
The University of Akron
IdeaExchange@UAkron

Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2017

Hovercam
Kevin Rauh
kcr23@zips.uakron.edu

Ross Palenik
rap78@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects

Part of the Systems and Communications Commons

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of
IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

Recommended Citation
Rauh, Kevin and Palenik, Ross, "Hovercam" (2017). Honors Research Projects. 513.
http://ideaexchange.uakron.edu/honors_research_projects/513

http://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=http://ideaexchange.uakron.edu/honors_research_projects/513
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects/513?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

1

Senior Design/Honors Research Project Contribution

Ross Palenik

Electrical Engineer

2623037

 My senior design/honors research project was the Hovercam. It involved the construction

of an autonomous quadcopter that tracks, follows, and records a user holding the smart phone

running the Hovercam mobile application. I was the team leader in my design group. My

responsibilities ranged from assigning tasks to organizing our design schedule. I gave each of my

teammates their core task as well as taking on the development of the mobile application. I was

one of the group members responsible for writing the introduction paragraphs of the report along

with the background section that pertains to the application. We all contributed to the marketing

and design requirement sections. I, also, wrote the sections involving the design of our mobile

app and constructed the flowcharts involving the application. The Gantt charts were my

responsibility as team leader as well. I had a hand in the overall editing too. The construction of

the actual mobile app was my main concern after assigning all of the group members’ tasks.

Once the application reached a stopping point, I took charge of assembling our final presentation

PowerPoint and video slides. During the demonstration day, I discussed the project with any

faculty or interested parties that approached our table. The project was, overall, a good

experience and I am glad I was involved.

2

Senior Design/Honors Research Project Contribution

Kevin Rauh

Electrical Engineer

2645340

My senior design project was the Hovercam. On my team I was responsible for the

documentation and assembling of the report. I was also responsible for the flight controller on

the Hovercam project. I calibrated all the sensors that are used on the Hovercam and integrated

them with a control software to maintain stable flight I also designed a 5V LDO, a voltage

regulator to maintain 5V going into the flight and the navigation controller. After designing the

LDO I also developed a 5V switching regulator circuit that would have the same function as the

LDO but would consume much less power. After the regulator, I assembled the quadcopter and

connected the motors, Electronic speed controllers (ESC) so that we could begin testing.

Working with our Software Engineer we could successfully communicate, using MavLink

commands, between the Raspberry Pi navigation controller and the Pixhawk Flight controller.

After communication was established I integrated the controllers into the quadcopter hardware so

that they would be secure in flight and correctly wired together. I also wrote preliminary code for

ultrasonic sensors that were to be used for obstacle avoidance while in flight. After the project

was designed, I was the primary team member responsible for setting up the Hovercam for test

flights.

3

 Hovercam

Senior Project Final Report

Design team 12

Adam Fada (Hardware Lead)

Daniel O’Brien (Software Lead)

Ross Palenik (Team Leader)

Kevin Rauh (Archivist)

