
The University of Akron
IdeaExchange@UAkron

Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2017

Packmule
Jared M. Alexander
jma126@zips.uakron.edu

Jared J. Ford
jjf51@zips.uakron.edu

Timothy J. Griffiths
tjg40@zips.uakron.edu

Andray Pennington
ap116@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects

Part of the Electrical and Electronics Commons, Robotics Commons, and the Systems and
Communications Commons

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of
IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

Recommended Citation
Alexander, Jared M.; Ford, Jared J.; Griffiths, Timothy J.; and Pennington, Andray, "Packmule" (2017). Honors
Research Projects. 520.
http://ideaexchange.uakron.edu/honors_research_projects/520

http://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=http://ideaexchange.uakron.edu/honors_research_projects/520
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects/520?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

1

Jared Alexander

 The project our team chose to design and build for our senior project is the Packmule. It
is a load-bearing, following robot with the capabilities of moving autonomously or manually. An
electric wheelchair was dismanlted and the base and motors were implemented into our new
design along with a motor controller and microprocesser that are used to drive the motors.
Manual drive of the Packmule is done using an app that was created by our team while
autonomous movement is achieved through the use of ultrasonic signals. The implementation of
the ultrasonic sensors was my greatest contribution to the project.
 As I stated, the Packmule has the capability to track and follow its user using ultrasonic
sensing. To achieve this, an ultrasonic transmitter must be worn on the belt of the user while
ultrasonic sensors located around the base of the Packmule receive the transmitted signal. The
strenghth of this received signal at each sensor is compared and the direction of movement is
determined by a path-planning algorithm to keep the Packmule moving towards the user. For
my contribution, I designed a transmitter circuit that produces an ultrasonic pulse with a center
frequency of 40kHz that is strong enough to communicate with the Packmule over a distance of
about 5 meters. Throuoghout the course of this project, several different methods were
implemented to produce the desired signal. One way was to use an Arduino microcontoller with
an ultrasonic transducer. This signal is strong with a 5V peak-to-peak (Vp-p) amplitude and is
suitable to communicate over the desired distance. I also designed a timer circuit that
implements an integrated circuit, the 555 Timer, with calculated resistance and capacitance
values to produce a 40kHz pulse with a 5Vp-p amplitude able to transmit the desired distance.
This signal is then projected into the air by an ultrasonic transducer. This circuit requires a
supply voltage of 5V, so a linear voltage regulator circuit was designed to step down 9V from
the battery down to 5V. The voltage regulator allows for a clean and precise supply voltage. To
complete this task, the circuit was soldered and secured in a wearable box along with (2) 9V
batteries connected in parallel, and power was separated from the circuit with a switch.
 Another task I was responsible for was designing the ultrasonic reciever circuits. This
circuit consists of an ultrasonic transducer that sends its received signal to a two stage BJT
amplifier that is needed to amplify the attenuated ultrasonic signal to a value that is easily
readable by the Arduino microcontroller. A potentiometer is also used so that each sensor can
be tuned to produce equal readings. The last stage of the receiving circuit is an envelope
detector that converts the signal from an oscillatory pulse to a straight DC voltage. This makes it
easier to compare the received signal at each sensor. Each circuit requires a supply voltage of
5V that is taken from the 5V output of the Arduino. There are a total of 5 receiving sensors to
allow for a detection area of about 180 degrees around the front of the Packmule. Each sensor
was soldered and secured in project boxes before being mounted.
 Other tasks that I performed along with my teammates include sensor testing and
mechanical construction of the Packmule’s load-bearing bin and electrical equipment level.
Sensor testing involved reading received values at different distances and angles to determine
the optimal mounting locations of the receivers and acquiring data for the software lead to use in
production of the algorithms and code. Mechanical construction involved mounting the electrical
equipment on a wooden level supported by steel that had to be attached to the frame. The load-
bearing bin was secured so that it was separate and would not interfere with the electrical
equipment.
 Overall, this was a satisfying and successful project. I believe my contributions were vital
to its success, and I was also fortunate to have the opportunity to work with a smart and
hardworking team. Taking part in the design and construction of the Packmule has strengthened
my skills as an engineer, and it has allowed me to expand my abilities to work in a team setting.

2

Jared Ford

For my team’s senior design project, Packmule, I was primarily responsible for the software design. The

project, which consists of multiple ultrasonic sensors, IR proximity detectors as well as motor and a drive

system needed a way to make sense of all this data and translate that into movement. This goal was

completed through the use of multiple software routines that I wrote.

First, I focused my efforts on creating a way to control the system using a phone with Bluetooth. Once I

was able to establish a concrete connection with a Bluetooth module we purchased, I created the

mobile app with a pseudo- analog joystick interface. The app is able to process touches on the phone

and translate that data into commands the motor drive is able to parse. I created the app first for

Android, then I rewrote the entire application for the iPhone, both of which I made available on their

respective app stores to allow for better demonstrations on presentation day. After completing the app,

one could simply move the Packmule with their phone.

Next, I worked on getting reliable system movement based on detected user location data from the

ultrasonic transmitter/ receivers. In order to successfully follow the user, one needs to know where the

user is. This, in turn, required the system to have multiple ultrasonic receivers to be able to detect the

user successfully. Each sensor would report how close the user was to it by transmitting voltage based

on relative distance to the microcontroller. I then took this data and compared it to all the other data

reported by the other sensors in order to make an educated decision as to what direction the Packmule

should move and how fast to make it move. This algorithm was one of the more complex ones that I had

to write as many of the sensors did not provide consistent results all the time. In order to overcome this

difficulty, I wrote a secondary algorithm that was able to detect false readings and eliminate them from

the end calculation. After completing this function, the system was able to follow a user.

Once the manual control modes and following modes were finished, I wrote another algorithm to

process the IR sensor readings and avoid obstacles if they were in the way. To avoid the

obstacles, based on data reported by the sensors, I created a function to pause the following

routine and move around the obstacle. Avoiding the obstacles was not as simple as just backing

up the device, but required the system to make real-time decisions based on the direction the

user was travelling in. For instance, if the user was walking around a tree, we want the robot to

not only avoid the obstacle, but to also take the most efficient path possible to save on overall

power consumption and time. Depending on where the obstacle was detected, I had to write

several different routines to ensure there was never a case when the robot would run into an

object. Additionally, I aided with the wiring up the system and making sure everything was

structurally sound for the purposes of this project.

3

 Tim Griffiths

The purpose of the Packmule is to function as an autonomous load bearing robot, capable of

following a user in either an automatic or manual mode.

My first major contribution to this project was the understanding of the existing electrical system.

This involved major disassembling of the existing wheelchair unit in an effort to understand what the

current system used, and what exactly our design team would need to implement or update. With an

understanding of the current functionality of the robot, we were able to utilize some existing

electrical components and connections in order to bring down the overall cost of our system.

Next, I was in charge of the power and drives system of the robot. This two part position first

required me to do some motor testing to determine the capabilities and energy requirements our dual

24V, DC motors would require. Once these calculations were complete, I was able to determine the

amount of energy the system would require by inferring the expected operation modes of the robot.

From here we were able to order the correct power supplies.

Once the ultrasonic and infrared sensor circuits were assembled, it was my job to determine the

proper orientation necessary to deliver upon stated engineering requirements. Using technical

information gathered from data sheets and trigonometry, I was able to determine appropriate

positions and mounting angles of the sensors which would provide the expected results. This was

necessary in order to determine the “dead zones” in which the Packmule would not identify the

user’s location as well as eliminate “overlap zones” where user’s information would be determined

by multiple sensors. In addition to determining the position of the sensors, I was in charge of

scheduling to the position of equipment on the sensor level to make sure there was enough room for

all our equipment and nothing overlapped.

In addition to my individual contributions, I participated in team-wide tasks that required the

cooperation and communication of all members to accomplish. These tasks included the testing of

sensors to ensure they were performing as expected when received from the manufacturer,

calibration of these sensors with our system layout, and finally the construction of the load bearing

bucket.

My specific role in this project was the team leader. In addition to my engineering responsibilities, I

also had several organization, communication, and time management tasks in order to keep the

project up-to-date and on schedule. Some of these additional responsibilities included acting as the

primary point of contact between our design team and faculty members, keeping a running budget of

the cost of the project, submitting parts request forms, and implementing and updating Gantt charts in

order to forecast our group’s completion of the project.

Overall, I am grateful for the opportunity to work with capable, driven honors students. Each

individual’s contributions were pivotal to the success and execution of this project. This experience

has helped further prepare me for a career in industry.

