ApiClasses apiClass)

 {

 try
 {

 using (HttpClient httpClient = new HttpClient())
 {

 string url = _forgetMeNotURL;
 switch (apiClass)

 {

 case ApiClasses.Alarms:
 Alarm tempAlarm = (Alarm)data;

 url += "alarms/" + tempAlarm.keyId;

 break;
 case ApiClasses.Messages:

 url += "messages/";

 break;
 case ApiClasses.Settings:

 url += "settings/";

 break;
 default:

 throw new NotImplementedException();

 break;
 }

 string jsonObject = JsonConvert.SerializeObject(data, Formatting.None, new IsoDateTimeConverter() { DateTimeFormat =
"MM/dd/yyyy hh:mm:ss tt" });

76

 var response = await httpClient.PutAsync(url, new StringContent(jsonObject));

 response.EnsureSuccessStatusCode();

 string content = await response.Content.ReadAsStringAsync();

 JsonValue jsonDoc = await Task.Run(() => JsonObject.Parse(content));

 return jsonDoc;

 }

 }
 catch (Exception ex)

 {

 throw ex;
 }

 }

 public static async Task<JsonValue> DeleteAsync(object keyId, ApiClasses apiClass)

 {

 try
 {

 using (HttpClient httpClient = new HttpClient())
 {

 string url = _forgetMeNotURL;

 switch (apiClass)
 {

 case ApiClasses.Alarms:

 url += "alarms/";
 break;

 case ApiClasses.Messages:

 url += "messages/";
 break;

 case ApiClasses.Settings:

 url += "settings/";
 break;

 default:

 throw new NotImplementedException();

 break;

 }

 var response = await httpClient.DeleteAsync(url + keyId);

 response.EnsureSuccessStatusCode();
 return null;

 }

 }
 catch (Exception ex)

 {

 throw ex;
 }

 }
 }

 public enum ApiClasses { Alarms = 0, Messages, Settings}

Alarm Model
public class Alarm : IDisposable
 {

 private string _keyId;
 private string _name;

 private string _message;

 private bool[] _repeat;
 private DateTime _dateAndTime;

 private bool _priority;

 public Alarm()

77

 {

 _keyId = "";

 _name = "";

 _message = "";
 _repeat = new bool[7] { false, false, false, false, false, false, false };

 _priority = false;

 _dateAndTime = DateTime.Now;
 }

 public Alarm(string keyId, string name, string message, bool[] repeat, bool priority, DateTime dateAndTime)
 {

 _keyId = keyId;

 _name = name;
 _message = message;

 _repeat = repeat;

 _priority = priority;
 _dateAndTime = dateAndTime;

 }

 ~Alarm()

 {

 this.Dispose();
 }

 public string keyId
 {

 get
 {
 return _keyId;

 }

 set
 {

 _keyId = value;

 }
 }

 public string name

 {

 get
 {
 return _name;

 }

 set
 {

 _name = value;

 }
 }

 public string message
 {

 get
 {

 return _message;

 }

 set
 {

 _message = value;
 }

 }

 public bool[] repeat

 {

 get
 {

 return _repeat;

 }

 set
 {

 _repeat = value;
 }

78

 }

 public DateTime dateAndTime

 {

 get
 {

 return _dateAndTime;
 }

 set
 {
 _dateAndTime = value;

 }

 }

 public bool priority

 {

 get
 {

 return _priority;

 }

 set
 {
 _priority = value;

 }

 }

 public string RepeatingLabelText

 {

 get
 {

 string repeatingDays = string.Empty;
 for (int i = 0; i < 7; i++)

 if (_repeat[i])

 {
 DaysOfTheWeekABV day = (DaysOfTheWeekABV)i;

 repeatingDays = repeatingDays + day.ToString() + ", ";

 }

 return "[" + repeatingDays.TrimEnd(',', ' ') + "] " + dateAndTime.ToString("h:mm tt");

 }
 set { }

 }

 public void Dispose()

 {

 _keyId = null;
 keyId = null;

 _name = null;

 name = null;
 _message = null;

 message = null;
 _repeat = null;

 repeat = null;

 }

 public bool HasRepeatingPrefs()

 {
 foreach (bool b in _repeat)

 {

 //if there are any true bools in the list of bools then the alarm has repeating prefs
 if (b)

 return true;

 }
 return false;

 }

 }

 public enum DaysOfTheWeek

 {
 Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday

79

 }

 public enum DaysOfTheWeekABV

 {

 S, M, T, W, Th, F, Sa

Settings Model
public interface ISQLite
 {

 SQLiteConnection GetConnection();
 }

 public class Settings : IDisposable
 {

 [PrimaryKey, AutoIncrement]

 public int Id { get; set; }
 public string PatientName { get; set; }

 public string PatientPhoneNumber { get; set; }

 public Settings()

