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Abstract 

 

 This study evaluates the electrochemical activity of several compositions of platinum-

rhodium alloys on carbon support to identify potential replacements for the expensive platinum 

electrocatalysts currently used in direct methanol fuel cells (DMFCs). The electrochemical active 

surface areas (ECSAs) of each sample were determined using cyclic voltammetry (CV) in a 0.5 

M H2SO4 solution to normalize CV currents generated in the methanol oxidation reaction 

(MOR).  The activity of five compositions was tested; Pt3Rh, Pt2Rh, PtRh, Pt2Rh, and Pt3Rh. 100 

mg of each catalyst was synthesized at 10% by weight platinum loading using a surfactant-free 

impregnation technique. TEM images were taken of one sample to examine morphology and 

confirm alloying of the two metals. A volcano-like relationship was found between decreasing 

platinum loading and electrochemical activity, with a peak seen with the Pt2Rh sample at 0.66 

mA/cm
2
. This value is higher than a similarly prepared commercial platinum catalyst which had 

an activity of 0.6 mA/cm
2
. These findings indicate that Pt2Rh has the potential to be better suited 

for use in DMFCs than commercial platinum, and could be used to bring down the cost of 

DMFCs and make green energy one step closer to reality. 
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Executive Summary 

 

 Direct Methanol Fuel Cells (DMFCs) are devices that are able to utilize the methanol 

oxidation reaction (MOR) to generate electricity with high fuel efficiency and almost no 

environmentally harmful emissions. This technology has the potential to replace more widely 

used, inefficient, and environmentally damaging internal combustion power sources currently 

used in automobiles and portable/backup generators. However, MOR proceeds too slowly to 

generate useful levels of power, so catalysts are used to improve the reaction kinetics. Currently, 

platinum on carbon support is the most widely used electrocatalyst. Unfortunately, the high cost 

of platinum per activity increase is a large barrier to the more widespread implementation of 

DMFC technologies, causing the development of highly effective, inexpensive electrocatalysts to 

be an area of great interest. In this project, several compositions of platinum-rhodium alloys on 

carbon support were prepared to evaluate the materials’ effectiveness as an electrocatalyst. 

To evaluate each sample, as shown in figures 8 through 10 and table 3, the 

electrochemical activities, peak potentials, and onset potentials at 0.05 mA/cm2, respectively, of 

the prepared samples are as follows: 0.48 mA/cm
2
, 0.45 V, and 0.38 V for Pt3Rh, 0.66 mA/cm

2
, 

0.56 V, and 0.36 V for Pt2Rh, 0.20 mA/cm
2
, 0.54 V, and 0.39 V for PtRh, 0.08 mA/cm

2
, 0.54 V, 

and 0.40 V for PtRh2, and 0.08 mA/cm
2
 , 0.45 V, and 0.38 V for PtRh3.   

 According to Formo et al., the activity of a similarly prepared and tested commercial 

platinum catalyst on a carbon support is 0.6 mA/cm2.  PtRh, PtRh2 and PtRh3 all exhibited low 

activities relative to the commercial platinum sample, but Pt3Rh  had a very similar activity to 

platinum and  the activity of Pt2Rh exceeded that of platinum. Of the prepared samples, Pt2Rh 

also had the lowest onset potential, which is preferable. Pt2Rh appears to be the “best” 
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electrocatalyst for MOR of the prepared samples, and should be further evaluated for use in 

DMFCs. 

 In undertaking this project, many technical skills relevant to the field of chemical 

engineering were required. First, laboratory skills were utilized. Sample preparation required the 

meticulous calculation of reagent amounts, weighing out materials, dissolving materials in the 

proper solvents, pipetting, drying, ensuring the proper conditions were set in the furnace for all 

samples, tracking results in real time to see if they follow expectations, and taking good notes in 

the lab notebook.  Second, data analysis skills were utilized. This included running cyclic 

voltammogram (CV) tests, exporting the data, learning how to use new software such as Origin 

Labview, researching various sources to understand what the output data means and how to 

analyze it, integrating over a certain portion of the data and multiplying by conversion factors to 

calculate the electrochemical active surface area (ECSA), normalizing MOR CV data to the 

ECSA, looking up literature values to compare results to, generating graphs to effectively display 

the results of the study, and writing up a report about the data to convey this information to other 

individuals. Additionally, this is the first study looking into the electrochemical activity of PtRh 

alloys. The electrochemical activity of Pt2Rh is very promising, and if other properties such as 

durability are suitable, it may be a potential low-cost alternative to the expensive platinum 

electrocatalysts currently in use, which could aid in bringing environmentally clean and  highly 

fuel efficient power to a state of widespread use.  