4

Packmule

Project Design Report

Design Team 02

Jared Alexander

Jared Ford

Tim Griffiths

Andray Pennington

Faculty Advisor: Dr. Yilmaz Sozer

Date Submitted: 1 May 2017

5

Table of Contents

Introduction 8

Problem Statement 8

Need 8

Objective 8

Background 9

Marketing Requirements 13

Objective Tree 14

Design Requirements Specification 14

Accepted Technical Design 15

Theory of Operation 15

Level 0 Block Diagrams 16

Level 1 Block Diagrams 17

Level 1 Hardware Block Diagram 20

Level 2 Block Diagrams 22

Operation, Maintenance, and Repair Instructions 44

Operation 44

Maintenance 45

Repair instructions (Items appear in proper testing order) 45

Testing Procedures 47

Transmitter Circuit 47

Infrared Proximity Sensors 48

Receiver circuit 48

Motor Controller 49

Parts List 49

Financial Budget 51

Design Team Information 55

Conclusions and Recommendations 56

References 57

Appendices 58

6

List of Figures

Figure 1: Time of Arrival Method [4] 10

Figure 2: Time Difference of Arrival Method [4] 10

Figure 3: Bumper Switch 11

Figure 4: Active Sonar 12

Figure 5: Packmule Objective Tree 14

Figure 6: Level 0 Software Block Diagram 16

Figure 7: Level 0 Hardware Block Diagram 16

Figure 8: Level 1 Software Diagram 17

Figure 9: Level 1 Hardware Block Diagram 20

Figure 10: Level 2 Path Planning Software Diagram 22

Figure 11: Level 2 Obstacle Avoidance Software Diagram 25

Figure 12: Level 2 Position Detection Software Diagram 28

Figure 13: Level 2 Motor Controller Software Diagram 30

Figure 14: Level 2 Mobile Application Software Diagram 32

Figure 15: Object Detection 34

Figure 16: Wireless Transmitter using Arduino Uno Level 2 Block Diagram 35

Figure 17: Wireless Transmitter using Timer Circuit Level 2 Block Diagram 36

Figure 18: Position Sensor Level 2 Block Diagram 37

Figure 19: Speed v Torque Curve 42

Figure 20: Voltage Regulator and Implemented Ultrasonic Transmitter Circuit 43

Figure 21: Alternative Ultrasonic Transmitter Timer Circuit 43

Figure 22: Ultrasonic Receiver Circuit 44

Figure 23: Transmitter output of 555 timer circuit 47

Figure 24: Transmitter output of Arduino circuit 48

Figure 25: Sabertooth 2x60 Motor Driver Datasheet Overview 59

Figure 26: Arduino Mega 2560 Datasheet Overview 60

Figure 27: HM-10 Bluetooth Module Datasheet Overview 61

Figure 28: HC-SR04 Sensor Datasheet Overview 62

Figure 29: Ultrasonic Transducer US1640 Datasheet Overview 63

Figure 30: LM555 Timer Datasheet Overview 64

Figure 31: Voltage Regulators LM7805 Datasheet Overview 65

Figure 32: 1N4148 Diode Datasheet Overview 66

file:///C:/Users/50651/Desktop/DT02FIR.docx%23_Toc481410401

7

List of Tables

Table 1: Microcontroller Comparison Table 12

Table 2: Engineering requirements 15

Table 3: Level 0 Software Specifications 16

Table 4: Level 0 Hardware Specifications 17

Table 5: Obstacle Avoidance Routine 18

Table 6: Path Planning Algorithm 18

Table 7: Position Detection Routine 18

Table 8: Motor Controller Algorithm 19

Table 9: Mobile Application 19

Table 10: Level 1 Hardware Specifications 21

Table 11: Path Planning Pseudocode 24

Table 12: Obstacle Avoidance Pseudocode 27

Table 13: Position Detection Pseudocode 29

Table 14: Motor Controller Pseudocode 31

Table 15: Mobile Application Pseudocode 33

Table 16: Object Detection Specifications 34

Table 17: Wireless Transmitter Level 2 Specifications 36

Table 18: Position Sensor Level 2 Specifications 37

Table 19: Level 2 Motor Driver Block 41

Table 20: Level 2 Motor Block Diagram 42

Table 21: Parts List 1 49

Table 22: Parts List 2 50

Table 23: Actual Budget 51

Table 24: Original Budget 52

Table 25: Midterm Gantt Chart 53

Table 26: Implementation Gantt Chart 54

Table 27: Actual Gantt Chart 55

8

Introduction

Abstract

 People face demands of hauling equipment and belongings with them every day, whether

it be for work or leisure. This design report discusses and details a product that would allow

people to overcome the struggles of this. The Packmule is an autonomous following robot that

has the capability of carrying a load up to 30 pounds. The design involves two independently

controlled motors operating two drive wheels so that the Packmule will be flexible in the

directions it can move. There are also two more steering wheels for support of the base and the

load inside. The way in which the Packmule follows the user consists of a wireless transmitter

that will be worn on the user’s belt. This transmitter will emit an ultrasound signal that will be

received by five ultrasonic position sensor receivers mounted on the Packmule. The signals will

be filtered and amplified in order to communicate with microcontroller. The strength or

amplitude from each received signal will be compared in order to determine the location of the

user. Since the Packmule is autonomous, it will need to be able to detect objects in its path.

Several infrared sensors will be mounted to the front of the Packmule for this reason. It will track

the distance an object is away from the Packmule by measuring the amount of light . Algorithms

programmed into the Arduino Mega 2560 microcontroller will take the data from the IR sensors

and the ultrasonic position sensor receivers and calculate a path to safely and efficiently follow

the user.

Problem Statement

Need

Every day, people struggle to tow along their weighted belongings. Whether one is taking

golf clubs around the course or a toolbox to a worksite, it is exhausting and distracting to move

these loads singlehandedly. The Packmule would be a solution to lighten the strain of those

carrying moderate loads from place to place. The convenience of an autonomous, self-navigating

robot would lighten the load of the leader allowing for less exhausting and distraction free

transportation of heavy items.

Objective

The objective of the Packmule is to provide a convenient way to transport a load across

an area. The design will utilize a location tracking system comprised of a ultrasonic transmitter

and receivers, a wireless application for switching between automatic-follow mode and manual

mode, a proximity sensor for avoiding obstacles, 2 DC motors each driving an independent

wheel, and a controller. The controller will take the information from the tracking system,

wireless application, and proximity sensor to control the movement of the device. Additionally,

the system will have two modes: follow mode and manual mode. In follow mode, the Packmule

9

will track and follow the user across a path while maintaining a distance of about 5 feet. When

the system is in follow mode, an IR sensor will check for obstacles in front of it and allow the

system to find a route to the user with no obstructions. If obstructed, the device will self-navigate

around an obstacle and resume following the user. In manual mode, the user will control the

Packmule’s movement via a wireless application with directional control. The user will be able

to park the system to prevent it from traversing the water or entering hazards. The end result will

be an easy and convenient way to move one’s luggage from one point to another.

Background

Autonomous robots are being used in many different fields ranging from space

exploration to personal hobby projects, as well as being used to complete many different tasks in

these fields. An autonomous robot will normally consist of sensors, motors, microcontrollers,

and algorithms. Comparing the mentioned components to the human anatomy would go as

follows:

● Sensors - Eyes and Ears

● Motors - Arms and Legs

● Microcontroller - The Body Connecting the Components

● Algorithms - The Brain Controlling all the Parts

The ability for a robot to track a user while carrying a load has been implemented in various

ways, but hasn’t been seen commercially performing on rougher terrain types.

 Position Detection Methods

 Time of Arrival

The time of arrival method uses the precise measurement of the time it takes for a

transmitted signal to be received. By calculating the travel time (t) of the signal, and then

multiplying it by the velocity (v) at which the signal propagates, the distance (d) between the

transmitter and receiver can be found.

𝑑 [𝑚] = 𝑣 [𝑚/𝑠] ∗ 𝑡[𝑠]
Equation 1: Time of Arrival Distance [4]

In order for this method to be accurate, a minimum of three receivers must be used to pin

point location using trilateration. The distance calculated will then be used as a radius around

each receiver. The point at which the three circles interest is the location of the transmitter. The

main drawback of this method is the need for precise time synchronization at all transmitting and

receiving stations of the system. Small discrepancies in time can cause very large errors. This

method shows great challenges in systems where noise and interference will exist [4].

10

Figure 1: Time of Arrival Method [4]

 Time Difference of Arrival

The method of time difference of arrival is another technique that requires a minimum of

three receivers. However, it is unnecessary for precise synchronization of time between the

transmitter and receivers because it uses relative time instead of absolute time for its

calculations. With this method, only the receivers need time synchronization. Hyperbolic

lateration is used to pinpoint the location of the transmitter based on the difference of arrival

times found by at least three receivers [4].

Figure 2: Time Difference of Arrival Method [4]

 Amplitude of Signal

Another method of determining position of the transmitter is to measure the amplitude of

the transmitted signal that is received by different ultrasonic receivers. Ultrasonic transducers

will excite a voltage when receiving an ultrasonic pulse that can be manipulated into a signal that

is easily readable by a microcontroller. These signals from several at least three receivers can be

compared to triangulate the position of the transmitter by determining which receivers are

nearest to the transmitter based on the strength of those signals. The more receivers that are used

11

the more accurate the determined location will be. This method is beneficial in that time

synchronization is required.

 Obstacle Avoidance Methods

 Infrared

Infrared sensors determine distance by emitting a pulse of light and waiting for the

reflection. The infrared emitter consists of light emitting diodes, while the receiver is a

photodetector containing a p–n junction that converts light photons into current. If the object is

close, the reflected light will be stronger than if the object is further away.