Faculty Advisor: Dr. Hamid Bahrami

Senior Design Coordinator: Gregory A. Lewis

May 1, 2017

4

1. Table of Contents+----

1. Table of Contents+---- ... 4

2. List of Figures .. 6

3. List of Tables ... 7

4. Abstract .. 8

5. Problem Statement ... 9

A. Need .. 9

B. Objective .. 9

C. Background .. 9

Frame ... 9

Motor/Thrust Calculations:.. 10

Electronic Speed Controllers (ESCs) .. 12

Propellers ... 12

Battery ... 13

Flight Controller .. 14

Smart Phone Application ... 14

Navigation Controller .. 15

D. Marketing Requirements .. 16

E. Objective Tree .. 16

6. Design Requirement Specifications: ... 18

7. Technical Design ... 20

F. Hardware Level 0 ... 20

G. Hardware Level 1 ... 21

H. Hardware Level 2 ... 23

I. Software Level 0 .. 27

K. Software Level 1 .. 27

L. Software Level 2 .. 30

M. Software Level 3 .. 34

8. Accepted Technical Design ... 44

Hardware Design ... 44

Software Design .. 48

9. Operation, Maintenance, and Repair Instructions ... 58

Operation ... 58

5

Maintenance and Assembly ... 59

Repair... 60

Troubleshooting ... 61

10. Testing Procedures: .. 62

11. Parts List and Budget: .. 65

12. Gantt Chart: .. 66

13. Design Team Information .. 74

14. Conclusions and Recommendations .. 75

15. References .. 76

16. Appendix: ... 78

Raspberry Pi 3 model B ... 78

Camera ... 80

Pixhawk ... 81

6

2. List of Figures

Figure 1: Hovercam Frame Kit ... 9

Figure 2: Data table for the Sunnysky X2212 motors. ... 11

Figure 3: Objective Tree ... 17

Figure 4: Level 0 Hardware Block Diagram... 20

Figure 5: Level 1 Hardware Diagram ... 21

Figure 6: Hardware Level 2 Block Diagram... 23

Figure 7 Level 0 Software Diagram .. 27

Figure 8: Level 1 Software Diagram .. 28

Figure 9: Smart Phone Application Level 2 ... 30

Figure 10: Navigation Controller Main Flowchart ... 32

Figure 11: Software Level 2 Flowchart, Flight Controller ... 34

Figure 12: Smart Phone Application Flowchart ... 35

Figure 13: Battery Life Check Subsystem: ... 37

Figure 14: User Input Handler Subsystem .. 38

Figure 15: Flight Controller Handler .. 40

Figure 16: Level 3 Flight Controller Flowchart .. 42

Figure 17: Voltage Regulator Circuit ... 44

Figure 18: 5V switcher circuit .. 45

Figure 19: Wiring of the ESC's ... 46

Figure 20: Schematic for Hovercam ... 47

Figure 21: Smart Phone Application Flowchart ... 50

Figure 22: User Input Handler Subsystem .. 53

Figure 23: Flight Controller Handler .. 54

Figure 24: Level 4 Flight Controller Flowchart .. 56

Figure 25: Assembly Diagram for DJI Flamewheel ... 60

Figure 26: Disassembly Tools .. 61

Figure 27: Communication Latency ... 63

Figure 28: Stringed Testing of Hovercam .. 64

Figure 29: 1st Person View Verifying GPS Tracking on Hovercam .. 65

Figure 30: Fall Semester Gant Chart .. 70

Figure 31: Spring 2017 Tentative Gant Chart... 71

Figure 32: Spring 2017 Final Gant Chart ... 72

7

3. List of Tables

Table 1: Frame Kit Specifications .. 10

Table 2: System Weight .. 11

Table 3: System Current Draw ... 14

Table 4: Marketing Requirements for the Hovercam ... 16

Table 5: Design Requirements .. 18

Table 6: Hardware Level 0, Automated Hovercam .. 20

Table 7: Hardware Level 1, Microcontroller .. 21

Table 8: Hardware Level 1, Motor ... 22

Table 9: Hardware Level 1, Smart Phone ... 22

Table 10: Hardware Level 2, Electronic Speed Controller ... 24

Table 11: Hardware Level 2, Navigation Controller .. 24

Table 12: Hardware Level 2, Sensors ... 25

Table 13: Hardware Level 2, Voltage Regulator .. 25

Table 14: Hardware Level 2, Motors .. 26

Table 15: Software Level 0, Hovercam .. 27

Table 16: Software Level 1, GUI .. 28

Table 17: Software Level 1, Navigation Controller .. 28

Table 18: Software Level 1, Flight Controller .. 29

Table 19: Smart Phone Application .. 31

Table 20: Navigation Controller functions ... 33

Table 21: Smart Phone Application Functions ... 36

Table 22: Battery Life Check Functions ... 38

Table 23: User Input Handler Functions ... 39