Going forward, additional studies should be performed on Pt3Rh and even more so on 

Pt2Rh due to their promisingly high activity. Chronoamperometry curves should be generated 

under MOR conditions to determine the durability of these catalysts, as durability is often times a 

challenge that plagues platinum alloy electrocatalysts. Additionally, more in depth studies should 
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be performed on the morphology of these electrocatalysts, such as TEM or X-ray diffraction 

(XRD) to determine a more exact morphology of Pt2Rh and Pt3Rh to better understand the 

structure of the formed alloys and what effect it may have on the elevated catalytic activity. 
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Introduction 

 

 Direct Methanol Fuel Cells (DMFCs) are devices that produce power by utilizing the 

chemical conversion of methanol to water and carbon dioxide in the redox reaction shown in the 

background section [1]. Methanol is much easier and safer to transport than hydrogen gas, 

making DMFC’s more desirable for portable usage than the more commonly used hydrogen-

based Proton Exchange Membrane Fuel Cells (PEMFCs) [1]. One major drawback to both 

DMFCs and hydrogen PEMFC’s is that expensive platinum catalysts are required at the anode 

and cathode to allow the Methanol Oxidation Reaction (MOR) to occur with the kinetics needed 

to generate useful power. This high cost makes the common usage of DMFCs for power 

generation uneconomical, despite both their energy efficiency and low environmental impact [1]. 

To make DMFCs commercially relevant, new catalysts must be developed to reduce this cost [2]. 

The United States Department of Energy has set an MOR anode active area target of 150 

mA/cm
2
 at 0.6 V and a loading of less than 2.7 mg Pt/cm

2
 to promote research in this field [3].  

Recently, there have been several attempts to alloy platinum with other transition metals 

to create catalysts that maintain the excellent performance levels of platinum at a reduced cost, 

with varying degrees of success being shown with Pty-Nix [4] and Pt2CuNi [5] alloys. To 

continue research into possible replacement catalysts, this project aims to synthesize and test the 

MOR activity of five compositions of platinum-rhodium alloy catalysts; Pt3Rh, Pt2Rh, PtRh, 

PtRh2, and PtRh3. Rhodium is a transition metal, making it a potential candidate for creating a 

platinum alloy with acceptable catalytic properties. This paper aims to provide background, an 

overview of the experimental methods employed, the data and results of the study, and a 

discussion/analysis of the results. 
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Background 

 

 For several decades, fuel cells have been seen as a possible alternative to the combustion 

engine used to provide power in generator systems as well as automobiles due to their properties 

of relatively high efficiency and low emissions [1]. Hogarth defines a fuel cell as “an 

electrochemical engine which can convert the free energy change of a chemical reaction directly 

into electrical energy.” [1] In Direct Methanol Fuel Cells, the following reactions: 

 

Anode (oxidation): CH3OH + H2O  CO2 + 6 H
+
 + 6 e

-
 

Cathode (reduction): 3/2 O2 + 6 H
+
 + 6 e

- 
 3 H2O 

Overall (redox): CH3OH + 3/2 O2  2 H2O + CO2 

 

are used to generate electricity [1]. This reaction occurs at much lower temperatures than the 

combustion reaction used to power current technologies, causing fuel efficiency to be higher and 

environmentally harmful emissions to be lower [1]. Other types of fuel cells use the reaction of 

hydrogen and oxygen to form water as the source of electricity. While having the advantage of 

plentiful and inexpensive fuels, having an energy density seven time higher than methanol and 

the only byproduct being water, Hydrogen is notoriously difficult to contain and transport due to 

its small size. An entirely new and expensive fuel infrastructure would need to be created for 

distribution if widespread use is ever to be attained, while methanol is compatible with current 

distribution sources and is no more dangerous than gasoline. 

As seen in Figure 1, in DMFCs, a mixture of water and methanol permeates into the 

porous carbon electrode and reacts on the catalyst surface to form positive hydrogen ions, free 
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electrons, and carbon dioxide. The carbon dioxide exits the system as a gas, while the hydrogen 

ions travel through the polymer electrolyte to the cathode and the free electrons travel up the 

anode, through a load to perform work, and finally to the cathode. The cathode is exposed to 

open air and oxygen permeates the porous carbon electrode. At the catalyst surface, the oxygen 

molecules react with the electrons and briefly form negative oxygen ions which then rapidly 

react with the positive hydrogen ions to form water molecules.  