 Collision

Using bumper switches/sensors, Figure 3, can allow the Packmule to adjust its position

after it has encountered an object in its path. It does this by maintaining a HIGH signal on its

sensor port, which means the bumper switch is turned off when not pressed. While the bumper

switch is pressed, the signal changes to LOW, which tells the robot that the switch has been

triggered on. The bumper switch remains turned on until the button is longer being pressed.

Figure 3: Bumper Switch

 Active Sonar

Active sonar creates a pulse of sound, often called a "ping", and then listens for

reflections (echo) of the pulse (See Figure 4). The sound waves are emitted and received through

transducers. The Packmule will use a monostatic configuration in which the emitting transducer

is located next to the receiving transducer. The frequencies of sonars can range from infrasonic

to ultrasonic. Acoustic frequencies above the upper audible limit of human hearing (20 kHz) can

be considered ultrasound, while infrasound is acoustic frequencies below 20 kHz. The Packmule

will operate at an ultrasonic frequency of 40 kHz. To measure the distance to an object, the time

from transmission of a pulse to reception is measured and converted into a range by knowing the

speed of sound. The method of Active Sonar will be used for the Packmule due to its outside

performance as well as its ability to detect objects before collision.

https://en.wikipedia.org/wiki/Pulse_(signal_processing)
https://en.wikipedia.org/wiki/Reflection_(physics)
https://en.wikipedia.org/wiki/Echo_(phenomenon)
https://en.wikipedia.org/wiki/Hearing_range

12

Figure 4: Active Sonar

 Single-Board Microcontroller

Microcontroller systems provide multiple forms of input and output signals to allow

application software to control an external "real-world" system. The Packmule will need several

sensors, motor drives, and a wireless communication system in order to avoid obstacles while

following the user. Table 1 shows several microcontroller board options as well as specifications

that relates to the Packmule. The Arduino Uno is very cost effective, but doesn’t have and

Raspberry Pi 3

Image

Make/Model Arduino Mega 2560 Arduino Uno Raspberry PI 3

List Price $45.95 $24.95 $29.99

Analog Pins 16 6 -

Digital Pins 54 (15 PWM) 6 (No PWM) 40

DC Current

per I/O Pin

40mA 20mA 16mA

On-Board BT No No Yes

Table 1: Microcontroller Comparison Table

 Communication Methods

13

 Bluetooth

 Bluetooth is a wireless communication standard which allows electronic devices to

connect and interact with each other. Data is transmitted via low-power radio waves at a

frequency of 2.45 gigahertz. The power of the transmitter governs the range over which a

Bluetooth device can operate and, generally, devices are said to fall into one of three classes:

class 1 are the most powerful and can operate up to 100m (330ft), class 2 (the most common

kind) operate up to 10m (33ft), and class 3 are the least powerful and don't go much beyond 1m

(3.3ft). The Packmule will use a mobile phone to issue manual commands, and mobile phones

are currently using class 2 [5].

Marketing Requirements

1. The robot should be able to able to carry a weighted load.

2. The robot must be able to move at a standard walking speed.

3. The robot should include safety mechanisms.

4. The robot should move autonomously.

5. The robot should be able to follow the path of the user.

6. The robot should be able to navigate around obstacles in its path.

7. The robot must have a long enough battery life to complete the job.

8. The robot should be able to be manually controlled by user inputs.

9. The robot must be able to traverse outdoor terrain.

10. The robot must stay within a certain following range of user.

14

Objective Tree

Figure 5: Packmule Objective Tree

Design Requirements Specification

Marketing

Requirements

Engineering Requirements Justification

7 Power Supply must have enough

energy to run Packmule for one hour.

Packmule must be able to follower

user to distant destinations.

1,9 Packmule must carry load up to 30

lbs in addition to weight of robot.

Packmule must handle moderate

loads to be useful.

4,9 Packmule must transverse surfaces

with coefficient of friction up to μ=.8

Outdoor surface of grass coefficient

of friction is .8.

4,9 Packmule must be able to traverse

slopes up to 10 degrees.

Must be able to handle casual

outdoor slopes.

3,4,6 Packmule must be able to identify

obstacles within 40 cm of path.

The robot must be able to avoid

collision with objects in its path.

5 Packmule will use multiple sensors

to identify position

Accurate position approximation

takes at least 3 signals to compute.

15

3,8 Packmule must respond to user

inputs via wireless communication.

The user must have limited control

of robots movement.

2,4,10 Packmule must be able to travel at

speeds up to 4 mph.

Should exceed average walking

speed of 3 miles per hour

5,10 Packmule must be able to detect

position of user within a 5m radius.

Packmule must be able to detect user

within a certain range.

3,4 Packmule must perform emergency

stop if user’s position is undetected.

Robot should be positive of user

location to ensure safe operation.

Table 2: Engineering requirements

Accepted Technical Design

Theory of Operation

 The user will wear a device that transmits a wireless ultrasonic signal at 40 kHz. Five

ultrasonic sensors mounted on the body of the Packmule will receive the wireless ultrasonic

signal. This signal will be filtered and amplified into a signal that can easily be read by the

microcontroller. The amplitude, or strength, of the signal will be analyzed by the Position

Detection Routine algorithms programmed into the microcontroller to determine the position of

the transmitted signal. In order for the autonomous Packmule to avoid hitting obstacles that may

come in the path between the user and the Packmule, three infrared sensors that transmit and

receive a beam of infrared light will be mounted to the front of the body. If an object is in the

sensor’s path, the transmitted beam will reflect off it and return to the receiver of the sensor. The

strength of the reflected light will be stronger the closer the object is to the Packmule. This signal

strength will be read by the microcontroller and analyzed by the Obstacle Detection Routine to

determine whether an object is present within range of the Packmule. The Path Planning

Algorithm will take inputs from the Obstacle Detection Routine and Position Detection Routine

to determine the motor operation needed to accurately follow the user. An Android and iOS app

will be built to allow for manual override of the Packmule motor operations.

16

Level 0 Block Diagrams

Level 0 Software Block Diagram

Figure 6: Level 0 Software Block Diagram

Module Level 0 Software Block Diagram

Designed by Jared Ford

Inputs User Location Data, Obstacle Proximity Data, User Directional Inputs

Outputs Speed and Location Data

Description The system will take in data from sensors and user input to determine what path it will

take. The calculated information will be passed along to the motor controller.

Table 3: Level 0 Software Specifications

Level 0 Hardware Block Diagram

s

Figure 7: Level 0 Hardware Block Diagram

17

Module Level 0 Hardware Block Diagram

Designed by Jared Alexander / Andray Pennington

Inputs VDC1: +9VDC used to power components in the Packmule.
VDC2: +24VDC used to power components in the Packmule.

Outputs Motor Operation

Description The Packmule takes in DC voltages to power the components of the system that

will send information to the microcontroller. Using this data, the microcontroller

will determine the position of the user through algorithms. Based on this

information, signals will be sent to the motor driver to output accurate motor

operation.

Table 4: Level 0 Hardware Specifications

Level 1 Block Diagrams

Level 1 Packmule Software Diagram

Figure 8: Level 1 Software Diagram

18

Module Obstacle Avoidance Routine

Designed by Jared Ford

Inputs Proximity Sensor Data

Outputs Obstacle Avoidance Data

Description The routine will check if an obstacle is within a specified distance from the

Packmule. If such an obstacle exists, this information will be passed along to the

path planning algorithm. This, in effect, will trigger an interrupt sequence that

temporarily overrides the user following routine.

Table 5: Obstacle Avoidance Routine

Module Path Planning Algorithm

Designed by Jared Ford

Inputs Obstacle Avoidance Data, Directional Signals, and Position Data

Outputs Speed and Direction Data

Description The system will either operate in one of two modes. In manual mode which purely

relies on directional signals from user input to generate speed and direction data. In

autonomous mode, the system will locate the user and plan a path to him or her. If

an obstacle is encountered while in autonomous mode, the algorithm will find a

new path to the user.

Table 6: Path Planning Algorithm

Module Position Detection Routine

Designed by Jared Ford

Inputs Position Data

Outputs User Location Data

Description An array of sensor data will be sent to the routine. From these signals, it will be

able to calculate the distance each sensor is from the user and pass this information

to the path planning algorithm.

Table 7: Position Detection Routine

19

Module Motor Controller Algorithm

Designed by Jared Ford

Inputs Speed and Direction Data

Outputs PWM Signals

Description Speed and direction data is read in from the path planning algorithm. This data is

then converted into serial data that is passed along to the Sabertooth motor driver.

The library is able to parse integer values in the range of -127 to 127 for both speed

and direction signals. These numbers are then converted, into PWM signals that

the motor will recognize and respond to.

Table 8: Motor Controller Algorithm

Module Mobile Application

Designed by Jared Ford

Inputs System Information

Outputs Directional control signals

Description System information is received wirelessly from the Packmule system and is

displayed on the mobile phone application. Directional control signals are

generated within the application and sent to the Packmule. The mobile application

features an emergency stop function that can prevent movement at any time when

the Packmule is in autonomous following mode

Table 9: Mobile Application

20

Level 1 Hardware Block Diagram

Figure 9: Level 1 Hardware Block Diagram

21

Module Level 1, Hardware Design

Designed by Jared Alexander / Andray Pennington

Inputs VDC1: +9VDC used to power components in the wireless ultrasonic transmitter

worn by the user.
VDC2: +24VDC used to power the motor driver.

