
The University of Akron
IdeaExchange@UAkron

Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2017

Intelligent Ground Vehicle Competition
Austin R. Tyler
The University of Akron, art42@zips.uakron.edu

Chris R. Estock
The University of Akron, cre20@zips.uakron.edu

Johnathan P. Johenning
The University of Akron, jpj17@zips.uakron.edu

Garrett W. Chonko
The University of Akron, gwc11@zips.uakron.edu

Allen C. Gilleland
The University of Akron, acg55@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects

Part of the Automotive Engineering Commons, and the Robotics Commons

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of
IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

Recommended Citation
Tyler, Austin R.; Estock, Chris R.; Johenning, Johnathan P.; Chonko, Garrett W.; and Gilleland, Allen C.,
"Intelligent Ground Vehicle Competition" (2017). Honors Research Projects. 526.
http://ideaexchange.uakron.edu/honors_research_projects/526

http://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=http://ideaexchange.uakron.edu/honors_research_projects/526
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1319?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects/526?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

IGVC Design Report

Group 14

Project Leader: Garrett Chonko

Archivist: Christopher Estock

Sensor Specialist: Allen Gilleland

Hardware Manager: Johnathan Johenning

Software Manager: Austin Tyler

Faculty Advisor: Dr. Jay Adams

5/1/2017

i

Table of Contents

Abstract ... 1	

1. Problem Statement .. 2	

1.1 Need .. 2	

1.2 Objective ... 2	

1.3 Background ... 2	

1.3.1 Patent Search ... 2	

1.3.2 Article Search ... 3	

1.3.3 Other Source Search .. 4	

1.4 Marketing Requirements ... 4	

1.5 Objective Tree ... 5	

2. Design Requirements Specification .. 5	

3. Accepted Technical Design .. 7	

3.1 Motor Block Diagrams and Functional Requirement Tables ... 8	

3.2 Sensor Block Diagrams and Functional Requirement Tables .. 11	

3.3 Software Block Diagrams and Functional Requirement Tables ... 21	

3.4 Mechanical Block Diagrams and Functional Requirement Tables 29	

3.4 Motor Design .. 31	

3.4.1 Motor Analysis ... 31	

3.4.2 Motor Calculations .. 33	

3.4.3 Motor and Drivetrain Schematics .. 35	

3.5 Control Design .. 37	

3.5.1 Vehicle Motion Analysis .. 37	

3.5.2 Vehicle Motor Analysis .. 40	

3.5.3 Control Theory ... 41	

3.6 Sensor System Design... 44	

ii

3.6.1 Sensor Analysis .. 44	

3.6.2 Sensor Implementation ... 49	

3.6.3 Sensor Calculations ... 54	

3.7 Software Design .. 57	

3.7.1 Software Overview ... 57	

3.7.2 Hardware Interfacing .. 67	

3.7.3 Image Processing ... 107	

3.7.4 Object Mapping ... 123	

3.7.5 Path Finding .. 138	

3.8 Mechanical Design .. 145	

3.8.1 Mechanical Analysis .. 145	

4. Operation, Maintenance, Repair Instructions .. 145	

5. Testing Procedures .. 147	
6. Financial Budget ... 149	

7. Project Schedules .. 151	

7.1 Final Design Schedule .. 151	

7.2 Proposed Implementation Schedule .. 152	

7.3 Actual Implementation Schedule .. 153	

8. Design Team Information ... 154	

9. Conclusions and Recommendations ... 154	

10. References ... 155	

11. Appendix ... 156	

iii

List of Figures

Figure 1. Objective Tree ... 5	

Figure 2. Level 0 Block Diagram ... 7	

Figure 3. Block Diagram Level 1 (Motors) .. 8	

Figure 4. Block Diagram Level 2 (Motors) .. 10	

Figure 5. Block Diagram Level 1 (Sensors) ... 12	

Figure 6. Block Diagram Level 2 (Sensors) ... 15	

Figure 7. Block Diagram Level 3 (Sensors) ... 18	

Figure 8. Block Diagram Level 0 (Software) ... 21	

Figure 9. Block Diagram Level 1 (Software) ... 23	

Figure 10. Block Diagram Level 2 (Software - Object Detection and Recognition) 25	

Figure 11. Block Diagram Level 2 (Software - Path Decision) .. 27	

Figure 12. Block Diagram (Mechanical – Tachometer Mounting) .. 29	

Figure 13. IGVC Force Diagram .. 33	

Figure 14. IGVC 2017 Complete Schematic .. 35	

Figure 15. Vehicle Motion Diagram ... 37	

Figure 16. Arc Length. .. 38	

Figure 17. Total Motion. ... 39	

Figure 18. Triangle Motion. .. 39	

Figure 19: Location Calculation from Tachometers ... 41	

Figure 20. Controller Block Diagram. .. 42	

Figure 21. HMC5883L Pin Layout ... 46	

Figure 22: Sensor and wiring diagram .. 48	

Figure 23: Compass and GPS header comparison .. 50	

Figure 24: GPS and Compass Communication 1 ... 51	

Figure 25: GPS and Compass Communication 2 ... 52	

iv

Figure 26: GPS and Compass Communication 3 ... 53	

Figure 27: GPS and Compass Communication 4 ... 54	

Figure 28. Camera Field of Vision ... 55	

Figure 29 – Pseudo Code for Software Main Function .. 59	

Figure 30 – Snapshot of Arduino Serial Interface Code (C++) .. 69	

Figure 31 – Arduino Serial Parameter and Timing Setup Code (C++) .. 69	

Figure 32 –Pseudo Code for Pepperl+Fuchs R2000 Lidar ... 71	

Figure 33 – Preliminary Pseudo Code for GPS Operation ... 86	

Figure 34 – Function for Fetching Latitude and Longitude from GPS ... 87	

Figure 35 – Preliminary Pseudo Code for Digital Compass ... 92	

Figure 36 – Preliminary Pseudo Code for Arduino Mega Micro Controller 107	

Figure 37. RGB and HSV Color Space Models [9]. ... 109	

Figure 38. Progression of Image Filtering [10]. ... 110	

Figure 39 – Preliminary Pseudo Code for White Color Filtering ... 111	

Figure 40 – Preliminary Pseudo Code for Red and Blue Color Filtering 112	

Figure 41. Linking Curve Points. .. 113	

Figure 42. Retries for Missing Curve Points. ... 113	

Figure 43 – Pseudo Code for OpenCV Image Processing .. 114	

Figure 44. Camera Pixel Grid. .. 124	

Figure 45. Geometry for Y Coordinates. .. 125	

Figure 46. Geometry for X Coordinates. .. 125	

Figure 47. Pixel Mapping to Real World Position. ... 126	

Figure 48. Camera Position to Global Position Mapping. .. 127	

Figure 49. Sample code, node structure. ... 138	

Figure 50. Sample code, creation and allocation of 'adjacency' and 'next' matrices. 138	

Figure 51. Concept example, first two nodes in a Floyd’s algorithm system. 139	

v

Figure 52. Concept visualization, connections to one node. .. 141	

Figure 53. Sample code, path-obstacle collision detection. .. 142	

Figure 54. Sample code, path scanning for obstacles. .. 143	

Figure 55. Images from Computer Vision Test .. 148	

vi

List of Tables

Table 1. Marketing Requirements ... 4	

Table 2. Design Requirements .. 6	

Table 3. Functional Requirements Level 0 ... 8	

Table 4. Functional Requirements Level 1 (Motors) .. 9	

Table 5. Functional Requirements Level 2 (Motors) .. 10	

Table 6. Functional Requirements Level 1 (Sensors) ... 12	

Table 7. Functional Requirements Level 2 (Sensors) ... 15	

Table 8. Functional Requirements Level 3 (Sensors) ... 18	

Table 9. Functional Requirements Level 0 (Software) ... 22	

Table 10. Functional Requirements Level 1 (Software) ... 23	

Table 11. Functional Requirements Level 2 (Software - Object Detection and Recognition) 25	

Table 12. Functional Requirements Level 2 (Software - Path Decision) 28	

Table 13. Functional Requirements Level 2 (Software - Path Decision) 29	

Table 14. Motor Analysis Assumptions .. 31	

Table 15. Sensor Network Power Consumption ... 57	

Table 16. Table of Command Line Arguments .. 146	

Table 17: Input Motor Voltage to Encoder Output ... 147	

1

Abstract

 The Intelligent Ground Vehicle Competition (IGVC) draws teams from various
universities to compete in the annual autonomous vehicle challenge at the Oakland University
campus. To compete, a vehicle must be fully autonomous and can navigate a course designated
by various obstacles and painted white lines. Some design challenges are motor control,
navigation, environment sensing and safety. A complex navigation system will utilize several
tools including a high-precision differential GPS. The vehicle’s surroundings will be mapped
using a combination of Light Detection and Ranging (LiDAR) and computer-vision enabled
imaging. To comply with IGVC rules, the vehicle must also follow several safety requirements
such as physical and wireless emergency stop, safety lighting, and the ability to assume manual
control. By fulfilling these design challenges, the design team is seeking to compete in the 2017
Intelligent Ground Vehicle Competition.

• Ground Vehicle
• Traverse course autonomously to provided destination
• Maintain speeds between 1-5 MPH
• Implement sensors and software for object detection and avoidance

2

Intelligent Ground Vehicle (IGV)

1. Problem Statement

1.1 Need

Each year, Oakland University hosts the Intelligent Ground Vehicle Competition (IGVC).
The competition offers a multidisciplinary design experience for engineering students. The
autonomous guidance and obstacle avoidance technologies employed in the competition have
industry applications in military mobility, transportation systems, and manufacturing. The
vehicle must autonomously navigate a closed circuit using lane following and waypoint
navigation and must avoid barrel obstacles. The intelligent ground vehicle (IGV) needs to
comply with all competition rules.

[ART]
1.2 Objective

The objective is to create a ground vehicle to compete in the IGVC 2017. The vehicle
will be autonomous and conform to competition rules including minimum and maximum speed,
mechanical and wireless emergency stop, safety lighting, and must carry a payload of
approximately twenty pounds from start to finish. In order to pass qualification, the vehicle must
also demonstrate the ability to follow lanes, avoid basic obstacles, and navigate to set waypoints.

[CRE]
1.3 Background

1.3.1 Patent Search

 There are numerous patents which describe methods and systems for autonomous vehicle
navigation and obstacle avoidance. These patents cover a range of techniques of various
complexities. The systems in each of the patents get input from an imaging device. The input is
processed and used to adjust vehicle trajectory and speed.

 US Patent 7587260 describes a system for navigation in an autonomous vehicle. The
system uses an event timing loop and adjusts translational and rotational velocities to avoid
obstacles detected in its path. The system uses at least one perception sensor, at least one
locomotor, and a system controller. The process for adjusting rotational velocity uses a
proportion of the current rotational velocity less the proportion of the range to the nearest
obstacle. The adjustment of translational velocity when an obstacle is within the event horizon is
based on a promotion of the range to that obstacle. When no obstacle is detected within the event
horizon, the translational velocity is adjusted to a factor of the maximum allowable speed [1].

3

US Patent 5675489 describes a system and method for estimating lateral position of a
vehicle within a marked lane. The system uses a camera and a digitizer to create a perspective-
free image comprised of rows and columns of pixels. The image is processed by summing the
columns to create a single row called the scanline profile. The measured scanline is compared
with the stored scanline profile of proper lane centering to determine the lateral offset of the
vehicle from the center of the lane [2].

US Patent 8050863 describes a navigation and control system for autonomous vehicles.
The system uses a 3D image capturing device to create a 3D contour image of the field in front
of the vehicle. The image data and a GPS are used to detect obstacles and plan the path and
speed of the vehicle. The path planning module adjusts the steering of the vehicle and the speed
planning module adjusts the acceleration of the vehicle [3].

[ART]
1.3.2 Article Search

Michael L. Nelson outlines the importance of code reusability and object oriented
programming techniques when creating a control architecture for an autonomous vehicle. Nelson
suggests that all Autonomous Vehicles (AV) should have a clear and distinct goal, can handle
any problems that can be reasonably anticipated, and should keep several fallback positions if an
issue arises. Object oriented programming should be used to make these components of the
system work together by complementing each other’s operation to complete the final task.
Nelson later recommends the use of a Strategic-Tactical-Execution Software Control
Architecture (STESCA), which focuses the design of each software component on what it should
accomplish rather than how it should be accomplished [4].

Ming Huang et al. conducted research on an intelligent vehicle based highway driving
system that synthetically considers the current traffic conditions and corrects pathing for a single
vehicle or set of vehicles moving in a group. Researchers created an intelligent vehicle using an
ARM based platform combined with a DSP controller, power conversion module, motor drive
module, ZIGBEE wireless communication module, CMOS digital camera, ultrasonic sensor,
rotary encoder and external memory. The DSP controller used several algorithms outlined in the
article to process data received from the CMOS digital camera to create a navigable map of the
area to the front of the vehicle [5].

B. Dumitrascu et al. designed an algorithm for trajectory tracking and obstacle avoidance
for autonomous vehicles. This algorithm consists of both global trajectory tracking and local
trajectory tracking with obstacle avoidance. In general, the autonomous vehicle follows the
global trajectory while adjusting on a short-range level with the local trajectory algorithm.
Included in the overall algorithm are concepts such as a “sensitivity bubble,” which is used to
determine if an obstacle is blocking the global trajectory. If an obstacle is detected within the
sensitivity bubble, a new path is calculated that contains the minimum density of obstacles. The
vehicle follows this new route until the end goal is visible or a new obstacle is detected, then it is
repeated [6].

4

[CRE]
1.3.3 Other Source Search

The Intelligent Ground Vehicle Competition has been attempted by a previous design team at the
University of Akron in the 2012-2013 academic year. The team used a camera, a compass, a
GPS, and LiDAR to get positioning data to navigate the course. The team outlined a method of
using weighted data to determine the best path for the vehicle to take [7].

[ART]
1.4 Marketing Requirements

 The marketing requirements for the vehicle are listed in Table 1. Fulfilling these
requirements will ensure the vehicle can maneuver on the IGVC course and complete the
objectives specified in the IGVC official rules.

Table 1. Marketing Requirements

Marketing Requirements

1 The vehicle must comply with the IGVC rules and regulations.

2 The vehicle will be able to perform in off-road conditions

3 The vehicle must move at a steady pace.

4 The vehicle must have a tight turning radius.

5 The vehicle will be a safe and reliable vehicle

6 The vehicle will autonomously follow lanes, avoid obstacles, and
navigate to waypoints.

7 The vehicle must be able to be shipped to competition site.

8 The vehicle must be able to represent University of Akron in the 2017
IGVC competition.

[GWC, ART]

5

1.5 Objective Tree

 The objective tree in Figure 1 separates the requirements of the vehicle into three
categories: mechanical body specifications, system capability specifications, and safety
specifications. The specifications are dictated by the official rules of the Intelligent Ground
Vehicle Competition.

Figure 1. Objective Tree

[GWC]

2. Design Requirements Specification

 The design requirements in Table 2 define quantitative, verifiable goals that the finished
vehicle must meet. These requirements are chosen to meet the marketing requirements defined in
Table 1.

6

Table 2. Design Requirements

Marketing
Require-
ments

Engineering Requirements Justification

1,2 Vehicle must be able to Traverse a 30-degree
incline.

This is the steepest hill grade on the
course that the Intelligent Ground
Vehicle will encounter.

1,5 Vehicle must have a red emergency stop
button no less than one inch in diameter, and
must have a hardware-based wireless
emergency stop.

Safety specification that must be met to
ensure the safety of spectators and
Intelligent Ground Vehicle Competition
officials.

1,3,5 Vehicle must have a maximum speed of 5
mph and a minimum speed of 1 mph; the
maximum speed must be hardware enforced.

To ensure the systems remains under
control and does not pose a danger to
spectators or Intelligent Ground Vehicle
Competition officials.

1,8 Vehicle must be a grounded and propelled by
direct mechanical contact to the ground.

To ensure conformance with the
Intelligent Ground Vehicle Competition
rules.

1,7 Vehicle must not exceed six (6) feet in height
except for the emergency stop antenna.

To ensure conformance with the
Intelligent Ground Vehicle Competition
rules.

1,4,7 Vehicle must have a minimum length of three
(3) feet and a maximum length of seven (7)
feet.

To allow the Intelligent Ground Vehicle
to travel around obstacles in its path and
to ensure conformance with the
Intelligent Ground Vehicle Competition
rules.

1,4,7 Vehicle must have a minimum width of two
(2) feet and a maximum width of four (4) feet.

To allow the Intelligent Ground Vehicle
to travel around obstacle in its path.

1,5 Vehicle must indicate states of operation, via
onboard lights.

To insure the safety of spectators and
other Intelligent Ground Vehicle
Competition officials.

1,6 Vehicle must be able to autonomously detect
and avoid obstacles, and travel to GPS
waypoints while detecting and traveling within
a lane defined by white lines painted on the
ground.

This is the basis for the Intelligent
Ground Vehicle Competition.

1,8 Vehicle must be able to carry a 20-pound
payload securely for the duration of the run.

To ensure conformance with the
Intelligent Ground Vehicle Competition
rules.

[ART, GWC]

7

3. Accepted Technical Design

 The technical design of the intelligent ground vehicle is detailed starting with level 0
(most broad) which encompasses all areas of design. Subsequent design levels are separated into
power and motors (dubbed hardware), sensors, and software and show more detail about the
modules designed for the vehicle.

 The level zero block diagram in Figure 2 and functional requirements in Table 3 detail
the inputs and outputs for the intelligent ground vehicle. The system will operate on 24-volt
power sources. The image data provides information about the environment surrounding the
vehicle and is used to avoid obstacles and stay within the lane lines. The GPS data provides
accurate position information for the vehicle and is used to navigate to waypoints and to map
objects detected by the image sensors. The two emergency stops fulfill the safety requirements
for emergency stopping. The vehicle has a status light that indicates when the vehicle is powered
on and when it is operating autonomously. This fulfills additional safety requirements. The
diagnostic output will provide users with indication of what the vehicle is seeing and what
decisions it is making. The dual motor drives are used to drive the motors that propel and steer
the vehicle.

Figure 2. Level 0 Block Diagram

8

Table 3. Functional Requirements Level 0

Module Intelligent Ground Vehicle
Inputs • Power Control

• Image Sensors
• Global Positioning System
• Mechanical Emergency Stop
• Wireless Emergency Stop
• 24V Battery

Outputs • Power Indicator/Safety Lights
• Motor Drives
• Diagnostic Output

Functionality • The vehicle will navigate an Intelligent Ground Vehicle Competition
course by following lanes, avoiding obstacles, and using waypoint
navigation.

3.1 Motor Block Diagrams and Functional Requirement Tables

The level one block diagram in Figure 3 and functional requirements in Table 4 detail the
inputs and outputs for the intelligent ground vehicle. The system will operate on 24-volt portable
power sources. In addition, the input power will be able to protect the motor driver from inrush
current, transient voltage spikes from the motors, as well as the ability to cutoff the motor
through a mechanical and wireless implementation.

Figure 3. Block Diagram Level 1 (Motors)

[JPJ]

9

Table 4. Functional Requirements Level 1 (Motors)

Module Intelligent Ground Vehicle: Battery
Inputs • None
Outputs • 24V
Functionality • Provides a source of energy that will later be applied to the motors.

Module Intelligent Ground Vehicle: Kill Switch
Inputs • Battery Voltage: 24V
Outputs • Controlled 24V
Functionality • For safety; to manually stop the vehicle when needed.

Module Intelligent Ground Vehicle: Fuse
Inputs • 24V from Kill Switch.
Outputs • Protected 24V that will not exceed the rated value.
Functionality • To protect the attached devices from a potentially damaging amount of

current.

Module Intelligent Ground Vehicle: Motor Drive
Inputs • Control signal from processor.

• Power.
Outputs • Motor A UART signal.

• Motor B UART signal.
• Speed sensor output.

Functionality • The vehicle will input transfer power from the battery to the prospective
motor via the motor driver with which the computer communicates.

Module Motors (A/B)
Inputs • Controlled Power Delivery from Motor Driver
Outputs • Torque to the wheels.
Functionality • To move the vehicle to the designated location at the requested speed.

[GWC, JPJ]
Figure 4 Shows the Level 2 Motor block diagram and Table 5 shows the functional requirements
table for the motor level 2 block diagram.

10

Figure 4. Block Diagram Level 2 (Motors)

[JPJ, GWC]

 Table 5. Functional Requirements Level 2 (Motors)

Module Intelligent Ground Vehicle: Battery
Inputs • None
Outputs • 12V
Functionality • Provides a source of energy that will later be applied to the motors.

Module Intelligent Ground Vehicle: Protective Circuit
Inputs • Battery Voltage: 12V
Outputs • Controlled 12V
Functionality • Protect the devices and wires from overheating and transient voltage

spikes from the naturally inductive motors.

11

Module Intelligent Ground Vehicle: Relay
Inputs • Controlled 12V for load

• Relay control signal

Outputs • Controlled 12V
Functionality • For safety; to stop the vehicle when there is an electrical or mechanical

failure.

Module Intelligent Ground Vehicle: Kill Switch
Inputs • Digitally High Signal (pulled to ground) from microcontroller
Outputs • When Closed: signal from microcontroller which is high/low depending

on whether the wireless receiver is communicating
• When open: leaves the signal at the relay to be a low voltage which breaks

continuity between load side input and output.
Functionality • To provide a mechanical based emergency stop when the vehicle

malfunctions
• To coincide with the IGVC rules

Module Intelligent Ground Vehicle: Motor Driver
Inputs • Communications with the processor.

• Power that has been conditioned for the motor driver.
Outputs • Motor A UART signal.

• Motor B UART signal.
• Speed sensor output.

Functionality • The vehicle will input transfer power prospective motor via the motor
driver with which the computer communicates.

Module Motors (A/B)
Inputs • Controlled Power Delivery from Motor Driver
Outputs • Torque to the wheels.
Functionality • To move the vehicle to the designated location at the requested speed.

[JPJ]
3.2 Sensor Block Diagrams and Functional Requirement Tables

 The sensor network of the intelligent ground vehicle are the tools needed to achieve
successful autonomous travel in-route to the vehicles provided destination. The sensors listed
below will ensure that the three goals of travel – course mapping, object detection and speed
monitoring, are realized through integration in software. The block one diagram for the sensor

12

network is provided in Figure 5 with the functional requirements for each block detailed in Table
6.

Figure 5. Block Diagram Level 1 (Sensors)

Table 6. Functional Requirements Level 1 (Sensors)

Module Course Mapping
Inputs • None
Outputs • Geographical course information
Functionality • The course mapping block describes the course environment and location

in the world.

Module GPS
Inputs • Course Mapping
Outputs • GPS coordinates
Functionality • The GPS system connects to access satellites to provide real time location

information to the vehicle for processing.

13

Module Compass
Inputs • Course Mapping
Outputs • Direction of vehicle
Functionality • The compass complements the GPS by providing the vehicles facing

direction. The compass will increase precision when the vehicle is
stationary or at the slower speeds required by competition rules.

Module Object Detection
Inputs • None
Outputs • Position of objects along course
Functionality • The object detection block recognizes objects or obstructions along the

course.

Module LiDAR
Inputs • Object Detection
Outputs • Distance of an object in reference to the vehicle.
Functionality • The LiDAR sends a scanning pulse laser, like an infrared, and measures

the return time of the pulse to determine the distance of an object to the
LiDAR. The LiDAR will act as a bubble around the vehicle to notify it of
any obstruction and to avoid accordingly.

Module Camera
Inputs • Object Detection
Outputs • Digital Image
Functionality • The Cameras will be mounted to the top of the vehicle pointed down

towards the course. An image will be captured and processed in real time
to realize the course boundaries, lane detection, potholes and flags.

Module Speed Monitoring
Inputs • None
Outputs • Speed of vehicle
Functionality • The speed monitoring block controls and monitors the speed of the

vehicle.

14

Module Tachometer
Inputs • Speed Monitoring
Outputs • Rotational Speed of wheels
Functionality • The tachometer observes the rotational speed of the wheels on the vehicle

to maintain a speed between 1-5 MPH required by the competition.

Module E-Stop
Inputs • Speed Monitoring
Outputs • Emergency motor shutdown
Functionality • The E-Stop shuts down power to the motor in case of an emergency stop.

Module Processor
Inputs • GPS

• Compass
• LiDAR
• Camera
• Tachometer
• E-Stop

Outputs • Motor Controller
Functionality • The processor accepts information from the GPS, Compass, LiDAR,

Camera, tachometer and E-Stop for processing and filtering. The
information is sent to the motor controller for traversing the course
successfully.

 The Sensor block diagram is later broken down to show power supplied and to
incorporate the motors for recognizing the speed of the vehicle. A step down is applied to after
the battery to ensure proper power is supplied to each sensor accordingly. An antenna is shown
connected to the GPS to properly communicate with GPS/GNSS satellites wirelessly. Speed is
detected from each motor individually and read by the tachometer. That analog signal is then
sent through an analog to digital converter. The digital speed is then sent to the processor to
maintain appropriate speed throughout the course. The following is represented in Figure 6 and
discussed further in Table 7.

15

Figure 6. Block Diagram Level 2 (Sensors)

Table 7. Functional Requirements Level 2 (Sensors)

Module Battery
Inputs • None
Outputs • 24v
Functionality • Provides a source of energy that will later be stepped down and applied to

sensors.

Module Step Down
Inputs • 24v
Outputs • 12v, 3v, or any lesser voltage.
Functionality • The step down from 24v will provide proper power to the sensors.

16

Module (3) Cameras
Inputs • Battery

• Visual information
Outputs • Digital Image
Functionality • The (3) Cameras will be positioned one on each side of the vehicle and

one in the front for line/pothole detection. The digital image will be sent
to the processor for detection.

Module LiDAR
Inputs • Battery

• Laser Pulse
Outputs • LiDAR Bit stream
Functionality • LiDAR (Light Detection and Ranging) is a sensor that employs a pulsed

laser to measure or map an environment at 180 or 360 degrees at
distances up to 80m. The LiDAR readings will be sent to the processor
for object detection.

Module Digital Compass
Inputs • Battery

• Earth’s Magnetic Field
Outputs • Direction of vehicle
Functionality • The digital compass will give the exact direction the vehicle is facing at a

given time. The digital aspect of the compass will eliminate any magnetic
field interference from the motor.

Module GPS
Inputs • Satellite Signal

• Antenna
Outputs • GPS Coordinates
Functionality • The GPS will send the vehicle’s exact coordinates to the processor and

compare it to the competition’s waypoint (for extra points). After that
calculation, the vehicle will maneuver the course to arrive at the
waypoint.

17

Module Antenna
Inputs • Wireless Signal
Outputs • GPS
Functionality • The antenna receives information from GPS satellites and sends it to the

GPS hardware.

Module Tachometer
Inputs • Motor A wheel speed

• Motor B wheel speed
• Battery

Outputs • Analog Speed
Functionality • The tachometer will measure the angular velocity of the wheels.

Module A/D converter
Inputs • Analog Speed
Outputs • Digital Speed
Functionality • The A/D converter will take the analog information from the tachometer

and convert it to digital form for processing.

Module Processor
Inputs • Digital Image

• LiDAR Bit stream
• Vehicle Direction
• Coordinates
• Digital Vehicle Speed

Outputs • Motor Driver
Functionality • The processor will take the information provided by the sensors and apply

it to the course mapping and object detection functions discussed in the
software block diagram.

 The sensor network is later organized to show power and interface connections. After
performing loading calculations discussed later a 12V 8Ah (amp hour) battery. The sensor
battery and the motor battery are separate to ensure data retention in case of an emergency stop,
as in the motors will be shut down, however, power will remain to the sensor network to retain
any course information gathered on the vehicles current run of the course. The 12V section will
power the Pepperl + Fuchs R2000 LiDAR and the Novatel Propak V3 GPS system. Power will
be passed from the 12V battery to a 5V DC-DC converter to provide power to a powered USB
hub. The USB hub will have 5 outputs providing power and information transfer for the Logitech

18

C920 HD Pro webcams and the Arduino Mega. It should be noted that the cameras were changed
from 3 to 1 when the LiDAR had been implemented and synched. Information will also be
processed through the USB hub from the GPS system after running through a serial to USB
converter. The Arduino MEGA 2560 will handle the power and processing of the digital
Compass, tachometer and wireless Estop commands. The bulk of the processing will be handled
by the ASUS laptop onboard the vehicle. The ASUS laptop accepts TCP protocol packets via an
Ethernet connection from the Pepperl + Fuchs LiDAR. Information from the GPS, web cameras
and Arduino MEGA 2560 are fed through a USB connection to the ASUS laptop. The sensor
block diagram is shown in Figure 7 and discussed in Table 8.