 

Figure 1 shows a diagram of a Direct Methanol Fuel Cell in operation. 

 

 Under normal conditions, the Methanol Oxidation Reaction (MOR) occurs very slowly 

and is not a feasible source of power [4]. For this reason, a catalyst is needed at the surface of the 

anode and cathode. Catalysts are substances that improve reaction kinetics by providing a surface 
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for the reaction to take place upon in such a way that the energy of activation for that reaction is 

lowered. Currently, platinum is the most widely used catalyst on both the anode and cathode of 

DMFC’s due to its exceptional catalytic properties caused by the unique D-orbital electron 

structure on the surface of its nanocrystals that promotes the adsorption of some molecules [1]. 

Unfortunately, platinum is an expensive metal which drives up the price of DMFCs. Because of 

this, there is much interest in developing alternative electrocatalysts which have a higher activity 

per cost [6]. One avenue of research is the alloying of platinum and other transition metals to 

create reaction surfaces similar to platinum, with several successes demonstrated with platinum-

nickel [4] and platinum-nickel-copper [5] alloys due to the formation of surfaces with electron 

configurations which promote molecule adsorption very well.  

 Several standard methods are used to characterize the electrochemical activity of 

catalysts in MOR. The main tool used in this process is cyclic voltammetry. Cyclic voltammetry 

setups consist of an electrolytic solution, a reference electrode, a working electrode coated with 

the catalyst, and a counter electrode [7]. The potential of the working electrode is varied linearly 

with time at a constant scan rate, first decreasing to a minimum, then increasing to a maximum, 

while the potential of the reference electrode remains constant [7]. The current generated at the 

working electrode is measured as a function of its potential vs. the reference electrode, and the 

resulting curve is known as a cyclic voltammogram (CV) [7]. To normalize the activity of a 

catalyst, the electrochemical active surface area (ECSA) is calculated. The ECSA is the total 

surface area of active catalyst on the electrode. Due to roughness at the molecular level of the 

electrode, the ECSA is often larger than the area of the electrode. To measure the ECSA of the 

catalyst, a CV is generated with an electrolytic solution consisting of 0.5 M H2SO4 [6]. This CV 

is known as a hydrogen adsorption-desorption cyclic voltammogram [6]. The region of hydrogen 
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adsorption, which occurs after the last peak on the backwards potential scan, is integrated over 

and divided by the scan rate and a conversion factor for platinum nanocrystal catalysts from 

literature to calculate the ECSA of the material, as shown in equation 1 [6]. Next, a CV is 

generated with the electrodes submerged in a solution of 0.5 M H2SO4 and 0.5 M CH3OH to 

evaluate the catalysts activity in MOR [6]. The peak of the forward sweep on this CV normalized 

by ECSA is a good measure of the anodic activity of the catalyst. Using these methods, 

commercial platinum catalysts have been shown to have an anodic activity in MOR of 0.6 

mA/cm
2
 [6]. Additionally, the Department of Energy (DOE) has set goals of developing anode 

electrocatalysts with an “activity of 150 mA/cm
2
 at 0.6 V and a loading of less than 2.7 mg 

Pt/cm
2
” by the fourth quarter of 2015 [3]. Although this deadline has passed, these can be 

considered as guidelines for any new MOR electrocatalysts. 

 

𝑬𝑪𝑺𝑨 =
𝑨𝒓𝒆𝒂 𝒐𝒇 𝑯𝒚𝒅𝒓𝒐𝒈𝒆𝒏 𝑨𝒅𝒔𝒐𝒓𝒑𝒕𝒊𝒐𝒏 𝑹𝒆𝒈𝒊𝒐𝒏

𝒔𝒄𝒂𝒏 𝒓𝒂𝒕𝒆 ∗ 𝟎. 𝟎𝟎𝟎𝟐𝟏𝟎 𝑪/𝒄𝒎𝟐𝑷𝒕
 

Equation 1 shows the equation used to calculate the ECSA from the hydrogen adsorption 

desorption CVs. 