VDC3: +5VDC used to power the Microcontroller.

VDC4: +5VDC used to power the Position Sensor Receivers and the Object

Proximity Sensors.

Outputs Signal to left and right motor to ensue movement.

Description The wireless Position Sensor Transmitter transmits an ultrasonic pulse that is

received by each Position Sensor Receiver. The different amplitudes of the pulse

received at each Position Sensor Receiver are sent to the Microcontroller. At the

same time, the Object Proximity Sensors transmit infrared light in the forward

direction of the Packmule to detect objects in its path and send this information to

the Microcontroller. With this information, the Microcontroller determines the

appropriate motor operation and sends a Serial Communication signal to control

the Motor Driver, which in turn drives each motor.

Table 10: Level 1 Hardware Specifications

22

Level 2 Block Diagrams

Level 2 Software Path Planning

Figure 10: Level 2 Path Planning Software Diagram

23

void followUser(){

 // Variables to hold sensor readings

 int l, fl, fc, fr, r;

 // Read from all the sensors

 l = analogRead(RECEIVER_L);

 fl = analogRead(RECEIVER_FL);

 fc = analogRead(RECEIVER_FC);

 fr = analogRead(RECEIVER_FR);

 r = analogRead(RECEIVER_R);

 int dir = getDirection(l, fl, fc, fr, r);

 switch(dir){

 case DIRECTION_LEFT:

 ST.turn(-30);

 ST.drive(0);

 Serial2.print("Hard Left");

 //Serial.println("hard left");

 break;

 case DIRECTION_SLIGHT_LEFT:

 ST.turn(-15);

 ST.drive(20);

 Serial2.print("Left");

 //Serial.println("left");

 break;

 case DIRECTION_FORWARD:

 ST.turn(0);

 ST.drive(40);

 Serial2.print("Forward");

 //Serial.println("forward");

 break;

 case DIRECTION_SLIGHT_RIGHT:

 ST.turn(15);

 ST.drive(20);

 Serial2.print("Right");

 //Serial.println("right");

 break;

 case DIRECTION_RIGHT:

 ST.turn(30);

 ST.drive(0);

 Serial2.print("Hard Right");

 //Serial.println("hard right");

 break;

 case -1: // We only want to fall into this case if several consecutive errors have occurred

 ST.turn(0);

 ST.drive(0);

 if(errorCleared){

 Serial2.print("User Lost");

 errorCleared = false;

 }

 Serial.println("error");

 break;

 default:

 successCount++;

 //Serial.println("Adding Success");

 break;

 }

 Serial.print(l);

 Serial.print(" ");

 Serial.print(fl);

 Serial.print(" ");

 Serial.print(fc);

24

 Serial.print(" ");

 Serial.print(fr);

 Serial.print(" ");

 Serial.print(r);

 Serial.println();

}

void clearErrors(){

 errors = 0;

 if(!errorCleared){

 Serial2.print("");

 errorCleared = true;

 }

}

Table 11: Path Planning Pseudocode

 The path planning algorithm takes in a speed as a floating point value and a directional

input as a string. The algorithm first checks if the system is in manual mode or not. If it is, then

the speed and direction values from the manual user input are passed along to the motor

controller. Otherwise, it looks for the user. By making a call to the position detection routine, the

algorithm will know whether or not the user has been found. If the user has been found, a check

is performed to see if there is an obstacle in the path. The system will move away from any

obstacles and proceed to follow the user by determining their location and sending an appropriate

speed and direction value to the motor controller algorithm maintain the proper distance from the

user. Finally, if the user cannot be found, a signal is sent out alerting the user that he/ or she is

out of range of the system. The rest of the code can be found at https://github.com/jrodbossman.

https://github.com/jrodbossman

25

Level 2 Software Obstacle Avoidance

Figure 11: Level 2 Obstacle Avoidance Software Diagram

26

void checkIR() {

 if(analogRead(IR_LEFT) > IR_THRESHOLD) {

 if(leftObstacle >= IR_SUCCESS_THRESHOLD) {

 ST.drive(REVERSE);

 ST.turn(RIGHT);

 delay(1000);

 //Serial.println("left");

 ST.drive(FORWARD);

 ST.turn(0);

 delay(1500);

 ST.drive(0);

 ST.turn(0);

 leftObstacle = -1;

 }

 leftObstacle++;

 }

 else {

 leftObstacle = 0;

 }

 if(analogRead(IR_CENTER) > IR_THRESHOLD) {

 if(centerObstacle >= IR_SUCCESS_THRESHOLD) {

 ST.drive(REVERSE);

 ST.turn(0);

 delay(1000);

 recoverFromCenterObstacle();

 //Serial.println("center");

 ST.drive(0);

 ST.turn(0);

 centerObstacle = -1;

 }

 centerObstacle++;

 }

 else {

 centerObstacle = 0;

 }

 if(analogRead(IR_RIGHT) > IR_THRESHOLD) {

 if(rightObstacle >= IR_SUCCESS_THRESHOLD) {

 ST.drive(REVERSE);

 ST.turn(LEFT);

 delay(1000);

 //Serial.println("right");

 ST.drive(FORWARD);

 ST.turn(0);

 delay(1500);

 ST.drive(0);

 ST.turn(0);

 rightObstacle = -1;

 }

 rightObstacle++;

 }

 else {

 rightObstacle = 0;

 }

 Serial.print(analogRead(IR_LEFT));

 Serial.print(" ");

 Serial.print(analogRead(IR_CENTER));

 Serial.print(" ");

 Serial.print(analogRead(IR_RIGHT));

 Serial.println();

}

27

void recoverFromCenterObstacle() {

 if(analogRead(RECEIVER_FL) >= analogRead(RECEIVER_FR)) {

 ST.drive(0);

 ST.turn(LEFT);

 }

 else {

 ST.drive(0);

 ST.turn(RIGHT);

 }

 delay(1000);

 ST.drive(FORWARD_SLOW);

 ST.turn(0);

 delay(500);

}

Table 12: Obstacle Avoidance Pseudocode

The obstacle algorithm first issues commands to all of the IR sensors to broadcast beams

of light and observe the amount of light reflected. The intensity of the reflected light is then

calculated by the algorithm and the relative distance from the obstacle (if one is detected) is

compared on a sensor by sensor basis to a minimum threshold value that specifies how close the

system can get to an obstacle. If any sensor is less than the threshold, the algorithm will

determine in which direction to move the system and relay this information back to the path

planning algorithm. The rest of the code can be found at https://github.com/jrodbossman.

https://github.com/jrodbossman

28

Level 2 Software Position Detection

Figure 12: Level 2 Position Detection Software Diagram

29

// Function to determine where the user is

int getDirection(int l, int fl, int fc, int fr, int r) {

 int max = 0, direction = DIRECTION_LEFT;

 if(l > max){

 max = l;

 }

 if(fl > max) {

 max = fl;

 direction = DIRECTION_SLIGHT_LEFT;

 }

 if(fc > max){

 max = fc;

 direction = DIRECTION_FORWARD;

 }

 if (fr > max){

 max = fr;

 direction = DIRECTION_SLIGHT_RIGHT;

 }

 if(r > max) {

 max = r;

 direction = DIRECTION_RIGHT;

 }

 if (max < 100){

 errors++;

 successCount = 0;

 if(errors > 5){

 return -1;

 }

 return previousDir;

 }

 clearErrors();

 if(successCount > 10){

 successCount = 11;// Preventing integer from getting too large

 Serial2.print(" ");

 previousDir = direction;

 return direction;

 }

 return 's';

}

Table 13: Position Detection Pseudocode

The position detection routine iterates through all of the ultrasonic transducers and

compares the amplitudes. The largest amplitude received corresponds to the sensor that is closest

to the user. The system will also store the next closest sensor’s data. Once these two numbers are

known, the algorithm will compare their difference to a threshold value that will determine if

they are just about the same distance from the user and store this in a boolean variable to later be

used by the path planning algorithm. Once the algorithm completes its execution, the path

planning algorithm will parse this information and plan a route to the user. The rest of the code

can be found at https://github.com/jrodbossman.

https://github.com/jrodbossman

30

Level 2 Software Motor Controller

Figure 13: Level 2 Motor Controller Software Diagram

31

// We are able to utilize a library that makes controlling the motor very straight forward

// To turn, we employ ST.turn(int value) where value can range from -127 to 127

// To drive, we employ ST.drive(int value)w here value can range from -127 to 127

void motorControllerExample(Direction directionData){

 ST.drive(directionData.speed);

 ST.turn(directionData.direction);

 // To stop

 ST.drive(0);

 ST.turn(0);