Table 24: Flight Controller Handler Functions ... 41

Table 25: Flight Controller Functions... 43

Table 26: Estimated Parts List .. 47

Table 27: Final Parts List .. 48

Table 28: Smart Phone Application Functions ... 50

Table 29: User Input Handler Functions ... 53

Table 30: Flight Controller Handler Functions ... 54

Table 31: Flight Controller Functions... 56

Table 32: Pixhawk LED status ... 61

Table 33: Estimated Budget .. 65

Table 34: Final Budget.. 65

8

4. Abstract

Quadcopters are widely used in recreational areas and often have video cameras mounted to

them. The Hovercam increases the range of usefulness of quadcopters and allow the user to

record him or herself while performing any task. The Hovercam will use GPS to track and follow

a target. A smartphone application will be used to control the Hovercam in its basic functions of

taking off, hovering, and landing.

9

5. Problem Statement

A. Need

This product involves a camera mounted on an automated aerial device that will track a target

from a user specified distance. A quadcopter will be used initially. The Hovercam will allow the

user to record themselves when they are on the go. Some uses for this can be skiing, mountain

biking, and four wheeling.

B. Objective

The objective is to construct and program an aerial device that will autonomously follow and

film a target. The aerial device will be programmed to maintain a set distance from the target and

the ground while avoiding obstacles. The aerial device will visually record the target. A smart

phone application will send commands to take-off, land, hover, initiate autonomous tracking, and

view live video feed.

C. Background

Frame

The Hovercam is built using the DJI F450 frame kit. The frame kit includes the following items:

1 x F450 frame kit

4 x Sunnysky X2212 980KV Brushless motors

4 x HP SimonK 30A Speed Controllers

2 x 1045(CW+CCW) Black Propellers

2 x 1045(CW+CCW) Red Propellers

Each item in the kit is researched and verified that it will work to meet the design requirements

of the Hovercam. Figure 1 below displays the assembled frame kit for the Hovercam.

Figure 1: Hovercam Frame Kit

Implementing ultra-strength material, integrated PCB wiring, and assembly space with

retractable arms the DJI F450 frame is durable and lightweight frame, meeting the specifications

set in the marketing and design requirements. The material that the frame is constructed from is

PA66+30GF which is an ultra-strength nylon polymer material. Table 1 below displays the

material specifications of the frame.

10

Table 1: Frame Kit Specifications

Impact Strength, Izod English SI Metric

notched 1/8 in (3.2 mm) section 1.4 ft-lbs/in 75 J/m

unnotched 1/8 in (3.2 mm) section 13.0 ft-lbs/in 694 J/m

Tensile Strength 21500 psi 148 MPa

Tensile Elongation 2.5 - 3.5 % 2.5 - 3.5 %

Tensile Modulus 1.35 x 10^6 psi 9308 MPa

Flexural Strength 35000 psi 241MPa

Flexural Modulus 1.30 x 10^6 psi 8964 MPa

PCB wiring in the frame is implemented through a process of point-to-point wiring

allowing for easy connections to various components. This allows the integration of new

components such as controllers and sensors. Having a two deck center of the frame is very

beneficial because it allows one to implement various flight controllers and multiple batteries.

Motor/Thrust Calculations:

The thrust output of a quadcopter must be greater than the weight of the quadcopter for it

to fly. Each of the four motor that are used on a quadcopter provide a specific maximum thrust to

the system. Multiplying the amount of thrust per motor by the number of motors (4) the

maximum thrust of the quadcopter is able to be determined. In an ideal situation the weight of

the quadcopter should be half of the maximum amount of thrust, meaning that at 50% throttle the

quadcopter will be able to hover. By increasing the throttle, the quadcopter can be controlled to

rise and by decreasing the throttle the quadcopter will start to fall.