Figure 7. Block Diagram Level 3 (Sensors)

Table 8. Functional Requirements Level 3 (Sensors)

Module (2) 12V Battery
Inputs • None
Outputs • (2) 12v 8aH
Functionality • Provides a source of energy to the sensor network.

19

Module 24V Buck Converter
Inputs • 12VDC
Outputs • 24VDC
Functionality • Converts 12VDC to 24VDC for Pepperl + Fuchs Lidar

Module Powered USB Hub
Inputs • 12VAC
Outputs • Power to USB devices
Functionality • The powered USB hub provides power to the sensors and allows

information to be sent to the processor via a USB connection.

Module Logitech C920 HD Pro webcam
Inputs • Powered USB Hub

• Visual information
Outputs • Digital Image
Functionality • The Cameras will be positioned one on each side of the vehicle and one

in the front for line/pothole detection angled at 45°. The digital image
will be sent to the processor for detection.

Module Arduino MEGA 2560
Inputs • Powered USB Hub, Digital Compass, Wheel encoder, Wireless Estop
Outputs • Processing information to ASUS computer
Functionality • The Arduino MEGA 2560 will power and process readings from the

digital compass, wheel encoders and wireless Estop control.

Module Digital Compass
Inputs • Arduino MEGA 2560

• Earth’s Magnetic Field
Outputs • Direction of vehicle
Functionality • The digital compass will give the exact direction the vehicle is facing at a

given time. The digital aspect of the compass will eliminate any magnetic
field interference from the motor.

20

Module Wheel Encoders
Inputs • Arduino MEGA 2560

• Wheel rotation

Outputs • Speed of vehicle
Functionality • The wheel encoders measure the rotation of the wheels on the vehicle to

provide the vehicle’s speed to the Arduino MEGA 2560 to maintain the
allowed speeds between 1-5 MPH.

Module Pepperl + Fuchs R2000
Inputs • (2) 12V battery
Outputs • TCP protocol packets via Ethernet connection
Functionality • The Pepperl + Fuchs R2000 is powered via the 12V battery and reads in

distances of an object to the vehicle via a rotating IR. The LiDAR is
scans in 360° at frequencies adjustable to 10Hz and 50Hz. Data is
transmitted via Ethernet connection to the ASUS laptop in the form of
TCP protocol packets.

Module Novatel Propak V3
Inputs • (2) 12V Battery
Outputs • RS 232 serial connection to USB
Functionality • The Novatel Propak V3 provides access to GPS satellites with accuracy

of roughly 4cm. Information is sent via the RS232 to USB converter into
the USB hub where it is processed by the ASUS laptop using
OMNISTAR’s GPS software.

Module Novatel GPS Antenna
Inputs • Wireless Signal
Outputs • Novatel Propak GPS
Functionality • The antenna receives information from GPS satellites and sends it to the

GPS hardware.

21

Module ASUS laptop
Inputs • Novatel Propak GPS

• Pepperl + Fuchs LiDAR
• (3) Logitech C920 HD Pro Webcam
• Arduino MEGA 2560

Outputs • Motor Driver
Functionality • The processor will take the information provided by the sensors and apply

it to the course mapping and object detection functions discussed in the
software block diagram.

[ACG]

3.3 Software Block Diagrams and Functional Requirement Tables

 The software for the intelligent ground vehicle is responsible for providing the
autonomous navigation function required to navigate the IGVC course while avoiding obstacles,
following a path, and navigating to waypoints. The software is also responsible for keeping track
of the state of operation, providing visual feedback of the operation procedures, and meeting
safety specifications. The top-level software block diagram is shown in Figure 8 and the
functional requirements are listed in Table 9.

Figure 8. Block Diagram Level 0 (Software)

[ART]

22

Table 9. Functional Requirements Level 0 (Software)

Module Intelligent Ground Vehicle Software
Inputs • Power Button

• Image Data
• Vehicle Position (from Global Positioning System)
• Vehicle Orientation (Compass Data)
• Estop State
• Autonomous Mode State
• Tachometer Speed Data

Outputs • Power Indicator/Safety Light
• Motor Drive Signals (Left and Right)
• Estop Trigger Signal

Functionality • The vehicle will navigate an Intelligent Ground Vehicle Competition
course by following lanes, avoiding obstacles, and using waypoint
navigation.

[ART]
 The software for the intelligent ground vehicle is further divided into five modules as
depicted in Figure 9. The functional requirements for each block are listed in Table 10. The
Object Detection and Recognition Block uses image and LiDAR data to perceive lines and
objects in the real world and determine their location relative to the vehicle. The Course
Mapping Block maps those objects in GPS space using information from a compass and GPS.
The images, GPS data, and compass angle are time stamped to ensure everything is in sync and
account for processing time on the images. The Course Mapping Block generates a 2-D birds eye
view of the course. This map is used by the Path Decision Block to determine the best path to
take to complete the course or get to the next waypoint. The Path Decision Block outputs a target
speed and angle to the Motor Control Block. The Motor Control Block implements the control
system for the intelligent vehicle. The target angle and speed are the inputs to the control system
and the tachometer speed data and compass angle are the feedback signals. The outputs of the
Motor Control Block are the left and right motor control signals for the motor driver. The Motor
Control Block uses the control state signal to enable/disable the motors. The Control State
Manager handles the emergency stop functions and the safety light operation.

23

Figure 9. Block Diagram Level 1 (Software)

[ART]
Table 10. Functional Requirements Level 1 (Software)

Module Object Detection and Recognition
Inputs • Image Data (Front, left side, right side)

• LiDAR Bit stream
Outputs • Object Points (Local)
Functionality • The object detection and recognition module uses environment data from

three cameras and a LiDAR to determine the size and position of objects
including barrels, lane lines, and potholes. Position is relative to the
vehicle.

Module Discrete Course Mapping
Inputs • Object Points (Local)

• GPS Position Data
• Compass Angle

Outputs • 2-D Course Map
Functionality • The course mapping module uses the current location of the IGV and

detected objects including barrels, potholes, and lane lines to construct a
discrete map of the course.

24

Module Path Decision
Inputs • 2-D Course Map (Includes Vehicle Position)
Outputs • Target Angle

• Target Speed
Functionality • The path decision module uses the 2-D course map to determine the best

path to navigate towards the goal. The goal is determined as a point at the
end of field of vision that keeps forward motion along the course. This
module will also use the GPS waypoints but those are pre-set.

Module Motor Control
Inputs • Target Angle

• Target Speed
• Tachometer Speed

• Compass Angle

• Control State
Outputs • Left motor control signal

• Right motor control signal
Functionality • The navigation control modules implement a control system to follow the

given path using left and right side motors.

Module Control State Manager
Inputs • Hardware Estop State

• Autonomous Activation Signal
Outputs • Indicator Light Control Signal

• Estop Trigger forces estop in hardware
• Control State (Mode of Operation)

Functionality • The control state manager module listens for the wireless estop to be
activated and forces an e-stop if the estop has been pressed. The module
also controls whether autonomous mode is active or inactive.

[ART]
 The Object Detection and Recognition Block is further broken down by the type of
objects that the vehicle must be able to detect as depicted in Figure 10. The types of objects that
must be detected are specified as part of the design requirements in Table 2. The functional
requirements of each block are listed in Table 11.

The camera images input to the system are expected to be HD quality images because
HD quality cameras generally have higher quality lenses with less lens distortion. Lens distortion
will make it more difficult to map objects in real space so a camera with quality lenses must be
selected. The high pixel density of an HD camera is not needed for detecting objects at close

25

range, however, and using HD images costs more processing time. The Image Compression
Block reduces the pixel density of the camera images for faster processing.

The three image filtering blocks transform the input image to highlight certain
characteristic used to distinguish objects in the image. The potholes and lane lines are white lines
on a dark background, likely grass or dirt. The High Contrast Filter Block manipulates the image
to darken everything that is not a white. The Pothole Detection and Measurement Block and Line
Detection and Measurement Block interpolate information about the location of the lines to
reconstruct them in as real-space model. The blue and red filter blocks operate similarly for blue
and red. The flag detection and measurement blocks identify and determine the location of flags
in real-space with respect to the vehicle.

The Object Detection and Measurement Block uses the distances to objects measured by
LiDAR and determines the location and size of the objects in x-y coordinate space with respect
to the vehicle.

Figure 10. Block Diagram Level 2 (Software - Object Detection and Recognition)

 [ART]
Table 11. Functional Requirements Level 2 (Software - Object Detection and Recognition)

Module Image Compression
Inputs • Camera Image Data (HD, RGB)
Outputs • Compressed Image (RGB)
Functionality • The image compression block will reduce the resolution of the input image

to reduce the complexity of calculations for subsequent processing of the
image.

26

Module White Filter
Inputs • Compressed Image (RGB)
Outputs • Filtered Image (B/W)
Functionality • The White Filter Block applies various filters to produce a black and white

image for detecting the white lane lines and white pothole outlines on a
black background.

Module Line Detection Algorithm
Inputs • Filtered Image
Outputs • Line Position (within camera frame)
Functionality • The line detection and measurement module will detect the high contrast

lane lines as a series of points in positions relative to the vehicle’s location
when the image was captured.

Module Real Space Mapping
Inputs • Line Position (within camera frame)
Outputs • Line Position (local)
Functionality • The Real Space Mapping block maps the objects identified in the camera

frame from pixel locations into real-world locations with respect to the
vehicle.

Module TCP Communications
Inputs • Lidar Bit stream
Outputs • Scan
Functionality • The TCP communications module handles all I/O between the PC and the

LiDAR and outputs a complete 360 degree scan when it is available.

Module Noise Removal Filtering
Inputs • Scan
Outputs • Scan (filtered)
Functionality • The Noise Removal Filtering removes errors from the scan and averages

scan data between the most recent raw scan frames and averages scan
points within the averaged frame.

27

Module Object Detection and Measurement (LiDAR)
Inputs • Scan
Outputs • Object Coordinates (local)
Functionality • The LiDAR object detection and measurement module will detect objects

from the filtered LiDAR scan and determine their relative position to the
vehicle’s coordinate origin.

[ART]

A module in the level one software block diagram (Figure 9) is the path decision system. Shown
below in Figure 11, the path decision algorithm will have four main components. The first of
which is a shortest path algorithm. Two well-known algorithms can be used to compute the
shortest path in a system of nodes and connections; Dijkstra’s algorithm and Floyd’s algorithm.
Dijkstra’s algorithm is more efficient, but cannot be parallelized over multiple processor threads.
Floyd’s algorithm is less efficient, but is extensively parallelizable. Following the shortest path
algorithm is the routing mechanism. This component will perform a trace-back on the calculated
shortest path from the previous component, and will output a set of navigation instructions for
the vehicle to follow. The next component takes a rough path input and smooths it to prevent the
vehicle from exhibiting ‘jitter’ when in motion. This will also prevent the vehicle from
exhibiting any ‘rocking’ motion, which could inhibit its ability to accurately identify obstacles
with cameras. The final component in the navigation system calculated the required speed and
steering adjustments that need to occur to follow the route given by the previous component.
This component will involve taking readings from the digital compass and Novatel GPS system
to accurately calculate the direction adjustments that need to occur.

Figure 11. Block Diagram Level 2 (Software - Path Decision)

28

Table 12. Functional Requirements Level 2 (Software - Path Decision)

Module Dijkstra’s, Floyd’s Algorithm
Inputs • Raw 2D Map Data
Outputs • Shortest Path
Functionality • This module will use a variation of Dijkstra/Floyd’s Algorithm to compute

the shortest path to the next waypoint.

Module Routing With Obstacles and Lines
Inputs • Shortest Path Data
Outputs • Adjusted Path
Functionality • This is an intermediate software stage that will incorporate obstacle and

line data into the path calculation. This block will also use a variation of
Dijkstra’s/Floyd’s Algorithm to compute the shortest path to the next
waypoint while compensating for obstacles and lines observed by the
detection system.

Module Path Smoothing
Inputs • Adjusted Path
Outputs • Smooth Path
Functionality • This is an intermediate software stage that will manipulate the jagged-

edged path from the “Routing with Obstacles and Lines” stage and will
interpolate a smooth route in order to reduce zig-zag motion in the path to
the next waypoint.

Module Direction and Speed Adjustment
Inputs • Smooth Path
Outputs • Target Angle

• Target Speed
Functionality • This is the final module of the path decision block. This block will

translate desired motion from the path data into delta angle and delta speed
required to fulfil the path. While the input path is ‘smooth,’ it is important
to allow for a margin of error in delta angle and delta speed in effort to
avoid an over-under compensation loop.

[CRE]

29

3.4 Mechanical Block Diagrams and Functional Requirement Tables

Figure 12. Block Diagram (Mechanical – Tachometer Mounting)

Table 13. Functional Requirements Level 2 (Software - Path Decision)

Module Gear Box
Inputs • Mechanical Power (Rotating shaft)
Outputs • Mechanical Power (Rotating shaft)
Functionality • Increase Torque, decease speed

Module Motor
Inputs • PWM Power Signal
Outputs • Mechanical Power (Rotating shaft)
Functionality • Transforms Electrical power into mechanical power

30

Module Timing Pulley
Inputs • Mechanical Power (Rotating shaft)
Outputs • Mechanical Power (Spinning gear)
Functionality • Transfers Mechanical Power

Module Timing Belt
Inputs • Mechanical Power (Spinning gear)
Outputs • Mechanical Power (Moving Belt)
Functionality • Transfers Mechanical Power

Module Pulley
Inputs • Mechanical Power (Moving Belt)
Outputs • Mechanical Power (Rotating Shaft)
Functionality • Transfers Mechanical Power, Increases Speed, Decrease Torque

Module Coupler
Inputs • Mechanical Power (Rotating Shaft)
Outputs • Mechanical Power (Rotating Shaft)
Functionality • Transfers Mechanical Power

Module Tachometer
Inputs • Mechanical Power (Rotating Shaft)
Outputs • Electrical Digital Signal
Functionality • Measures Speed of Rotating Shaft

31

Module Arduino
Inputs • Electrical Digital Signal
Outputs • Electrical Digital Signal (PWM)
Functionality • Controls Motor Steering

3.4 Motor Design

3.4.1 Motor Analysis

To analyze the motor, the key requirement is to determine the vehicle’s ability based of
the determined path that the vehicle will operate. As determined by the IGVC rule book, the
vehicle must move between one and five miles an hour even while travelling on the steeper
inclines of thirty degrees. Therefore, the analysis and calculations for the vehicle’s operation
must be effective under the most strenuous circumstances. Other considerations for the terrain
and typical usage conditions can be found in Table 14 and will be reviewed in further details.

Table 14. Motor Analysis Assumptions

The mass of the vehicle was calculated to be at most 36.73kg from the consideration of

the batteries (35%), chassis (12%), sensors (26%), drivetrain (4%), competition’s load (19%),
and a five percent error. To isolate the highly noisy motor drive power consumption from the
sensors, the motor power will be separated from the sensing power consumption via different
batteries. As discussed more in detail in the system voltage and battery capacity parameters, the
motors will consume twenty-four volts which will be realized through two twelve volt batteries.
Similarly, the sensor system may require twelve and/or twenty-four volts to maintain sensing.
The battery mass was approximated at four batteries with the amp-hour capacity that could
supply the motor’s consumption.

32

The hill grade is the approximation of the course itself, and during the advanced
competition the grade range was +/- 0.52 radians. The competitions general landscape was
within 0.1 radians, however the advanced competition allowed for the more extreme 0.52 radian
hill climbs. Because of this, required torque and power of the motor was mapped from positive to
negative 0.52 radians. In addition, the anticipated speed of the vehicle was also included into the
calculations, because on near flat surfaces, the vehicle should be maneuvering and max speed,
whereas climbing a steep hill it can traverse at a slower pace. This variation of speed and hill
gradient for three wheel diameters lead to the max required torque of 9Nm and average power
required to operate eleven to fifty watts depending on the regeneration ability of the motor
controller.

The wheel radius was based off the motor’s torque, vehicle’s speed, and load bearing
capabilities. An observation noticed early on was, with a constant velocity, the increased wheel
radius would lead to an increased required torque. Similarly, with a constant torque the larger
wheel would allow the vehicle to travel faster, but because the competition limits the max
velocity, the decision was to go with the smaller radius of wheels. The radiuses ranged from
seven to thirty centimeters, from which the conclusion was the smaller radius had the smaller
torque, but would have mounting and chassis constraints.

Initially, the number of wheels was three so that at any given moment the vehicle would
be on the ground. However, due to the mass of the vehicle, the wheels needed to be able to
support the weight of the vehicle, thereby requiring the vehicle to have four. Calculations for
tipping forces and center of gravity has been conducting by the team’s counterparts, but have not
yet been implemented into our system.

The number of motors was chosen to be two, and the following factors lead to this
conclusion: motor driver(s), power consumption, drive style, and ease to implement. Most
commonly motor drivers come in single or dual motor capabilities especially when dealing with
ten plus amps per motor. Next, the values that were calculated placed the torque per motor in the
standard torque range of motors used in wheel chairs, which are aided with a torque converting
worm drive system to increase the motor’s output. When it came to the drive style, the
possibilities of having a separate steering system were quickly eliminated due to the decision not
to use a linear actuator or other power consuming device, due to the additional complexity and
speed of the vehicle (0-2.25m/s). That being decided, the team chose to have a “tank drive”
system in which both motors work together for forward and reverse directions. The tank drive
turns consist of the outside wheel moving faster than the inside, or if approaching a tight turn, the
inside motor turns in reverse. Pulling all the considerations together, this decision for two motors
make the drive system easy to adjust, implement, and debug if a problem were to occur.

Motor efficiency varies upon the type of motor: DC or AC, brushed or brushless, as well
as other parameters. For instance, the brushed DC motor varies from 75-85% whereas the
brushless is more efficient ranging from 85-95%. Due to the supply and cost, the calculations
assumed a DC brushed motor. Thereby, the motor efficiency was calculated at 80%.

33

Through observation, the power of the system varied directly with the amount of torque
needed by the system. This power is represented by voltage multiplied by current, of which the
design parameter became the system’s voltage. The average power consumption of the motors
was 50W. For DC motors, the common voltages are five, twelve, twenty-four, and forty-eight.
Of which, the decision lied between the twelve and twenty-four-volt system, due to variety of
motor choices, and clearance of lab restraints. The result was to have a twenty-four-volt system
so that the current consumption would be cut in half. For instance, at fifty watts and twenty-four
volts the current is around two amps, whereas the twelve-volt system would have a four amp
draw Thereby, allowing the team to use thinner wires and less resistive loss through the system.

As this is a competition project, the vehicle would be operated under near continuous
conditions while maneuvering the course as well as the facilities as the team went to different
events and presentations. Because of this constraint and belief that the team would be away from
a charging circuit for some time, the decision was that the vehicle should be available for use for
approximately four hours at a time. This lead to the battery capacity of eight amp hours assuming
no voltage regeneration from the motor driver. The four-hour charge time is for the extreme case
when the vehicle is in constant use between the competition's beginning and lunch break or lunch
and the end of the day.

[JPJ]
3.4.2 Motor Calculations

Figure 13. IGVC Force Diagram

Analysis for the power management and motor calculations began with Figure 13. IGVC
Force Diagram with determining the forces acting on the vehicle. Those forces include gravity,
normal, applied, and rolling resistance.

Force of Gravity Equation:

Fgx	 = 	m ∗ g ∗ cos(𝛉) (1)

34

From the mapping of the course, the overall incline of the field was within plus or minus
five degrees. However, the competition has an advanced section which includes plus or minus
thirty degree ramps to which the vehicle would have to overcome. The course mapping included
calculations which were performed in increments of ten degrees to cover all possible variations
of the course. Even though the vehicle will be in a potentially muddy field, the assumption is that
the normal force will stay the same, but the rolling resistance force will vary.

Force of Rolling Resistance Equation:

Frr	 = 	Fgx ∗ 	B				 (2)

Rolling Resistance is dependent on the gravitational force as well as the surface. The
gravitational force is pushing against the ground and in some cases, deforms the tires. This tire
deformation increases the surface area on the road at a given point, which increases the rolling
resistance. The other factor of rolling resistance is the coefficient of the ground. Because the
vehicle is operating on a field, the intended coefficient is 0.3.

Force applied Equation:

Fa	 = 	ma	 = 	Fgx + Frr			 (3)

The total force applied to the vehicle is mass times acceleration. The acceleration value is
based off the vehicle's max speed of 2.25 m/s and declaring that the vehicle will take ten seconds
to achieve that speed.

Torque Equation:

T	 = 	F ∗ r (4)

The torque is then calculated using the above formula. To improve the accuracy of the
torque equation the motor efficiency is inversely multiplied into the system (100/efficiency).
However, this calculation gave us the total torque required for the vehicle to move at its given
velocity. Therefore, the total torque that was calculated in the above equation was then divided
by the number of motors. This will be realized using the two dc motors and a gearbox from the
power wheels, which can carry 60kg at a up the 30-degree.

Power Equation:

P = T ∗ w				 (5)

The angular velocity (w) is found from the velocity divided by the radius of the tire.

Current Equation (6):

I	 = 	P ∗ V							 (6)

The voltage of the system was calculated at twelve volts as well as twenty-four.
However, due to the larger current of the twelve-volt system, twenty-four volts was chosen and

35

returned the current required by the system. Note that, the motor itself will come with its own
power consumption, to which the actual, as opposed to the theoretical, current can be calculated.
Based on the vehicle’s use of 12 AWG, the maximum current that can safely flow through the
device is 30A. In addition, a similar vehicle has been tested and the stall current averaged four
amps with a peak of twelve amps. Therefore, the Roboclaw 2x30A motor driver which can drive
both motors at thirty amps will not exceed the allowed current. Similarly, the fuse will be 30
amps to protect the wiring of the device.

Capacity Equation (7)

Q	 = 	I ∗ t			 (7)

Since the vehicle would need to be operational for four hours, the total capacity would be
four hours times the motor's current draw. The power wheels’ vehicle is rated for four hours of
use. However, to achieve a full charge a four to six-hour charge is needed, which is larger than
the anticipated afternoon break. To ensure the vehicle will continue to work, a spare battery will
be purchased.

[JPJ, GWC]

3.4.3 Motor and Drivetrain Schematics

Figure 14. IGVC 2017 Complete Schematic

36

 The 2017 intelligent ground vehicle will be comprised of a modified toy jeep donated by
Power Wheels. Modifications will mainly include the changeover from a throttle made from a
mechanical switch and a driver input required steering system to a tank drive vehicle. To do so,
the existing motors will be used, the throttle and transmission switches will be bi-passed to the
motor driver. A thirty-amp fuse, F1, has been chosen to protect the 14 AWG wires, as the wires
max is thirty-two amps.
 To control the emergency, stop system, a mechanical and electrical switch has been
implemented. Using the sensor battery, B2, the isolated voltage will enter a wireless relay, K2
XB4RFB01 that can transmit up to 100m which is three times the IGVC rules requirement. This
wireless relay will be mounted on the outside of the jeep using foam tape to reduce the
vibrations. K3 is used to convert a singular pulse from the wireless relay into a held signal. That
relay output connects to the mechanical kill switch, S2, and then to the control input relay, K1,
which operates between a 3 and 32 Vdc signal. All connections to the relay K1 will be
terminated with ring terminals. The relay will be attached to the main frame of the vehicle using
foam tape. Upon firing the relay on, the current will flow into the Roboclaw motor driver. Upon
closing the K2 relay, there can be a large transient voltage that will be suppressed with a Metal-
Oxide Varistor, R2, which can protect up to a 50A surge.
 The two motors will be from a Power Wheels jeep, and they will include the initial gear
boxes. These motors will be wired to the motor driver using the manufacturer’s wiring and ring
terminals. The motor driver will be mounted to the vehicle’s body between the two motors using
#4-40 hardware. The Arduino will be communicating with the motor driver using the UART
protocol over 24AWG wire. To reduce noise susceptibility, 4.7k pull-up resistors will be
attached to the transmit and receive pins, logic voltage will be independent of the battery voltage,
and the baud rate will be limited to 38400.
 Lastly, cable ties will be used to mount the wire harnesses to the frame, and grommets
will be used to safely pass through holes in the frame without damaging the harnesses. Specifics
about the sensor part will be included in detail more in the sensor portion.

[JPJ]

37

3.5 Control Design

3.5.1 Vehicle Motion Analysis

Figure 15. Vehicle Motion Diagram

The vehicle is controlled using a tank drive. This means both the angle (X, Y
coordinates) and the overall speed of the vehicle are determined by the individual speeds of each
wheel. Figure 15 shows the motion of the vehicle to its desired route. There are five inputs in this
system, the desired speed and desired X, Y coordinates of the vehicle, the current speed of each
wheel, feedback, and the control state. The output of the system is a pulse width modulated
signal to a motor drive. The all the inputs are determined by the sensor data and the CPU. The
transfer function for this system is a 4th order type system.

The desired speed and position are determined at separate locations within the system.
The desired speed is the total speed of the vehicle and must be between 1-5 mph, taken as an
average over the course. The desired speed will nominally be 5 mph, however due to the path
that we must take this cannot be the case. The current position of the vehicle is take as a
reference position and set equal to zero. The desired position can then be said to be the angle the
vehicle must rotate and the distance the vehicle must travel. To find the Speed at which each
wheel must travel to reach the desired destination in an allowed time we look at the equations of
motion.

The Equation of Motion for a tank drive vehicle have two main parts. The first is the forward
motion of the vehicle, or the velocity both wheels have in common. The second is the angular
motion, the turning motion of the vehicle, this is due to the difference between each of the
vehicle’s wheels. The angular motion can be represented as an angle θ and can be found by

38

taking the difference in the wheel velocities. It is appropriate to model the angular motion of the
vehicle by setting one of the wheels of the vehicle to zero and the other wheel to the difference
of the two velocities. This model creates a circle with a radius equal to the vehicles width. Using
the velocities in the wheels we can find the distance the vehicle travel around this circle; this is
the arc length or distance traveled. From the Arc Length, we can calculate the angle change with
respect to time. Figure 16 shows the derivation of arc length.

𝐿 =
𝜃

360°
∗ 2 ∗ 𝜋 ∗ 𝑟

(8)

Figure 16. Arc Length.

Where r is the width of the vehicle and L is, the distance traveled. From Equation (8), we can
find the angle theta, given by

𝜃 =
𝐿 ∗ 360°
2 ∗ 𝜋 ∗ 𝑟

 .

 (9)

The Distance traveled can be found by the integral of the difference in the wheel’s velocities
with respect to time, shown here

𝐿 = ∫ (𝑉D − 𝑉F)𝑑𝑡 . (10)

From this, Equation (9) can be rewritten.

𝜃 =
∫ (𝑉D − 𝑉F)𝑑𝑡 ∗ 360°

2 ∗ 𝜋 ∗ 𝑟

 (11)

The total motion of the vehicle is a convolution of the forward motion (Mf) and the angular
motion or the common wheel velocities and the differential wheel velocities, respectively. The
total motion of the vehicle can be represented as the motion around a circle of different radiuses.
These radiuses are determined from the total arc length and the angle theta due to the angular
motion. Figure 17 shows this relationship.

39

Figure 17. Total Motion.

 Figure 17 shows the total motion of the vehicle. L2 and L1 are the distance each wheel
travels, the wheel L2 has traveled farther than wheel L1. The Dotted line in the two circles
represent the center of the vehicle and its movement. The value R is the radius of the circle that
the vehicle travels around and can be found using the arc length formula.

𝑅 =
𝐿 ∗ 360°
2 ∗ 𝜋 ∗ 𝜃

(12)

Where theta was calculated in Equation (12) and L is the arc length of the circle, L1 or L2
replace L in this equation. Equation (13) finds the radius of the circle for the center of the
vehicle.

𝑅 = 𝑅	
−
+	
𝑊
2

 (13)

Where w is the Width and the plus and minus depend on the arc length used.
The x and y distances can now be found using trigonometry, Figure 18 takes the triangle from
Figure 17 and relates it to x and y coordinates.

Figure 18. Triangle Motion.

Equation (14) and Equation (15) solve for x and y, respectively.

40

𝑋(𝑡) = 𝑆𝑖𝑛 −
𝜃
2
+ 180 ∗ 𝑆𝑖𝑛

𝜃
2
∗ 𝑅 ∗ 2

(14)

 𝑌(𝑡) = 𝐶𝑜𝑠 − U

V
+ 180 ∗ 𝑆𝑖𝑛 U

V
∗ 𝑅 ∗ 2

(15)

 For the Controller a state space model representation of the system is used, as the state
space model is accurately portrays non-linear systems, discussed more in section 3.5.3 Control

Theory.