}

Table 14: Motor Controller Pseudocode

 The job of the motor controller algorithm consists of taking in speed, direction, and

degree of turning if applicable and converting the speed into PWM values for the left and right

motor as well as a direction for each motor to travel in. First, the algorithm assumes that both

motors will be traveling at the speed the system takes in by performing the speed to PWM

routine on the given value. Next, it assumes that both motors will be traveling in the forward

direction. Finally, the algorithm uses the provided direction string to alter the initial values. In

the reverse case, both motors will move at full speed, but in the reverse direction. In the forward

case, none of the initial values will change. If the system needs to turn right, then the left motor

will move about twice as fast as the right motor and if a hard turn is needed, then the right motor

will spin in the reverse direction. For the turn left case, the values will be the opposite of the case

in which the system turns right. For the purposes of the Packmule system, a tank style turning

algorithm was implemented. The rest of the code can be found at

https://github.com/jrodbossman.

https://github.com/jrodbossman

32

Level 2 Software Mobile Application

Figure 14: Level 2 Mobile Application Software Diagram

33

void onJoyStickTouch(){

 int direction = GetJoystickDirection();

 if(isManualMode){

 if(direction == JoyStick.STICK_UP) {

 bluetooth.sendSerial(JoyStick.Magnitude + "," + DIRECTION_FORWARD);

 }

 if(direction == JoyStick.STICK_DOWN) {

 bluetooth.sendSerial(JoyStick.Magnitude + "," + DIRECTION_REVERSE);

 }

 if(direction == JoyStick.STICK_RIGHT) {

 bluetooth.sendSerial(JoyStick.Magnitude + ","+ DIRECTION_RIGHT);

 }

 if(direction == JoyStick.STICK_LEFT) {

 bluetooth.sendSerial(JoyStick.Magnitude + "," + DIRECTION_LEFT);

 }

 else {

 bluetooth.sendSerial("0,0");

 }

 }

 else if(direction == JoyStick.STOP){

 manualMode = true;

 bluetooth.sendSerial("0,0");

 }

}

void onModeSwitchChanged(){

 bluetooth.sendSerial(switch.getCurrentState());

}

void onDataReceived(string receivedMessage){

 dataTextBox.setText(receivedMessage);

}

Table 15: Mobile Application Pseudocode

The mobile application communicates serially over Bluetooth with the path planning

algorithm via a Bluetooth interrupt command. A joystick will listen for touch events and send the

corresponding direction and speed based on the location of the touch. Furthermore, the

application will allow for the switching between manual and follower modes via a button press

which also employs the use of a touch event listener. Finally, any pertinent system data

originating from the Packmule system will be transmitted to the mobile application and

displayed in a message area for the user to see. This can be anything ranging from a low battery

signal to a user not found alert. The rest of the code can be found at

https://github.com/jrodbossman.

https://github.com/jrodbossman

34

Level 2 Hardware: Object Detection

The sharp ir sensor uses triangulation and a small linear CCD array to compute the

distance and/or presence of objects in the field of view. A pulse of IR light is emitted by the

emitter, and travels out into the field of view. In the case of no object, the light is never reflected,

and the reading shows no object. If the light reflects off an object, it returns to the detector and

creates a triangle between the point of reflection, the emitter and the detector. The incident angle

of the reflected light varies based on the distance to the object. The receiver portion of the IR

sensor is a precision lens that transmits reflected light onto various portions of the enclosed

linear CCD array based on the incident angle of the reflected light. The CCD array can then

determine the incident angle, and thus calculate the distance to the object. [7]

Figure 15: Object Detection

Module Level 2 Hardware: Object Detection

Designed by Andray Pennington

Output Voltage Range: 3.1V at 10cm to 0.4V at 80cm

Description Detects objects in the direct path of the Packmule by using an infrared transmitter

to send a light pulse, and an infrared receiver to read the reflection. The ir sensor

will then output a voltage ranging from 3.1V at 10cm to 0.4V at 80cm to the

microcontroller.

Table 16: Object Detection Specifications

Level 2 Hardware: Wireless Transmitter

 The user will wear a wireless transmitter on their belt that will allow the Packmule to

locate and create a path to follow the user. A power supply consisting of two 9V batteries

connected in parallel will feed the Transmitter Voltage Regulator that will step down the voltage

35

to 5VDC to feed the Arduino Uno or the Timer circuit. A switch allows the batteries to be

disconnected from the rest of the circuit to prevent drainage on the batteries. This schematic can

be found in Figure 20. The Arduino Uno and the Timer circuit output an oscillatory pulse train

centered at 40 kHz. Values of R1, R2, and C can be calculated using Equation 2.

𝑓𝑐 =
1

0.693𝐶(𝑅1 + 2𝑅2)

Equation 2: Timer Frequency [3]

 With the Arduino Uno setup, the regulated 5V will input into Vin port. The Ultrasonic

Transducer will connect to the selected Arduino analog output pin to excite it with a 40 kHz

wireless ultrasonic signal. Similarly the Timer Circuit will input 5V from the Voltage Regulator.

The 555 Timer along with its calculated resistor and capacitance values will produce a 40kHz

pulse that will excite the ultrasonic transducer. This schematic can be found in Figure 21.

Figure 16: Wireless Transmitter using Arduino Uno Level 2 Block Diagram

36

Figure 17: Wireless Transmitter using Timer Circuit Level 2 Block Diagram

Module Wireless Transmitter, Hardware Design

Designed by Jared Alexander

Inputs VDC1: +9VDC used to feed the Transmitter Voltage Regulator.

Outputs The ultrasonic transducer produces a wireless ultrasound signal.

Description The wireless transmitter contains its own power supply, batteries, that feeds the

Transmitter Voltage Regulator. The Transmitter Voltage Regulator produces a

steady +5VDC to power the rest of the Wireless Transmitter, the Arduino Uno or

the Timer Circuit. The Arduino Uno or the Timer Circuit creates a pulse signal that

then excites the Ultrasonic Transducer and emits a wireless ultrasound signal.

Table 17: Wireless Transmitter Level 2 Specifications

Level 2 Hardware: Position Sensor

 There will be a total of five position sensors mounted on the Packmule to receive the

Wireless Ultrasound signal from the transmitter worn by the user. Each sensor will contain an

Ultrasonic Transducer to receive the Wireless Ultrasound signal. The signal will cause the

transducer to excite a voltage. Because the Wireless Ultrasound signal will be attenuated after

traveling through the air, it is required that it be amplified prior to being read by the Arduino

Mega. It must be strong enough to be easily read by this component and so that it is stronger than

potential noise in its surroundings. To achieve this, a two stage BJT amplifier circuit is used. The

received Wireless Ultrasonic signal will be passed through two n-type BJT transistors that will

amplify the attenuated signal. This circuit uses a 2 MΩ potentiometer that gives each circuit the

ability to be tuned to read equal values. Each circuit was tested and tuned to be equal so that they

would report equal data to the Arduino Mega. The final stage before the voltage signal is sent to

the microcontroller is the Envelope Detector stage. This stage uses the Envelope Detector circuit.

This circuit causes sampling of the sinusoidal signal at the rising edges of the sinusoid. Positive

voltage values that are easier for the microcontroller to read will be the output. The configuration

is a 1N4148 diode with a parallel connecting capacitor, C, and resistor, R. Equation 7 shows that

37

the time constant, RC, must be an order of magnitude greater than center frequency period, 1/fc.

Through testing of the circuit, it was found that a 0.1uF capacitor and 1MΩ resistor allowed for

the best reading of the Wireless Ultrasound signal. The center frequency of this signal once again

is 40 kHz.

1

𝑓𝑐
<< 𝑅𝐶

Equation 2: Envelope Detector Time Constant

Figure 18: Position Sensor Level 2 Block Diagram

Module Position Sensor, Hardware Design

Designed by Jared Alexander

Inputs VDC4: +5VDC from the Arduino Mega 2560 used to power the BJT

Amplification Circuit.

Wireless Ultrasound Signal sent from the Wireless Transmitter.

Outputs Voltage signal sent to the microcontroller.

Description VDC4 feeds the Sensor Voltage Regulator with +5VDC. The Wireless Ultrasound

Signal is received by the Ultrasonic Receiver. This signal is the sent through the

Two Stage BJT Amplification Circuit to increase the signal that is received by the

Ultrasonic Transducer. This signal is then sent to an Envelope Detector circuit. The

output voltage of this circuit will be sent to the microcontroller.

Table 18: Position Sensor Level 2 Specifications

 Level 2 Hardware: Motor Driver Block

To reduce the cost of the project, the design team accepted a donated electric wheelchair

base. This existing system also placed physical limitations upon the design. The initial system

utilized 10 in (0.42 ft) diameter wheels, had an approximated weight of 70 lbs (with batteries).

38

Electrically, the system operated 2, 24V DC motors. With these limitations, the specifications of

the Packmule drive subsystem were able to be calculated. The Packmule is required to carry an

additional 30 lbs (Engineering requirement 2)

 To meet the 4 mile per hour requirement (engineering requirement 8) the required wheel

velocity needed to be calculated. This was done in the following manner:

𝜔 =
𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑤ℎ𝑒𝑒𝑙
=

5.86𝑓𝑝𝑠

. 42𝑓
= 14.0808

𝑟𝑎𝑑

𝑠
∗

1

2𝜋

𝑟𝑒𝑣

𝑟𝑎𝑑
= 2.24

𝑟𝑒𝑣

𝑠

Equation 3: Required Wheel Velocity

With the required speed of the wheels determined, the torque needed to be calculated.