The Sunnysky X2212 980KV Brushless motors are used on the Hovercam. Figure 2

below displays the motor information from the datasheet. These motors were selected because

the total maximum output thrust is greater than 2kg, almost twice the estimated weight of the

Hovercam. The calculations for thrust will be done using the specs for the 1047 propellers, the

9047 propellers don’t provide as much thrust as the 1047, and with the selected frame the 1145

propellers will interfere with each other.

By increasing the voltage and current to the motors a maximum of 870g of thrust is

achievable for each motor. This amount of thrust will be used as the 100% throttle state in the

calculations. With 4 motors, the maximum thrust of the Hovercam is calculated below.

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑇ℎ𝑟𝑢𝑠𝑡 = (𝑇ℎ𝑟𝑢𝑠𝑡 𝑝𝑒𝑟 𝑚𝑜𝑡𝑜𝑟) ∗ (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑡𝑜𝑟𝑠) = 870𝑔 ∗ 4 = 3480𝑔

In order for the Hovercam to have good reaction time the hover state needs to be able to

be achieved at around 50% throttle. At 50% throttle, the available thrust is half of the maximum

thrust, or 1740g. In order for the Hovercam to be able to hover at 50% thrust the weight of the

quadcopter must be 1740 grams. The weights of all the components on the Hovercam are shown

in Table 2 below. The total weight of the Hovercam comes to 1284.6 grams, which is much less

than the 50% thrust of 1740g. Because the Hovercam weight less than 50% of the maximum

thrust, the Hovercam will be able to hover using less current allowing the Hovercam to sustain

flight for a longer period of time, which will be discussed later in the Battery section.

11

Table 2: System Weight

Parts Weight Calculations Weight (g)
Frame 282*1 282g
Motor 56*4 224g
Propeller 10*4 40g
ESC 27*4 108g
Flight Controller 38*1 38g
Navigation Controller 59.6*1 59.6g
Battery 490*1 490g
Camera Included in Navigation Controller N/A
Ultrasonic Sensors 8.5*4 34g
GPS Module 9*1 9g
Total

1284.6g

The motor and ESC datasheets call for 2-3 cells in series in order to operate at the

recommended voltage. Each cell in a LiPo battery provides 3.7V, by having 3 of these cells in

series 11.1V is able to be provided to the system which is needed to provide maximum thrust.

Each motor requires 13.2A to run at maximum thrust. With all 4 motors running the

needed current is 52.8A. Because other parts of the battery will also require power an extra 5A is

used in calculations, this estimate of a necessary 57.8A is well above what will be actually used.

Figure 2: Data table for the Sunnysky X2212 motors.

12

Electronic Speed Controllers (ESCs)

The ESCs used in the design are four HP SimonK 30A Speed Controllers. These ESCs

have an extremely low output resistance and superior current endurance. Protection features of

the ESCs include low-voltage cut-off protection, over-heat protection, and throttle signal loss.

The low voltage cutoff will cut the power to the motors when the voltage drops to a specific

level. This is a protection feature for LiPo batteries. If a LiPo battery’s voltage drops below its

minimal voltage, it can permanently damage the battery. This allows the motors to be protected

if anything happens to the battery or ESC. Also the ESC provides a separate voltage regulator IC

for the microprocessor providing a good anti-jamming capability. The throttle range can be

configured to be compatible with all transmitters providing a smooth, linear, and precise throttle

response. With a continuous allowed current of 30A and max current of 35A bursts the ESCs are

rated well above the motor’s current draw specified in Figure 2 above. The ESC calls for a 2S or

4S LiPo battery to operate the motors.