The wheel speed and the current angle are both feedbacks in the system. The Wheel
speed uses a tachometer to determine the angular frequency of the shaft and transforms that into
a voltage. That voltage is used as feed back into the controller. The current angle is set to zero as
discussed before. The current angle of the vehicle is found using a GPS and a digital compass.

The control state is for safety use and is used to turn on and of the movement of the
vehicle. This can be done by a manual switch or a remote switch. The judges are in control of the
vehicle’s state. The control state is placed at the end of the motor controller.

The output of the motor controller is two pulse width modulated control signals, one for
each motor. Each signal contains data on the speed that a motor needs to run. The UART was
chosen because it allows for an easy and effective way to control a motor. The output is sent to a
motor drive.

[GWC]

3.5.2 Vehicle Motor Analysis

 The Motors are an essential part of the Vehicle’s control system. Without an accurate
model of the motors running each motor at the desired speed will be extremely difficult. Not just
that as the system is a tank drive system any inaccuracy with the speed control of the motor is
detrimental to the system. In essence the motors need to run at the speed requested by the
controller.

 The system uses a digital motor driver, because of this an accurate model of the overall
system was not achieved. To account for the lack of an accurate model, feedback of the motors
was the major priority. Experimental Gain was used alongside of a pure integrator. An
appropriate gain that was found was approximately 1.8, this gain gave a quick and timely rise
time with a small amount of overshot and the system was complete stable for all bounded inputs.

 Tachometers where used to find the velocity’s of each wheel. A sampling time of 100
milliseconds was used to find the current speed of the motors. Tachometers create a pulse

41

changes as the wheels spins, 200 pulse per revolution. The use of an interrupt was need to
accurate count the number of pulses within the sampling time. This method allowed for a quick
and precise result.

The The code shown below in Figure 19 shows the method of finding the distance traveled and
the total angle change of the vehicle.

Figure 19: Location Calculation from Tachometers

[GWC]

3.5.3 Control Theory

 The Control Design for the system will use a Multi-Input Multi-output (MIMO), shown
in Figure 20. The System only has two inputs a Desired Angle and a Desired Distance. The
outputs will be a new position and orientation of the vehicle. There are two forms of feedback
within the system, the Frequency of each motor determined by a tachometer and the current
position of the vehicle. The Current position of the vehicle is found by the sensor data and the
GPS, these are discussed in 4.6 Sensor System Design.

42

Figure 20. Controller Block Diagram.

 The Uncompensated system has two motor drivers, two motors and a system of equations
that govern the motion. The Equations of motion are discussed in 4.5.1 Control Analysis. The
motor of the system is going to be a DC brushless motor, and the motor drive can just be
interpreted as a gain add to the system. Because the Motors are DC brushless motors, they add a
single pole to the system, changing the final order of the system from a 3rd order to 4th order and
a 2nd to 3rd order for the x and y coordinates, respectively.

 The Closed-Loop compensator will take care of any error within the system. The
Controller is a state space controller meaning, the controller compensates for the error in the
system by applying gain to each state feedback of the system. The controller improves the
stability and response time of the system.

 The State Space model of the system uses a linear approximation of the non-linear system
at an infinitesimally small time. The rate of change of the Euclidean Space x and y axis shown
in, Equations (16) and (17), respectively.

𝑋(𝑡) = cos	(
𝑣𝑟 + 𝑣𝑙
2

)

(16)

43

𝑌(𝑡) = sin	(
𝑣𝑟 + 𝑣𝑙
2

)

(17)

 These equation represent the error that the system while input into the controller. A polar
cordate system is used here to limit the amount of calculations. Equation (18) shows the total
distance traveled by the vehicle. Equation (19) shows the total angle change undergone by the
vehicle.

𝑅(𝑡) = 𝑥V + 𝑦V

(18)

∅(𝑡) = arctan	(
𝑦
𝑥
)

(19)

 Where 𝑥 and 𝑦 are the total Euclidian coordinate changes of the vehicle. Taking the
derivative of Equation (18) and (19) leads to the position and angle change of the vehicle.

𝑅 𝑡 = cos 𝛾 ∗
𝑣𝑟 + 𝑣𝑙
2

(20)

∅ 𝑡 =
− sin 𝛾

𝑟
∗
𝑣𝑟 + 𝑣𝑙
2

(21)

Here 𝛾 is the difference between the Total angle change and the current angle, or the

current error in the angle. The rate of change of 𝛾 is given by equation.

𝛾 𝑡 =
−sin 𝛾

𝑟
∗
𝑣𝑟 + 𝑣𝑙
2

− 𝛾 − ∅

(22)

A proportional feedback gain can now be applied. The state space feedback matrix uses a

distance gain, 𝐾` , an angle error gain and a current error gain, 𝐾a 𝐾∅, respectively. These gains
make up the feedback matrix B.

𝐾𝑟 0 0

0 0 −𝐾`

0 −𝐾∅ −𝐾` − 𝐾a

With the input matrix,

44

R
∅
𝛾

 For the Stability of the system we place all the eigenvalues of the system inside the unit
circle by modifying these gains. Taking the determinate of the system(𝜆𝐼 − 𝐵), shows that for
stability 𝐾` must be lease than 0, 𝐾` + 𝐾a must be greater than 0, and 𝐾∅ ∗ 𝐾` must be lease than
0.	𝐾` Was chosen to be -1, 𝐾a was chosen to be 1.1 and 𝐾∅ was chosen to be 1. These values
where chosen because they offer a stable system with relatively fast response.

Another method of controlling the vehicle’s position can be obtained from the equations
of motion model. This method inverts the equations of motion and the beginning if statements of
the model to create a controller method. This controller method finds the corresponding wheel
velocity’s for a given input. Then compares those velocity’s with the feedback velocity’s to find
the error in the velocity’s as talked about in section 3.5.2 Vehicle Motor Analysis. The Method is
shown below in Figure

[GWC]

3.6 Sensor System Design

3.6.1 Sensor Analysis

The vehicle has three groups of sensing applications; Object Detection, Course Mapping
and Speed Detection. These sensor groups are the tools used by the vehicle’s software to
navigate the course timely and safely. Each sensor is powered by the 12V battery specified in the
hardware block diagram. The voltage is stepped down to 5V and properly fused after the battery
via a dc-dc 5V switchable step down to ensure appropriate power is provided to each sensor.

Object detection is carried out by the camera and a LiDAR. The cameras are mounted
five feet from the wheel base with one camera in front and one on each side of the vehicle and
angled 45°. They take real time video of the course as the vehicle traverses it. The video is
filtered as discussed in the software analysis to detect white course lines, red and blue flags and
white potholes. Logitech C920 HD Pro webcams were chosen for the IGV. They have an
adjustable base which makes mounting and setting the angle to 45° a simple task. The cameras
will be powered via the USB hub drawing roughly 1.1 amps per camera. They will be wired
from the USB hub to the ASUS laptop for image processing discussed in the software analysis.

 LiDAR (Light Detection and Ranging), as discussed in the software analysis, detects the
distance the vehicle is from an object with distances up to 30m and roughly 10mm resolution.
The LiDAR is mounted to the front of the vehicle above the motor to provide a clean scanning
area for the laser pulses. The distance information provided by the LiDAR is processed to
determine an object’s distance from the vehicle. The camera and the LiDAR, in concert, act as a

45

safety bubble around the vehicle protecting it from objects and obstructions throughout the
course.

 Two LiDAR’s were reviewed for the IGV, the Pepperl + Fuchs R2000 and the Sick
LS290. The Pepperl + Fuchs LiDAR offers a 360° scanning field at an industry leading angular
resolution of ≥ 0.071°. It offers an adjustable scanning frequency of 10Hz-50Hz. The Sick
LS290 offers a 270° scanning field at an adjustable angular resolution of 0.25°, 0.5° and 1°. It
should be mentioned that software is not available for either LiDAR but Sick offers a platform to
take in the bit stream sent out by the Ethernet out of both LiDAR’s. It is up to the user to
program via their programming language of choice. Calculations were carried out and discussed
in Equation (26) & (27) which concluded that the Pepperl + Fuchs R2000 was a better option
than the Sick LS290 given its superior angular resolution and functionality.

Course Mapping is provided via GPS. The GPS hardware communicates with the
provider’s satellites through an onboard antenna. The coordinates are given via satellite pings
sent back to the GPS providing the vehicle’s current location in the world with up to 10cm
resolution. The GPS software accepts this information and builds a map of the vehicle’s
surroundings. The GPS is mounted above the motor with the antenna placed perpendicular to the
vehicle. The top most part of the antenna shall be no higher than six feet tall.

A Novatel Propak V3 was selected as the GPS system utilized on the IGV. It offers
simplistic connection to the 12V battery and draws on average 2.8W. The Novatel Propak V3
will send its information through a serial to USB converter into the USB hub then to the ASUS
laptop for software implementation. The GPS will have a matched Novatel antenna with
compatibility for L1, L2, L2C, L5, L-Band, and SBAS tracking. OMNIstar’s GPS/GNSS
software will be purchased to allow access to its GPS/GNSS satellites around the world.
OMNIstar offers superior accuracy of 4cm resolution when paired with the Novatel Propak GPS
and antenna. These are top of the line components and should grant the IGV excellent real time
locational information while traversing the course.

The vehicle’s direction is crucial to the functionality of the GPS. A digital compass is
implemented to insure the proper direction is sent to the GPS for navigation. The digital compass
works in the same way a magnetic compass does, however it applies magnetic sensor technology
to reduce magnetic field interference from the motor. The 3-Axis Digital Compass IC
HMC5883L from Adafruit is utilized by the IGV. It offers an affordable accommodation for
digital compass interfacing with a microcontroller opposed to a standalone unit which can run
thousands of dollars. A pin layout for the HMC5883L is shown in Figure 21 which will be
needed when discussing the schematic of the Arduino MEGA 2560 microcontroller.

46

Figure 21. HMC5883L Pin Layout

Speed detection is executed through application of a tachometer. Motor A and Motor B
respectively feed their angular frequency into the tachometer. The tachometer reads the angular
frequency and translates it into an analog RPM signal. 2 YUMO-E6A2-CS3E rotary wheel
encoders were selected to monitor the speed of the IGV. The YUMO encoders offer simple
speed decoding with incorporation of the microcontroller. The YUMO is supplied with a power,
ground, A & B output to the microcontroller. Its connection will be discussed in the
microcontroller discussion.

To utilize the selected tachometer and digital compass a microcontroller must be
employed in the sensor network. Two microcontrollers were considered for the processing; the
Arduino MEGA 2560 and the Raspberry Pi V3. Two factors that were most heavily considered
were analog compatibility and enough inputs for the components it will be using.

The Raspberry Pi offers only digital inputs which would require a digital to analog
converter (DAC) for each input of the tachometers resulting in four (4) DAC’s needed. The
Raspberry Pi is limited by its input capabilities as well by only offering enough SPI inputs to

47

process one tachometer. An option would be to write commands in a different format for the
second tachometer but seemed to be an unnecessary use of technology.

The Arduino MEGA 2560 employs up to 16 analog inputs on board as well as enough
I2C and SPI inputs to power and process the given sensors. Error! Reference source not
found.14 shows the wiring schematic for the Arduino MEGA 2560 microcontroller and its
connections to the tachometers, digital compass and handheld controller. The values in boxes to
the right of the Arduino indicate the pin number on the microcontroller. The handheld described
Error! Reference source not found.14 is only used for manual mode for transportation
purposes and will not play a part in autonomous travel.

 A layout of the sensor network on the vehicle is provided in Figure 22 below. The A layout of the sensor network on the vehicle is provided in Figure 22 below. The
cabling is labeled and connected as shown in the figure. It should be noted that the figure is not
to scale and sensors are placed for ease of wiring.

48

Figure 22: Sensor and wiring diagram

 [ACG]

49

3.6.2 Sensor Implementation

 The HMC5883L is powered and processed via the Arduino Mega. The digital compass
measures Earth’s magnetic field and relays its position based on x, y and z readings provided in
microteslas. To make these numbers useful, an equation is performed taking the arctangent of the
x and y coordinates and adding a declination angle predetermined by location, as found at
http://www.magnetic-declination.com, to offset any imperfections in the readings. The number
provided by this calculation is referred to as the Heading value, or facing direction of the vehicle,
and is measured in degrees. A value of 0° is considered true north. All other degrees refer to a
clockwise rotation about the sensor from this position. For example, a direction of west would
yield a heading value of 270°. This value will be used in unison with the GPS to calculate
movement of the vehicle.

 The GPS will provide a means of locating the starting position of the vehicle and a
waypoint for the vehicle to travel to. Latitude and Longitude readings will be provided for both
positions. This grants a heading direction for the vehicle to travel i.e. vehicle is positioned at
41.0814° N, 81.5190° W (Akron) and is headed towards 42.6700° N, 83.2061° W (Oakland
University) the heading value would be 1.5886° N, 1.6871° W. Given these coordinates a
number of about 271° would be used for the GPS header value.

 These two values will then be compared to ensure the vehicle is headed in the proper
direction, the proper wheel is turned and if the vehicle is remaining on track while traversing the
course. To ensure the proper wheel is turned to make the compass and GPS headers equal, the
two values are compared in a circular manner. A brief overview of this process is depicted in
Figure 23.

50

Figure 23: Compass and GPS header comparison

 In this example, the compass header reads 90° or facing east. The GPS header reads 0° or
saying to head north. To determine which direction the vehicle must turn, the circle is divided in
half based on the GPS header. Whichever half of the circle the compass header is then located in
will determine which direction the vehicle must turn. In this example the vehicle will turn left. A
message is then sent to the Arduino to power the right wheel until the compass header is equal to
the GPS header value.

 A course example is shown in figures 23-26.

51

Figure 24: GPS and Compass Communication 1

 In this example, the vehicle is facing NW at 315° from true north. The GPS yields a
header value of NE at 45° from true north to get from the vehicles current location to waypoint 1.
Dividing the circle in half from the GPS header would force a right turn if the compass header
value is between 225°-360° and 0°-45° and a left turn from 45°-225°. Since the compass header
is 315° this would yield a right turn of 90° to make the compass header = the GPS header.

52

Figure 25: GPS and Compass Communication 2

In Figure 24, the vehicle is on track but the LIDAR detects a cone in route to Waypoint 1.

53

Figure 26: GPS and Compass Communication 3

Figure 25 depicts how the vehicle avoids the cone using GPS and compass communications.
Once an object is detected obstructing the vehicles path to its determined waypoint, a “halfway”
waypoint must be created to travel around the object, thus Waypoint 0.5 is created. The GPS and
compass headers are then calculated and the same process is carried out as in figure 23.

54

Figure 27: GPS and Compass Communication 4

 Figure 26 shows the vehicle once it reaches Waypoint 0.5. Since the path is now clear to
its original waypoint the vehicle may enter its calculations for header values and execute as
before, however, this time it’s making a left turn of 25° to get on course. The vehicle may safely
reach its Waypoint 1.

[ACG]

3.6.3 Sensor Calculations

The distance traveled between camera samples is important to take into consideration.
Assuming the industry standard 24 frames/second frame rate on a webcam, the distance the
vehicle travels between samples can be calculated at any speed. The distance traveled will be
highest at max speed. The max speed permitted for the competition is 5 mph or 2.235 m/s. The
max distance traveled between frames is 3.667 inches per frame, given by

.
(23)

This is sufficiently small compared to the size of the vehicle and the width of the track. All the
obstacles on the course are stationary so their speed does not have to be considered.

 The range of distances where the cameras can see lines on the ground is determined by
the height of the camera, field of vision of the camera, and the angle of the camera. Figure 28

55

shows the camera’s field of vision. Here θc is the camera’s angle, θfv is the vertical field of view
of the camera, and h is the height at which the camera is mounted.

The maximum ground distance seen by the camera is given by:

.

(24)

The minimum ground distance seen by the camera is given by:

.

(25)

Figure 28. Camera Field of Vision

It is important to minimize the minimum distance to reduce blind spots near the vehicle. A larger
maximum distance will give the vehicle more information to use when making decisions.

Two types of LiDAR were considered when designing the IGV, the Pepperl + Fuchs
R2000 and the Sick LS290. The Pepperl + Fuchs offers 360° of scanning at selectable
frequencies between 10Hz and 50Hz with an angular resolution of ≥ 0.071° whereas the Sick
LS290 offers 270° of scanning at adjustable angular resolutions of 0.25°, 0.50° and 1°,
respectfully. Initially, the precision scanning of the Pepperl + Fuchs R2000 appears to be
superior given its angular resolution. Considering the degree of scanning to be more a luxury
than a necessity, the speed of detection was the main factor examined for selection.

 The Sick LS290 gives three options for angular resolution: 0.25°, 0.5° and 1°. Obviously,
for the cleanest detection 0.25° is ideal, however, response time is increased from 13.33ms at 1°,
26.66ms at 0.5° and finally 53.33ms at 0.25°. To ensure the LiDAR will be able to scan quickly
at this frequency, the vehicles max speed of 5mph must be considered. The framerate is
calculated using Equation (26) given the provided information.

d
max

= h tan

✓
✓
c

� ✓
fv

2

◆

dmin = h tan

✓
✓c +

✓fv
2

◆

56

(26)

 The Pepperl + Fuchs R2000 provides its scanning potential in an adjustable frequency
ranging from 10Hz to 50Hz. The following equations (27) demonstrate the travel distance of the
IGV operating at max speed (5 MPH) provided the maximum and minimum scanning
frequencies provided by the R2000.

(27)

 Equation (26) shows that the vehicle will travel between 1.17 inches to 4.69 inches at
max speed utilizing the Sick LS290 at its adjustable angular resolutions. Equipped with the
Pepperl + Fuchs R2000 LiDAR the vehicle will travel between 1.76 inches and 8.8 inches as
shown in Equation (27). These results may lead to believe that the Sick LS290 is clearly the
leader in quickness, however, provided the Pepperl + Fuchs superior angular resolution of ≥
0.071°, the ~0.6 inches per scan is worth the tradeoff for a more accurate reading, especially for
detecting objects at a distance.

It should be noted that most LiDAR sensors have a range of well over 30m or ~100 feet.
However, reflectivity plays a role in the effective range of the sensor. Upon review of sensor
range given certain material, the worst case effective range would be 10m if the laser pulses
reflect off a wooden chair or cardboard obstacle on the course. Since 10m is ~32 feet, it is safe to
say that the vehicle traveling at max speed shall be able to safely and timely detect an object at
any selected angular frequency given the response time of the sensor.

Based on the powering needs of the sensor network, a 12V battery was chosen to be
appropriate. The current draw for each sensor was found and recorded in a spreadsheet and

57

shown in Table 15. The average run time of the vehicle per charge of the battery was estimated
to be about 4 hours. This would allow for many runs of the course for testing and troubleshooting
and yield plenty of time for the competition. The results in Table 15 reflect this time average for
battery life.

Table 15. Sensor Network Power Consumption

	
Voltage	(V)	 Power	(W)	 Current	(A)	

Lidar	 24	 8	 0.33	
Diff	GPS	 12	 2.8	 0.23	
USB	Hub	 12	 36	 1.00	
Cameras	 5	 10	 2.00	
Compass	 5	 0.5	 0.01	
Encoders	 5	 0.1	 0.02	
Arduino		 5	 2	 0.40	

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 =
𝑃𝑜𝑤𝑒𝑟
𝑉𝑜𝑙𝑡𝑎𝑔𝑒

= 	
𝑃kVl
12𝑉

+	
𝑃Vml ∗

1
0.9

12𝑉
+	
𝑃pl ∗ 	

1
0.9

12𝑉

(28)

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡	×4	ℎ𝑜𝑢𝑟𝑠

(29)

Equation (23) assumes a voltage conversion efficiency of 90% as stated with the Anker
USB hub’s 12V to 5V buck conversion and the Ziumer B01M9JK9HF’s 12V to 24V boost
conversion. Utilizing information attained through Table 15 and Equations (28) and (29) the 12V
battery, should be sized at a minimum of 12.3 Ah to provide power to the sensor network for 4
hours of run time, and will be implemented using two 8Ah batteries in parallel which will
provide 16Ah of use or approximately 5 hours and 15 minutes of runtime.

 [ACG, ART, JPJ]

3.7 Software Design

3.7.1 Software Overview

 The software for the intelligent ground vehicle serves three purposes. The first purpose is
to collect data from the environment to create a map of the course. The second purpose is to use
the created map to make path decisions when navigating the course. The third purpose is to
implement a feedback control system for the drive motors.

58

 The environment sensing portion of the software uses input from three cameras pointed
from the front and both sides of the vehicle. The primary purpose of the camera input is to detect
the lane lines, potholes, and flags which cannot be picked up using distance sensors. The
software will process each frame from the camera by first reducing the resolution to a less
computationally expensive size. This image will be processed using three parallel filters: high
contrast, red pass, and blue pass. The output of the high contrast filter will be used to determine
the locations of lane lines and potholes in the image. The output of the red pass and blue pass
filters will be used to determine the presence and rough location of flags in the image. Flags will
not be located on the ground so location of the flags will be difficult to judge accurately but
detecting whether they are in a frame or not in a frame for a particular camera should be enough
precision to navigate the course. The lines will be less difficult to measure because they are
located on the ground. Since the camera height and angle will be fixed and assuming a flat
ground, the physical location of a pixel’s color data in real space relative to the vehicle will
remain the same. Determining the location of an object in real space (with respect to the vehicle)
where its pixel location is known is as easy as looking up the location in a precomputed
translation array.

 LiDAR is used to detect the distance to 3D objects on the course. LiDAR works by
measuring time-of-flight of a laser as it travels to objects and is reflected back to the LiDAR
device. A laser will take less time to travel to and back from a nearby object than a distant object.
The LiDAR uses a scanning laser and returns a stream of distances of objects at the scanned
angles. This stream of distances will be used to measure the size and distance to objects relative
to the vehicle.

 Once the objects are mapped in relation to the vehicle their positions will be translated
into global space. This is done using the GPS location and magnetic orientation of the vehicle at
the time the frame was captured. With the objects always mapped in global space it is easier to
keep track of objects between frames when the vehicle is in a different location and objects may
be in sensor blind spots.

The path planning software module will use the map of objects in global space as well at
the current position and orientation of the vehicle to determine the best path towards the GPS
waypoints.

59

Figure 29 – Pseudo Code for Software Main Function

VideoCapture camera;
R2000 *lidar;
IGVC::Map *map;
main(){
 lidar = new R2000();
 initLidar();
 camera.open(CAMERA_NUMBER);
 gps = initGps();
 arduino = initArduino();
 map = initMap();

 while(1){
 // Handle Lidar

 lidar->ReadSensor(); // happens in another thread
 map->ProcessLidar(lidar->scan); // waits for mutex

 // Handle Cameras
 frame = camera->fetch();
 map->ProcessCamera(frame);

 // Get GPS location
 gps->locate();
 arduino->ReadCompass();

// Build Map
map->ProcessLidar(lidar->scan);
map->ProcessCamera(cameras->objects)
map->globalize(gps, compass);

// Pathfinding
target = map->findPath();

// Send Data
Serial.Send(target);

}
}
initLidar(){
 lidar->Connect(IP_ADDRESS);
 lidar->StartStream();
}

60

The code for the main loop (main.cpp) and global constant definitions (Constants.h) are shown
below.

High-Level Code

Constants.h
#define PI 3.1415926

/***
 * CAMERA MODULE
 ***/
#define CAMERA // enables the camera module

/* Uncomment to directly put white points on map
 Otherwise line tracing algorithm is used */

// #define BYPASS_LINE_TRACING

/* Constants used for mapping pixel data to real space */
#define PIXEL_WIDTH 480
#define PIXEL_HEIGHT 270
#define FIELD_OF_VISION_H 70.42 // degrees
#define FIELD_OF_VISION_V 43.30 //degrees

#define CAMERA_HEIGHT 1.30175 // meters

static const char* CAMERA_NAME[3] = {
 "center",
 "left",
 "right"
};
static const float CAMERA_X_OFFSET[3] = { // meters
 0, // center camera
 0,//-0.23495, // left camera
 0.2413 // right camera
};

static const float CAMERA_Y_OFFSET[3] = { // meters
 0, // center camera
 0, // left camera
 0 // right camera
};

static const float CAMERA_HORIZONTAL_ANGLE[3] = { // radians from
 0, // center camera
 0, // left camera
 0.698132 // right camera
};

static const float CAMERA_ANGLE[3] = { // degrees from horizontal
 35, // center camera
 35, // left camera
 40 // right camera
};

/* Line tracing algorithm minimum line length */
#define MIN_LINE_LENGTH 50

/***
 * LiDAR MODULE

61

 ***/
#define LIDAR // enables the lidar module

/* Uncomment to disable code that groups lidar points into objects */
//#define REMOVE_LIDAR_OBJECT_DETECTION

#define DEFAULT_LIDAR_IP "169.254.12.9"

#define LIDAR_X_OFFSET 0 //meters
#define LIDAR_Y_OFFSET 0.3683; // meters

/***
 * GPS MODULE
 ***/
//#define GPS // enables the GPS module
#define DEFAULT_GPS_COM "COM9"

/***
 * Arduino MODULE
 ***/
#define ARDUINO // enables compass module
#define DEFAULT_ARDUINO_COM "COM4"

/***
 * VISUALIZER
 ***/
#define VISUALIZER_SCALE 5.0

/* Used to draw the size of the vehicle in the visualizer*/
#define SAFE_FRONT_SPACE 92 //cm
#define SAFE_SIDE_SPACE 31 //cm

#define SAFE_BUBBLE 92 //cm

Main.cpp
#include "Constants.h"
#include <string>

#ifdef CAMERA
#include "LaneCamera.h"
#endif // CAMERA

#ifdef LIDAR
#include "R2000.h"
#endif // LIDAR

#ifdef GPS
#include "IGVC_GPS.h"
#endif // GPS

#ifdef ARDUINO
#include "IGVC_Arduino.h"
#endif // ARDUINO

#include "Map.h"

#include "Waypoints.h"

#include <stdio.h>

62

#include "GL/freeglut.h"

//#define MEM_DEBUG
#ifdef MEM_DEBUG
#define _CRTDBG_MAP_ALLOC
#include <stdlib.h>
#include <crtdbg.h>
#endif //MEM_DEBUG

#ifdef _MSC_VER // Check if MS Visual C compiler
ifndef _MBCS
define _MBCS // Uses Multi-byte character set
endif
ifdef _UNICODE // Not using Unicode character set
undef _UNICODE
endif
ifdef UNICODE
undef UNICODE
endif
#endif // _MSC_VER

#ifdef _MSC_VER // Check if MS Visual C compiler
#include <windows.h> // For MS Windows
pragma comment(lib, "opengl32.lib") // Compiler-specific directive to avoid manually configuration
pragma comment(lib, "glu32.lib") // Link libraries
pragma comment(lib, "freeglut.lib")
#endif // _MSC_VER

using namespace std;

// Global Connection Values
int CAM_NUM[3]; //camera id numbers
int CAMS = 1; //default number of cameras
char _LIDAR_IP[] = DEFAULT_LIDAR_IP; //default
char *LIDAR_IP = _LIDAR_IP;
char _GPS_COM[] = DEFAULT_GPS_COM;
char _ARDUINO_COM[] = DEFAULT_ARDUINO_COM;
char *GPS_COM = _GPS_COM;
char *ARDUINO_COM = _ARDUINO_COM;

// Global Objects
#ifdef LIDAR
R2000 *lidar;
#endif // LIDAR

IGVC::Map *mapp;

#ifdef GPS
igvc_gps *gps;
#endif // GPS

#ifdef CAMERA
VideoCapture cap(0); // Video object must be global because it cannot be passed between functions.
#endif // CAMERA

#ifdef ARDUINO
igvc_arduino *ard;
DWORD WINAPI arduinoThread(LPVOID lpParam);
#endif // ARDUINO

bool isRunning;

63

queue<waypoint> waypoints;

// Mutex for Multi-threading
HANDLE lidarMutex;
HANDLE arduinoMutex;

// Functions
#ifdef LIDAR
bool initLidar();
DWORD WINAPI lidarThread(LPVOID lpParam);
#endif // LIDAR

void close();
void display();
void displayGrid();

int main(int argc, char *argv[]) {

#ifdef MEM_DEBUG
 _CrtSetDbgFlag (_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF);
 _CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_DEBUG);
#endif // MEM_DEBUG