Prior to the torque calculation, the amount of force required to move Packmule needed to be

calculated. This is done in several different situations. The first situation is continuous motion on

a flat surface. When in continuous motion, the Packmule has to overcome the force from rolling

friction, which is much lower than that of static friction. This requires much less torque from the

Packmule. From research [6] the average rolling resistance found between grass and tire is 0.007

with a standard deviation of .002 . A rolling resistance value of 0.015 is used to cover most

situations. The force required by the motors to overcome the rolling frictional forces were

calculated as follows:

𝐹𝑜𝑟𝑐𝑒 = 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡 𝑜𝑓 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ∗ 𝑁𝑜𝑟𝑚𝑎𝑙 𝐹𝑜𝑟𝑐𝑒 = 0.015 ∗ 100𝑙𝑏𝑠 = 1.5𝑙𝑏𝑠

Equation 4: Situation 1 Force equation

Next the torque required by the motor was calculated:

𝑇𝑜𝑟𝑞𝑢𝑒 = 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑤ℎ𝑒𝑒𝑙 ∗ 𝐹𝑜𝑟𝑐𝑒 = .42𝑓𝑡 ∗ 1.5𝑙𝑏𝑠 = .625𝑓𝑡 𝑙𝑏𝑠

Equation 5: Situation 1 Torque Equation

This value is the total required amount of torque. With 2 motors, the required torque per

motor is half of the total amount. Each motor is required to fulfill 0.3125 ft lbs of torque in this

situation.

Next the power of the motor was calculated:

𝑃𝑜𝑤𝑒𝑟 = 𝑇𝑜𝑟𝑞𝑢𝑒 ∗ 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = .3125𝑓𝑡 𝑙𝑏𝑠 ∗ 14.08
𝑟𝑎𝑑

𝑠
= 4.4003𝑓𝑡

𝑙𝑏𝑠

𝑠

Equation 6: Situation 1 Power Equation

39

Converting to Watts:

4.4003𝑓𝑡
𝑙𝑏𝑠

𝑠
∗

745 𝑊𝑠

550 𝑓𝑡 𝑙𝑏𝑠
= 5.9603 𝑊 𝑝𝑒𝑟 𝑚𝑜𝑡𝑜𝑟

Equation 7: Situation 1 Watts Conversion

With 2 motors, this leads to 11.921 W of power in this situation.

The second situation is in high friction environments. Through online research [1] it has

been determined that the greatest coefficient of static friction encountered by tire on wheel

contact is approximately μ=.8. While most coefficients of static friction between rubber and

grass were closer to a μ between 0.2 and 0.3, the Packmule must be able to begin motion in the

harshest environment. Calculating the motor requirements as before:

𝐹𝑜𝑟𝑐𝑒 = 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ∗ 𝑁𝑜𝑟𝑚𝑎𝑙 𝐹𝑜𝑟𝑐𝑒 = 0.8 ∗ 100𝑙𝑏𝑠 = 80𝑙𝑏𝑠

Equation 8: Situation 2 Force Equation

𝑇𝑜𝑟𝑞𝑢𝑒 = 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑤ℎ𝑒𝑒𝑙 ∗ 𝐹𝑜𝑟𝑐𝑒 = .042𝑓𝑡 ∗ 80𝑙𝑏𝑠 = 33.33𝑓𝑡 𝑙𝑏𝑠 = 16.67𝑓𝑡 𝑙𝑏𝑠/𝑚𝑜𝑡𝑜𝑟

Equation 9: Situation 2 Torque Equation

𝑃𝑜𝑤𝑒𝑟 = 𝑇𝑜𝑟𝑞𝑢𝑒 ∗ 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 16.67 𝑓𝑡 𝑙𝑏𝑠/𝑚𝑜𝑡𝑜𝑟 ∗ 14.08
𝑟𝑎𝑑

𝑠

= 234.68
𝑙𝑏𝑠

𝑠
 𝑝𝑒𝑟 𝑚𝑜𝑡𝑜𝑟

Equation 10: Situation 2 Power Equation

234.68𝑓𝑡
𝑙𝑏𝑠

𝑠
∗

745 𝑊𝑠

550 𝑓𝑡 𝑙𝑏𝑠
= 317.88 𝑊 𝑝𝑒𝑟 𝑚𝑜𝑡𝑜𝑟 = 635.77 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑊

Equation 11: Situation 2 Watt Conversion Equation

This situation will likely lead to momentarily overdrawing the motors. With motor

drivers rated up to 60A peak motor current, there should not be a problem overcoming this

situation. It is very unlikely the Packmule will experience a scenario with this much friction in its

expected outdoor usage.

The third situation is moving up an incline of 10 degrees. In this situation, the force

calculation is altered to include the amount of force required to overcome the vertical translation

in addition to the horizontal translation. In this example the

𝐹𝑜𝑟𝑐𝑒 = 𝑊𝑒𝑖𝑔ℎ𝑡 ∗ 𝑠𝑖𝑛𝜃 + 𝑊𝑒𝑖𝑔ℎ𝑡 ∗ 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ∗ 𝑐𝑜𝑠𝜃

𝐹𝑜𝑟𝑐𝑒 = 100𝑙𝑏𝑠 ∗ 𝑠𝑖𝑛 10 + 100𝑙𝑏𝑠 ∗ .015 ∗ 𝑐𝑜𝑠10 = 18.84𝑙𝑏𝑠

Equation 12: Situation 3 Force Equation

40

𝑇𝑜𝑟𝑞𝑢𝑒 = 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑤ℎ𝑒𝑒𝑙 ∗ 𝐹𝑜𝑟𝑐𝑒 = .042 𝑓𝑡 ∗ 18.84𝑙𝑏𝑠 = 7.91 𝑓𝑡 𝑙𝑏𝑠 = 3.95𝑓𝑡
𝑙𝑏𝑠

𝑚𝑜𝑡𝑜𝑟

Equation 13: Situation 3 Torque Equation

𝑃𝑜𝑤𝑒𝑟 = 𝑇𝑜𝑟𝑞𝑢𝑒 ∗ 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 3.95 𝑓𝑡
𝑙𝑏𝑠

𝑚𝑜𝑡𝑜𝑟
∗ 14.08

𝑟𝑎𝑑

𝑠
= 55.71

𝑙𝑏𝑠

𝑠
𝑝𝑒𝑟 𝑚𝑜𝑡𝑜𝑟

Equation 14: Situation 3 Power Equation

55.71𝑓𝑡
𝑙𝑏𝑠

𝑠
∗

745 𝑊 𝑠

550 𝑓𝑡 𝑙𝑏𝑠
= 75.46𝑊 𝑝𝑒𝑟 𝑚𝑜𝑡𝑜𝑟 = 150.92 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑊

Equation 15: Situation 3 Watt Conversion Equation

Once the drive system has been proven to handle each of the three situations, it became

necessary to determine the amount of energy the system would use. The Packmule is not

expected to operate in the harshest environment for the entire duration of the required 1 hour of

continuous operation (Engineering Requirement 1). Based on the three given situations, the

Packmule is expected to spend 60% of its operation in situation 1 (36 minutes), 30% in situation

2 (18 minutes), and 10% in situation 3 (6 minutes). Calculating the energy required based on the

assumed operation, the expected energy required for one hour is calculated in the following

manner.

𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑃𝑜𝑤𝑒𝑟(𝑠𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 1) ∗ 𝑇𝑖𝑚𝑒(𝑠𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 1) + 𝑃𝑜𝑤𝑒𝑟(𝑠𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 2)

∗ 𝑇𝑖𝑚𝑒(𝑠𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 2) + 𝑃𝑜𝑤𝑒𝑟(𝑠𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 3) ∗ 𝑇𝑖𝑚𝑒(𝑠𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 3)

𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 = (5.96𝑊 ∗ 2160𝑠) + (635.77𝑊 ∗ 1080𝑠) + (150.92𝑊 ∗ 360𝑠) = 753839.70𝐽

Equation 16: Required Energy Calculation

With the required energy calculated, batteries must be sized to provide the proper battery

capacity. Two, 12 V, 33AH batteries running for 1 hour continuously can provide:

12𝑉 ∗ 33𝐴ℎ ∗ 3600𝑠 ∗ 2 (𝑏𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠) = 2851200𝐽 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑓𝑜𝑟 1 ℎ𝑜𝑢𝑟

Equation 17: Available Energy Calculation

As this amount is greater than the energy required to run the Packmule for one hour, the

will be sufficient power supplies. The batteries provided with the wheelchair were not capable of

holding a charge for operation of the wheelchair. Replacement batteries were purchased to the

same ratings.

 The motor drivers will take in serial signals from microcontroller. Each motor driver

independently drives 1 wheel. This allows the Packmule to take turns while maintaining some

sense of forward motion. It also allows for smaller radius turns. If both motors were controlled

41

by a single driver the Packmule would only be able to have forward and reverse directions. There

would need to be some system in place to use the pivot wheels to steer the Packmule. From no-

load laboratory testing Packmule will draw approximately 10A to move at the desired speed.

This amount is expected to increase to 14A when the load is added. The selected Sabertooth

2x60 Motor Driver is capable of handling 60 A continuous draw, which is more than satisfactory

for the Packmule.