Propellers

On every quadcopter, there are two CW (clockwise) and two CCW (counter-clockwise)

propellers. There are propellers of different length and pitch. The size of a propeller is measured

from tip to tip, its diameter, as when you spin up a propeller you get a circle and the diameter is

the size of the propeller. Pitch is sometimes called pitch length as well, which can be defined as

the travel distance of one single propeller rotation. Generally, either increased propeller pitch or

diameter will lead to higher current draw, because more air is moved and it gets harder to spin,

assuming RPM is the same. In a nutshell, larger propeller or higher pitch length will increase

your vehicle speed but also use more power. When deciding on propeller size, you need to find a

good balance between pitch and length. Generally, a propeller with lower pitch numbers can

spin faster (higher RPM), the motors don’t need to work as hard to spin it so it pulls less current.

If you want to do acrobatics, you will need lower pitch propellers which provide higher

acceleration and it puts less pressure on the power system. Lower pitch propellers will also

improve stability. A higher pitch propeller moves greater amount of air, which could create

turbulence and cause more propeller wash. It generates more thrust in the expense of higher

current draw, but giving you higher top speed. A smaller propeller is easier to stop and speed up

while a larger propeller takes longer to change RPM due to inertia. The propeller chosen for the

Hovercam is a 10” x 4.5 pitch propeller also referred to as a 1045. This propeller set is a High

RPM version allowing for the motors and frame be better balanced. They are made of a strong

Nylon-Carbon composite which is very a light weight material.

Using a propeller with a pitch of 4.5 was more beneficial for the motors in the kit for

several reasons. Looking at thrust and efficiency there are advantages and disadvantages.

Comparing the 1045 pitch to the 9047 in the motor spec sheet, shows that the 1045 has a higher

thrust but lower efficiency. Comparing the 1045 with the 1145, the 1145 has a higher thrust but

lower efficiency. As the main goal is to strive for thrust with respect to the weight of the

components (3480g) the best choice would be to choose the 1145 propeller. With the 1145

propellers and the selected frame there would be some interference with the neighboring

propellers as well as requiring more current, which would decrease the flight time of the

Hovercam.

13

Battery

When selecting a battery there are other factors to take into account as well; the capacity

and the charge/discharge rate. The capacity of a LiPo battery is measured in milliamp hours

(mAh) and is the measure of how many milliamps the battery can provide for an hour. The

charge rate is the rate that the battery can be either charged or discharged, in this application the

discharge rate is most important. The discharge rating or C rating is used with the capacity in

amp hours of the battery to determine the amount of amperes that the battery can safely

discharge at once.

A 3S2P Lipo 8000mAh, 40C battery would be able to output a continuous current of

320A

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑅𝑎𝑡𝑒 = (𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝐴ℎ)) ∗ (𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝐶 𝑅𝑎𝑡𝑖𝑛𝑔) = 8.0𝐴ℎ ∗ 40
= 320𝐴

This 320A is the maximum rate of current draw that the battery can safely supply. This is

more than enough to operate the Hovercam that has a maximum current draw of 57.8A. The run

time of the Hovercam is determined using the maximum current draw and the capacity of the

battery.

𝑅𝑢𝑛 𝑡𝑖𝑚𝑒 =
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝐴ℎ)

𝑀𝑎𝑥𝑥𝑖𝑚𝑢𝑚 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑟𝑎𝑤
=

8.0𝐴ℎ

57.8𝐴
= .138 ℎ𝑜𝑢𝑟𝑠 𝑜𝑟 8.3𝑚𝑖𝑛.

Each motor requires less than 7.4A to run at 50% thrust. With all 4 motors running the

needed current is 29.6A. Because other parts of the battery will also require power an extra 5A is

used in calculations, this gives a necessary 34.6A to run.

𝑅𝑢𝑛 𝑡𝑖𝑚𝑒 =
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝐴ℎ)

𝑀𝑎𝑥𝑥𝑖𝑚𝑢𝑚 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑟𝑎𝑤
=

8.0𝐴ℎ

34.6𝐴
= .231 ℎ𝑜𝑢𝑟𝑠 𝑜𝑟 13.87𝑚𝑖𝑛.