 {

 }

 public Settings(bool tempWeatherUnit, string patientName, string patientPhoneNumber)

 {
 PatientName = patientName;

 PatientPhoneNumber = patientPhoneNumber;

 }

 ~Settings() { this.Dispose(); }

 public void Dispose()

 {

 PatientName = null;
 PatientPhoneNumber = null;

 }

 }

 public class SettingsDatabase

 {
 private SQLiteConnection _connection;

 public SettingsDatabase()
 {

 _connection = DependencyService.Get<ISQLite>().GetConnection();

 _connection.CreateTable<Settings>();
 }

 public Settings GetSettings()
 {

 return _connection.Query<Settings>("Select * From [Settings]").FirstOrDefault();

 }

 public void UpdateSettings(Settings settings)

 {
 _connection.Update(settings);

 }

 /// <summary>

 /// Only use for Testing

 /// </summary>
 public void DropAndCreateSettingsTableDatabase()

 {
 _connection.DropTable<Settings>();

 _connection.CreateTable<Settings>();

 }

 public int GetSettingsDatabaseRowCount()

80

 {

 return _connection.Table<Settings>().Count<Settings>();

 }

 public void DeleteSetting(int id)

 {

 _connection.Delete<Settings>(id);
 }

 public void AddDefaultSetting()
 {

 _connection.Insert(new Settings(false, "", ""));

 }

API Source Code

Notifications class (API push-notification service implementation):

class Notification(ndb.Model):

 tokens = ndb.StringProperty(repeated=True)
 body = ndb.StringProperty()

 title = ndb.StringProperty()

 @classmethod

 def authenticate(cls, newToken):
 notifications = cls.query()

 notification = notifications.get()

 if len(notification.tokens) >= 10:
 count = 0

 while count <= 5:

 notification.tokens.pop(0)
 count = count + 1

 for token in notification.tokens:
 if token == newToken:

 return False

 notification.tokens.append(str(newToken))
 notification.put()

 return True

 @classmethod

 def push_notification(cls):
 notification = cls.query().get()

 if len(notification.tokens) >= 1:

 push_service = FCMNotification(api_key=APP_KEY)
 data_message = {"title":notification.title, "body":notification.body}

 result = push_service.notify_multiple_devices(registration_ids=notification.tokens, data_message=data_message)

 return result

Alarm and Message Entity Classes

class Alarm(ndb.Model):

 name = ndb.StringProperty()
 message = ndb.StringProperty()

 dateAndTime = ndb.DateTimeProperty()

 time = ndb.TimeProperty()
 repeat = ndb.BooleanProperty(repeated=True)

 priority = ndb.BooleanProperty()

 @classmethod

81

 def get_all(cls):
 alarmEntities = cls.query()

 if alarmEntities.count() > 0:

 alarmEntities = alarmEntities.order(cls.time)
 allAlarms = []

 for alarm in alarmEntities:

 alarmDictionary = {"name":str(alarm.name),
 "message":str(alarm.message),

 "dateAndTime":datetime.strftime(alarm.dateAndTime, '%m/%d/%Y %I:%M:%S %p'),

 "repeat":alarm.repeat,
 "priority":alarm.priority,

 "keyId":str(alarm.key.id())}

 allAlarms.append(alarmDictionary)
 return allAlarms

 else:

 return None

class Message(ndb.Model):

 dateAndTime = ndb.DateTimeProperty()

 body = ndb.StringProperty()

 @classmethod

 def get_recent(cls):
 messageEntities = cls.query()

 numMessages = messageEntities.count()
 if numMessages > 0:

 messageEntities = messageEntities.order(-cls.dateAndTime)

 recentMessages = []
 for message in messageEntities:

 messageDictionary = {"dateAndTime":datetime.strftime(message.dateAndTime, '%m/%d/%Y %I:%M:%S %p'),

 "body":str(message.body),
 "key":str(message.key.id())}

 recentMessages.append(messageDictionary)

 #only allow 50 most recent messages
 if len(recentMessages) == 2:

 return list(reversed(recentMessages))

 return list(reversed(recentMessages))
 else:

 return None

RESTful API Endpoints

from bottle import Bottle, request, run, response, get, put, post, delete

from google.appengine.ext import ndb
from datetime import datetime

from pyfcm import FCMNotification

from requests_toolbelt.adapters import appengine
import os.path

import json

appengine.monkeypatch(validate_certificate=False)