 

 

Experimental Methods 

 

The methodology for electrocatalyst synthesis in this experiment is scalable and 

surfactant free. 100 mg of each sample was created, each having a 10% by weight loading of 

platinum. First, precursor rhodium(III) acetyleacetonate (97%) and platinum(II) acetylacetonate 

(97%), both from Sigma Aldrich, are added to a small vial in varying amounts outlined in table 
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1. Next, 3.2 mL of acetone is added to the vial and the contents of the vial are vigorously mixed 

in a vortex laboratory mixer until all solid is dissolved. A varying amount of charcoal outlined in 

table 1, which has been left overnight in a small furnace at 300 °C to remove moisture, is then 

added to a ceramic dish which has been stored in a drying chamber for several hours to remove 

all water. The metal precursor solution is then pipetted dropwise directly onto the charcoal in 130 

µL increments in a spiral pattern to maximize surface area exposed. After each increment is 

delivered, the sample is allowed to dry for several seconds, and then stirred for 30 seconds to 

promote more complete drying and even catalyst distribution. 

The prepared catalyst precursor is then treated in a furnace under a CO2/H2 flow of 

approximately 2 mL/s. The sample is transferred to a ceramic boat container and placed inside of 

the glass tube of the furnace. The apparatus is closed off and Nitrogen is run through the tube for 

several minutes to remove oxygen from the environment. CO2/H2 gas flow is then activated and 

the furnace begins heating at a ramping rate of 5 °C per minute for 36 minutes, heating from 

room temperature to 200 °C. After the furnace has maintained a temperature of 200 °C for one 

hour, the gas flow is cut and nitrogen flow is introduced to the furnace for at least 20 minutes 

until the sample is cool enough to handle.  

The electrochemical activity of the samples in the methanol oxidation reaction is then 

tested using cyclic voltammetry. First, 12.0 mL of DI water, 8.0 mL of isopropyl alcohol, and 80 

µL of Nafion are added to a large vial and mixed thoroughly. 5.0 mg of the catalyst is placed in a 

small vial and dissolved in 5.0 mL of the Nafion solution. The vial is then wrapped in a polymer 

film to prevent leaking and sonicated for 10 minutes. If the solid does not appear to be fully 

dissolved in the liquid, the vial is sonicated for an additional 10 minutes repeatedly until 

sufficient mixing is achieved. At this point, the electrode is soaked in a beaker with ethanol and 
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sonicated for several seconds. The electrode is then polished on a microfabric pad with DI water 

to remove any additional contaminants. The remaining liquid is blown away and the electrode is 

attached to a rotating stand. 10 µL of the catalyst solution is pipetted onto the metal surface of 

the electrode, the rotating stand is set to 200 rotations per minute, and a hair dryer is placed a 

foot away from the stand blowing at a low speed. When the catalyst ink has completely dried, the 

surface is examined to confirm that the ink has been evenly distributed on the surface of the 

electrode. 

To begin the electrochemical testing, 60 mL of 0.5 M H2SO4 solution is added to a 

beaker. The beaker is covered with a polymer film and several punctures are made to make room 

for the working electrode, the reference electrode, the platinum counter electrode, and a gas flow 

line. Nitrogen is bubbled through the solution for approximately 15 minutes to remove oxygen. 

The nitrogen flow is then adjusted so that it is flowing over the top of the solution instead of 

bubbling through it. The working electrode coated with the sample is attached to the CHI760D 

Electrochemical Workstation, lowered into the beaker, and hydrogen adsorption-desorption CV’s 

are generated using a previously defined sweep profile.  Next, 2.45 mL of methanol are added to 

the beaker and two MOR CV’s are generated. The electrode is then cleaned using ethanol and DI 

water to remove the catalyst and the acid solution is discarded as waste. 

 

Sample Pt(ac) (mg) Rh(ac) (mg) Carbon (mg) 

Pt3Rh 20.00 6.79 88.26 

Pt2Rh 20.00 10.18 87.39 

PtRh 20.00 20.36 84.77 

PtRh2 20.00 40.70 79.50 

PtRh3 20.00 61.08 74.31 

 

Table 1 shows the amounts of precursor materials used in the preparation of each catalyst. 
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Data and Results 

 

 For each of the five prepared platinum-rhodium alloy electrocatalysts, hydrogen 

adsorption-desorption cyclic voltammograms (CV) are shown which were generated using an 

electrolytic solution of 0.5 M H2SO4. The highlighted area on each graph represents the 

hydrogen adsorption region, which is used to calculate the electrochemical active surface area 