 // Process arguments
 for (int i = 0; i < argc; i++){
 if (strcmp(argv[i], "-lip") == 0){
 LIDAR_IP = argv[i+1];
 }else if(strcmp(argv[i], "-cam") == 0){
 CAM_NUM[0] = atoi(argv[i+1]);
 }else if(strcmp(argv[i], "-ard") == 0){
 ARDUINO_COM = argv[i+1];
 }else if(strcmp(argv[i], "-gps") == 0){
 GPS_COM = argv[i+1];
 }else if(strcmp(argv[i], "-rcam") == 0){
 CAM_NUM[2] = atoi(argv[i+1]);
 }else if(strcmp(argv[i], "-lcam") == 0){
 CAM_NUM[1] = atoi(argv[i+1]);
 }else if(strcmp(argv[i], "-cams") == 0){
 CAMS = atoi(argv[i+1]);
 }
 }

 // Init Map
 mapp = new IGVC::Map();

#ifdef LIDAR
 // Init Lidar
 lidar = new R2000();
 if(!initLidar())
 return -1;
#endif // LIDAR

#ifdef GPS
 // Init GPS
 gps = new igvc_gps();
 gps->COM_PORT = GPS_COM;
 gps->setup();
#endif // GPS

#ifdef ARDUINO
 ard = new igvc_arduino();

64

 ard->COM_PORT = ARDUINO_COM;
 ard->setup();
 //CreateThread(NULL, 0, arduinoThread, 0 , 0 , NULL);
 //arduinoMutex = CreateMutex(NULL, false, NULL);
#endif // ARDUINO

#ifdef CAMERA
 /*********************** Video Setup ***/

 cap.open(CAM_NUM[0]);
 cap.set(CV_CAP_PROP_FRAME_WIDTH, FRAME_W); // 432x240 (x3) = 311,040 SubPixels
 cap.set(CV_CAP_PROP_FRAME_HEIGHT, FRAME_H);
 cap.set(CV_CAP_PROP_FPS, 30);

 if (!cap.isOpened()) {
 CV_Assert("Camera failed to open!");
 return -1;
 }

 //cap[0].set(CV_CAP_PROP_SETTINGS, 1);

 /****************** End Video Setup ***/
#endif // CAMERA

#ifdef LIDAR
 CreateThread(NULL, 0, lidarThread, 0, 0, NULL);
 lidarMutex = CreateMutex(NULL, false, NULL);
#endif // LIDAR

 //Read Waypoints

 waypoints = readWaypoints("waypoints.txt");

 // Init GUI
 glutInit(&argc, argv); // Initialize GLUT
 glutCreateWindow("OpenGL Setup Test"); // Create a window with the given title
 glutInitWindowSize(320, 320); // Set the window's initial width & height
 glutInitWindowPosition(50, 50); // Position the window's initial top-left corner
 glutDisplayFunc(display); // Register display callback handler for window re-paint
 glutCloseFunc(close);
 glutMainLoop(); // Enter the infinitely event-processing loop

 return 0;
}

#ifdef LIDAR
bool initLidar(){
 //Init Lidar
 //char ip[] = LIDAR_IP;

 bool success = true;
 success = lidar->Connect(LIDAR_IP);

 if(success){
 success = lidar->StartStream();
 }else{
 printf("ERROR: COULD NOT CONNECT TO R2000\n");
 return false;
 }

 if (!success) {
 printf("ERROR: COULD NOT START DATA STREAM FROM R2000\n");

65

 }
 return success;
}
#endif // LIDAR

void display() {
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // Set background color to black and opaque
 glClear(GL_COLOR_BUFFER_BIT); // Clear the color buffer

 /********************* Main Loop **/
#ifdef CAMERA
 /* Camera */
 Mat frame;
 // There is a built in buffer. Throw out two frames before processing the latest one.

 cap >> frame;
 cap >> frame;
 cap >> frame;
 mapp->ProcessCamera(frame, CAMERA_NAME[0], 0);

#endif // CAMERA
#ifdef LIDAR
 /* Lidar */
 WaitForSingleObject(lidarMutex, INFINITE);
 mapp->ProcessLidar(lidar->scan);
 ReleaseMutex(lidarMutex);
#endif // LIDAR
#ifdef GPS
 /* GPS */
 float system_latitude, system_longitude;
 gps->update_lat_long();
 system_latitude = gps->igvc_latitude;
 system_longitude = gps->igvc_longitude;
#endif // GPS

#ifdef ARDUINO
 /* Compass */

 /* Motor Control */
 /* Speed: -64 (Full Reverse) to +64 (Full Forward) */
 /* Angle: -5 (Full Left, No Right) to +5 (Full Right, No Left) with stepping amounts. Zero
is forward and backward. */

#endif // ARDUINO

 /* Mapping */
 mapp->FindPath();

 float slope = (mapp->tar_y-500.0-SAFE_FRONT_SPACE)/(mapp->tar_x-500.0);

#ifdef ARDUINO
 //WaitForSingleObject(arduinoMutex, INFINITE);
 // FOR DEMO -- PRESET ANGLE TO ZERO, WILL BE ADJUSTED BY PATH SLOPE
 if((slope >= 1.0) && (slope <= 1.5)){
 ard->angle_toArduino = 5;
 }else if((slope > 1.5) && (slope <= 2.0)){
 ard->angle_toArduino = 4;
 }else if((slope > 2.0) && (slope <= 2.5)){
 ard->angle_toArduino = 3;
 }else if((slope > 2.5) && (slope <= 3.5)){
 ard->angle_toArduino = 2;

66

 }else if((slope > 3.5) && (slope <= 5.0)){
 ard->angle_toArduino = 1;
 }else if(slope > 5.0){
 ard->angle_toArduino = 0;
 }else if(slope < -5.0){
 ard->angle_toArduino = 0;
 }else if((slope > -5.0) && (slope <= -3.5)){
 ard->angle_toArduino = -1;
 }else if((slope > -3.5) && (slope <= -2.5)){
 ard->angle_toArduino = -2;
 }else if((slope > -2.5) && (slope <= -2.0)){
 ard->angle_toArduino = -3;
 }else if((slope > -2.0) && (slope <= -1.5)){
 ard->angle_toArduino = -4;
 }else if((slope > -1.5) && (slope <= -1.0)){
 ard->angle_toArduino = -5;
 }else{
 ard->speed_toArduino = 0;
 ard->angle_toArduino = 0;
 }
 ard->speed_toArduino = 10;
 ard->send_speed_angle_distance();
 //ReleaseMutex(arduinoMutex);

 /* Send Path */
 // FOR DEMO -- KEEP THE SPEED LOW
#endif // ARDUINO

 /* Reset Map */
 mapp->Draw();
 mapp->Clear();

 displayGrid();
 glBegin(GL_POLYGON);
 glColor3f(0.0f,1.0f,0.0f);
 glVertex2d(-SAFE_SIDE_SPACE/CM_PER_M/VISUALIZER_SCALE,-
SAFE_FRONT_SPACE/CM_PER_M/VISUALIZER_SCALE);
 glVertex2d(-SAFE_SIDE_SPACE/CM_PER_M/VISUALIZER_SCALE,SAFE_FRONT_SPACE/CM_PER_M/VISUALIZER_SCALE);
 glVertex2d(SAFE_SIDE_SPACE/CM_PER_M/VISUALIZER_SCALE,SAFE_FRONT_SPACE/CM_PER_M/VISUALIZER_SCALE);
 glVertex2d(SAFE_SIDE_SPACE/CM_PER_M/VISUALIZER_SCALE,-SAFE_FRONT_SPACE/CM_PER_M/VISUALIZER_SCALE);
 glEnd();

 glFlush(); // Render now
 glutPostRedisplay(); // Call this function again (makes this a program loop)
}

void close(){
 // Clean up
#ifdef LIDAR
 delete lidar;
 lidar = NULL;
#endif

 delete mapp;
 mapp = NULL;
}

#ifdef LIDAR
DWORD WINAPI lidarThread(LPVOID lpParam){
 while(1){
 WaitForSingleObject(lidarMutex, INFINITE);

67

 lidar->Read_Sensor();
 ReleaseMutex(lidarMutex);
 }
 return true;
}
#endif

void displayGrid(){
 for(int i = -VISUALIZER_SCALE+1; i < VISUALIZER_SCALE; i++){
 // y meter lines
 glBegin(GL_LINE_STRIP);
 glColor3f(0.5f,0.5f,0.5f);
 glVertex2d(-1, i/VISUALIZER_SCALE);
 glVertex2d(1, i/VISUALIZER_SCALE);
 glEnd();
 }

 for(int i = -VISUALIZER_SCALE+1; i < VISUALIZER_SCALE; i++){
 // x meter lines
 glBegin(GL_LINE_STRIP);
 glColor3f(0.5f,0.5f,0.5f);
 glVertex2d(i/VISUALIZER_SCALE, -1);
 glVertex2d(i/VISUALIZER_SCALE, 1);
 glEnd();
 }
}

#ifdef ARDUINO
DWORD WINAPI arduinoThread(LPVOID lpParam){
 while(1){

 //Read
 //float heading;

 //heading = ard.compass_heading;
 //isRunning = ard.errorcode;
 WaitForSingleObject(arduinoMutex, INFINITE);
 //ard->get_compass_and_errorcode();
 Sleep(1);
 //Write
 ard->speed_toArduino = 10;
 ard->send_speed_angle_distance();

 ReleaseMutex(arduinoMutex);
 }
 return true;
}
#endif

[ART, CRE]
3.7.2 Hardware Interfacing

 The software for the intelligent ground vehicle is divided between a PC and an Arduino
microcontroller. The software on the PC is responsible for interfacing directly with the cameras,
LiDAR, and GPS. The software on the Arduino will interface with the compass, tachometers,
motor drivers, safety light, and estop circuit. The PC software handles the image acquisition,

68

object detection, real-world mapping transformations, and path planning. The software on the
Arduino handles the motor control loop and receives input from the PC indicating the desired
angle and speed of travel. The Arduino must also stream the compass data to the PC because it is
required for mapping objects to real-space.

Each of the cameras, the LiDAR, the GPS, and compass reading routines run on a
separate thread. GPS data and compass data must be stored on the PC software in a semaphore-
locked buffer to be accessed by the mapping routine. This allows the sensors acquisition routines
to run on their own threads while data can be accessed across threads.

Several drivers were written to interface with the various sensors onboard the vehicle.
The serial interfaces between the Arduino micro controller, NovaTel Differential GPS and the
PC require the creation of serial protocols included in the vehicle’s software. Seen below, Figure
30 displays a snapshot of the C++ code used to connect to the Arduino via serial port.

69

Figure 30 – Snapshot of Arduino Serial Interface Code (C++)

The ‘igvc_arduino’ class utilizes the technique of managing serial ports using handles.
Handles are commonly used throughout many applications such as serial ports, ethernet
ports/sockets and file interaction, amongst others. The serial timings must be carefully chosen on
a case-by-case basis to be compatible with the device in which communication is taking place.
For the Arduino, a baud rate of 9600 along with byte length of 8 and no parity and one stop bit
creates a connection with the Arduino Mega onboard the vehicle. Shown below, Figure 31
illustrates the method behind setting up the parameters and timing for the Arduino serial
communications port in C++.

Figure 31 – Arduino Serial Parameter and Timing Setup Code (C++)

70

LiDAR

 The Pepperl + Fuchs R2000 LiDAR connects to the PC via Ethernet and communicates
using TCP. The PC software configures the LiDAR in a startup routine using HTTP requests.
The computer sends the ‘request_handle_tcp’ command to the LiDAR to request a socket. Then
the PC connects to the socket. Finally, the PC sends the ‘start_scanoutput’ command to the
LiDAR, and the LiDAR starts sending scan packets to the PC. The LiDAR is configured to send
Type A packets which only have distance data. Angles are calculated as an offset from the first
distance of the sweep.

71

Figure 32 –Pseudo Code for Pepperl+Fuchs R2000 Lidar

class R2000{
 has ip_address
 has private handle

has private port
has private ConnectSocket
has public Scan

R2000 init(){

 return self
 }
 void Connect(char* ip){
 Connect to R2000 http webpage
 }
 bool StartStream(){
 socket <- request handle
 if handle or socket is invalid
 return failure
 send start_scanoutput command with handle
 return success

}
bool StopStream(){
 send stop code
 return success
}
bool ReleaseHandle(){
 release socket handle on Lidar
 return success
}
void Read_Sensor(){
 FeedWatchdog();
 read socket
 interpret header data
 fill scan array with sweep data
}
bool FeedWatchdog(){
 send watchdog feed message

return success
}

}

72

The final code for the LiDAR sensor interfacing is contained in the R2000 class. The code is
shown below.

R2000.h
#include <string>
#include <cstdint>
#include "Scan.h"

#ifdef WIN32
#include <WinSock2.h>

class Scan{
 has private scan_distance
 has private scan_distance_n1

has private scan_distance_n2
has private scan_size
has private derivative
has private scan_x
has private scan_y
has private scan_magnitude;
has private scan_angle;
has public Scan

Scan init(){
 allocate all necessary memory

 return self
 }
 UpdateScanData(){
 Put latest scan in scan_distance_n2

 TimeFilter();
 scan_distance_n1 = scan_distance_n2
 do a point average and remove error points and
 reduce number of points in scan
 calculate magnitude and angle in reduced scan

calculate scan_x and scan_y from scan_m and
scan_angle

}
TimeFilter(){
 for each distance in scan_distance{
 average scan_distance_n1 and scan_distance_n2
 store in scan_distance

}
}

}

73

#include <ws2tcpip.h>
#pragma comment(lib, "Ws2_32.lib")
#endif

#define DEFAULT_BUFLEN 1404
#define TIMESTAMP_RAW_BYTE_OFFSET 14
#define FIRST_ANGLE_BYTE_OFFSET 44
#define HEADER_SIZE_BYTES 60

const uint16_t magic = 0xa25c;

typedef struct R2000_header{
 uint16_t magic;
 uint16_t packet_type;
 uint32_t packet_size;
 uint16_t header_size;
 uint16_t scan_number;
 uint16_t packet_number;
 uint64_t timestamp_raw;
 uint64_t timestamp_sync;
 uint32_t status_flags;
 uint32_t scan_frequency;
 uint16_t num_points_scan;
 uint16_t num_points_packet;
 uint16_t first_index;
 int32_t first_angle;
 int32_t angualar_increment;
 uint32_t output_status;
 uint32_t field_status;
 }header;

class R2000
{
private:
 std::string ip_addr;
 std::string handle;
 std::string port;
 int last_kick;
#ifdef WIN32
 WSADATA wsaData;
 SOCKET ConnectSocket;
#endif

public:
 Scan *scan;

 R2000(void);
 ~R2000(void);
 bool Connect(char *ip);
 void Read_Sensor(); //reads one scan
 bool StartStream();
 bool StopStream();
 bool FeedWatchdog();
 bool ReleaseHandle();
private:
 bool getPort(char* ip);
};

R2000.cpp
#include "R2000.h"
#include <string>

74

#include <stdio.h>
#include <cstdint>
#include <memory>
#include "curl/curl.h"
#include "json/json.h"
#include <time.h>

#define SOCKET_READ_TIMEOUT_SEC 1

using namespace std;
#pragma comment(lib, "libcurl.lib")

//#define DEBUG

#define URL_PREFIX "http://"
#define GET_SOCKET_REQUEST_URL "/cmd/request_handle_tcp"
#define START_STREAM_URL "/cmd/start_scanoutput?handle="
#define STOP_STREAM_URL "/cmd/stop_scanoutput?handle="
#define FEED_WATCHDOG_URL "/cmd/feed_watchdog?handle="
#define RELEASE_HANDLE_URL "/cmd/release_handle?handle="

#define WATCHDOG_KICK_PERIOD 1 //seconds

namespace
{
 std::size_t callback(
 const char* in,
 std::size_t size,
 std::size_t num,
 std::string* out)
 {
 const std::size_t totalBytes(size * num);
 out->append(in, totalBytes);
 return totalBytes;
 }
}

size_t write_data(void *buffer, size_t size, size_t nmemb, void *userp){
 return size*nmemb;
}

/*--
 - Windows Only Definitions
 ---*/
#ifdef WIN32
// Requires WinSock

/**
 * Name: R2000 [Constructor]
 * Description: Constructs the R2000 Object
 **/
R2000::R2000(void)
{
 scan = NULL;
 int iResult;

 //initialize Windock
 iResult = WSAStartup(MAKEWORD(2,2), &wsaData);
 if(iResult != 0){
 printf("WSAStartup failed: %d\n", iResult);
 throw -1;
 }

75

}

/**
 * Name: R2000 [Destructor]
 * Description: Destructs the R2000 Object
 **/
R2000::~R2000(void)
{
 //Remember to shut down the port...
 closesocket(ConnectSocket);
 WSACleanup();

 // Release handle to stop lidar stream
 this->ReleaseHandle();

 delete scan;
}

/***
 * Name: Connect
 * Input: ip - Internet Protocol Address of R2000 Lidar
 * Description: Initializes and begins connection to R2000
 ***/
bool R2000::Connect(char *ip){
 ip_addr = string(ip); // set ip member variable

 // try to get port number for connection via R2000 built in webpage
 if(!getPort(ip)){
 return false;
 }

 // Set up connection
 struct addrinfo *result = NULL,
 *ptr = NULL,
 hints;

 ZeroMemory(&hints, sizeof(hints));
 hints.ai_family = AF_INET;
 hints.ai_socktype = SOCK_STREAM;
 hints.ai_protocol = IPPROTO_TCP;

 int iResult = 0;
 // Resolve the server address and port
 iResult = getaddrinfo(ip, port.c_str(), &hints, &result);
 if (iResult != 0) {
 printf("getaddrinfo failed: %d\n", iResult);
 WSACleanup();
 return false;
 }

 ConnectSocket = INVALID_SOCKET;

 // Attempt to connect to the first address returned by
 // the call to getaddrinfo
 ptr=result;

 // Create a SOCKET for connecting to server
 ConnectSocket = socket(ptr->ai_family, ptr->ai_socktype,
 ptr->ai_protocol);

 if (ConnectSocket == INVALID_SOCKET) {
 printf("Error at socket(): %ld\n", WSAGetLastError());

76

 freeaddrinfo(result);
 WSACleanup();
 return false;
 }

 // Connect to server.
 iResult = connect(ConnectSocket, ptr->ai_addr, (int)ptr->ai_addrlen);
 if (iResult == SOCKET_ERROR) {
 closesocket(ConnectSocket);
 ConnectSocket = INVALID_SOCKET;
 }

 // If connection failed
 // free the resources returned by getaddrinfo and print an error message
 freeaddrinfo(result);

 if (ConnectSocket == INVALID_SOCKET) {
 printf("Unable to connect to server!\n");
 WSACleanup();
 return false;
 }

 // Copied from Microsoft tutorial (is this necessary?)
 // shutdown the connection for sending since no more data will be sent
 // the client can still use the ConnectSocket for receiving data
 iResult = shutdown(ConnectSocket, SD_SEND);
 if (iResult == SOCKET_ERROR) {
 printf("shutdown failed: %d\n", WSAGetLastError());
 closesocket(ConnectSocket);
 WSACleanup();
 return false;
 }

 DWORD timeout = SOCKET_READ_TIMEOUT_SEC * 1000;
 setsockopt(ConnectSocket, SOL_SOCKET, SO_RCVTIMEO, (char*)&timeout, sizeof(timeout));

 return true;
}

/***
 * Name: Read Sensor
 * Description: Reads sensor data and adds it to Scan object
 ***/
void R2000::Read_Sensor(){
 // Kick Watchdog every second
 if(time(0) > last_kick + WATCHDOG_KICK_PERIOD){
 this->FeedWatchdog();
 last_kick = time(0);
 }

 int recvbuflen = DEFAULT_BUFLEN;
 char recvbuf[DEFAULT_BUFLEN];
 uint16_t magic_bytes;

 int iResult = 0;
 bool quit = false;
 int pointsPerScan = 1, pointsRead = 0;
 while(pointsRead < pointsPerScan && !quit){
 // Read Header
 iResult = recv(ConnectSocket, recvbuf, recvbuflen, 0);
 memcpy(&magic_bytes, recvbuf, 2);

77

 if (iResult > 0 && magic_bytes == magic) // Check for magic byte 0xA25C (other data seems
to be getting in buffer?)
 {
 struct R2000_header head;
 //R2000Packet packet = R2000Packet(recvbuf, iResult / 2);
 // Copy header to struct
 // Adjust for 32-bit alignment on PC struct
 memcpy(&head, recvbuf, TIMESTAMP_RAW_BYTE_OFFSET);
 memcpy(&head.timestamp_raw, &recvbuf[TIMESTAMP_RAW_BYTE_OFFSET],
FIRST_ANGLE_BYTE_OFFSET - TIMESTAMP_RAW_BYTE_OFFSET);
 memcpy(&head.first_angle, &recvbuf[FIRST_ANGLE_BYTE_OFFSET], HEADER_SIZE_BYTES -
FIRST_ANGLE_BYTE_OFFSET);

#ifdef DEBUG
 printf("Magic %04X\n", head.magic);
 printf("Packet Type %c\n", head.packet_type);
 printf("Packet Size %d\n", head.packet_size);
 printf("Header Size %d\n", head.header_size);
 printf("Scan Number %d\n", head.scan_number);
 printf("Packet Number %d\n", head.packet_number);
 printf("Timestamp Raw %d\n", head.timestamp_raw);
 printf("Timestamp Sync %d\n", head.timestamp_sync);
 printf("Status Flags %04X\n", head.status_flags);
 printf("Scan Frequency %d (1/1000 Hz)\n", head.scan_frequency);
 printf("Number of Scan Points within Complete Scan: %d\n", head.num_points_scan);
 printf("Number of Scan Points in Packet %d\n", head.num_points_packet);
 printf("First Index: %d\n", head.first_index);
 printf("First Angle: %d (1/10,000 deg)\n", head.first_angle);
 printf("Angular Increment %d\n", head.angualar_increment);
 printf("Output Status: %04X\n", head.output_status);
 printf("Field Status: %04X\n", head.field_status);
#endif
 if(scan == NULL){
 // Allocate a new array for with packet.getNumPointsScan() elements
 scan = new Scan(head.num_points_scan);
 }

 //copy buffer_size-header_size bytes from buffer[start_of_data] to scan array
 scan->UpdateScanData(head.first_index, recvbuf, head.header_size,
(head.packet_size-head.header_size));
 //memcpy(&scan[head.first_index], &recvbuf[head.header_size], (head.packet_size-
head.header_size));

#ifdef DEBUG
 for(int i = 0; i <(iResult-head.header_size)/4; i++){
 if(scan[head.first_index+i] != 0xFFFFFFFF){
 printf("%u mm @ %f\n", scan[head.first_index+i], -
180+0.1*(head.first_index+i));
 }else{
 printf("ERROR POINT\n");
 }
 }
#endif
 pointsPerScan = head.num_points_scan;
 pointsRead += head.num_points_packet;

 }
 else if (iResult < 0){
 printf("recv failed: %d\n", WSAGetLastError());
 quit = true;
 }

78

 }
}
#endif //WIN32

/*--
 - Platform independent
 ---*/
 /***
 * Name: getPort
 * Input: ip - Internet Protocol Address of R2000
 * Output: returns true on success
 * Description: Asks the R2000 to open a TCP streaming port
 ***/
bool R2000::getPort(char* ip){
 CURL *curl = curl_easy_init();
 std::string url = URL_PREFIX;
 url.append(ip);
 url.append(GET_SOCKET_REQUEST_URL);

 // Response information.
 int httpCode(0);
 std::unique_ptr<std::string> httpData(new std::string());

 if (curl)
 {
 CURLcode res;
 curl_easy_setopt(curl, CURLOPT_URL, url.c_str());
 curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, callback);
 curl_easy_setopt(curl, CURLOPT_WRITEDATA, httpData.get());
 res = curl_easy_perform(curl);
 curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &httpCode);
 curl_easy_cleanup(curl);

 //Handle Response
 if (httpCode == 200)
 {
 printf("\nGot successful response from %s\n", url.c_str());

 // Response looks good - done using Curl now. Try to parse the results
 // and print them out.
 Json::Value jsonData;
 Json::Reader jsonReader;

 if (jsonReader.parse(*httpData, jsonData))
 {
 printf("Successfully parsed JSON data\n");
 printf("\nJSON data received:\n");
 printf("%s\n", jsonData.toStyledString().c_str());

 port = jsonData["port"].asString();
 handle = jsonData["handle"].asString();

 printf("Parsed:\n");
 printf("\tPort string: %s\n",port.c_str());
 printf("\tHandle string: %s\n\n", handle.c_str());
 return true;
 }
 else
 {
 printf("Could not parse HTTP data as JSON\n");
 printf("HTTP data was:\n%s\n", *httpData.get());
 return false;

79

 }
 }
 else
 {
 printf("Couldn't GET from %s - exiting\n", url);
 return false;
 }
 }
 else
 {
 printf("problem with curl\n");
 }
 return false;
}

 /***
 * Name: StartStream
 * Output: returns true on success
 * Description: Asks the R2000 to start streaming
 ***/
bool R2000::StartStream(){
 CURL *curl = curl_easy_init();
 std::string url = URL_PREFIX;
 url.append(ip_addr);
 url.append(START_STREAM_URL);
 url.append(handle);

 // Response information.
 int httpCode(0);
 std::unique_ptr<std::string> httpData(new std::string());

 if (curl){
 CURLcode res;
 curl_easy_setopt(curl, CURLOPT_URL, url.c_str());
 curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, write_data);
 res = curl_easy_perform(curl);
 curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &httpCode);
 curl_easy_cleanup(curl);

 //Handle Response
 if (httpCode == 200)
 {
#ifdef DEBUG
 printf("\nGot successful response from %s\n", url.c_str());
#endif
 return true;
 }
 else
 {
 printf("Couldn't start stream %s\n", url.c_str());
 return false;
 }
 }
 return false;
}

 /***
 * Name: StopStream
 * Output: returns true on success
 * Description: Asks the R2000 to stop streaming
 ***/
bool R2000::StopStream(){

80

 CURL *curl = curl_easy_init();
 std::string url = URL_PREFIX;
 url.append(ip_addr);
 url.append(STOP_STREAM_URL);
 url.append(handle);

 // Response information.
 int httpCode(0);
 std::unique_ptr<std::string> httpData(new std::string());

 if (curl){
 CURLcode res;
 curl_easy_setopt(curl, CURLOPT_URL, url.c_str());
 curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, write_data);
 res = curl_easy_perform(curl);
 curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &httpCode);
 curl_easy_cleanup(curl);

 //Handle Response
 if (httpCode == 200)
 {
#ifdef DEBUG
 printf("\nGot successful response from %s\n", url.c_str());
#endif
 return true;
 }
 else
 {
 printf("Couldn't stop stream %s\n", url.c_str());
 return false;
 }
 }
 return false;
}

 /***
 * Name: FeedWatchdog
 * Output: returns true on success
 * Description: Feeds the R2000's streaming watchdog
 ***/
bool R2000::FeedWatchdog(){
 CURL *curl = curl_easy_init();
 std::string url = URL_PREFIX;
 url.append(ip_addr);
 url.append(FEED_WATCHDOG_URL);
 url.append(handle);

 // Response information.
 int httpCode(0);
 std::unique_ptr<std::string> httpData(new std::string());

 if (curl){
 CURLcode res;
 curl_easy_setopt(curl, CURLOPT_URL, url.c_str());
 curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, write_data);
 curl_easy_setopt(curl, CURLOPT_TIMEOUT, 1);
 res = curl_easy_perform(curl);
 curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &httpCode);
 curl_easy_cleanup(curl);

 //Handle Response
 if (httpCode == 200)

81

 {
#ifdef DEBUG
 printf("\nGot successful response from %s\n", url.c_str());
#endif
 return true;
 }
 else
 {
 printf("Couldn't feed watchdog. %s\n", url.c_str());
 return false;
 }
 }
 return false;
}

 /***
 * Name: Release Handle
 * Output: returns true on success
 * Description: Closes connection with R2000
 ***/
bool R2000::ReleaseHandle(){
 CURL *curl = curl_easy_init();
 std::string url = URL_PREFIX;
 url.append(ip_addr);
 url.append(RELEASE_HANDLE_URL);
 url.append(handle);

 // Response information.
 int httpCode(0);
 std::unique_ptr<std::string> httpData(new std::string());

 if (curl){
 CURLcode res;
 curl_easy_setopt(curl, CURLOPT_URL, url.c_str());
 curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, write_data);
 res = curl_easy_perform(curl);
 curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &httpCode);
 curl_easy_cleanup(curl);

 //Handle Response
 if (httpCode == 200)
 {
#ifdef DEBUG
 printf("\nGot successful response from %s\n", url.c_str());
#endif
 return true;
 }
 else
 {
 printf("Couldn't release handle. %s\n", url.c_str());
 return false;
 }
 }
 return false;
}

The code that handles the processing of the scan data successfully received from the R2000
LiDAR is contained in the Scan class. The Scan class code is shown below. The two most recent
scans received from the lidar are averaged together and used as the current scan. The current
scan is run through an averaging process which reduces the number of points in the scan to

82

reduce computation length while improving accuracy of the data and removing points which
contain an error reading.