APP_KEY =

"AAAAvzuOGxs:APA91bE4v4JdiH_v0WqHeS50ZIFD1vBXdugTz9wmFAQfWQN2Bo9vfOVIaN1Xx0krIF3uM87dlVUcCT7Sr9EWMLb
wRCVqAfxrN3_LzHNzj3bgom-0Ls3PDVX-90M6eGmp_NEzvg-n1XpD"

app = Bottle()

@app.post("/api/v1/tokens")
@app.post("/api/v1/tokens/")

def post_token():
 receivedToken = request.body.read()

 if Notification.query().count() == 0:

 notification = Notification()

82

 notification.tokens.append(json.loads(receivedToken)["token"])
 notification.put()

 response.status = 200

 return
 try:

 receivedTokenJson = json.loads(receivedToken)

 if Notification.authenticate(receivedTokenJson["token"]):
 response.status = 200

 return receivedToken

 else:
 response.status = 204

 except (ValueError, KeyError) as e:

 response.status = 400
 return 'Malformed JSON'

#@app.get("/api/v1/warnings")

#@app.get("/api/v1/warnings/")

#def get_warnings():

@app.post("/api/v1/warnings")
@app.post("/api/v1/warnings/")

def post_warnings():

 receivedWarning = request.body.read()
 notification = Notification.query().get()

 if notification:
 receivedWarningJson = json.loads(receivedWarning)

 notification.body = receivedWarningJson["body"]

 notification.title = receivedWarningJson["title"]
 notification.put()

 Notification.push_notification()

 response.status = 200
 receivedWarningJson["token"] = notification.tokens

 return json.dumps(receivedWarningJson)

 else:
 response.status = 204

 return "No device authenticated"

@app.get("/api/v1/alarms")

@app.get("/api/v1/alarms/")

def get_alarms():
 allAlarms = Alarm.get_all()

 if allAlarms == None:

 response.status = 204
 return None

 else:

 #Wraps array in JSON object for convenience with QT functions
 jsonReturn = {"alarms":allAlarms}

 response.status = 200

 return json.dumps(jsonReturn)

@app.post("/api/v1/alarms")
@app.post("/api/v1/alarms/")

def post_alarms():

 receivedAlarm = request.body.read()
 try:

 receivedAlarmJson = json.loads(receivedAlarm)

 newAlarm = Alarm()
 newAlarm.name = receivedAlarmJson['name']

 newAlarm.message = receivedAlarmJson['message']

 newAlarm.dateAndTime = datetime.strptime(receivedAlarmJson['dateAndTime'], '%m/%d/%Y %I:%M:%S %p')
 newAlarm.time = newAlarm.dateAndTime.time()

 newAlarm.repeat = receivedAlarmJson['repeat']

 newAlarm.priority = receivedAlarmJson['priority']
 repeatLength = len(newAlarm.repeat)

 if not (repeatLength == 7):

 raise ValueError('boolen repeat list must be exactly 7 characters')

83

 newAlarmKey = newAlarm.put()
 response.status = 200;

 receivedAlarmJson['keyId'] = str(newAlarmKey.id())

 return json.dumps(receivedAlarmJson)
 except (ValueError, KeyError) as e:

 response.status = 400

 return 'Malformed JSON'

@app.put("/api/v1/alarms/<alarmId>")

@app.put("/api/v1/alarms/<alarmId>/")
def put_alarm(alarmId):

 alarmIdInt = int(alarmId)

 receivedAlarm = request.body.read()
 if alarmId != "":

 toBeUpdated = Alarm.get_by_id(alarmIdInt)

 if toBeUpdated is None:
 response.status = 204

 return
 else:

 try:

 receivedAlarmJson = json.loads(receivedAlarm)

 toBeUpdated.name = receivedAlarmJson['name']
 toBeUpdated.message = receivedAlarmJson['message']

 toBeUpdated.dateAndTime = datetime.strptime(receivedAlarmJson['dateAndTime'], '%m/%d/%Y %I:%M:%S %p')

 toBeUpdated.time = toBeUpdated.dateAndTime.time()
 toBeUpdated.repeat = receivedAlarmJson['repeat']

 toBeUpdated.priority = receivedAlarmJson['priority']
 repeatLength = len(toBeUpdated.repeat)

 if not (repeatLength == 7):

 raise ValueError('boolen repeat list must be exactly 7 characters')
 newAlarmKey = toBeUpdated.put()

 response.status = 200;

 receivedAlarmJson['keyId'] = str(newAlarmKey.id())
 return json.dumps(receivedAlarmJson)

 except (ValueError, KeyError) as e:

 response.status = 400
 return 'Malformed JSON'

 else:

 response.status = 400

 return

@app.delete("/api/v1/alarms/<alarmId>")