Module Motor Driver

Designed

by
Tim Griffiths

Inputs VDC2: +24VDC

Serial signals containing direction and speed information from microcontroller.

Outputs Voltage to motor

5V supply to Arduino microcontroller

Description Once the microcontroller determines the proper speed and direction for each motor, it sends that

information via serial communication to the motor drivers. The motor drivers then convert that

information

Table 19: Level 2 Motor Driver Block

 The motors are Electrocraft 660-204-044’s. Based on the peak torque and motor voltage

constants provided by the manufacturer, a basic Speed vs. Torque curve can be created. This plot

is not entirely representative of the motor characteristics. It was created by extrapolating between

these two extreme values. The provided gearboxes allow a 1:2 ratio, which trades motor speed

for torque. This will allow our motors to meet the required torques while maintaining the

required speed specified in previous calculations.

42

Figure 19: Speed v Torque Curve

Module Motors

Designed

by
Tim Griffiths

Inputs VDC1: +24 VDC from the 2 series connected 12V batteries.

Motor driver enable signal

Outputs Rotational Motion

Description The motor receives voltages from the motor drives and responds by turning based on the voltage

received. There is not feedback from the motor, instead the Packmule will rely on constant updates

from sensors to determine the speed and distance it has travelled.

Table 20: Level 2 Motor Block Diagram

Hardware Schematics

The implemented ultrasonic sensor circuit (Figure 20) will regulate a 9v battery to 5v using a

LM7805 voltage regulator. The 5v will then be supplied to an Arduino Uno microcontroller. An

ultrasonic transducer is connected to a ground and a digital pin on the microcontroller.

43

Figure 20: Voltage Regulator and Implemented Ultrasonic Transmitter Circuit

Figure 21: Alternative Ultrasonic Transmitter Timer Circuit

44

Figure 22: Ultrasonic Receiver Circuit

Operation, Maintenance, and Repair Instructions

Operation

○ Items required for operation

■ The Packmule robot

■ An ultrasonic transmitter

■ A mobile phone with the Packmule application

○ Turning on the robot

■ To power up the Packmule system, flip the switch located at the rear to the on

position.

○ Making the robot move

■ Manual Mode

● This mode of operation is engaged by default. In order to start moving

the robot around, you must first have installed the latest version of the

Packmule application from the App Store or Google Play Store onto your

phone and connect via bluetooth to the device.

● To start moving the robot around, place your finger on the joystick and

drag in the direction you wish to see the robot move.

● To adjust the speed, press the hamburger icon in the top left of the and

enter the speed you wish to have the system follow your as a percentage.

■ Following Mode

● This mode not enabled by default. In order to engage this mode, first

install the app onto your device and connect to the Packmule system.

Then, open up the side-menu by tapping on the hamburger icon in the top

left. From there, you should see a switch that, when tapped, will engage

45

following mode.

● Make sure that the ultrasonic transmitter is powered, so that the

Packmule can start following immediately.

● If for some reason you need to stop the Packmule, hit the big green

button in the app. It should now turn red. This indicates that the

Packmule is has paused following. To resume following, simply hit the

red button

■ Honking the horn

● To honk the horn, tap the horn icon on the app when it is connected to

the Packmule.

○ Other key features

■ The Packmule system comes equipped with proximity sensors to avoid obstacles.

These are enabled only when the Packmule is following the user.

Maintenance

○ Charging the batteries

■ The Packmule system is equipped with two 12V car batteries. To charge them,

first disconnect each of the batteries from the robot’s base by unclipping the wire

harness.

■ Next, connect each battery separately to a 14V power supply. It is important that

positive and negative connections do not get flipped.

■ The batteries must charge for several hours and the length of charging should

depend on the amount of voltage remaining. A full charge is in the range of 12.6-

12.7V, whereas a low charge is around 12.4V.

○ Replacing the transmitter’s batteries

■ The transmitter is powered by two 9V batteries.

■ To Replace them, unscrew the 4 Phillip’s head screws, remove the casing, detach

the old batteries and replace them with two new 9V batteries.

■ Do not mix new and old batteries.

○ Regular inspection

■ Check bolts and nut to make sure they are all tight.

■ Make sure the tires are inflated and there are no flats

● A bike pump can be used to inflate the tires.

■ If the system is not used for a while (a few months), be sure to recharge the

batteries. Failure to do so may contribute to premature battery failure and will

impede the overall performance of system

Repair instructions (Items appear in proper testing order)

○ Issue: Packmule is not following properly

■ Cause: Sensor misalignment

● Point the transmitter directly at the system when attempting to follow

● Realign sensors to all face up about 15 degrees

46

■ Cause: Transmitter not broadcasting

● Replace the batteries

● Check all solder joints for continuity

● Consider replacing the 40kHz transducer module

■ Cause: Receiver is not working properly

● Ensure the power and ground connections are solid.

● Check all solder joints for continuity,

● Consider replacing the 40kHz transducer module

■ Cause: Receiver needs recalibrated

● Open up the receiver block, identify the trimpot, and hook the sensor up

to an oscilloscope using the signal wire output and ground to make your

connections

● If the signal is coming across weak, turn the trimpot clockwise,

otherwise turn it counter-clockwise

● Repeat this for all receivers to ensure a consistent reading

○ Issue: Packmule is running into obstacles

■ Cause: Infrared Sensor is not aimed properly

● Make sure the IR Sensors are all level and pointed at -40degrees, 0

degrees, and 40 degrees from left to right respectively.

■ Cause: Infrared Sensor is disconnected

● Make sure all wires are securely fastened on both ends of the IR sensor.

47

Testing Procedures

Transmitter Circuit

○ Ultrasonic signal generated using a 555 timer and 1% resistors and capacitors (Non-ideal

as we were over 2.5kHz off our target frequency on average)

Figure 23: Transmitter output of 555 timer circuit

48

○ Ultrasonic signal generated using the arduino (Ideal as we were less than 500Hz off our

target frequency on average)

Figure 24: Transmitter output of Arduino circuit

Infrared Proximity Sensors

○ The Infrared proximity sensors were tested by putting various obstacles of different

heights and colors in front of the Packmule. Each gave a slightly different reading, but a

threshold of 2V seemed to be the typical reading the system would yield when

approaching an obstacle.

○ This was more of a trial and error form of testing as lighting plays a huge part in the

sensitivity of IR sensors. In order to overcome this, all the IR sensors are hidden beneath

the base of the system to provide a more consistent environment.

Receiver circuit

○ Throughout the process of developing the Packmule system, the receiver circuits were

rigorously tested and calibrated to ensure proper following.

○ Each of the circuits was hooked up to the analog pin an Arduino and was tested at a

49

distance of a meter from the transmitter in line of sight. Each transmitter was adjusted

using an onboard trimpot that was installed just for this purpose.

After proper calibration, each sensor would output a value of 900/1023 which translates to about 4.4V at a

meter away from the signal source.

Motor Controller

○ Throughout the process of developing the Packmule system, the motor controller was

rigorously tested.

○ From the beginning, the motors were known to be good and well capable of handling a

small 30lb load in addition to the weight of the frame. However, the same could not be

said of the motor controller.

○ Several tests were done, none of which could really be numerically computed as they

were so fast. At first, there was no guarantee that the motor controllers would be able to

handle precise movement. In order to test this, the robot was subjected to traversing the

narrow halls of ASEC.

○ In order to test the speed and responsiveness of the system, the robot would be controlled

at 100% power forward and then would go into full reverse. After passing these tests,

several incline and offroad tests were performed with weighted loads.

Parts List

Table 21: Parts List 1

50

Table 22: Parts List 2

Parts list 1 was the order placed before winter break. This list includes the materials for

the initial design of the Packmule system. Parts List 2 Design Team 02’s was allocated $400 for

the completion of this project and received an additional $100 from corporate sponsorship. With

the total cost of this project coming to $385.35, the design stayed within budget.

51

Financial Budget

Table 23: Actual Budget

52

Table 24: Original Budget

Design Team 02 was allocated $400 for the completion of this project and received an

additional $100 from corporate sponsorship. The Actual budget (Table 23) showed a final total

of $447.26, and the original budget (Table 24) showed a final total of $258.11. The difference

between the two budgets is $189.15. This is largely due to the “upgraded” motor driver and the

original budget not taking into account a storage container.

53

Gantt Charts

Table 25: Midterm Gantt Chart

54

Table 26: Implementation Gantt Chart

55

Table 27: Actual Gantt Chart

While the goal of a project is to stick to the predetermined schedule, unforeseen problems

can result in a change of plans. During some of the ultrasonic and PING sensor tesing in early

march, a system incompatibility was found. This resulted in the team being forced to go back and

change the design to function with infrared sensors instead. As a result of this unforeseen

technology switch, the actual implementation was pushed back more than intended. Additionally,

group roles were abandoned in hopes that an all hands on deck approach would allow the project

to be completed on time. Fortunately, this approach allowed the team to stay on the same page as

the project was completed.