Scan.h
#include <cstdint>

class Scan
{
private:
 uint32_t *scan_distance; // in mm - at time N (the time that this class outputs though
Scan_Distance function)
 uint32_t *scan_distance_n1; // in mm - buffer N+1
 uint32_t *scan_distance_n2; // in mm - buffer N+2
 int scan_size; // number of points per lidar scan (unadjusted)

 float *der;
 float *scan_x;
 float *scan_y;
 float *scan_m;
 float *scan_angle;

 void TimeFilter();

public:
 Scan(int num_points_per_scan);
 ~Scan(void);
 void UpdateScanData(int start_index, char *buf, int buf_offset, int length); // Called by R2000 to
update the data in the scan
 const int ScanSize(); // Outputs adjusted scan size after filters
 float * ScanDistance(); // Outputs adjusted scan distances (filtered)
 float *ScanX(); // Outputs X coordinates at each angle (filtered)
 float *ScanY(); // Outputs Y coordinates at each angle (filtered)
 float *ScanAngle(); // Outputs angles corresponsing to ScanX, ScanY, and ScanDistances (filtered)
 float *Derivative(); // Outputs dy/dx derivative (filtered)
};

Scan.cpp
#include "Scan.h"
#include <memory>

#define MAX_RANGE_MM 20000 // filters extranous data points

#define MM_PER_METER 1000.0 // standard conversion between meters and millimeters
#define REDUCTION 5 // Number of points to average in filter
#define SCAN_RESOLUTION (360.0/scan_size)

/**
 * Name: Scan [Constructor]
 * Inputs: Number of points per lidar scan
 * Description: Constructs the Scan Object
 **/
Scan::Scan(int num_points_per_scan)
{
 // Allocate needed memory

 // Unfiltered Buffers (3)
 scan_distance = (uint32_t *) malloc(num_points_per_scan*sizeof(uint32_t));
 scan_distance_n1 = (uint32_t *) malloc(num_points_per_scan*sizeof(uint32_t));
 scan_distance_n2 = (uint32_t *) malloc(num_points_per_scan*sizeof(uint32_t));

83

 // Filtered Arrays (5)
 scan_x = (float *) malloc(num_points_per_scan*sizeof(float)/REDUCTION);
 scan_y = (float *) malloc(num_points_per_scan*sizeof(float)/REDUCTION);
 scan_m = (float *) malloc(num_points_per_scan*sizeof(float)/REDUCTION);
 der = (float *) malloc(num_points_per_scan*sizeof(float)/REDUCTION);
 scan_angle = (float *) malloc(num_points_per_scan*sizeof(float)/REDUCTION);

 // Store Number of Points per Complete Lidar Scan
 scan_size = num_points_per_scan;
}

/**
 * Name: Scan [Destructor]
 * Description: Destructs the Scan Object
 **/
Scan::~Scan(void)
{
 // Free Memory
 // Unfiltered Buffers (3)
 free(scan_distance);
 scan_distance = NULL;

 free(scan_distance_n1);
 scan_distance_n1 = NULL;

 free(scan_distance_n2);
 scan_distance_n2 = NULL;

 // Filtered Arrays (5)
 free(scan_x);
 scan_x = NULL;

 free(scan_y);
 scan_y = NULL;

 free(der);
 der = NULL;

 free(scan_angle);
 scan_angle = NULL;

 free(scan_m);
 scan_m = NULL;
}

/***
 * Name: Upade Scan Data
 * Inputs:
 * - start_index: index of first scan point in buf
 * - buf: buffer of scan points
 * - buf_offset: index of first data point in buf
 * - length: length of scan point data to be used in bytes
 * Output: None
 * Description: Copied data from network buffer to N+2 scan array
 * Processes complete scan
 ***/
void Scan::UpdateScanData(int start_index, char *buf, int buf_offset, int length){
 // Copy data from buf to N+2 scan array
 memcpy(&scan_distance_n2[start_index], &buf[buf_offset], length);

 if(start_index + length/sizeof(uint32_t) == scan_size){

84

 // Completed a scan
 TimeFilter(); // time blur filter

 // Shift Time Buffers
 uint32_t *temp = scan_distance_n1; // hold pointer to allocated buffer (saves from dealloc
and alloc)
 scan_distance_n1 = scan_distance_n2; // move scan data at time n+2 to n+1
 scan_distance_n2 = temp; // this will be overwritten before it is used again

 // Reduce number of points by averaging
 // Fill filtered arrays (angle, x, y, and m)
 for (int i = 0; i < scan_size/REDUCTION; i++){
 // Error Filtered Average
 float sum = 0;
 int points_in_sum = REDUCTION;
 for(int k = 0; k < REDUCTION; k++){
 if(scan_distance[REDUCTION*i+k] < MAX_RANGE_MM){
 sum += scan_distance[REDUCTION*i+k];
 }else{
 // No point detected (assume error for now)
 points_in_sum--;
 }
 }

 if(points_in_sum > 0){
 scan_m[i] = sum/points_in_sum/MM_PER_METER; // radius in meters
 }else{
 // Not an error - no point detected here
 scan_m[i] = scan_distance[i*REDUCTION]/MM_PER_METER;
 }

 // Fill other arrays from filtered magnitudes
 scan_angle[i] = -180+SCAN_RESOLUTION*REDUCTION*i;
 scan_x[i] = cos(scan_angle[i]*3.14/180.0)*scan_m[i]; // x coord in meters
 scan_y[i] = sin(scan_angle[i]*3.14/180.0)*scan_m[i]; // y coord in meters
 }

 // derivative
 for (int i = 1; i < scan_size/REDUCTION; i++){
 float dx = scan_x[i] - scan_x[i-1];
 float dy = scan_y[i] - scan_y[i-1];
 if(dx == 0){
 dx += 0.00001;
 }
 if(dy == 0){
 dy += 0.00001;
 }
 der[i] = dy/dx;
 }
 }
}

/***
 * Name: ScanSize
 * Description: Returns size of filtered scan arrays
 ***/
const int Scan::ScanSize(){
 return scan_size / REDUCTION;
}

/***
 * Name: ScanDistance

85

 * Description: Returns scan filtered scan distances (radius)
 ***/
float *Scan::ScanDistance(){
 return scan_m; // Scan distance in meters
}

/***
 * Name: ScanX
 * Description: Returns filtered X coordinates
 ***/
float *Scan::ScanX(){
 return scan_x;
}

/***
 * Name: ScanY
 * Description: Returns filtered Y coordinates
 ***/
float *Scan::ScanY(){
 return scan_y;
}

/***
 * Name: ScanAngles
 * Description: Returns angles corresponsing to filtered scan
 ***/
float *Scan::ScanAngle(){
 return scan_angle;
}

/***
 * Name: Derivative
 * Description: Returns dy/xy derivative of filtered scan
 ***/
float *Scan::Derivative(){
 return der;
}

/***
 * Name: Time Filter
 * Description: Applies time blur filter to buffered scan data
 * Places result in scan_distance
 ***/
void Scan::TimeFilter(){
 for (int i = 0; i < scan_size; i++){
 if(scan_distance_n1[i] < MAX_RANGE_MM && scan_distance_n2[i] < MAX_RANGE_MM){
 scan_distance[i] = (scan_distance_n1[i] + scan_distance_n2[i])/2;
 }else if(scan_distance_n2[1] < MAX_RANGE_MM){
 scan_distance[i] = scan_distance_n2[i];
 }else{
 scan_distance[i] = scan_distance_n1[i];
 }
 }
}

Cameras

Up to three Logitech C920 webcams are connected to the PC via USB. The camera data
is read and processed using OpenCV.

 [ART]

86

GPS

 The Novatel GPS is connected to the PC via USB. The GPS calibration routine must
generate latitude and longitude to feet conversions as described in Section 4.7.4.

Figure 33 – Preliminary Pseudo Code for GPS Operation

The main part of the differential GPS code is embedded within its serial port class named
‘igvc_GPS’. This C++ class handles the setup, configuration of the unit and fetching of GPS
coordinates from the device. The connection to the NovaTel GPS is handled in a similar way to
the Arduino via handles. Shown below, Figure 34 shows the method used for retrieving GPS
data from the NovaTel device and passing the information into class variables. These class
variables will later be taken into consideration within the navigation system when determining
the best course for reaching waypoints.

class gps{
 has lat_to_feet
 has long_to_feet

gps init(){
 initialize communications with gps
 calibrate lat_to_feet, long_to_feet
 call read_gps in new thread

 return self
 }
 void read_gps(){
 loop{

get data (timestamp)
 add to gps data buffer

 }
 }
}

87

Figure 34 – Function for Fetching Latitude and Longitude from GPS

88

The main code for communicating with the GPS module, ‘IGVC_GPS.h’ is shown
below. Its primary function is establishing and facilitating communication between the GPS and
host PC.
/*
 Name: IGVC_GPS.h
 Author: Chris Estock
 Brief: Header file enclosing the class for the GPS serial port.
 Note: Performs all setup necessary for retrieving the GPS's best latitude and longitude on
demand.

 EXAMPLE IMPLEMENTATION:

 igvc_gps gps;
 gps.COM_PORT = "COM9";
 gps.setup();

 [... somewhere in main loop ...]
 gps.update_lat_long()
 system_latitude = gps.igvc_latitude;
 system_longitude = gps.igvc_longitude;

*/

#include <windows.h>
#include <iostream>
#include <stdlib.h>
#include <time.h>
#include <vector>
#include <algorithm>
#include <iterator>
#include <sstream>

#pragma once
class igvc_gps{
public:
 igvc_gps(void){};
 ~igvc_gps(void){ CloseHandle(this->COM_Handle); };

 std::string COM_PORT;

 HANDLE COM_Handle;
 DCB PortDCB;
 COMMTIMEOUTS CommTimeouts;

 double igvc_latitude;
 double igvc_longitude;
 char readBuff[500];

 bool flag_one; // Used to signal that the bestposa write command has already been issued.

 void setup(){
 // Handle Setup
 this->handle_setup();
 // DCB Setup
 this->dcb_setup();
 // Timeout Setup
 this->timeout_setup();
 // Clear TX/RX Buffers
 this->purge_comms();
 // Initialize Vars.

89

 this->flag_one = 0;
 this->igvc_latitude = 0;
 this->igvc_longitude = 0;
 memset(readBuff, 0, sizeof(readBuff));
 }

 void handle_setup(){
 // Performs a setup of the serial port's handle. Called in setup().
 this->COM_Handle = CreateFile((LPCWSTR)this->COM_PORT.c_str(), GENERIC_READ |
GENERIC_WRITE, (DWORD)NULL, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
 SetupComm(this->COM_Handle, (DWORD)2048, (DWORD)2048);
 }

 void dcb_setup(){
 // Performs a setup of the serial port's DCB parameters. Called in setup().
 this->PortDCB.DCBlength = sizeof(DCB);
 GetCommState(this->COM_Handle, &this->PortDCB);
 this->PortDCB.BaudRate = 115200; // BAUD
 this->PortDCB.ByteSize = 8; // BYTE-LENGTH
 this->PortDCB.Parity = NOPARITY; // PARITY
 this->PortDCB.StopBits = ONESTOPBIT; // STOP
 SetCommState(this->COM_Handle, &this->PortDCB);
 }

 void timeout_setup(){
 // Performs a setup of the serial port's timeout parameters. Called in setup();
 // Note: These were determined to work through experimentation with the NovaTel ProPak V3
 GetCommTimeouts(this->COM_Handle, &this->CommTimeouts);
 this->CommTimeouts.ReadIntervalTimeout = 1; // Time between incoming
chars.
 this->CommTimeouts.ReadTotalTimeoutConstant = 1000; // Maximum wait time for
incoming msg.
 this->CommTimeouts.ReadTotalTimeoutMultiplier = 0;
 this->CommTimeouts.WriteTotalTimeoutConstant = 25;
 this->CommTimeouts.WriteTotalTimeoutMultiplier = 0;
 SetCommTimeouts(this->COM_Handle, &this->CommTimeouts);
 }

 void purge_comms(){
 // Clears the TX and RX serial buffers. Called in setup().
 PurgeComm(this->COM_Handle, PURGE_TXCLEAR);
 PurgeComm(this->COM_Handle, PURGE_RXCLEAR);
 }

 void write_line(const char * line_to_write){
 // Attempts to write a line to this class' serial port.
 DWORD numberBytesWritten;
 // Uses numberBytesWritten via reference to perform a pass/fail check.
 WriteFile(this->COM_Handle, LPVOID(line_to_write), strlen(line_to_write),
&numberBytesWritten, NULL);

 // Post-write Status Check
 if(numberBytesWritten == strlen(line_to_write)){
 std::cout << "Wrote : " << line_to_write << "\n";
 return;
 }else{
 std::cout << numberBytesWritten << " FAILED to Write ALL Bits!\n";
 return;
 }
 }

 void read_line(){

90

 // Attempts to read a line from this class' serial port.
 DWORD dwReadBytes;
 if(!ReadFile(this->COM_Handle, LPVOID(this->readBuff), (DWORD)(499), &dwReadBytes, NULL)){
 std::cout << "Failed to read!" << std::endl;
 }else{
 //std::cout << "Read(" << dwReadBytes << ") : " << this-
>readBuff << std::endl;
 }
 }

 template<typename Out>
 void split(const std::string &s, char delim, Out result) {
 // Main string parsing function (with delimiter)
 // Note: This is a bit of a hack of the Python split() function.
 // Credit: Answer in http://stackoverflow.com/questions/236129/split-a-string-in-c
 std::stringstream ss;
 ss.str(s);
 std::string item;
 while (std::getline(ss, item, delim)) {
 *(result++) = item;
 }
 }

 std::vector<std::string> split(const std::string &s, char delim) {
 // Helper function for string split with delimiters
 // Note: This is a bit of a hack of the Python split() function.
 // Credit: Answer in http://stackoverflow.com/questions/236129/split-a-string-in-c
 std::vector<std::string> elems;
 split(s, delim, std::back_inserter(elems));
 return elems;
 }

 void update_lat_long(){
 // This will be the main function for updating the latitude and longitude of this GPS
class.
 std::string read_string;
 std::vector<std::string> GPS_items;

 // Tell the GPS to output it's best position data once every 0.1 seconds. Use flag_one to
do this once.
 if(this->flag_one == 0){
 this->write_line("LOG BESTPOSA ONTIME .25\r\n");
 this->flag_one = 1;
 }

 // Read a bunch of lines. Not all lines are guaranteed to contain GPS data, so data-
checking is required.
 for(int idx = 0; idx < 5; idx++){
 this->read_line();
 read_string = std::string(this->readBuff);
 //std::cout << read_string << std::endl;

 GPS_items = this->split(read_string, ',');
 //std::cout << GPS_items.size() << std::endl;

 // Check if the line that was read actually contains the data we are looking for
by checking vector size.
 if(GPS_items.size() > 12){
 this->igvc_latitude = stod(GPS_items.at(11));
 this->igvc_longitude = stod(GPS_items.at(12));
 }
 // Clear comms between reads.

91

 this->purge_comms();
 }
 }

};

[CRE]

92

Compass

 The compass is connected to the Arduino Mega via I2C. The data is acquired and used in
real-time by the control loop in the Arduino, but it must also be streamed to the PC to be used by
the mapping routine. The PC will collect the data and store it in a time stamped buffer. The
communication with the compass is handled entirely within the Arduino Mega. The Arduino
then forward the compass heading to the host PC over the serial port.

Figure 35 – Preliminary Pseudo Code for Digital Compass

Arduino Software

 The Arduino runs the control loop and acquires data from the compass, PC (target angle
and speed), estop, and tachometers. The Arduino interfaces with the motor driver via UART and
controls the safety light. The Adafruit HMC5228L fetches the x, y, and z magnetic field readings
in micro-teslas and sends this information to the Arduino. The header value is calculated by
taking the arctangent of the x and y coordinates and applying a buffer for magnetic field
declination. This information is translated to show the vehicles facing direction in real time. 0° is
when the vehicle is facing true north and sweeps clockwise through 359° i.e. facing west would
be 270°.

class compass{

gps init(){
 connect to Arduino
 call read_data in new thread

 return self
 }
 void read_data(){
 loop{

get data from stream (time stamp)
 add to compass data buffer

 }
 }
}

93

The main Arduino C++ (host PC) code file ‘IGVC_Arduino.h’ is shown below. It’s primary
function is to establish and facilitate communication between the Arduino Mega and the host PC.
/*
 Name: IGVC_Arduino.h
 Author: Chris Estock
 Brief: Header file enclosing the class for the Arduino serial port.
 Note: Performs all setup necessary for retrieving a message from the Arduino.

 EXAMPLE IMPLEMENTATION:

 igvc_arduino arduino;
 arduino.COM_PORT = "COM5";
 arduino.setup();

 [... Somewhere in Main Loop ...]
 arduino.get_compass_and_errorcode(); // Update the arduino object's compass_heading and errorcode
variables.
 // dostuff with arduino.compassHeading

 // derive a speed, angle and distance to travel... (arduino.speed_toArduino;
arduino.angle_toArduino; arduino.distance_toArduino;)
 arduino.send_speed_angle_distance(); // Send the arduino object's speed_toArduino,
angle_toArduino, distance_toArduino to the Arduino over serial.

*/

#include <windows.h>
#include <iostream>
#include <stdlib.h>
#include <time.h>
#include <vector>
#include <algorithm>
#include <iterator>
#include <sstream>

using namespace std;

#pragma once
class igvc_arduino{
public:
 igvc_arduino(void){};
 ~igvc_arduino(void){ CloseHandle(this->COM_Handle); };

 std::string COM_PORT;

 HANDLE COM_Handle;
 DCB PortDCB;
 COMMTIMEOUTS CommTimeouts;

 char readBuff[500];

 // INCOMING PARAMETERS
 float compass_heading;
 bool errorcode;

 // OUTGOING PARAMETERS
 int speed_toArduino;
 int angle_toArduino;
 float distance_toArduino;

94

 bool flag_one; // Used to signal that the bestposa write command has already been issued.

 void setup(){
 // Handle Setup
 this->handle_setup();
 // DCB Setup
 this->dcb_setup();
 // Timeout Setup
 this->timeout_setup();
 // Clear TX/RX Buffers
 this->purge_comms();
 // Initialize Vars.
 this->flag_one = 0;
 memset(readBuff, 0, sizeof(readBuff));
 this->compass_heading = 0.0;
 this->errorcode = 0;
 }

 void handle_setup(){
 // Performs a setup of the serial port's handle. Called in setup().
 this->COM_Handle = CreateFile(this->COM_PORT.c_str(), GENERIC_READ | GENERIC_WRITE,
(DWORD)NULL, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
 //this->COM_Handle = CreateFile(TEXT("COM4"), GENERIC_READ | GENERIC_WRITE, (DWORD)NULL,
NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
 if(!SetupComm(this->COM_Handle, (DWORD)2048, (DWORD)2048)){
 cout << "Failed in Arduino SetupComm" << endl;
 }
 }

 void dcb_setup(){
 // Performs a setup of the serial port's DCB parameters. Called in setup().
 this->PortDCB.DCBlength = sizeof(DCB);
 GetCommState(this->COM_Handle, &this->PortDCB);
 this->PortDCB.BaudRate = 9600; // BAUD
 this->PortDCB.ByteSize = 8; // BYTE-LENGTH
 this->PortDCB.Parity = NOPARITY; // PARITY
 this->PortDCB.StopBits = ONESTOPBIT; // STOP
 if(!SetCommState(this->COM_Handle, &this->PortDCB)){
 cout << "Failed in Arduino SetCommState" << endl;
 }
 }

 void timeout_setup(){
 // Performs a setup of the serial port's timeout parameters. Called in setup();
 // Note: These were determined to work through experimentation with the NovaTel ProPak V3
 GetCommTimeouts(this->COM_Handle, &this->CommTimeouts);
 this->CommTimeouts.ReadIntervalTimeout = 10; // Time between incoming
chars.
 this->CommTimeouts.ReadTotalTimeoutConstant = 200; // Maximum wait time for
incoming msg.
 this->CommTimeouts.ReadTotalTimeoutMultiplier = 1;
 this->CommTimeouts.WriteTotalTimeoutConstant = 25;
 this->CommTimeouts.WriteTotalTimeoutMultiplier = 0;
 if(!SetCommTimeouts(this->COM_Handle, &this->CommTimeouts)){
 cout << "Failed in Arduino SetCommTimeouts" << endl;
 }
 }

 void purge_comms(){
 // Clears the TX and RX serial buffers. Called in setup().
 PurgeComm(this->COM_Handle, PURGE_TXCLEAR);
 PurgeComm(this->COM_Handle, PURGE_RXCLEAR);

95

 }

 void write_line(const char * line_to_write){
 // Attempts to write a line to this class' serial port.
 DWORD numberBytesWritten;
 // Uses numberBytesWritten via reference to perform a pass/fail check.
 if(!WriteFile(this->COM_Handle, LPVOID(line_to_write), strlen(line_to_write),
&numberBytesWritten, NULL)){
 cout << "Failed to write to Arduino!" << endl;
 }

 // Post-write Status Check
 if(numberBytesWritten == strlen(line_to_write)){
 std::cout << "Wrote : " << line_to_write << "\n";
 return;
 }else{
 std::cout << numberBytesWritten << " FAILED to Write ALL Bits!\n";
 return;
 }
 }

 void read_line(){
 // Attempts to read a line from this class' serial port.
 DWORD dwReadBytes;
 // Clear the read buffer first.
 memset(readBuff, 0, sizeof(readBuff));
 if(!ReadFile(this->COM_Handle, LPVOID(this->readBuff), (DWORD)(499), &dwReadBytes, NULL)){
 std::cout << "Failed to read!" << std::endl;
 }else{
 //std::cout << "Read(" << dwReadBytes << ") : " << this-
>readBuff << std::endl;
 }
 }

 template<typename Out>
 void split(const std::string &s, char delim, Out result) {
 // Main string parsing function (with delimiter)
 // Note: This is a bit of a hack of the Python split() function.
 // Credit: Answer in http://stackoverflow.com/questions/236129/split-a-string-in-c
 std::stringstream ss;
 ss.str(s);
 std::string item;
 while (std::getline(ss, item, delim)) {
 *(result++) = item;
 }
 }

 std::vector<std::string> split(const std::string &s, char delim) {
 // Helper function for string split with delimiters
 // Note: This is a bit of a hack of the Python split() function.
 // Credit: Answer in http://stackoverflow.com/questions/236129/split-a-string-in-c
 std::vector<std::string> elems;
 split(s, delim, std::back_inserter(elems));
 return elems;
 }

 void send_speed_angle_distance(){
 // This function will send this object's 'speed_toArduino' 'angle_toArduino' and
distance_toArduino'
 // over the serial port to the Arduino in a packet formed like:
 // "speed_toArduino,angle_toArduino,distance_toArduino\n"

96

 // Variable creation, convert the floating point values to strings before forming the
packet.
 std::string outstring = "";
 std::string speed_as_string = std::to_string(speed_toArduino);
 std::string angle_as_string = std::to_string(angle_toArduino);
 //std::string distance_as_string = std::to_string(distance_toArduino);

 outstring.append("S");
 outstring.append(speed_as_string);
 outstring.append("A");
 outstring.append(angle_as_string);
 //outstring.append(",");
 //outstring.append(distance_as_string);
 outstring.append("\n");

 //std::cout << outstring.c_str() << std::endl;
 this->write_line(outstring.c_str());
 }

 void get_compass_and_errorcode(){
 // This will be the main function for updating the latitude and longitude of this GPS
class.
 std::string read_string;
 std::vector<std::string> Arduino_items;

 // Read a bunch of lines. Not all lines are guaranteed to be valid, so data-checking is
required.
 for(int idx = 0; idx < 3; idx++){
 this->read_line();
 read_string = std::string(this->readBuff);
 //std::cout << read_string << std::endl;

 Arduino_items = this->split(read_string, ',');
 //std::cout << Arduino_items.size() << std::endl;

 // Check if the line that was read actually contains the data we are looking for
by checking vector size.
 //if(Arduino_items.size() != 0){
 //this->compass_heading = stod(Arduino_items.at(0));
 //if(Arduino_items.at(1) == "0"){
 //this->errorcode = 0;
 //}else{
 //this->errorcode = 1;
 //}
 //}
 // Clear comms between reads.
 this->purge_comms();
 }
 }
};

[CRE]

97

 Shown below is C code that is used with the Arduino Mega micro controller to handle the
motor control and compass communications.
/*
 IGVC Master Code
 Rev 2
 Chris Estock, Garrett Chonko, & John Johenning
 4/22/17

 All refrences to vehicle are taken with repspect to forward facing: M1 =pass side, M2 =driver side
 Uses speed and angle to adjust motor speeds
*/

#include <Wire.h>
#include <SoftwareSerial.h>

#include "RoboClaw.h"
#include "Adafruit_Sensor.h"
#include "Adafruit_HMC5883_U.h"

//Compass Constants
#define DECLINATION_ANGLE -0.146025 // Akron U = -0.146025 radians, Oakland U = -0.130609
#define INTERVAL 500 //value set to send compass data every 1/2 sec

//ARDUINO Connections
#define PASS_ENCODE_PIN 10 //25
#define DRIVER_ENCODE_PIN 12 //24

//Motor Driver Constants
#define motorDriverAddress 0x80
#define ROBOCLAW_GAIN ((63*3.52)/1675) // Max channel value over max motor driver gain

//Vehicle Constants
#define WIDTH 0.786 //Half of the wheel base
#define GR_TRANS 103 // motor gear to drive gear ratio
#define PPR 400 //Pulses per Revolution of the encoders

//Transfer Function Constants
#define CURRENT_INPUT_GAIN 0.018
#define PREVIOUS_INPUT_GAIN 0.014

SoftwareSerial RBCC(8,9);
RoboClaw roboclaw(&RBCC,10000);

Adafruit_HMC5883_Unified mag = Adafruit_HMC5883_Unified(12345); // Unique ID for the Compass

unsigned long currentTime = 0; // records runtime of the processor, used for determining data sending
frequency
unsigned long previousTime = 0;
unsigned long accumulatedTime = 0;

// Floats for Motor Controller
float InputR = 0;
float InputL = 0;
float OutputR = 0;
float OutputL = 0;
float PrevOutR = 0;
float PrevOutL = 0;

// bools for Detecting negative and positive Wheel Rotations

98

bool isRNegative = false;
bool isLNegative = false;
bool isRChangeDirec = false;
bool isLChangeDirec = false;
bool FirstCrossOverR;
bool FirstCrossOverL;

// Indicators if there is a problem
bool errorFlag = 0;

//Values Recieved from Computer
byte DesiredDistance = 0;
byte DesiredAngle = 0;
byte DesiredSpeed = 0;

// Ints for Tach read
volatile unsigned long TachRPulseCount = 0;
volatile unsigned long TachLPulseCount = 0;
int TachLPulseChange = 0;
int TachRPulseChange = 0;
int TachLPulse = 0;
int TachRPulse = 0;

// Doubles for Tach controlled position feedback
double OverallDistance = 0;
double OverallAngle =0;
double PrevDistance=0;

// Input variables
int requestedDistance = 0;
int requestedAngle = 0;
int requestedSpeed = 0;
int MotorChange = 0;

// Floats for ZeroCross Detection
float PrevRSpeed;
float RSpeedDiff;
float PrevLSpeed;
float LSpeedDiff;

// Ints for ZeroCross Detection
int RHasChanged;
int LHasChanged;

// Float for Speed Calculation
float GlobalSpeed[2];

// Doubles for Wheel Speed FeedBack
double GlobalRightWheelSpeed=0;
double GlobalLeftWheelSpeed=0;

// === PROTOTYPES ===
void MovementController(int Distance, int Angle, int Speed);
void FindZeroCrossover(float* Speeds,int SpeedType);
void MotorController(float RightWheelSpeed, float LeftWheelSpeed);
void TachCount();
void SpeedCalc();
void LocationCalc(float* Speeds,int timeElapsed);
void left_tach_isr();
void right_tach_isr();

99

#define LEFT_TACH_PIN 2
#define RIGHT_TACH_PIN 3
//volatile unsigned long left_tach_counter = 0;
//volatile unsigned long right_tach_counter = 0;

/***
***/
void setup(){
 Serial.begin(9600);
 roboclaw.begin(38400);
 Serial.println("IGVC Master Code Rev1\n\n");