(ECSA) of each catalyst using equation 1. Figure 7 shows the ECSA normalized cyclic 

voltammograms for each catalyst in the methanol oxidation reaction (MOR) which were 

generated using an electrolytic solution of 0.5 M H2SO4 and 0.5 M CH3OH. All CV’s were 

generated using a scan rate of 10 mV/s. Figures 8 through 10 compare the peak currents , the 

peak potential, and the onset potential at 0.05 mA of each sample as well as the reported values 

of a standard commercial 20% by weight platinum sample on carbon support prepared in a 

similar fashion. 
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Figure 2 shows the hydrogen adsorption-desorption cyclic voltammogram for Pt3Rh vs. 

Reference Hydrogen Electrode (RHE) at a scan rate of 10 mV/s. The hydrogen adsorption region 

used to calculate the ECSA is shaded in gray.  
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Figure 3 shows the hydrogen adsorption-desorption cyclic voltammogram for Pt2Rh vs. RHE at 

a scan rate of 10 mV/s. The hydrogen adsorption region used to calculate the ECSA is shaded in 

gray.  

 

Figure 4 shows the hydrogen adsorption-desorption cyclic voltammogram for PtRh vs. RHE at a 

scan rate of 10 mV/s. The hydrogen adsorption region used to calculate the ECSA is shaded in 

gray.  
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Figure 5 shows the hydrogen adsorption-desorption cyclic voltammogram for PtRh2 vs. RHE at 

a scan rate of 10 mV/s. The hydrogen adsorption region used to calculate the ECSA is shaded in 

gray.  
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Figure 6 shows the hydrogen adsorption-desorption cyclic voltammogram for PtRh3 vs. RHE at 

a scan rate of 10 mV/s. The hydrogen adsorption region used to calculate the ECSA is shaded in 

gray.  

 

Sample ECSA (cm2) 

PtRh 0.426 

PtRh2 0.607 

PtRh3 0.436 

Pt2Rh 0.218 

Pt3Rh 0.380 

 

Table 2 shows the calculated ECSA for each preparation of electrocatalysts. 

 



20 
 

 

Figure 7 shows the recorded CVs in MOR for each prepared catalyst vs. RHE at a scan rate of 

10 mV/s. The metrics of interested are detailed in table 3. 

 

Figure 8 shows the peak activity of each prepared electrocatalyst normalized to ECSA as well as 

a literature value for commercial platinum. 
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Figure 9 shows the potential of the peak activity of each prepared electrocatalyst as well as a 

literature value for commercial platinum. 

 

 

Figure 10 shows the onset potential measured at 0.05 mA of each prepared electrocatalyst as 

well as a literature value for commercial platinum. 
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Sample Peak Current (mA) Peak Potential (V) Onset Potential (V) @ 0.05 mA 

Pt3Rh 0.48 0.45 0.38 

Pt2Rh 0.66 0.56 0.36 

PtRh 0.20 0.54 0.39 

PtRh2 0.08 0.54 0.40 

PtRh3 0.08 0.45 0.38 

Pt (Literature) 0.60 0.60 0.52 

 

Table 3 shows the values for the peak current, peak potential, and onset potential of each 

prepared electrocatalyst as well as a literature value for commercial platinum. 

 

 

Several transmission electron microscope (TEM) images were taken of the prepared PtRh 

sample to examine particle morphology. The images below show dark cubic particles on a lighter 

support structure, which is in line with what is expected to be seen if the alloying of platinum 

and rhodium was successful. The image was processed using ImageJ software to examine the 

particle size distribution, which is shown in table 4 and figure 12.  
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Figure 11 shows a TEM image of A) the prepared PtRh catalyst with a 50 nm scale shown and 

B) a TEM image of the prepared PtRh catalyst with a 20 nm scale shown. The dark cubic 

particles are the platinum-rhodium alloy, while the lighter amorphous structure is the carbon 

support. 

 

Metric Particle Size (nm2) 

Average 109 

Min 2 

Max 386 

Std Dev 83 

 

Table 4 shows the average, minimum, and maximum particle sizes from figure 11B as well as 

the standard deviation for the data set. 
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Figure 12 shows a histogram containing the size distribution of the PtRh particles seen in figure 

11B. 