Design Team Information

The following list consists of the design team and their role for the project:

● Jared Alexander, Hardware Manager, EE

● Jared Ford, Software Manager, CpE

● Tim Griffiths, Team Leader, EE

● Andray Pennington, Archivist, EE

56

Conclusions and Recommendations

 The Packmule will be able to fulfill its role of simplifying the transport of moderate loads

over a distance. Further development of this project would lead to more models of the Packmule,

which would allow the robot to carry heavier loads or operate at faster speeds. This project

provided an introduction to the concepts of leader follower robots and autonomous obstacle

avoiding navigation, both of which are being implemented more and more in today’s integrated

society. The level of research and design in this project was suitable as a senior capstone project.

For those interested in taking an in depth look at the source code for this project, it is located on

GitHub at https://github.com/jrodbossman.

 The completed project met all required specifications and went as far as exceeding many

of them. A few expectations that were exceeded included making, both android and iOS

applications, making the design aesthetically pleasing, having the ability to travel well above a

standard walking pace, etc. All in all, the project can be considered a success. The Packmule

system is very reliable and can go days on a single charge. The limiting factor may be the battery

life of the phone controlling the system.

 The team dynamics were as follows:

 Jared Alexander

o Responsible primarily for hardware implementation. Jared played an

important role in getting the system wired up, drawing schematics,

troubleshooting the hardware, and coming up with new and unique ways

to solve problems.

 Jared Ford

o Responsible primarily for software implantation. Jared was a key player in

getting all the code for the Arduino, Android and iOS applications

running. He was also responsible for bridging the gap between the

hardware and software interfaces. Jared was a driving force in the

implementation of the Packmule system. In his efforts, Jared was able to

implement all the software routines rapidly enough to come and help out

with the hardware design and troubleshooting.

 Tim Griffiths

o Tim was the team leader for this project, but that was not his only role. In

fact, Tim was responsible for ensuring that the motors had proper signals

and power being fed to them. Additionally, he was a responsible for

dissecting original circuitry from the wheelchair and, from that dissection,

proposed ways to integrate the existing hardware in this new design. Tim

also made sure to keep everyone updated with regular meetings and

deadline updates.

https://github.com/jrodbossman

57

 Andray Pennington

o Andray was also primarily responsible for hardware, but he also helped

keep the group on task and organized. He had the critical role of archivist

and made sure everything from the design to the end implementation was

well documented. Andray worked closely with Jared Alexander to get the

transmitter/ receiver circuits up and running which was one of the most

crucial aspects of the project.

There are a few recommendations for future students who may wish to tackle a

similar that should be considered. One of the most important things to consider is how

much you are paying for sensors. Make sure you don’t get cheap sensors. In this case you

get what you pay for. In the design of Packmule, we used many varieties of ultrasonic

transducers and can safely say that the more expensive and more reputable brands

performed significantly better. Additionally, one should also consider doing rigorous

schematic simulation before deciding on a part to order. As a rule, simulations should be

taken for what they’re worth, but oftentimes there are unforeseen factors that come into

play. Make sure all noise, signals, and constraints are taken into account when doing

system simulation.

References

[1] Cenek, Peter D., Neil J. Jamieson, and Maurice WMcLarin. "Frictional Characteristics of Roadside Grass

Types." (n.d.): n. pag. Opus Internation Consultants. Web. 25 Aug. 2016.

[2] H. Zumbahlen, Sallen-Key Filters, 1st ed. Norwood, MA: Analog Devices, Inc., 2016.

<http://www.analog.com/media/en/training-seminars/tutorials/MT-222.pdf>

[3] "The 555 timer", Electronics.dit.ie, 2016. Web. 12 Nov. 2016.

<http://www.electronics.dit.ie/staff/mtully/555%20folder/555%20timer.htm>

[4] Wi-Fi Location-Based Services 4.1 Design Guide. Publication no. OL-11612-01. Cisco Systems, Inc., 20

May 2008. Web. 10 Oct. 2016.

<http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Mobility/WiFiLBS-DG/wifich2.html>.

[5] "Bluetooth Technology Website". Bluetooth.com. N.p., 2016. Web. 7 Nov. 2016.

<https://www.bluetooth.com/>

[6] W. J. Steyn and J. Warnich, “COMPARISON OF TYRE ROLLING RESISTANCE FOR DIFFERENT

MOUNTAIN BIKE TYRE DIAMETERS AND SURFACE CONDITIONS,” South African Journal for

Research in Sport, Physical Education and Recreation, pp. 179–193, 2014.

[7] "Sharp Infrared Ranger Comparison." Sharp Infrared Ranger Comparison | Acroname. N.p., n.d. Web. 29

Apr. 2017.

http://www.analog.com/media/en/training-seminars/tutorials/MT-222.pdf
http://www.electronics.dit.ie/staff/mtully/555%20folder/555%20timer.htm
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Mobility/WiFiLBS-DG/wifich2.html
https://www.bluetooth.com/

58

Appendices

Part Number Description Data Sheet

MD30C Cytron 30A Motor Driver

Shield

http://www.robotshop.com/media

/files/images3/md30cusersmanua

l_1_.pdf

HM-10 Bluetooth to Serial Port Module ftp://imall.iteadstudio.com/Modu

les/IM130614001_Serial_Port_B

LE_Module_Master_Slave_HM-

10/DS_IM130614001_Serial_Por

t_BLE_Module_Master_Slave_H

M-10.pdf

Arduino Mega 2560 Microcontroller with

Atmega128 microchip

https://www.arduino.cc/en/Main/

ArduinoBoardMega2560

HC-SR04 Ping Sensor https://www.sparkfun.com/produ

cts/13959

US1640 Long range ultrasonic sensor,

40 Khz
http://www.futurlec.com/Ultra

sonic_Sensors.shtml

LM555CM 555 timer/ oscillator https://www.fairchildsemi.com/d

atasheets/LM/LM555.pdf

LM7805CT Voltage Regulator IC https://www.fairchildsemi.com/d

atasheets/LM/LM7805.pdf

1N4148-TAP Diode http://www.vishay.com/docs/818

57/1n4148.pdf

http://www.robotshop.com/media/files/images3/md30cusersmanual_1_.pdf
http://www.robotshop.com/media/files/images3/md30cusersmanual_1_.pdf
http://www.robotshop.com/media/files/images3/md30cusersmanual_1_.pdf
ftp://imall.iteadstudio.com/Modules/IM130614001_Serial_Port_BLE_Module_Master_Slave_HM-10/DS_IM130614001_Serial_Port_BLE_Module_Master_Slave_HM-10.pdf
ftp://imall.iteadstudio.com/Modules/IM130614001_Serial_Port_BLE_Module_Master_Slave_HM-10/DS_IM130614001_Serial_Port_BLE_Module_Master_Slave_HM-10.pdf
ftp://imall.iteadstudio.com/Modules/IM130614001_Serial_Port_BLE_Module_Master_Slave_HM-10/DS_IM130614001_Serial_Port_BLE_Module_Master_Slave_HM-10.pdf
ftp://imall.iteadstudio.com/Modules/IM130614001_Serial_Port_BLE_Module_Master_Slave_HM-10/DS_IM130614001_Serial_Port_BLE_Module_Master_Slave_HM-10.pdf
ftp://imall.iteadstudio.com/Modules/IM130614001_Serial_Port_BLE_Module_Master_Slave_HM-10/DS_IM130614001_Serial_Port_BLE_Module_Master_Slave_HM-10.pdf
ftp://imall.iteadstudio.com/Modules/IM130614001_Serial_Port_BLE_Module_Master_Slave_HM-10/DS_IM130614001_Serial_Port_BLE_Module_Master_Slave_HM-10.pdf
https://www.arduino.cc/en/Main/ArduinoBoardMega2560
https://www.arduino.cc/en/Main/ArduinoBoardMega2560
https://www.sparkfun.com/products/13959
https://www.sparkfun.com/products/13959
http://www.futurlec.com/Ultrasonic_Sensors.shtml
http://www.futurlec.com/Ultrasonic_Sensors.shtml
https://www.fairchildsemi.com/datasheets/LM/LM555.pdf
https://www.fairchildsemi.com/datasheets/LM/LM555.pdf
https://www.fairchildsemi.com/datasheets/LM/LM7805.pdf
https://www.fairchildsemi.com/datasheets/LM/LM7805.pdf
http://www.vishay.com/docs/81857/1n4148.pdf
http://www.vishay.com/docs/81857/1n4148.pdf

59

Figure 25: Sabertooth 2x60 Motor Driver Datasheet Overview

60

Figure SEQ Figure * ARABIC 27: Arduino Mega 2560 Pinout

Figure 26: Arduino Mega 2560 Datasheet Overview

61

Figure 27: HM-10 Bluetooth Module Datasheet Overview

62

Figure 28: HC-SR04 Sensor Datasheet Overview

63

Figure 29: Ultrasonic Transducer US1640 Datasheet Overview

64

Figure 30: LM555 Timer Datasheet Overview

65

Figure 31: Voltage Regulators LM7805 Datasheet Overview

66

Figure 32: 1N4148 Diode Datasheet Overview

	The University of Akron
	IdeaExchange@UAkron
	Spring 2017

	Packmule
	Jared M. Alexander
	Jared J. Ford
	Timothy J. Griffiths
	Andray Pennington
	Recommended Citation

	tmp.1493913480.pdf.fVy_a