 // Attach interrupts to pins 2 and 3 for the Right and Left Tachometers.
 // These will call interrupt routines for increment a counter which will determine speed via comparison
to time.
 attachInterrupt(digitalPinToInterrupt(LEFT_TACH_PIN), left_tach_isr, CHANGE); // Pin2
 attachInterrupt(digitalPinToInterrupt(RIGHT_TACH_PIN), right_tach_isr, CHANGE); // Pin3

 pinMode(5, OUTPUT);
 pinMode(6, OUTPUT);

}
/***
***/
void loop(void){

 // This snippet tracks the current time, previous time, and accumulated time which will trigger the
sampling portion of this loop every X seconds.
 previousTime = currentTime;
 currentTime=millis(); //counts milliseconds of run time
 accumulatedTime += (currentTime - previousTime);

 requestedAngle = analogRead(5)*(0.3516);
 requestedDistance = analogRead(4)/100;
 // double Speed=analogRead(8);

 /*
 Serial.println("requestedDistance");
 Serial.println(requestedDistance);
 Serial.println("requestedAngle");
 Serial.println(requestedAngle);
 */
 /*
 if(Serial.available()){
 char valueType = Serial.read();
 if((valueType == 'D') || (valueType == 'd')){
 requestedDistance = Serial.read(); //read byte in buffer, Distance in Meters
 }
 valueType = Serial.read(); //read char in buffer
 if((valueType == 'A') || (valueType == 'a')){
 requestedAngle = Serial.read();// angle in degrees
 }
 valueType = Serial.read(); //read char in buffer
 if((valueType == 'S') || (valueType == 's')){
 requestedSpeed = Serial.read();// Speed in degrees mph
 }
 }*/

 if(accumulatedTime >= 100){
 SpeedCalc();

100

 if(isRChangeDirec == true){
 MotorChange = MotorChange + 1;
 }
 if(isLChangeDirec == true){
 MotorChange = MotorChange + 2;
 }
 FindZeroCrossover(GlobalSpeed,MotorChange);

 MotorChange = 0;

 LocationCalc(GlobalSpeed,accumulatedTime);

 // Reset the tachometer counters to zero in order to prepare to count pulse edges for the next cycle.
 TachRPulseCount = 0;
 TachLPulseCount = 0;
 accumulatedTime = 0;

 if(((DesiredAngle-OverallAngle)!=requestedAngle) || ((DesiredDistance-
OverallDistance)!=requestedDistance)){// input Different from Current Feedback Model
 DesiredAngle = requestedAngle;
 DesiredDistance = requestedDistance;
 OverallAngle = 0;
 OverallDistance = 0;
 }

 int InputAngle = DesiredAngle - OverallAngle;
 int InputDistance= DesiredDistance - OverallDistance;

 MovementController(InputDistance, InputAngle, DesiredSpeed);

 float InputRSpeed = GlobalRightWheelSpeed - GlobalSpeed[0];
 float InputLSpeed = GlobalLeftWheelSpeed - GlobalSpeed[1];
 MotorController(InputRSpeed, InputLSpeed);
 }

 //Send Read values to Laptop
 //wherePointing(); //0-3600 tenths of a degree
}

// === LEFT TACHOMETER INTERRUPT SERVICE ROUTINE ===
void left_tach_isr(){
 TachLPulseCount += 1;
 return;
}
// === RIGHT TACHOMETER INTERRUPT SERVICE ROUTINE ===
void right_tach_isr(){
 TachRPulseCount += 1;
 return;
}

/******TACH
COUNT***
**********************************/
void TachCount(){

//Read Tachs
 TachRPulse = digitalRead(PASS_ENCODE_PIN);
 TachLPulse = digitalRead(DRIVER_ENCODE_PIN);

 if (TachLPulse != TachLPulseChange){ // Count pulse Changes in Left Wheel Tach

101

 TachLPulseChange = TachLPulse;
 TachLPulseCount++;
 }
 if (TachRPulse != TachRPulseChange){ // Count pulse Changes in Right Wheel Tach
 TachRPulseChange = TachRPulse;
 TachRPulseCount++;
 }
}

/****** SPEED CALC
**
***************************/
void SpeedCalc(){
 double MPHL, MPHR;
 double RPML = TachLPulseCount*1.5*0.3;
 double RPMR = TachRPulseCount*1.5*0.3;

 //Convert RPM to MPH
 MPHR=RPMR*(0.0279);//10 inch Diameter wheels , rpm to mph using feet to miles
 MPHL=RPML*(0.0279);

 //Convert to Radians Per Second
 GlobalSpeed[0]=MPHR;
 GlobalSpeed[1]=MPHL;

 return 0;
}

/********LOCATION
CALC**
****************************/
void LocationCalc(float* Speeds,int timeElapsed){ // FeedBack
 double CurrentAngle, CurrentDistance;
 double FeedBack[2];
 CurrentDistance=0;
 CurrentAngle = 0;
 float DeltaSpeed = Speeds[0] - Speeds[1];
 float TotalSpeed = (Speeds[0] + Speeds[1])/2;
 if(DeltaSpeed<=0.05 && DeltaSpeed>=-0.05){
 DeltaSpeed=0;
 CurrentDistance = TotalSpeed * (0.1)*(0.4469);
 CurrentAngle = 0;
 OverallAngle = (CurrentAngle + OverallAngle);
 }else{
 CurrentAngle = DeltaSpeed * (0.1)*(0.4469)* (180/(PI * WIDTH));
 OverallAngle = (CurrentAngle + OverallAngle);
 CurrentDistance = sin((OverallAngle*PI)/360) * 2 *(TotalSpeed / DeltaSpeed) * WIDTH;
 }
 OverallDistance = (CurrentDistance-PrevDistance) + OverallDistance;
 PrevDistance=CurrentDistance;

 /*
 Serial.print(OverallDistance);
 Serial.print(" ");
 Serial.println(TotalSpeed);
 */

 return 0;
}

102

/******** MOVEMENT CONTROLLER
**
****************/
void MovementController(int Distance, int Angle, int Speed){
 float LeftWheelSpeed = 0;
 float RightWheelSpeed = 0;

 Speed=1;
 float WheelSpeeds[2];
 float RotationRadius;
 float ThetaMax;
 float VehicleForwardSpeed;

 if(Angle==0){
 float RotationRadius=0;
 float ThetaMax =(0);
 float VehicleForwardSpeed = Speed;
 }else{
 float RotationRadius = (Distance/sin(Angle/2)*2);
 float ThetaMax = (Speed*180/(RotationRadius*PI));
 float VehicleForwardSpeed = RotationRadius*PI*Angle/180;
 }

 float WheelSpeedDifference = ThetaMax*PI*WIDTH/180;
 float WheelSpeedSpin = Angle*PI*WIDTH/180;
 /*
 Serial.println("ThetaMax");
 Serial.println(ThetaMax);
 Serial.println("WheelSpeedDifference");
 Serial.println(WheelSpeedDifference);
 */
 if(RotationRadius == 0){
 if(ThetaMax == 0){
 if(WheelSpeedDifference < WIDTH){
 RightWheelSpeed = -1*Speed;
 LeftWheelSpeed = -1*Speed;
 }
 if(WheelSpeedDifference > WIDTH){
 RightWheelSpeed = +1*Speed;
 LeftWheelSpeed = +1*Speed;
 }
 }else{
 RightWheelSpeed = +1*Speed;
 LeftWheelSpeed = -1*Speed;
 }
 }else{
 if(RotationRadius < (-WIDTH)){
 RightWheelSpeed = VehicleForwardSpeed;
 LeftWheelSpeed = VehicleForwardSpeed + WheelSpeedDifference;
 }
 if(RotationRadius == (-WIDTH)){
 RightWheelSpeed = VehicleForwardSpeed;
 LeftWheelSpeed = 0;
 }
 if((RotationRadius > (-WIDTH)) && (RotationRadius < WIDTH)){
 RightWheelSpeed = (VehicleForwardSpeed - WheelSpeedDifference)/2;
 LeftWheelSpeed = (VehicleForwardSpeed + WheelSpeedDifference)/2;
 }
 if(RotationRadius == WIDTH){
 RightWheelSpeed = 0;
 LeftWheelSpeed = VehicleForwardSpeed;
 }

103

 if(RotationRadius > WIDTH){
 RightWheelSpeed = VehicleForwardSpeed - WheelSpeedDifference;
 LeftWheelSpeed = VehicleForwardSpeed;
 }
 }

 // Detect direction negative change
 if(((RightWheelSpeed < 0) && (isRNegative = false))||((RightWheelSpeed >= 0) && (isRNegative=true))){
 isRChangeDirec=true;
 }
 if(LeftWheelSpeed < 0 && isLNegative == false || LeftWheelSpeed >= 0 && isLNegative == true){
 isLChangeDirec=true;
 }

 // Adjust Speed for each motor
 // adjustedPassMotor = speedByte*(+1*adjustPercentage);
 // adjustedDriverMotor = speedByte*(-1*adjustPercentage); //adjust for opposite side motor

 GlobalRightWheelSpeed=RightWheelSpeed;
 GlobalLeftWheelSpeed=LeftWheelSpeed;

 /*
 Serial.println(" RightWheelSpeed");
 Serial.println(RightWheelSpeed);
 Serial.println("LeftWheelSpeed");
 Serial.println(LeftWheelSpeed);
 */

 return 0;
}

/*********FIND ZERO CROSSOVER
**
****************/
void FindZeroCrossover(float* Speeds,int SpeedType){

 // Right Wheel Crossover
 if((SpeedType == 1) || (SpeedType >= 3)){//1 = right turn, 3 = both turn
 if(FirstCrossOverR==true){

 float PrevRSpeed = 0;
 float RSpeedDiff = 0;
 int RHasChanged = 0;

 FirstCrossOverR = false;
 }

 RSpeedDiff=Speeds[0]-PrevRSpeed;

 PrevRSpeed=Speeds[0];

 RHasChanged = ((RSpeedDiff>=0) ? RHasChanged++ : RHasChanged--);

 if(RHasChanged >= 3){
 isRChangeDirec=false;
 FirstCrossOverR=true;
 //change Direction
 isRNegative = ((isRNegative == true) ? false : true);
 }
 }

104

 // Left Wheel Crossover
 if(SpeedType==2 || SpeedType>=3){//2 = left turn, 3 = both turn
 if(FirstCrossOverL==true){

 float PrevLSpeed = 0;
 float LSpeedDiff = 0;
 int LHasChanged = 0;

 FirstCrossOverL = false;
 }

 LSpeedDiff=Speeds[1]-PrevLSpeed;
 PrevLSpeed=Speeds[1];

 LHasChanged = ((LSpeedDiff>=0) ? LHasChanged++ : LHasChanged--);

 if(LHasChanged >= 3){
 isLChangeDirec=false;
 FirstCrossOverL=true;
 //change Direction
 isLNegative = ((isLNegative == true) ? false : true);
 }
 }

 return 0;
}

/**************MOTOR
CONTROLLER**
*************************/
void MotorController(float RightWheelSpeed, float LeftWheelSpeed){
 byte passengerMotorSpeed, driverMotorSpeed;
 int adjustedPassMotor, adjustedDriverMotor;

 /*Serial.println("RightWheelSpeed");
 Serial.println(RightWheelSpeed);
 Serial.println("LeftWheelSpeed");
 Serial.println(LeftWheelSpeed);
 */

 InputR = (RightWheelSpeed * 0.0625)+64;
 InputL = (LeftWheelSpeed *0.0625)+64;

 /*
 Serial.println("InputL");
 Serial.println(InputL);
 Serial.println("InputR");
 Serial.println(InputR);
 */

 //Transfer Function for motor
 //OutputR = CURRENT_INPUT_GAIN * InputR - PREVIOUS_INPUT_GAIN * PrevR + PrevOutR;
 //OutputL = CURRENT_INPUT_GAIN * InputL - PREVIOUS_INPUT_GAIN * PrevL + PrevOutL;

 OutputR = InputR+PrevOutR;
 OutputL = InputL+PrevOutL;

 //PrevR = InputR;

105

 //PrevL = InputL;

 PrevOutL = OutputL;
 PrevOutR = OutputR;

 /*
 Serial.println("OutputR");
 Serial.println(OutputR);
 Serial.println("OutputL");
 Serial.println(OutputL);
 */

 //Keep speed between 0 and 127
 adjustedPassMotor = constrain(InputR, 0, 127);
 adjustedDriverMotor = constrain(InputL, 0, 127);

 //Convert to bytes to send to motor driver
 passengerMotorSpeed = byte(adjustedPassMotor);
 driverMotorSpeed = byte(adjustedDriverMotor);

 /*
 Serial.println("driverMotorSpeed");
 Serial.println(driverMotorSpeed);
 Serial.println("passengerMotorSpeed");
 Serial.println(passengerMotorSpeed);
 */

 //Send values to motordriver: M1=pass motor, M2=driver motor
 roboclaw.ForwardBackwardM1(motorDriverAddress,passengerMotorSpeed);
 roboclaw.ForwardBackwardM2(motorDriverAddress,driverMotorSpeed);
}

/******Digital
Compass***
************************************/
void wherePointing(){

 //INSERT COMPASS CODE
 //Read Sensor
 sensors_event_t event;
 mag.getEvent(&event);

 // Hold the module so that Z is pointing 'up' and you can measure the heading with x&y
 // Calculate heading when the magnetometer is level, then correct for signs of axis.
 float heading = atan2(event.magnetic.y, event.magnetic.x);

 //Adjust Heading by the 'Declination Angle' (error in magnetic field based off location)
 heading += DECLINATION_ANGLE;

 //Keep heading between 0 and 2*PI
 if(heading < 0)
 heading += 2*PI;
 if(heading > 2*PI)
 heading -= 2*PI;

 // Convert radians to degrees for readability.
 float headingDegrees = heading * 180/M_PI;

 // This snippet sends the compass data and error flags to the host computer.
 String outstring = "";
 outstring += headingDegrees;
 outstring += ',';

106

 outstring += errorFlag;
 Serial.println(outstring);

 //Reset Values
 errorFlag=0;
}

[GWC, JPJ, CRE]

107

Figure 36 – Preliminary Pseudo Code for Arduino Mega Micro Controller

3.7.3 Image Processing

Image Compression

Most HD USB webcams operate at with 10-bit color depth. This means that each pixel
has 10 bits representing the red subpixel, 10 bits representing the green subpixel, and 10 bits

Init{
Initialize GPIO pins for estop trigger and sense
Initialize GPIO pins for safety light safety lights
T = sampling time for control system

}

Loop{
 While not T elapsed{
 if off{
 safety light off

}else if(autonomous){
 safety light flashing
}else{
 safety light on
}

}
acquire tachometer speeds
acquire compass heading
acquire target speed and angle
evaluate control compensator function
output signal for each motor (UART)
send compass data to PC

}

Function{
 get magnetic field information from compass
 evaluate header

108

representing the blue subpixel. In total that means each pixel in an image is represented by 30
bits of color data. For 1080p pictures the pixel dimensions are 1920x1080 at a 16:9 aspect ratio.
A 1080p picture will contain 2,073,600 pixels. At 10-bit color depth that is 62,208,000 bits or
7,776,000 bytes or 7.42 Mb. With three cameras, the software will collect 22.26 Mb of raw
camera data 24 times per second. Using the processing methods called out in the design requires
three filtered copies to be made for each camera. Using these images at full resolution requires
200.32 Mb of additional picture data to be processed and stored in memory every 0.041 seconds.
Full 1080p resolution is not required to detect 3-inch wide lines at distances on the order of 10
feet used on the vehicle.

A 240p picture has enough resolution to determine 3-inch wide lines at the distance the
vehicle’s cameras see. The pixel dimensions at 240p and 16:9 resolution are 426x240. This
image has 102,240 pixels per image or 3,067,200 bits per image at 10-bit per channel color
depth. This image only requires 375 Kb of space in memory. Three filtered copies per camera
would only require processing 3.3 Mb of image data per 0.041 seconds.

[ART]
Image Filtering

 Image filtering is used to enhance pictures captured by the camera to make it easier to
distinguish between objects of interest and unimportant data. The intelligent vehicle must be able
to detect white lines on a dark background, blue flags, and red flags.

Filtering for White Lines

 Camera images are recorded in RGB color space where the white is achieved when the
red, green, and blue channels are at 100%. Figure 37 depicts RGB color space a cube where
white sits on a corner. If white was always captured as perfect 100% red, 100% green, 100%
blue, it would be easy to distinguish white objects in an image. Unfortunately, exposure, lighting
conditions, and color casting all contribute to white not always being captured as true white on
the camera sensor. Trying to identify off-white as white in RGB color space is difficult because
white is a combination of three color channels and lives on a diagonal across three dimensions.
HSV color space models color as a cylinder with white and near white colors in the center.
Identifying white in HSV color space is computationally easier because white and white like
colors sit at the low end of the saturation spectrum and the high end of the value spectrum. The
hue channel can be completely ignored when detecting white.

109

Figure 37. RGB and HSV Color Space Models [9].

The filter process for isolating white lines consists of three steps. First, the RGB image is
converted to HSV color format. Only the saturation and value channels are used. The value
channel is given by

 (30)
where R, G, and B are the red, green, and blue channel values respectively. The saturation is
calculated using

(31)

where C is the chroma component.

Chroma is defined in Equation (32).

 (32)

Then, the average saturation, minimum saturation, and average value for the image are
calculated. Finally, each pixel that has a saturation value less than the mean of the average and
minimum saturation and a value greater than the average value is set to white. All pixels that do
not meet this criterion are set to black. This process is demonstrated in Figure 38.

V = max(R,G,B)

SHSV =

(
0, if V = 0

C
V , otherwise

C = max(R,G,B)�min(R,G,B)

110

Figure 38. Progression of Image Filtering [10].

Original Image (top), Lightness Channel (middle), Adjusted Black/White Points (bottom)

Algorithm

111

Figure 39 – Preliminary Pseudo Code for White Color Filtering

Filtering for Red and Blue Flags

 Like white, red and blue exist on corners of the RGB color cube. Due to the geometries
of the cube, it is difficult to mathematically describe all the shades of red or blue as RGB values.
The resulting function is complex. It is much easier to transform the image to HSV color space.
In HSV space, red and blue are each expressed as a range of hues at the upper end of the
saturation and lightness spectrums. Hue is defined as

.

(33)

Red is defined as HSV ranges (0-20°, 40-100%, 50-100%) and (340-360°, 40-100%, 50-100%).
Blue is defined as HSV ranges (220-260°, 40-100%, 50-100%).

H = 60

� ⇥

8
>>><

>>>:

undefined, if C = 0

G�B
C mod 6, ifmax(R,G,B) = R

B�R
C + 2, ifmax(R,G,B) = G

R�G
C + 4, ifmax(R,G,B) = B

mask whiteFilter(RGBImage* RGB){
 mask = array(RGB.width, RGB.height);
 HSVImage HSV = rgb2hsv(RGB);

// assume H is in degrees
// S and V are in percent

 value = HSV.valueChannel();
 saturation = HSV.saturationChannel();
 avg_sat = sum(pixels in saturation)/pixels.count();
 avg_val = sum(pixels in value)/pixels.count();
 min_sat = min(pixels in saturation);

mask.inRange(HSV, (0-360,0-((avg_sat+min_sat)/2),avg_val-
100); //generate mask everywhere a pixel falls
within (H1-H2,S1-S2,V1-V2) ranges

return mask;
}

112

Figure 40 – Preliminary Pseudo Code for Red and Blue Color Filtering

 From the white, red, and blue filters, points are extrapolated from areas where high
densities of white, red, or blue detected. These points are used when mapping to real-space.

After further experimentation with the method of filtering white in the image, a new method was
devised and implemented using RGB color space. The pseudo-code for the new method is shown
in Figure 43.

A line tracing algorithm is used to detect and trace the white lines in the image. The
classification of white points into line objects helps filter out some of the other noise in the
image. The lines that are used in the later mapping can be guaranteed to have a certain number of
points in them. The method of curve tracing used is described in a paper called “Curve Tracing
and Curve Detection in Images” by Karthik Raghapathy. The method involves calculating the
second-order partial derivatives and finding the Eigen values of the Hessian matrix to find the
normal to the points on the line. The angle of the line is calculated at any point where the line
exists and is used to string the points together. For efficiency, the location of the next curve point
can be predicted at one of three pixels in the direction of the curve as shown in Figure 41 [11]. In
the case that the curve point is missing in this location, the pixels in the same direction but one-
hop away can be checked, as shown in Figure 42. The retry point with the smallest difference in

mask redFilter(RGBImage* RGB){
 mask1 = array(RGB.width, RGB.height);

mask2 = array(RGB.width, RGB.height);
// assume H is in degrees
// S and V are in percent

 HSVImage HSV = rgb2hsv(RGB);

mask1.inRange(HSV, (0-20,40-100,50-100);
mask2.inRange(HSV, (340-360,40-100,50-100);

return mask1||mask2;

}

mask blueFilter(RGBImage* RGB){
 mask = array(RGB.width, RGB.height);

// assume H is in degrees
// S and V are in percent

 HSVImage HSV = rgb2hsv(RGB);

mask.inRange(HSV, (220-260,40-100,50-100);
return mask;

}

113

angle is chosen if a curve point exists at multiple retry locations. The algorithm is implemented
in the igvc_lines function in LaneCamera.cpp.

Figure 41. Linking Curve Points.

Figure 42. Retries for Missing Curve Points.

114

Figure 43 – Pseudo Code for OpenCV Image Processing

The code that handles the processing of camera data is contained in the LaneCamera module
(LaneCamera.h and LaneCamera.cpp). This code is shown below.

LaneCamera.h
#include <opencv\cv.h>
#include <opencv2\core\operations.hpp>
#include <opencv2\opencv.hpp>
#include <opencv2\core\core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv\highgui.h>
#include <iostream>
#include <stdlib.h>
#include <list>
#include <Polygon.h>

using namespace cv;
using namespace std;

#define FRAME_W 432
#define FRAME_H 240
#define FRAME_SIZE FRAME_W*FRAME_H

Mat color_filter(Mat image){
 Use OpenCV MorthologyEx
 Threshold blue channel 0-100 to 0 (out of 255)
 Threshold red channel 0-200 to 0 (out of 255)
 Bitwise_and all color channels
 Threshold 0-100 to 0 100-255 to 255

return filtered image
}

// takes a B/W input image, minimum number of points in a
line, and the camera number (used for real-world mapping)
// returns list of lines
list<Line> igvc_lines(Mat input, minLength, camera_number){

Perform algorithm in “Curve Tracing and Curve Detection
in Images” by Karthik Raghapathy

1st calculate dxx, dxy, dyx, dyy for image
find normal to line
string lines together
if line is longer than minLength transform into real
space and add to return list
return list

}

115

extern Mat color_filter(Mat &input, const char* name);
extern std::list<IGVC::Polygon *> igvc_lines(Mat &input, int minLength, int camera_number);

LaneCamera.cpp
#include "LaneCamera.h"
#include "Constants.h"
#include "PixelMap.h"

//#define RETRY_VIS

#define INVALID_ANGLE -360
#define INVALID_POINT Point(-1,-1)
#define MAX_RETRY 8 // maximum number of missing points allowed before end of line
#define MAX_CURVES 100 // maximum number of curves allowed to be found in image

// Internal Functions
deque<Point> igvc_lines_target(int x, int y, float curveDir, float curAngle, float* ang_mat, int cols, int
rows, list<int> *curvePoints, char* img, int retry_num = 0);
deque<Point> igvc_lines_target_edge(int x, int y, int d_x, int d_y, float* ang_mat, int cols, int rows,
list<int> *curvePoints, char* img, int retry_num);

/***
 * Name: color filter
 * Inputs:
 * - input: input image matrix
 * - name: name to display on output window
 * Return: image post filter
 * Description:
 * filters the image for the line detection function
 ***/
Mat color_filter(Mat &input, const char* name) {
 resize(input, input, Size(FRAME_W, FRAME_H), 0, 0, INTER_CUBIC);
 char names[255] = "Unfiltered ";
 strcat(names, name);
 imshow(names, input);
 char * img = (char*)input.ptr();

 morphologyEx(input, input, MORPH_CLOSE, getStructuringElement(MORPH_ELLIPSE, Size(2,2)));

 morphologyEx(input, input, MORPH_OPEN, getStructuringElement(MORPH_ELLIPSE, Size(2,2)));

 vector<Mat> BGR_channels;
 split(input, BGR_channels);

 threshold(BGR_channels[0], BGR_channels[0], 100, 255, THRESH_TOZERO);
 threshold(BGR_channels[2], BGR_channels[2], 200, 255, THRESH_TOZERO);

 bitwise_and(BGR_channels[0], BGR_channels[1], input);
 bitwise_and(BGR_channels[2], input, input);

 threshold(input, input, 100, 255, THRESH_BINARY);

 char names2[255] = "Filtered ";
 strcat(names2, name);
 imshow(names2, input);

 return input;
}

116

/***
 * Name: igvc_lines
 * Inputs:
 * - input: input image matrix
 * - minLength: minimum length of a recognized line
 * - camera_number: camera number to use in offset table
 * Return: list of lines
 * Description:
 * Line Tracing Derived from "Curve Tracing and Curve Detection In Images" by Karthik
Raghapathy (2004)
 * Hessian Matrix
 * Steger's algorithm
 ***/
std::list<IGVC::Polygon *> igvc_lines(Mat &input, int minLength, int camera_number){
 list<IGVC::Polygon *> ret;

 char ptr_dx[FRAME_SIZE];
 char ptr_dy[FRAME_SIZE];
 float ang_mat[FRAME_SIZE];
 //float *ang_mat = (float *)malloc(FRAME_SIZE*sizeof(float));

 uchar *image = input.ptr();
 int rows = input.rows;
 int cols = input.cols;
 int type = input.type();

 // Calculate First Order Derivatives
 for(int y = 1; y < rows; y++){
 for(int x = 1; x < input.cols; x++){
 ptr_dx[y*cols+x] = image[(y*cols+x)] - image[y*cols + x-1];
 ptr_dy[y*cols+x] = image[y*cols+x] - image[(y-1)*cols+x];
 }
 }

 // Max Strenght Point is used to begin line tracing
 deque<int> localCurvePoints;

 // Calculate Second Order Derivatives
 for(int y = 2; y < rows; y++){
 for(int x = 2; x < input.cols; x++){
 float a = ptr_dx[y*cols+x] - ptr_dx[y*cols + x-1]; //dxx
 float b = ptr_dx[y*cols+x] - ptr_dx[(y-1)*cols+x]; //dxy
 float c = b;//ptr_dy[y*cols+x] - ptr_dy[y*cols + x-1]; //dyx
 float d = ptr_dy[y*cols+x] - ptr_dy[(y-1)*cols+x]; //dyy

 float gamma = sqrt(abs((a+d)*(a+d) - 4*b*c));
 float strength = max((a+d+gamma)/2, (a+d-gamma)/2); // Maximum Eiganvalue

 if ((strength - a) != 0){// && ((a + d)*(a + d) - 4 * b*c) >= 0 && b!=0) {
 float n = b / (strength - a);
 float nx = n / sqrt(1 + n*n); // Normalized Eiganvector_x
 float ny = 1 / sqrt(1 + n*n); // Normalized Eiganvector_y
 float t = -(nx*ptr_dx[y*cols + x] + ny*ptr_dy[y*cols + x]) / (nx*nx*a + 2
* nx*ny*b + ny*ny*d);
 float angle = (int)cvFastArctan(ny, -nx);
 if (x == 108 && y == 102) {
 int r = 7;
 }

 if (t*nx >= -0.5 && t*nx <= 0.5 && t*ny >= -0.5 && t*ny <= 0.5) {
 // Is a curve point
 image[y*cols + x] = 50; // used for debug display

117

 ang_mat[y*cols + x] = angle;

 if ((x > 5 && y > 5 && y < rows - 5 && x < cols - 5 && strength
>1.0)){
 localCurvePoints.push_front(y*cols + x); // Place all
start points for line construction in this list
 }

 }
 else {
 // Is not a curve point
 image[y*cols + x] = 0;
 ang_mat[y*cols + x] = INVALID_ANGLE;
 }
 }
 else {
 // Divide by Zero error - not a curve point
 image[y*cols + x] = 0;
 ang_mat[y*cols + x] = INVALID_ANGLE;
 }

 }
 }

 // Make pixels that are not processed by point detection INVALID (-360)
 for (int y = 0; y < rows; y++) {
 ang_mat[y*cols] = INVALID_ANGLE;
 ang_mat[y*cols+1] = INVALID_ANGLE;
 ang_mat[y*cols+2] = INVALID_ANGLE;