@app.delete("/api/v1/alarms/<alarmId>/")

def delete_alarm(alarmId):
 alarmIdInt = int(alarmId)

 if alarmId != "":

 toBeDeleted = Alarm.get_by_id(alarmIdInt)
 if toBeDeleted is None:

 response.status = 204

 return
 else:

 toBeDeleted.key.delete()

 response.status = 200

 return

 else:

 response.status = 400

 return

@app.get("/api/v1/messages")
@app.get("/api/v1/messages/")

def get_messages():

 recentMessages = Message.get_recent()
 if recentMessages == None:

 response.status = 204

 return None
 else:

 #Wraps array in JSON object for convenience with QT functions

 jsonReturn = {"messages":recentMessages}

84

 return json.dumps(jsonReturn)

@app.post("/api/v1/messages")
@app.post("/api/v1/messages/")

def post_messages():

 receivedMessage = request.body.read()

 try:

 receivedMessageJson = json.loads(receivedMessage)
 newMessage = Message()

 newMessage.dateAndTime = datetime.strptime(receivedMessageJson['dateAndTime'], '%m/%d/%Y %I:%M:%S %p')

 newMessage.body = receivedMessageJson['body']
 newMessageKey = newMessage.put()

 response.status = 200;

 receivedMessageJson['keyId'] = str(newMessageKey.id())
 return json.dumps(receivedMessageJson)

 except (ValueError, KeyError) as e:

 response.status = 400

 return 'Malformed JSON'

@app.put("/api/v1/messages/<messageId>")
@app.put("/api/v1/messages/<messageId>")

def put_message(messageId):

 messageIdInt = int(messageId)
 receivedMessage = request.body.read()

 if messageId != "":
 toBeUpdated = Message.get_by_id(messageIdInt)

 if toBeUpdated is None:

 response.status = 204

 return
 else:

 try:
 receivedMessageJson = json.loads(receivedMessage)

 toBeUpdated.dateAndTime = datetime.strptime(receivedMessageJson['dateAndTime'], '%m/%d/%Y %I:%M:%S %p')

 toBeUpdated.body = receivedMessageJson['body']
 newMessageKey = toBeUpdated.put()

 response.status = 200;

 receivedMessageJson['keyId'] = str(newMessageKey.id())
 return json.dumps(receivedMessageJson)

 except (ValueError, KeyError) as e:

 response.status = 400
 return 'Malformed JSON'

 else:

 response.status = 400

 return

@app.delete("/api/v1/messages/<messageId>")

@app.delete("/api/v1/messages/<messageId>/")

def delete_message(messageId):
 messageIdInt = int(messageId)

 if messageId != "":

 toBeDeleted = Message.get_by_id(messageIdInt)
 if toBeDeleted is None:

 response.status = 204

 return
 else:

 toBeDeleted.key.delete()

 response.status = 200

 return
 else:

 response.status = 400

 return

if __name__ == "__main__":

 app.run(server='gae', debug=True)

85

Bracelet Code

int MOTORPIN = 12;

int ALARMLED = 8; //mirrors motor, shines when motor on

int BUTTONPIN = 9;
int VCCOUT = 7;

char BTDATA;

void setup() {

 // put your setup code here, to run once:

 Serial.begin(115200);
 //Serial.begin(9600);

 //Serial.println("Press 1 to trigger a passive alarm or 2 to trigger a priority alarm. Any alarm can be cancelled with 0.");

 pinMode(MOTORPIN,OUTPUT);
 pinMode(ALARMLED, OUTPUT);

 pinMode(BUTTONPIN, INPUT);

 pinMode(VCCOUT, OUTPUT);

 digitalWrite(VCCOUT, 1);

}

void loop() {

 String success = check_alarm();

 if (success == "passive_complete") {
 Serial.println("Passive alarm ran its course");

 }
 else if(success == "priority_complete") {

 Serial.println("Priority Alarm unhandled!");

 }
 else if(success == "canceled") {

 Serial.println("Alarm canceled early.");

 }

 check_panic_button();

}

void check_panic_button() {

 int holdtime = 0;
 int sensorValue = digitalRead(BUTTONPIN);

 while(sensorValue) {

 sensorValue = digitalRead(BUTTONPIN);

 delay(1000);

 holdtime++;
 if(holdtime >= 5) {

 send_panic_signal();

 return;
 }

 }

 if(holdtime >= 5) {
 send_panic_signal();

 return;