 

 

Discussion and Analysis 

 

 In this study, five alloys of varying composition of platinum and rhodium were 

synthesized and characterized for use as electrocatalysts in the MOR reaction. Figures 2 through 

6 are hydrogen adsorption-desorption CVs that were generated to calculate the ECSA of each 

coated electrode. CVs were then generated using these same electrodes in a methanol solution to 

calculate the peak currents generated during MOR. These currents were then normalized by 

ECSA to calculate the area specific activities of each electrocatalyst, an intensive property that is 

useful for evaluating the effectiveness of a catalyst.  

The PtRh, PtRh2, and PtRh3 samples all exhibited low activities compared to commercial 

platinum catalysts on carbon support. However, Pt3Rh exhibited a very similar activity to 
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commercial platinum, and Pt2Rh exceeded the activity of commercial platinum. Platinum-

rhodium alloy catalysts appear to exhibit a volcano-like relationship between platinum loading 

and area specific activity in MOR, with a peak near the Pt2Rh composition, as seen in figure 8. 

This indicates the formation of a surface that is highly effective at promoting the adsorption of 

methanol and hydrogen. Figure 11 shows TEM images of the PtRh sample, which confirmed that 

a cubic structure was formed, suggesting the formation of an alloy of platinum and rhodium 

using these procedures.  

Going forward, additional studies should be performed on Pt3Rh and even more so on 

Pt2Rh due to their promisingly high activity. Chronoamperometry curves should be generated 

under MOR conditions to determine the durability of these catalysts, as durability is often times a 

challenge that plagues platinum alloy electrocatalysts. Fuel cell testing should also be performed 

to determine the resistance of these electrocatalysts to carbon dioxide poisoning. Additionally, 

more in depth studies should be performed on the morphology of these electrocatalysts, such as 

TEM or X-ray diffraction (XRD) to determine a more exact morphology of Pt2Rh and Pt3Rh to 

better understand the structure of the formed alloys and what effect it may have on the elevated 

catalytic activity. 

 

 

 

 

 

 

 

 



26 
 

References 

 

[1]  Hogarth, M.P., and G.A. Hards. "Direct Methanol Fuel Cells: TECHNOLOGICAL  

ADVANCES AND FURTHER REQUIREMENTS." Platinum Metals Rev., vol. 40, no. 

4, 1996, pp. 150-59. Accessed 10 Apr. 2017. 

 

[2]  Peng, Zhenmeng, and Hong Yang. "Designer platinum nanoparticles: Control of shape, 

composition in alloy, nanostructure and electrocatalytic property." Elsevier, 4 Nov. 2008, 

pp. 143-64. Accessed 10 Apr. 2017. 

 

[3]  U. S. Deparment of Energy. Energy Efficiency and Renewable Energy, 2012;  

http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf. 

 

[4] Zhang, Changlin, San Youp Hwang, Alexis Trout, and Zhenmeng Peng. "Solid-state 

chemistry-enabled scalable production of octahedral Pt-Ni alloy electrocatalyst for 

oxygen reduction reaction." Journal of the American Chemical Society, vol. 136, no. 22, 

20 May 2014, pp. 7805-08, doi:10.1021/ja501293x. Accessed 9 Apr. 2017. 

 

[5] Zhang, Changlin, William Sandorf, and Zhenmeng Peng. "Octahedral Pt2CuNi Uniform 

Alloy Nanoparticle Catalyst with High Activity and Promising Stability for Oxygen 

Reduction Reaction." ACS Catalysis, vol. 2015, no. 5, 9 Mar. 2015, pp. 2296-300, 

doi:10.1021/cs502112g. Accessed 10 Apr. 2017. 

 

[6]  Formo, Eric, Zhenmeng Peng, Eric Lee, Xianmao Lu, and Hong Yang. "Direct Oxidation 

of  Methanol on Pt Nanostructures Supported on Electrospun Nanofibers of 

Anatase." The Journal of Physical Chemistry C Letters, 18 June 2008, pp. 9970-75. 

 

[7]  Quiroga, Amanda. Cyclic Voltammetry, Chemistry Libretexts, 26 Feb. 2017,  

https://chem.libretexts.org/Core/Analytical_Chemistry/Instrumental_Analysis/Cyclic_Vo

ltammetry. Accessed 10 Apr. 2017. 

 

http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf

	The University of Akron
	IdeaExchange@UAkron
	Spring 2017

	Platinum-Rhodium Alloy Electrocatalyst Activities in the Methanol Oxidation Reaction
	William R. Sandorf
	Recommended Citation


	tmp.1494516956.pdf.p9jVS