 // Also clear from debug output
 image[y*cols] = 0;
 image[y*cols + 1] = 0;
 image[y*cols + 2] = 0;
 }
 for (int x = 0; x < cols; x++) {
 ang_mat[x] = INVALID_ANGLE;
 ang_mat[cols + x] = INVALID_ANGLE;

 // Also clear from debug output
 image[x] = 0;
 image[cols + x] = 0;
 }

 // Curve Tracing
 Mat temp = Mat(rows, cols, input.type()); // Used to hold curve data temporarily
 int foundCurves = 0;

 while (!localCurvePoints.empty() && foundCurves <= MAX_CURVES) // While start points exist
 {
 int index = localCurvePoints.front();
 int x = index%cols; int y = index/cols;
 localCurvePoints.pop_front();

 int count = 0; // Counts number of points in curve
 int x_prev, y_prev;
 list<int> _points; // Keeps track of points in current line;
 list<int> *points = &_points;
 temp.setTo(0); // clear temporary line visualization matrix
 bool end = false; // Marks end of curve
 float curAngle, angle1 = 0, angle2 = 0, curveDir;

118

 // Curve Tracing loop
 while (!end && count < 500) {
 count++;
 if (count > 3) {
 curAngle = (ang_mat[x + cols*y] + angle1 + angle2) / 3;
 }
 else {
 curAngle = ang_mat[x + cols*y];
 }
 x_prev = x; y_prev = y;

 angle1 = angle2;
 angle2 = curAngle;

 curveDir = curAngle + 90;
 if (curveDir > 180) curveDir -= 360; // Put curve direction in range -180 to 180
degrees

 points->push_front(y*cols+x); // Add point to curve list

 temp.ptr()[x + cols*y] = 255; // Visualize curve point

 deque<Point> point_buf = igvc_lines_target(x, y, curveDir, curAngle, ang_mat,
cols, rows, points, (char*)temp.ptr());
 if (point_buf.empty()) {
 end = true;
 }
 else {
 count += point_buf.size();
 Point temp_p = point_buf.back();
 point_buf.pop_back();
 x = temp_p.x;
 y = temp_p.y;
 }

 // Draw

 while (!point_buf.empty()) {
 Point temp_p = point_buf.back();
 points->push_front(temp_p.x + cols*temp_p.y);
 temp.ptr()[temp_p.x + cols*temp_p.y] = 255; // Visualize curve point
 point_buf.pop_back();
 }

 if (find(points->begin(), points->end(), y*cols + x) != points->end()) {
 end = true;
 }

 if (ang_mat[x + cols*y] == INVALID_ANGLE) {
 // Search for continuation
 end = true;
 }
 }

 // Only add lines to list if they are longer than the minumim length
 if (count > minLength) {
 bitwise_or(temp, input, input);
 foundCurves++;

 IGVC::Polygon* line = new IGVC::Polygon();

119

 while (!points->empty()) {
 int f_index = points->front();

 // Translate to local coordinates
 float translated_x, translated_y;
 pixelMap(f_index % cols, f_index / cols, camera_number, translated_x,
translated_y);
 IGVC::Point* pt = new IGVC::Point();
 pt->x = translated_x; pt->y = translated_y;
 line->AddPoint(pt); // Add point to Polygon

 // For speed improvements don't process start points that are already in
curves
 deque<int>::iterator f_remove = find(localCurvePoints.begin(),
localCurvePoints.end(), f_index);
 if (f_remove != localCurvePoints.end()) {
 localCurvePoints.erase(f_remove);
 }
 points->pop_front();
 }

 ret.push_front(line); // Add Polygon to return list
 }
 }

 //namedWindow("Contours", WINDOW_AUTOSIZE);
 imshow(CAMERA_NAME[camera_number], input);

 return ret;
}

/***
 * Name: igvc_lines_target_edge
 * Inputs:
 * - x: last confirmed point x
 * - y: last confirmed point y
 * - d_x: x derivative at curve point x,y
 * - d_y: y_derivative at curve point x,y
 * - ang_mat: matrix of curve angles
 * - cols: number of columns in image
 * - rows: number of rows in image
 * - curvePoints: list of curve points
 * - img: image (only used for debug)
 * - retry_num: number of retries when points are missing from the curve
 * Return: deque of next points in line
 * Description: Recursive function finds the next point in the curve when the point is in the
middle of the possible field
 ***/
deque<Point> igvc_lines_target(int x, int y, float curveDir, float curAngle, float* ang_mat, int cols, int
rows, list<int> *curvePoints, char* img, int retry_num) {
 float ang1, ang2, ang3;
 Point p1, p2, p3;
 int d_x1, d_y1, d_x2, d_y2, d_x3, d_y3;

 /*Uncomment to visualize retry pattern*/
#ifdef RETRY_VIS
 img[x + cols*y] = 200; // Visualize curve point
#endif

 // Safety Check
 if (x > cols - 2 || y > rows - 2 || x < 2 || y < 2) {

120

 // Get rid of egde conditions
 deque<Point> r; //empty
 return r;
 }

 // Pixel Canidates
 if (curveDir >= -22.5 && curveDir < 22.5) {
 // Check pixels UR, R, and DR
 d_x1 = 1;
 d_y1 = -1; // UR
 d_x2 = 1;
 d_y2 = 0; //R
 d_x3 = 1;
 d_y3 = 1; //DR
 }
 else if (curveDir >= 22.5 && curveDir < 67.5) {
 // Check pixels U, UR, R
 d_x1 = 0;
 d_y1 = - 1; // U
 d_x2 = 1;
 d_y2 = -1; // UR
 d_x3 = 1;
 d_y3 = 0; //R
 }
 else if (curveDir >= 67.5 && curveDir < 112.5) {
 // Check pixels UL, U, UR
 d_x1 = -1;
 d_y1 = - 1; // UL
 d_x2 = 0;
 d_y2 = -1; // U
 d_x3 = 1;
 d_y3 = -1; // UR
 }
 else if (curveDir >= 112.5 && curveDir < 157.5) {
 // Check pixels L, UL, U
 d_x1 = -1;
 d_y1 = 0; // L
 d_x2 = -1;
 d_y2 = -1; // UL
 d_x3 = 0;
 d_y3 = -1; // U
 }
 else if (curveDir >= -67.5 && curveDir < -22.5) {
 // Check pixels D, DR, R
 d_x1 = 0;
 d_y1 = 1; // D
 d_x2 = 1;
 d_y2 = 1; //DR
 d_x3 = 1;
 d_y3 = 0; //R
 }
 else if (curveDir >= -112.5 && curveDir < -67.5) {
 // Check pixels D, DL, DR
 d_x1 = -1;
 d_y1 = 1; //DL
 d_x2 = 0;
 d_y2 = 1; // D
 d_x3 = 1;
 d_y3 = 1; //DR
 }
 else if (curveDir >= -157.5 && curveDir < -112.5) {
 // Check pixels D, DL, L

121

 d_x1 = -1;
 d_y1 = 0; // L
 d_x2 = -1;
 d_y2 = 1; //DL
 d_x3 = 0;
 d_y3 = 1; // D
 }
 else if (curveDir >= -180 && curveDir <= 180) {
 // Check pixels DL, L, UL
 d_x1 = -1;
 d_y1 = -1; // UL
 d_x2 = -1;
 d_y2 = 0; // L
 d_x3 = -1;
 d_y3 = 1; //DL
 }
 else {
 deque<Point> r;
 return r; // Bad Angle return empty stack
 }

 p1 = Point(x + d_x1, y + d_y1);
 p2 = Point(x + d_x2, y + d_y2);
 p3 = Point(x + d_x3, y + d_y3);

 ang1 = ang_mat[p1.x + cols *p1.y];
 ang2 = ang_mat[p2.x + cols *p2.y];
 ang3 = ang_mat[p3.x + cols *p3.y];

 deque<Point> d1, d2, d3;

 if (ang1 == INVALID_ANGLE && ang2 == INVALID_ANGLE && ang3 == INVALID_ANGLE) {
 // Retry
 if (retry_num < MAX_RETRY-1) {
 retry_num++;

 d1 = igvc_lines_target_edge(p1.x, p1.y, d_x1, d_y1, ang_mat, cols, rows,
curvePoints, img, retry_num);
 d2 = igvc_lines_target(p2.x, p2.y, curveDir, curAngle, ang_mat, cols, rows,
curvePoints, img, retry_num);
 d3 = igvc_lines_target_edge(p3.x, p3.y, d_x3, d_y3, ang_mat, cols, rows,
curvePoints, img, retry_num);
 Point tp1, tp2, tp3;
 if(!d1.empty())
 tp1 = d1.back();
 if(!d2.empty())
 tp2 = d2.back();
 if(!d3.empty())
 tp3 = d3.back();
 ang1 = ang_mat[tp1.x + cols *tp1.y];
 ang2 = ang_mat[tp2.x + cols *tp2.y];
 ang3 = ang_mat[tp3.x + cols *tp3.y];
 }
 else {
 deque<Point> r;
 return r; // return empty stack
 }
 }

 // return the winning point (lesser angle)
 if (abs(curAngle - ang1) < abs(curAngle - ang2) && abs(curAngle - ang1) < abs(curAngle - ang3)) {
 d1.push_front(p1);

122

 return d1;
 }
 else if (abs(curAngle - ang2) < abs(curAngle - ang1) && abs(curAngle - ang2) < abs(curAngle -
ang3)) {
 d2.push_front(p2);
 return d2;
 }
 else {
 d3.push_front(p3);
 return d3;
 }
}

/***
 * Name: igvc_lines_target_edge
 * Inputs:
 * - x: last confirmed point x
 * - y: last confirmed point y
 * - d_x: x derivative at curve point x,y
 * - d_y: y_derivative at curve point x,y
 * - ang_mat: matrix of curve angles
 * - cols: number of columns in image
 * - rows: number of rows in image
 * - curvePoints: list of curve points
 * - img: image (only used for debug)
 * - retry_num: number of retries when points are missing from the curve
 * Return: deque of next points in line
 * Description: Recursive function finds the next point in the curve when the point is on the
edge of the possible field
 ***/
deque<Point> igvc_lines_target_edge(int x, int y, int d_x, int d_y, float* ang_mat, int cols, int rows,
list<int> *curvePoints, char* img, int retry_num) {
 // Safety Check
 if (x > cols - 2 || y > rows - 2 || x < 2 || y < 2) {
 // Get rid of egde conditions
 deque<Point> r; //empty
 return r;
 }

 /*Uncomment to visualize retry pattern*/
#ifdef RETRY_VIS
 img[x + cols*y] = 200; // Visualize curve point
#endif

 deque<Point> d;
 Point p = Point(x + d_x, y + d_y);
 float ang = ang_mat[p.x + cols *p.y];
 if (ang == INVALID_ANGLE) {
 if (retry_num < MAX_RETRY - 1) {
 retry_num++;
 d = igvc_lines_target_edge(p.x, p.y, d_x, d_y, ang_mat, cols, rows, curvePoints,
img, retry_num);
 }
 else {
 return d; // return empty stack
 }
 }

 d.push_front(p);
 return d;
}

123

[ART]
3.7.4 Object Mapping

Mapping with Respect to Camera

 Line and pothole perception is accomplished through camera images. Geometry is used
to map each pixel in the image to a point in real space. Some assumptions are necessary.

 Assuming the pixel sensors on the camera are much closer together than the distance to
the image that they are capturing, the camera sensor can be approximated as a point where each
pixel captures light at an angle from the center of the camera’s field of vision. The field of vision
of a camera consists of a horizontal and vertical component, qfh and qfv respectively. These
angles are included with camera specifications or can be measured. Figure 44 demonstrates this
model, and will be demonstrated using white tape as it will be in the competition. The angles are
calculated from the center of the pixel. The angle qx for each pixel is calculated using

.
(34)

Here w is the pixel number from the left side of the image and W is the width of the image
sensor in pixels.

The angle qy is calculated similarly using

.
(35)

Here h is the pixel number from the top of the image and H is the height of the image sensor in
pixels.

✓
x

(w) =
✓
fh

(2w �W � 1)

2W

✓y(y) =
✓fv(2h�H � 1)

2H

124

Figure 44. Camera Pixel Grid.

In addition to the camera model, other assumptions must be made about the configuration of the
vehicle. First, all objects of interest for camera detection are assumed to be located on the ground
plane which is flat always perpendicular to the mast holding the camera. In the following figures
the ground plane is the x-y plane. The camera is mounted at height h from the ground plane. The
normal to the camera and the normal to the ground must both exist exclusively in the y-z plane.
The camera angle qc is defined as the angle between the plane perpendicular to the mast at height
h and the center of the camera’s field of vision. Figure 45 shows the geometries used in the
derivation of

,

(36)

the formula for mapping pixels to real space y-coordinates from the pixel angle approximation
qy.

y (✓y) =
h

tan (✓c + ✓y)

125

Figure 45. Geometry for Y Coordinates.

 Figure 46 shows the geometry for the derivation of

, (37)

the formula used to compute the real space x-coordinate for each pixel given the pixel’s x-angle
qx and corresponding real-world y coordinate.

Figure 46. Geometry for X Coordinates.

 The real-world mapping of each pixel in a compressed 270x480 pixel image from the
Logitech C920 webcam is shown in Figure 47 with the camera mounted at 45° and height 5ft.
The C920 camera has a horizontal field of view qfh = 70.42° and vertical field of view qfv =
43.30°.

x (✓
x

, ✓

y

) = y (✓
y

) · tan (✓
x

)

camera

camera

126

Figure 47. Pixel Mapping to Real World Position.

Mapping with Respect to GPS coordinates

 Three cameras are mounted to the vehicle as shown in Figure 48. The mast holding the
cameras and GPS antenna is designated by the solid black dot in the center of the vehicle. The
local coordinate axis for the vehicle is defined so the direction of motion is in the negative y
direction. The positive y-axis is designated as 0° and the direction of forward motion as 180°.
Camera 1 is located at 90°, camera 2 at 180°, and camera 3 at 270°.

127

Figure 48. Camera Position to Global Position Mapping.

 For each camera, there is an offset di from the vehicle’s GPS reference point (black dot)
and the camera’s origin. This offset only exits in the y direction of each camera. The process for
translating the position of an object from camera begins by adding d to the y coordinate and
finding the distance and angle to the object from the GPS reference point. The distance d’ is
given by

.
(38)

Here the subscript i refers to the camera number. The angle from the y-axis reference is given by

(39)

where qi is the offset angle for the camera from the y-axis. The heading angle for the vehicle qoff
is acquired from the compass. The object’s offset from north q’ is calculated by

. (40)
The latitudinal and longitudinal coordinate offsets for the object from vehicle can be determined
by projecting the distance vector onto the y’ (latitude) and x’ (longitude) axes using Equation
(41) and Equation (42). The GPS must be accurate to a few inches for this method to effectively
plot the location of objects.

d

0 =
q

(yi + �i)2 + x

2
i

✓ = tan�1

✓
xi

yi + �i

◆
+ ✓i

✓0 = ✓ � ✓
off

128

 (41)
 (42)

The values of dlat and dlong have the same units as the height of the cameras, likely feet. These
values need to be converted to GPS angles. Since the curvature of the earth’s surface is very
small over the distance the vehicle will travel, a flat earth can be assumed. The conversion
between feet and GPS angles can remain constant over the entire course, however, these
constants will change depending on the location on Earth. These values will be calculated in a
calibration routine when the GPS takes its first reading. The distance between two points on
Earth specified as latitude and longitude can be calculated using the haversine formula in
Equation (43).

(43)

Here j is latitude, l is longitude, and R is the earth’s radius (6,371km) [12]. These displacements
are added to the GPS coordinates of the vehicle to get the GPS position of the object.

The same process is used for mapping objects detected by LiDAR to GPS coordinates. The
LiDAR’s angles match the angles designated in Figure 48.

Code

The code for mapping image points in real space is contained in PixelMap.h.

PixelMap.h
#ifndef PIXEL_MAP_H
#define PIXEL_MAP_H

#include <math.h>
#include "Constants.h"

/***
 * Name: pixelMap
 * Inputs:
 * - pixel_X: pixel x location
 * - pixel_Y: pixel y location
 * - camera_number: camera number in offset tables
 * - &x: reference to float (will return real-world x coordinate)
 * - &y: reference to float (will return real-world y coordinate)
 * units of x and y will match CAMERA_HEIGHT units
 * Description: Converts pixel coordinate to real world coordinate
 **/
static void pixelMap(int pixel_X, int pixel_Y, int camera_number, float& x, float& y){
 float angle_x = FIELD_OF_VISION_H*(2.0*pixel_X-PIXEL_WIDTH-1.0)/(2.0*PIXEL_WIDTH);
 float angle_y = FIELD_OF_VISION_V*(2.0*pixel_Y-PIXEL_HEIGHT-1.0)/(2.0*PIXEL_HEIGHT);

 y = CAMERA_HEIGHT/tan(PI*(angle_y+CAMERA_ANGLE[camera_number])/180.0);
 x = y * tan(PI*angle_x/180.0) ;

 // If camera is not facing heading direction compute the offset

�lat = d0 cos ✓0

�
long

= d0 sin ✓0

a = sin

2

✓
��

2

◆
+ cos�1 · cos�2 · sin2

✓
��

2

◆

c = 2 · atan2(
p
a,
p
1� a)

d = R · c

129

 if(CAMERA_HORIZONTAL_ANGLE[camera_number] != 0){
 float m = sqrt(x*x + y * y);
 float phi = atan2f(x, y); //in radians

 x = m*sin(CAMERA_HORIZONTAL_ANGLE[camera_number] + phi);
 y = m*cos(CAMERA_HORIZONTAL_ANGLE[camera_number] + phi);
 }
 y = y + CAMERA_Y_OFFSET[camera_number];
 x = x - CAMERA_X_OFFSET[camera_number];
}
#endif

The code used to map LiDAR and camera points and draw them in the visualizer is in Map.h and
Map.cpp below. The LiDAR mapping code groups points together into objects based on the
difference in x-y derivatives between points and the distances between points. Like the line
tracing algorithm, the algorithm is robust enough to eliminate objects that do not contain a
greater than the minimum number of points. This eliminates erroneous reflections from being
treated as objects.

Map.h
#include <cstdint>
#include <list>
#include "Polygon.h"
#include "Scan.h"
#include "LaneCamera.h"

#define MAP_SIZE 1000
#define CM_PER_M 100.0

namespace IGVC{
class Map
{
private:
 std::list<IGVC::Polygon *> objects;
 void leftPath(int x, int y);
 void rightPath(int x, int y);
 void middlePath(int x, int y);

public:
 Map(void);
 ~Map(void);
 void ProcessLidar(Scan *scan);
 void Map::ProcessCamera(Mat frame, const char* name, int camera_number);
 void Draw();
 void Clear();
 void FindPath();
 char cam_map[MAP_SIZE][MAP_SIZE];
 int tar_x, tar_y;//cm
};
}

Map.cpp
#include "Map.h"
#include <math.h>
#include "Polygon.h"
#include "Constants.h"
#include "PixelMap.h"

130

#include "GL/freeglut.h"

#define OBJECT_SENSITIVITY 0.3 //meters
#define MIN_SHAPE_POINTS 3
#define ANGLE_SENSITIVITY 0.5

#define OBSTACLE -1
#define LIDAR_OBSTACLE -2
#define DANGER_ZONE -3

using namespace std;
using namespace IGVC;

/**
 * Name: Map [Constructor]
 * Description: Constructs the Map Object
 **/
Map::Map(void)
{
}

/**
 * Name: Map [Destructor]
 * Description: Frees memory from object list
 **/
Map::~Map(void)
{
 for(std::list<IGVC::Polygon *>::iterator it = objects.begin(); it != objects.end(); ++ it){
 delete *it;
 }
 objects.clear();
}

#ifndef REMOVE_LIDAR_OBJECT_DETECTION
/***
 * Name: Process Lidar
 * Inputs:
 * - scan: Scan object
 * Description: Uses data from Scan object to construct map
 ***/
void Map::ProcessLidar(Scan *scan)
{
 // Detect Object
 float start_point = scan->ScanDistance()[0];
 IGVC::Polygon *shape = new IGVC::Polygon();
 shape->type = LIDAR_TYPE;
 int points_in_shape = 0;
 bool first = true;
 bool corner = false;
 for (int i = 4; i < scan->ScanSize(); i++){
 corner = false;
 float d1 = scan->Derivative()[i], d2 = scan->Derivative()[i-1], d3 = scan->Derivative()[i-
3], d4 = scan->Derivative()[i-4];
 float a1 = atan((d1+d2)/2);
 float a2 = atan((d3+d4)/2);

 float dif = abs(a1 - a2);
 if (dif > ANGLE_SENSITIVITY) corner = true;

 // Check for end of object

131

 // Block out area behind lidar from -140 to -180 and 140 to 180
 if (scan->ScanDistance()[i] <= (OBJECT_SENSITIVITY/2 + start_point) && scan-
>ScanDistance()[i] >= (start_point - OBJECT_SENSITIVITY/2) && scan->ScanAngle()[i] < 140 && scan-
>ScanAngle()[i] > -140){
 // Add first point or "corner" point
 if(first || corner){
 Point *point = new Point();
 point->x = -scan->ScanY()[i] + LIDAR_X_OFFSET; //meters
 point->y = scan->ScanX()[i] + LIDAR_Y_OFFSET; //meters
 shape->AddPoint(point);
 }
 first = false;
 points_in_shape++;
 start_point = scan->ScanDistance()[i];
 if(i == scan->ScanSize()-1){
 // DON'T LOSE LAST OBJECT
 if(i>0){
 //add end point
 Point *point = new Point();
 point->x = -scan->ScanY()[i-1] + LIDAR_X_OFFSET; //meters
 point->y = scan->ScanX()[i-1] + LIDAR_Y_OFFSET; //meters
 shape->AddPoint(point);
 }
 objects.push_back(shape);
 // Create new shape for deletion (wasteful but necessary for now)
 shape = new IGVC::Polygon();
 start_point = scan->ScanDistance()[i];
 }
 }else{
 if(points_in_shape >= MIN_SHAPE_POINTS){
 if(i>0){
 //add end point
 Point *point = new Point();
 point->x = -scan->ScanY()[i-1] + LIDAR_X_OFFSET; //meters
 point->y = scan->ScanX()[i-1] + LIDAR_Y_OFFSET; //meters
 shape->AddPoint(point);
 shape->type = LIDAR_TYPE;
 }
 objects.push_back(shape);
 }else{
 delete shape;
 shape = NULL;
 }
 // Clean Up and Reset for next point
 shape = new IGVC::Polygon();
 shape->type = LIDAR_TYPE;
 start_point = scan->ScanDistance()[i];
 first = true;
 points_in_shape = 0;
 }
 }
 delete shape;
 shape = NULL;
}
#else
// discrete version
void Map::ProcessLidar(Scan *scan)
{
 float x,y;
 float start_point = scan->ScanDistance()[0];
 for (int i = 0; i < scan->ScanSize(); i++){
 // Block out area behind lidar from -140 to -180 and 140 to 180

132

 if (scan->ScanDistance()[i] <= (OBJECT_SENSITIVITY/2 + start_point) && scan-
>ScanDistance()[i] >= (start_point - OBJECT_SENSITIVITY/2) && scan->ScanAngle()[i] < 140 && scan-
>ScanAngle()[i] > -140){
 x = -scan->ScanY()[i] + LIDAR_X_OFFSET; //meters
 y = scan->ScanX()[i] + LIDAR_Y_OFFSET; //meters

 if(x > (-MAP_SIZE+1)/2/CM_PER_M && x < (MAP_SIZE-1)/2/CM_PER_M && y > (-
MAP_SIZE+1)/2/CM_PER_M && y < (MAP_SIZE-1)/2/CM_PER_M){
 cam_map[(int)(x*CM_PER_M)+MAP_SIZE/2][(int)(y*CM_PER_M)+MAP_SIZE/2] =
LIDAR_OBSTACLE;
 }
 }
 start_point = scan->ScanDistance()[i];
 }
}
#endif
/***
 * Name: Draw
 * Description: Draws the objects in the object list
 ***/
void Map::Draw(){
 for(std::list<IGVC::Polygon *>::iterator it = objects.begin(); it != objects.end(); ++ it){
 (*it)->Draw();

 }

 //draw discrete points
 glLineWidth(2.0f);

 for(int y = 0; y < MAP_SIZE; y++){
 for (int x = 0; x < MAP_SIZE; x++){
 if(cam_map[x][y] == OBSTACLE){
 glBegin(GL_LINE_STRIP);
 glColor3f(1.0, 1.0, 0.0);
 glVertex2d((x-MAP_SIZE/2)/VISUALIZER_SCALE/CM_PER_M, (y-
MAP_SIZE/2)/VISUALIZER_SCALE/CM_PER_M);
 glVertex2d((x-MAP_SIZE/2)/VISUALIZER_SCALE/CM_PER_M+0.001, (y-
MAP_SIZE/2)/VISUALIZER_SCALE/CM_PER_M+0.001);
 glEnd();
 }else if(cam_map[x][y] == LIDAR_OBSTACLE){
 glBegin(GL_LINE_STRIP);
 glColor3f(1.0, 0.0, 0.0);
 glVertex2d((x-MAP_SIZE/2)/VISUALIZER_SCALE/CM_PER_M, (y-
MAP_SIZE/2)/VISUALIZER_SCALE/CM_PER_M);
 glVertex2d((x-MAP_SIZE/2)/VISUALIZER_SCALE/CM_PER_M+0.001, (y-
MAP_SIZE/2)/VISUALIZER_SCALE/CM_PER_M+0.001);
 glEnd();
 }
 }
 }

 //draw path
 for(int y = 0; y < MAP_SIZE; y++){
 for (int x = 0; x < MAP_SIZE; x++){
 if(cam_map[x][y] > 0){
 glBegin(GL_LINE_STRIP);
 glColor3f(cam_map[x][y]/255.0, cam_map[x][y]/255.0, cam_map[x][y]/255.0);
 glVertex2d((x-MAP_SIZE/2)/VISUALIZER_SCALE/CM_PER_M, (y-
MAP_SIZE/2)/VISUALIZER_SCALE/CM_PER_M);

133

 glVertex2d((x-MAP_SIZE/2)/VISUALIZER_SCALE/CM_PER_M+0.001, (y-
MAP_SIZE/2)/VISUALIZER_SCALE/CM_PER_M+0.001);
 glEnd();
 }
 }
 }

 //target
 glBegin(GL_LINE_STRIP);
 glColor3f(1.0, 0.0, 1.0);
 glVertex2d(0, SAFE_FRONT_SPACE/VISUALIZER_SCALE/CM_PER_M);
 glVertex2d((tar_x - (MAP_SIZE/2))/VISUALIZER_SCALE/CM_PER_M, (tar_y -
(MAP_SIZE/2))/VISUALIZER_SCALE/CM_PER_M);
 glEnd();

}

/***
 * Name: Process Camera
 * Input: OpenCV Mat - frame from camera
 * Description: Processes camera frame to find lane lines in real space
 ***/
void Map::ProcessCamera(Mat frame, const char* name, int camera_number){
 Mat IMG_OUT;
 // Read the video capture stream into the frame matrix, change to HSV colorspace.