 }
}

void send_panic_signal() {
 Serial.println("panic signal, yo");

}

String check_alarm() {

 if (Serial.available()){

 BTDATA = Serial.read();
 if(BTDATA == '1') {

 return passive_alarm(5, 3, 22.5);

 }
 else if(BTDATA == '2') {

 return priority_alarm(2, 3, 22.5);

 }

86

 }

 return "none";

}

String passive_alarm(int numBuzzes, int numSnooze, double snoozeTime) {

 for(int j = 0; j < numSnooze; j++) {

 for(int i = 0; i < numBuzzes; i++) {

 digitalWrite(MOTORPIN, 1);

 digitalWrite(ALARMLED, 1);
 if(wait(0.5) == 0) {

 digitalWrite(MOTORPIN, 0);

 digitalWrite(ALARMLED, 0);
 return "canceled";

 }

 digitalWrite(MOTORPIN, 0);

 digitalWrite(ALARMLED, 0);

 if(wait(0.5) == 0) {

 return "canceled";

 }

 }
 if(wait(snoozeTime) == 0) {

 return "canceled";

 }
 }

 return "passive_complete";

}

String priority_alarm(int numBuzzes, int numSnooze, double snoozeTime) {
 for(int j = 0; j < numSnooze; j++) {

 for(int i = 0; i < numBuzzes; i++) {

 digitalWrite(MOTORPIN, 1);

 digitalWrite(ALARMLED, 1);

 if(wait(3.0) == 0) {

 digitalWrite(MOTORPIN, 0);

 digitalWrite(ALARMLED, 0);

 return "canceled";
 }

 digitalWrite(MOTORPIN, 0);
 digitalWrite(ALARMLED, 0);

 if(wait(2.0) == 0) {

 return "canceled";
 }

 }

 if(wait(snoozeTime) == 0) {
 return "canceled";

 }
 }

 return "priority_complete";

}

/*

 * Waits for some period checking for incoming BT data every half second
 * so we can stop an alarm early.

 *

 * returns 0 if BT recieves a zero during the wait period (wait cancelled)
 * returns 1 if wait runs its course successfully

 */

int wait(double seconds) {
 while(seconds > 0) {

 delay(500);

 check_panic_button();
 if(Serial.available()) {

 BTDATA = Serial.read();

 if(BTDATA == '0') {
 return 0;

87

 }

 }

 seconds -= .5;

 }
 return 1;

}

	The University of Akron
	IdeaExchange@UAkron
	Spring 2017

	Forget-Me-Not
	Daniel Barber-Cironi
	Shawn Nicholson
	Jake Kruse
	Nicole Dent
	Recommended Citation

	mainwindow.h-2
	mainwindow.h-3
	mainwindow.h-4
	mainwindow.h-5
	mainwindow.h-6
	mainwindow.h-7
	mainwindow.h-8
	mainwindow.h-9
	mainwindow.h-10
	mainwindow.h-11
	mainwindow.h-12
	mainwindow.h-13
	mainwindow.h-14
	mainwindow.h-15
	mainwindow.h-16
	mainwindow.h-17
	mainwindow.h-18
	mainwindow.h-19
	mainwindow.h-20
	mainwindow.h-21
	mainwindow.h-22
	mainwindow.h-23
	mainwindow.h-24
	mainwindow.h-25
	mainwindow.h-26
	mainwindow.h-27
	mainwindow.h-28
	mainwindow.h-29
	mainwindow.h-30
	mainwindow.h-31
	mainwindow.h-32
	mainwindow.h-33
	mainwindow.h-34
	mainwindow.h-35
	mainwindow.h-36
	mainwindow.h-37
	mainwindow.h-38
	mainwindow.h-39
	mainwindow.h-40
	mainwindow.h-41
	mainwindow.h-42
	mainwindow.h-43
	mainwindow.h-44
	mainwindow.h-45
	mainwindow.h-46
	mainwindow.h-47
	mainwindow.h-48
	mainwindow.h-49
	mainwindow.h-50
	mainwindow.h-51
	mainwindow.h-52
	mainwindow.h-53
	mainwindow.h-54
	mainwindow.h-55
	mainwindow.h-56
	mainwindow.h-57
	mainwindow.h-58
	mainwindow.h-59
	mainwindow.h-60
	mainwindow.h-61
	mainwindow.h-62
	mainwindow.h-63
	mainwindow.h-64
	mainwindow.h-65
	mainwindow.h-66
	mainwindow.h-67
	mainwindow.h-68
	mainwindow.h-69
	mainwindow.h-70
	mainwindow.h-71