 IMG_OUT = color_filter(frame, name);

#ifdef BYPASS_LINE_TRACING
 // DIRECT TO POINT
 for (int y = 0; y < frame.rows; y++) {
 for (int x = 0; x < frame.cols; x++) {
 if(frame.ptr()[frame.cols*y+x] !=0){
 float translated_x, translated_y;
 pixelMap(x, y, camera_number, translated_x, translated_y);
 if(translated_x > (-MAP_SIZE+1)/2/CM_PER_M && translated_x < (MAP_SIZE-
1)/2/CM_PER_M && translated_y > (-MAP_SIZE+1)/2/CM_PER_M && translated_y < (MAP_SIZE-1)/2/CM_PER_M){

 cam_map[(int)(translated_x*CM_PER_M)+MAP_SIZE/2][(int)(translated_y*CM_PER_M)+MAP_SIZE/2] =
OBSTACLE;
 }
 }
 }
 }
#else
 //Line Tracing
 list<IGVC::Polygon *> obj = igvc_lines(IMG_OUT, MIN_LINE_LENGTH, camera_number);
 while(!obj.empty()){
 Polygon * poly = obj.front();
 if (camera_number == 0)
 poly->type = CAMC_TYPE;
 else if(camera_number == 1)
 poly->type = CAML_TYPE;
 else if(camera_number == 2)
 poly->type = CAMR_TYPE;
 objects.push_front(poly);
 obj.pop_front();
 }
#endif
}

/***

134

 * Name: Clear
 * Description: Clears the map
 ***/
void Map::Clear(){
 for(std::list<IGVC::Polygon *>::iterator it = objects.begin(); it != objects.end(); ++ it){
 delete *it;
 }
 objects.clear();

 //clear
 for(int y = 0; y < MAP_SIZE; y++){
 for (int x = 0; x < MAP_SIZE; x++){
 cam_map[x][y] = 0;
 }
 }
}

void Map::FindPath(){
 int x=MAP_SIZE/2, y=MAP_SIZE/2; // start point
 int prev_x = x, prev_y = y;
 char prev_point = cam_map[x][y];

 bool safe = true;

 // first run check y+front+1, x-side-1, x-side, x+side+1
 middlePath(x+SAFE_SIDE_SPACE,y+1);
 middlePath(x-SAFE_SIDE_SPACE, y+1);

 int off = 0;
 for(int front = 0; front < 10; front++){
 char f1 = cam_map[x+off+1][y+SAFE_FRONT_SPACE+front];
 char f2 = cam_map[x+off][y+SAFE_FRONT_SPACE+front];
 if(f2 - f1 > 0){ //derivative
 //go right
 off += 1;
 }else if(f2 - f1 < 0){
 //go left
 off -= 1;
 }
 }

 tar_x = x+off;
 tar_y = y+10+SAFE_FRONT_SPACE;
}

void Map::leftPath(int x, int y){
 if(x == 1 || x == MAP_SIZE-1 || y ==1 || y==MAP_SIZE-1) return;//out of bounds
 // Check for Obstacles
 if(cam_map[x-1][y] < 0 || cam_map[x-1][y+1] < 0 || cam_map[x][y+1] < 0){
 // Yes we are beside an obstacle
 cam_map[x][y] = 127;
 }else{
 leftPath(x-1, y+1);
 if(cam_map[x-1][y+1] > 0){
 char val = max((char)(cam_map[x-1][y+1] - 1), cam_map[x][y]);
 cam_map[x][y] = val;
 }
 }
}

void Map::rightPath(int x, int y){
 if(x == 1 || x == MAP_SIZE-1 || y ==1 || y==MAP_SIZE-1) return;//out of bounds

135

 // Check for Obstacles
 if(cam_map[x][y+1] < 0 || cam_map[x+1][y+1] < 0 || cam_map[x+1][y] < 0){
 // Yes we are beside an obstacle
 cam_map[x][y] = 127;
 }else{
 rightPath(x+1, y+1);
 if (cam_map[x+1][y+1] > 0){
 char val = max((char)(cam_map[x+1][y+1] - 1), cam_map[x][y]);
 cam_map[x][y] = val;
 }
 }
}

void Map::middlePath(int x, int y){
 if(x == 1 || x == MAP_SIZE-1 || y ==1 || y==MAP_SIZE-1) return; //out of bounds
 // Check for Obstacles
 if(cam_map[x][y+1] < 0 || cam_map[x-1][y+1] < 0 || cam_map[x+1][y] < 0){
 // Yes we are beside an obstacle
 cam_map[x][y] = 127;
 }else{
 middlePath(x,y+1);
 leftPath(x-1,y+1);
 rightPath(x+1,y+1);
 char val = max(cam_map[x][y+1], cam_map[x-1][y+1]);
 val = max(val, cam_map[x+1][y+1]);
 val = max(val, cam_map[x][y]);
 if(val > 0)
 cam_map[x][y] = val-1;
 }

}

Utility Code

Map.h and Map.cpp and the LiDAR and camera code require some utility objects Polygon, and
Point. The code for these classes are shown below in Polygon.h, Polygon.cpp, Point.h, and
Point.cpp.

Polygon.h
#include "Point.h"
#include <list>

namespace IGVC{
 enum poly_type {NULL_TYPE = 0, LIDAR_TYPE, CAMC_TYPE, CAML_TYPE, CAMR_TYPE};

class Polygon
{
private:
 std::list<IGVC::Point *> points;

public:
 Polygon(void);
 ~Polygon(void);
 void AddPoint(IGVC::Point *point);
 void Draw();
 poly_type type;

136

};
}

Polygon.cpp
#include "Constants.h"
#include "Polygon.h"

#ifdef OPENGL
#include "GL/freeglut.h"
#endif
#include <random>

using namespace IGVC;

/**
 * Name: Polygon [Constructor]
 * Description: Constructs the Polygon Object
 **/
IGVC::Polygon::Polygon(void)
{
}

/**
 * Name: Polygon [Destructor]
 * Description: Destructs the Polygon Object
 **/
IGVC::Polygon::~Polygon(void)
{
 for(std::list<Point *>::iterator it = points.begin(); it != points.end(); ++ it){
 delete *it;
 }
 points.clear();
}

 /***
 * Name: Add Point
 * Output: point - Point object to add
 * Description: Adds point to polygon
 ***/
void IGVC::Polygon::AddPoint(Point *point){
 points.push_front(point);

}

/***
 * Name: Draw
 * Description: Draws the object
 ***/
void IGVC::Polygon::Draw(){
#ifdef OPENGL
 float col_r = 1, col_g = 1, col_b = 1;
 if(type == LIDAR_TYPE){
 col_r = 1, col_g = 0, col_b = 0;
 }else if(type == CAMC_TYPE){
 col_r = 1, col_g = 1, col_b = 0;
 }else if(type == CAMR_TYPE){
 col_r = 1, col_g = 0, col_b = 1;
 }else if(type == CAML_TYPE){
 col_r = 0, col_g = 1, col_b = 0;
 }
 glLineWidth(2.0f);

137

 //glBegin(GL_LINES);
 glBegin(GL_LINE_STRIP);
 glColor3f(col_r, col_g, col_b);
 for(std::list<Point *>::iterator it = points.begin(); it != points.end(); ++ it){
 glVertex2d((*it)->x/VISUALIZER_SCALE, (*it)->y/VISUALIZER_SCALE);
 }
 glEnd();
#endif
}

Point.h
namespace IGVC{
 class Point
 {
 public:
 Point(void);
 ~Point(void);
 float x;
 float y;
 };
}

Point.cpp
#include "Point.h"
using namespace IGVC;

Point::Point(void)
{
}

Point::~Point(void)
{
}

 [ART]

138

3.7.5 Path Finding

Floyd’s Algorithm - Outline

The path finding and planning module will be implemented using the C programming
language. Shortest-path navigation will be calculated using a modified version of the Floyd-
Warshall algorithm. The Floyd-Warshall algorithm (also known as Floyd’s algorithm) operates
in O(n^3) time, and is parallelizable across a few message-passing standards. Floyd’s algorithm
has many applications in computer networking, but can also be used to find the shortest path
between two nodes in many other scenarios including vehicle navigation.

 The basic operation of Floyd’s algorithm is as follows. First, a structure of arrays is
defined for containing several nodes as well as each node’s position. There is one array to hold x
positions and one array to hold y positions. A two-dimensional matrix is also defined to hold the
distances, also known as edge weights, between each node. The matrix holding the edge weights
is known as an ‘adjacency’ matrix. Two nodes that do not have a direct connection between them
are defined to have an infinite (or very high) edge weight. Once the adjacency data has been
populated with edge weights, another matrix known as the ‘next’ matrix is defined. The next
matrix is utilized for re-routing instructions. Prior to Floyd’s algorithm being run, the re-routing
matrix remains populated with null values indicating no re-routes have occurred. An example of
the data structures required to perform Floyd's algorithm in Figure 49 and Figure 50

Figure 49. Sample code, node structure.

Figure 50. Sample code, creation and allocation of 'adjacency' and 'next' matrices.

139

Now that the data structures have been constructed, Floyd’s algorithm can be performed.
Floyd’s algorithm iterates through the entirety of the array of nodes. Floyd’s algorithm selects a
node as a middle point and calculates the combined edge weight between itself and two other end
nodes. This new value is then compared to the existing value between the two end nodes. If the
value of the combined edge weights through the middle point node is less than the existing value,
the new combined edge weight value overwrites the existing value in the ‘adjacency’ matrix and
a re-route is created in the ‘next’ matrix. This process is repeated until all possible re-routes have
been exhausted. An example of the first two nodes being tested as middle points is shown in
Figure 51.

Figure 51. Concept example, first two nodes in a Floyd’s algorithm system.

140

Floyd’s Algorithm - Implementation

 The implementation of Floyd’s algorithm on the IGVC can be done in many ways. The
primary factor to consider when creating this module is computing time. The IGVC must be able
to identify, process, and react in near real time. Therefore, the processing time of Floyd’s (and
the rest of the navigation module) needs to be fast enough to smoothly operate a vehicle moving
at a maximum of 5 miles per hour.

 An ideal approach (assuming infinite processing power) would be to consider every
possible node in the entire IGVC course defined by a resolution between each node that would
allow for navigation around obstacles. Being able to implement such a system would require
processing power sufficient to calculate the shortest route between two (or more nodes) out of
potentially hundreds of thousands of nodes. For example, assume the competition course is
50x50 meters and the desired node resolution is 10 centimeters. This results in the existence of
250,000 nodes. For this scenario, the number of unique connections is 31,250,000,000. Clearly,
this large number of connections cannot be implemented due to processing power restrictions of
the vehicles onboard computer (Core i5-6200, 8 GB RAM, NVidia 940M), because it will not
process the possible routes at a fast-enough rate to ensure smooth travel.

Noticing that the ‘ideal’ approach is not able to be implemented due to computational
constraints, Floyd’s algorithm needs to be reduced to a more manageable scale for the vehicle’s
onboard computer to handle. To carry out this reduction of data, a restructuring of the node
arrangement in space needs to occur. Thus, it was decided that only the nearby area with respect
to the vehicle needs to be mapped with high-precision to navigate around obstacles. This
arrangement can be thought of as a series of node 'rings' with a constant node resolution as the
radius from the vehicle increases. For example, the nearest ring of nodes at one meter contains
72 nodes for a precision of 5 degrees at the closest ring. The next ring, at 2 meters, contains 36
nodes for a precision of 10 degrees. The rings outside of two meters contain 18 nodes, for a
precision of 20 degrees. The total number of rings created will be determined by the distance
from the starting point to the end destination. The radius 'R' of each ring will be determined by
its identifier 'n' using Equation (44).

(44)

Using the previous example, the same 50x50 meter course in a worst-case scenario (start and end
points are at opposite corners, distance of 70.7 meters) will result in six rings using the following
method: If the identifier of a potentially newly created ring is 'n', create a new ring if (45) is
satisfied.

(45)

Also, the number of nodes 'N' in the example system can be defined using:

141

(46)

For the example system of six rings, 180 nodes will be created; a substantial reduction from the
2500 nodes created in the previous system.

The next parameter of Floyd's algorithm that must be reduced to increase processing
speed is the number of connections between nodes. To handle the reduction of connections, each
node in a ring will be connected to its two nearest neighbors of the same ring and every node
from the two adjacent rings. This will reduce the number of possible connections in the system,
and thus reduce processing time. A visualization of this connection layout is provided in Figure
52, showing the all connections to the node highlighted in orange.

Figure 52. Concept visualization, connections to one node.

The total number of connections 'C' in the new system of mapping nodes and connections can be
modeled using Equation (47).

(47)

Therefore, the example system (with six rings) contains 4,464 connections. This is a significant
decrease in connections compared to the previous method of mapping nodes and connections
which resulted in 31,250,000,000 connections.

142

Floyd’s Algorithm – Obstacle Avoidance

 To effectively compete in the Intelligent Ground Vehicle Competition, the vehicle must
be able to identify and avoid obstacles in its desired path. Implementation of such feature entails
creating a path collision algorithm. The path collision algorithm will test the current path by
sampling several points along the path and calculating distance to each obstacle. Since an array
of obstacle ‘nodes’ exist in an independent data structure, the GPS coordinates of each obstacle
will first need to be translated to relative x and y positions in relation to the vehicle. This
conversion can be performed using the haversine formula (43) using independent calculations for
latitude and longitude differences. The output of the haversine formula can be used to determine
a relative x and y position. Next, the Cartesian coordinate distance formula (48) can be used to
compute the distance of each path sample from the obstacle node.

𝑫 = 	 𝑿𝟐 − 𝑿𝟏 + (𝒀𝟐 −	𝒀𝟏) (48)

Path collision testing should be performed immediately following the execution of Floyd’s
algorithm to prevent the vehicle from inadvertently traveling along a collision-bound path. Code
for implementing path-obstacle collision detection is shown in Figure 53.

Figure 53. Sample code, path-obstacle collision detection.

143

The code in Figure 53 operates by tracing a path between two nodes and take a passed number of
samples along that path. Each sample’s distance from the obstacle node is calculated and
compared to a defined impact radius. If any of the calculated distances is less than the impact
radius, the function returns a value to indicate that an impact has been detected.

An example of the type of methodology which will be used to scan connections for intercept
with obstacle nodes is shown in Figure 54. This code segment is used within several for-loops to
iterate through the entirety of the adjacency matrix. Using the code in Figure 53, the code in
Figure 54 tests each path for collision with an obstacle. If a collision is detected, the connection
edge weight is set to a high value (INT_MAX) which effectively removes that connection from
the system via Floyd’s algorithm.

Figure 54. Sample code, path scanning for obstacles.

[CRE]

Waypoints.h, shown below, reads the waypoints from a file that are used as target locations in
the pathfinding algorithm.

Waypoints.h
#include <queue>
#include <stdio.h>

using namespace std;

typedef struct waypoint{
float latitude;
float longitude;
} waypoint;

/**
 * Name: readWaypoints
 * Inputs: filename - name of file containing GPS Waypoints
 * Description: Reads GPS Waypoints from file
 **/
extern queue<waypoint> readWaypoints(const char* filename){
 queue<waypoint> waypoints;

 FILE *fp;
 waypoint wp = {0,0};

144

 fopen_s(&fp, filename, "r");
 if(fp == NULL)
 return waypoints;
 while (!feof(fp)){
 fscanf_s(fp, "%f, %f", &wp.latitude, &wp.longitude);
 waypoints.push(wp);
 }

 return waypoints;
}

 [ART]

145

3.8 Mechanical Design

3.8.1 Mechanical Analysis

The mechanical design for the IGV is a major contributor to the success of the vehicle.
The design needs to be able to hold all components in a stable and weight efficient manner.
There are two main parts to the Mechanical design of the vehicle; the chassis and the mounting
frame for the sensors. The chassis is a modified version of a Powers Wheels Jeep Wrangler
frame. The sensor mounting frame rises up from this frame as shown inFigure 22: Sensor and
wiring diagram Figure 22.

The chassis is a metal case that re-enforces the weak points of the Jeeps frame. The
chassis consist of two pieces of sheet metal that act as the base of the vehicle and a single metal
rode extends vertically throw the center of them, holding them in place. An outer metal square
wraps around the inside of the Jeeps frame and connects to the center rode at both ends and in
the middle. The axels for the wheels are individual and are mounted on top of the frame. The
axels hold the weight of the wheels and the gear boxes. The gear box is used to increase the
torque of the motor 103:1. From the gear box a custom 3d printed mount will be implemented
connecting the back wheel, the tachometer, and the front wheel. This allows for a tank drive
system to be fully implemented and for the speed of the wheels to be measured.

4. Operation, Maintenance, Repair Instructions

 To operate the intelligent ground vehicle, the charged batteries must first be installed into
their corresponding connectors. Next, the operator needs to install the main USB cable and
Ethernet cable into the jacks on the ASUS laptop. Afterwards, the user can open the computer
program allowing the computer to connect to the camera to ensure that the device is operational.
From there the vehicle is ready to operate. Note that, the vehicle requires a special Omnistar
Software license to operate as well as the sponsored Arduino will need to be returned to John, the
Asus laptop will need to be returned to Garrett, and the antenna will need to be returned to
NovAtel. Thereby, the vehicle will only be in a usable state until mid-June when the license has
expired and the antenna is returned.

In order to run the executable IGVC_main.exe, OpenCV 2.4.13 must be installed on the onboard
PC. The dynamic-link libraries freeglut.dll and libcurl.dll (available online) and static library
PF_2000.lib (which is part of this project) must be in the same directory as the executable. The
executable itself can take several command line arguments when launched to specify how to
connect to the various sensors. The arguments accepted by the program are listed in Table 16.

146

Table 16. Table of Command Line Arguments

Argument flag Parameter
-lip IP Address in XXX.XXX.XXX.XXX format

e.g. 169.254.12.9
-cams Number of cameras to use (the current state of the

source code only allows one camera)
-cam The camera identifying number assigned by the OS

e.g. 0
-ard The Arduino COM port

e.g. COM4
-gps The GPS COM port

e.g. COM7

The program may take some time to load all the necessary components. If the program fails to
launch, errors will explain what module is not connecting correctly or which libraries are
missing. The program can be compiled to exclude certain modules by commenting out or
uncommenting the enable lines in Constants.h if certain devices are not connected to the
computer.

Maintenance on the vehicle is quite simple. First, the batteries will need to be charged up
to 13.5V which takes approximately five and a half hours when charging at one amp. One amp
has been chosen as a safe long term charging rate so that the batteries cells can stay alive as long
as possible. Second, the camera needs to be checked for proper alignment and angle to ensure
that camera and LIDAR obstacle positions are representative on the actual objects. To do so,
place the vehicle in an open area the is relatively monochromatic. Next, place a white object such
as a pvc pipe so that the object can be picked up by the LIDAR and the camera. The third step
for maintenance is that the rubber tires will need to remain at the pressure of 30 PSI for peak
performance and optimal grip capabilities. Finally, if the vehicle is to be shown, then a waxing
will be required to ensure top notch quality to proudly represent the university.

As a future notice, the drive train will undergo a full inspection to ensure that there has
been no damage and limited wear to the gearbox mounts that are under torsion, gears, and
motors. If the drive train components are unable to withstand three weeks of testing, the team’s
conclusion is to replace or redesign the components in question depending on the severity. In
most cases, spare parts are currently ready to substitute so that testing can resume within an hour
of its potential failure.

[JPJ, ART]

147

5. Testing Procedures

 Individual testing procedures:

 Garrett Parameter tests:

 John Circuit Tests:

Voltage (V) (1/200) Rotations per Minute (No load) Pulses Per Revolution
1 0.03 - 0.04 6 - 8
2 0.08 - 0.09 16 - 18
3 0.12 - 0.13 24 - 26
4 0.17 - 0.18 34 - 36
5 0.22 44
6 0.25 – 0.27 50 - 54
7 0.30 – 0.32 60 - 64
8 0.35 – 0.37 70 - 74
9 0.40 – 0.41 80 - 82
10 0.45 90
11 0.49 – 0.50 98 - 100
12 0.55 110

Table 17: Input Motor Voltage to Encoder Output

The first series of motor testing, seen in Table 17:, involved relating the encoder readings
to the input voltage. This showed the linear relationship of pulses per revolution is 9.2 times the
input voltage. Through this relationship, the encoder values can be cross referenced to the actual
voltage seen at the motor terminals.

The next test procedure was on the relay system. In order to satisfy the competition’s
rules a wireless relay with communication of over 90 meters was installed, but the relay could
only handle a three-amp maximum and the signal switching only lasted two milliseconds. The
first problem was handled by installing a power solid state relay that could handle more than the
maximum current. This relay closing signal required a constant high voltage to allow current to
flow. The second problem was that the relay had both a normally open and closed signal that
would only disconnect for two milliseconds. Because both the on and off signal needed to remain
at that state a third relay that could handle to signal wires was added. The 24-volt signal is power
relay drive signal, and the twelve volt signal keeps the relay switching signal constant.

 Softwares’ Entire system test:

The positioning of the sensors (LiDAR and cameras) were verified and updated in Constants.h.
The program was recompiled and loaded onto the onboard laptop as an executable. Once the

148

program is launched, sensor mapping calibration can be verified by placing objects at known
distances (preferably at an integer meter) from the IGV’s origin point. The objects detected by
the LiDAR will show up red on the visualized map while lines detected by the camera will show
up yellow or green. If the objects and lines map in the visualizer to the proper locations in real
space the sensor mapping calibration is good. Otherwise, the sensors may need to be moved or
the constants be adjusted to fix where objects appear on the visualizer. Testing involved placing
objects at various distances and in different configurations and verifying that they were detected
and mapped to the correct location in the visualizer. Pictures of these tests being performed are
included in Figure 55.

Figure 55. Images from Computer Vision Test

149

6. Financial Budget

Qty.
Refdes Part Num. Description Vendor

Vendor Part
Num. Cost Total Cost

2 BT1 Q02BLMFM12_8
ExpertPower EXP1280 12V8AH
Rechargeable Battery (2 pack Amazon Q02BLMFM12_8 34.99 69.98

1 A2
AK-68ANHUB-
BV7A Anker USB 3.0 7-Port Hub Amazon

AK-68ANHUB-
BV7A 29.99 29.99

3 A10,11,12 960-000764 Logitech C920 HD Pro Webcam Amazon 960-000764 62.64 187.92

1 A9 1746
Triple-axis Magnetometer
(Compass) Board ADAfruit 1746, 9.95 9.95

2 A7,8 E6A2-CS3E YUMO Rotary Encoder 200 P/R RobotShop COM-10790 29.95 59.90

1

TL296-ND
INVERTER 375W 12VDC 2OUT
CIGPLUG DigiKey TL296-ND 66.05 66.05

2 DK-1511-003/BL
CABLE RJ45 CAT5E W/BOOT
3' BLK Digikey AE10480-ND 2.19 4.38

1 U209-005-DB25
ADAPTER USB TO SERIAL 5
FEET Digikey

 U209-005-
DB25-ND 19.02 19.02

3 3023013-02M CABLE USB 3.0 A TO A 6.56' Digikey Q543-ND 8.07 24.21

1
AK-300114-010-
S

CABLE USB 3.0 TYPE-A M-M
1M Digikey AE10412-ND 6.94 6.94

3 RV1 V12ZA05P VARISTOR 12.5V 50A DISC
5MM Digikey F5351-ND 1.83 5.49

10 H1-H10 745 GROMMET 0.375" RUBBER
BLACK Digikey 36-745-ND 2.27 22.70

10 H11-H20 732 GROMMET 0.437" RUBBER
BLACK Digikey 36-732-ND 2.77 27.70

10 H21-H30 739 GROMMET 0.250" RUBBER
BLACK Digikey 36-739-ND 2.09 20.90

1 LED1 1092D1-12V LED PANEL INDICATOR RED
12V Digikey 1092D1-12V-ND 3.91 3.91

3 Q1 TN0702N3-G MOSFET N-CH 20V 530MA
TO92-3 Digikey 1092D1-12V-ND 3.27 9.81

1 A4
OMD10M-
R2000-B23-
V1V1D

Pepperl + Fuchs R2000 LiDAR Pepperl +
Fuchs -

1 A5 Novatel Propak V3 GPS - -

1 ANT1 GPS-701-GG Novatel GPS-701-GG-GPS
antenna

Arrow
Electronics 751.75 751.75

1 A6 A000069 Arduino MEGA 2560 Digikey -

1 K1 AD-SSR6M40-
DC-200D

SSR 40A, 3-200Vdc load, 3-
32Vdc control

Automation
Direct $40.00 40.00

1 MP1 N/A Toy Riding Jeep for ages 3-7 Fisher
Price

 1 A1 N/A 2 Channel Motor Driver 30A
each Pololu Roboclaw2x30A 124.95 124.95

1 SW1 NC N/C Emergency Stop Switch
Push Button Mushroom Push Ebay 1.22 1.22

150

Button
1 F1 ATO30 ATO blade fuse 30A UofA 1 1.00
1 IHWO12 12AWG fuse holder waterproof UofA 1.25 1.25
4 F2,3,4,5 ATO05 ATO blade fuse 5A UofA 0.25 1.00
4 IHWO18 18AWG fuse holder waterproof UofA 1.25 5.00

1

90272A106

100 Screws 4-40 Thread Size, 1/4"
Long McMaster 1.46 1.46

20 91780A529 Hex Standoff 4-40 3/8” McMaster .48 9.60
1 90272A108 100 Screws 4-40 3/8” McMaster 1.60 1.60

10 93505A103 10 M-F Standoff 4-40 3/16 McMaster .36 3.60
1 7598A904 Foam Tape, 5yds McMaster 1.90 1.90
1 94985K614 10’ Velcro hook McMaster 8.59 8.59
1 94985K655 10’ Velcro loop McMaster 8.59 8.59
1 90480A005 100 hex nuts 4-40 McMaster .87 .87
1 71295K62 100 cable ties 4” McMaster 2.20 2.20
1 71295K69 100 cable ties 7.5” McMaster 3.38 3.38
2

76255A14

White tape roll 2” width, 110yd McMaster 5.68 11.68
 Total $1,546.57

151

7. Project Schedules

7.1 Final Design Schedule

The Grant Chart that was used by the senior design team #16 to design the IGVC in fall of 2016.

152

7.2 Proposed Implementation Schedule

 Gantt Chart that will be implemented to build the 2017 SDP IGV.

[GWC]

153

7.3 Actual Implementation Schedule

154

8. Design Team Information

Garrett Chonko, Electrical Engineer

Christopher Estock, Computer Engineer

Allen Gilleland, Electrical Engineer

Johnathan Johenning, Electrical Engineer

Austin Tyler, Electrical and Computer Engineer

9. Conclusions and Recommendations

The sensors utilized on the IGV will achieve the three goals of course mapping, object detection
and speed monitoring. The implementation of these processes should be seamless from a power
and functionality standpoint. Implementation of the microprocessor and its components, the
digital compass and tachometer may run into calibration and communication issues on the
processing side but should be a trial and error type of fix. Communication between the GPS
software and hardware must be achieved and tested prior to going to competition to ensure the
vehicle can find a geological waypoint.

155

10. References

[1] D. J. Bruemmer and D. A. Few, "Autonomous navigation system and method," U.S. Patent 7
587 260, Sept. 8, 2009.

[2] D. A. Pomerleau, "System and method for estimating lateral position," U.S. Patent 5 675 489,
Oct. 7, 1997.

[3] P. G. Trepagnier, et al., "Navigation and control system for autonomous vehicles," U.S.
Patent 8 050 863, Nov. 1, 2011.

[4] M. L. Nelson, “A Design Pattern for Autonomous Vehicle Software Control Architectures,”
in Computer Software and Applications Conf. Phoenix, AZ, 1999, pp. 172-177.

[5] M. Huang et al., “Research on Autonomous Driving Control Method of Intelligent Vehicle
Based on Vision Navigation,” in 2010 Int. Conf. on Computational Intelligence and Software
Engineering, Wuhan, 2010, pp. 1-7.

[6] B. Dumitrascu et al., “Laser-based Obstacle Avoidance Algorithm for Four Driving/Steering
Wheels Autonomous Vehicle,” in 2013 17th Int. Conf. on System Theory, Control and
Computing, Sinaia, 2013, pp. 187-192.

[7] G. Close, J. Cutright, K. Gee, and G. Rocco, “Intelligent Ground Vehicle Competition,”
unpublished.

[8] HSL and HSV [Online]. Available: https://en.wikipedia.org/wiki/HSL_and_HSV.

[9] SharkD, RGB_color_solid_cube.png and HSV_color_solid_cylinder.png. 2010.

[10] Peter Villars Sportsground Maintenance, school-white-line-marking.jpg, 2013.

[11] K. Raghupathy, “Curve Tracing and Curve Detection in Images,” Dept. Elect. Eng., Cornell
Univ., Ithaca, NY, Aug. 2004.

[12] C. Veness. (2016). Calculate Distance, Bearing and More Between Latitude/Longitude
Points [Online]. Available: http://www.movable-type.co.uk/scripts/latlong.html

[ART, CRE]

156

11. Appendix

Pepperl + Fuchs R2000:

157

Arduino MEGA 2560:

158

Novatel Propak V3:

159

Power Wheels Motor 9015 Motor Performance Curve:

MOTOR PERFORMANCE

mNm0 50 100 150 200 250 300 350 400 450 500

Sp
ee

d
(rp

m
)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

18000

19000

20000

oz-in0.000 7.081 14.161 21.241 28.322 35.402 42.483 49.564 56.644 63.725 70.805

C
ur

re
nt

 (a
)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Ef
fic

ie
nc

y
(%

)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Po
w

er
 O

ut
 (w

at
ts

)

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400
Constant Voltage: 12.0 V

Torque

Current (a)

Power Out (watts)

Efficiency

Speed (rpm)

	

As	stated	from	the	manufacturer,	there	are	two	motors	on	the	vehicle	each	of	which	are	attached	to	a	
gear	box	with	a	103:1	ratio.

	The University of Akron
	IdeaExchange@UAkron
	Spring 2017

	Intelligent Ground Vehicle Competition
	Austin R. Tyler
	Chris R. Estock
	Johnathan P. Johenning
	Garrett W. Chonko
	Allen C. Gilleland
	Recommended Citation

	Microsoft Word - Final_Design_Report.docx