The Hovercam will run using a combination of the two states, so the battery life will be

somewhere between the hover state calculation and the maximum thrust calculation. The average

of these flight times is 11.85min of flight. With a desired flight time of 10 minutes minimum, 1

of these batteries will be used giving the system about 11.85 minutes of flight.

A Floureon 3S2P 8000mAh 40C Lipo Battery will provide the Hovercam with 11.1V and

will be able to operate the Hovercam for the timespan calculated above. After all the parts for the

Hovercam were chosen the actual current draw of the system was calculated and is in fact less

than the value used in the calculations above. Table 3 shows the needed current for the

components of the Hovercam as well as the total current used by the system. Because this current

is less than the value used in the calculations above for the maximum current draw, the

Hovercam will be able to sustain flight slightly longer than previously calculated.

14

Table 3: System Current Draw

Parts Current Draw Total Current

Motor/ESC 13.2A*4 52.8A

Navigation Controller w/ Camera 2.5A 2.5A

Flight Controller 500mA 0.5A

Ultrasonic Sensors 2mA*4 .008A

GPS 20mA 0.02A

Total

55.83A

Flight Controller

The flight controller is responsible for controlling the motors so that the Hovercam keeps

the tracked image in the scope of the camera and within the predetermined distance from the

target. The flight controller has inputs from Ultrasonic sensors that are used as proximity sensors

for use in obstacle avoidance. The flight controller also has inputs from a barometer so that the

height of the Hovercam can be monitored and controlled. Inputs from a gyroscope and an

accelerometer are used to monitor the roll, pitch, and yaw of the Hovercam. This data will be

compared to the requirements set from the Navigation controller and will be used to control the

motors. The yaw is used to control the direction that the Hovercam is facing. The yaw will be

adjusted so that the Hovercam will have the target that is being tracked in the center of the field

of vision of the camera. The roll and pitch are used to control the movement of the Hovercam.

As the pitch of the Hovercam is adjusted the Hovercam will move either forward or backwards,

positive pitch for forward movement and negative pitch for backwards movement. As roll of the

Hovercam is adjusted the Hovercam will move either left or right, positive roll is for movement

left and negative roll is for movement right.

The Pixhawk flight controller is selected for the Hovercam. The Pixhawk has an

integrated gyroscope, accelerometer, barometer, and magnetometer. The Pixhawk flight

controller will communicate with the Navigation controller through the TELEM2 port. The

Pixhawk also have ports for up to 8 motors and 6 auxiliary outputs that can be used for the

Ultrasonic sensors.

Smart Phone Application

Smart phone applications are used for all sorts of control purposes these days as smart phones are

a commonality in everyday life. With free application development programs easily downloaded

from the internet, creating a smart phone application to send basic commands to the quadcopter

was definitely the most reasonable choice monetarily and when it comes to ease of use. No extra

equipment being required would also be a relief to users making the product more desirable.

15

The smart phone application will be made utilizing Visual Studio and Xamarin. Visual

Studio was chosen as the IDE to use because it has a lot of support for c# development, GUI

design, and it has Xamarin support implemented. Xamarin is a framework that allows for native

android development in c#. Xamarin was chosen because it will allow for a streamlined creation

of a smartphone application without having to worry about the backend work of supporting a

native android operating system.

The application GUI is structured quite simply for ease of use. The first screen prompts

the user for a password so that the security protocol can be activated. The following screen will

be the main controls screen featuring the Set Distance, Take Off, Land, and Hover buttons.

Before anything else can be selected the user must set the distance between the smart phone and

the quadcopter by clicking the button, being taken to a separate screen with a slider to set the

distance, and then returning to the main controls screen. Now, the Take Off button is available.

After being clicked, the quadcopter will then enter the stationary hover state. Landing is now an

option in the state. Also located on the main controls screen are the buttons that allow the user to

view the video feed and to select a target. The View Video Feed button merely takes the user to a

different screen with a window displaying the video feed. The Target Selection button takes the

user to a similar screen, but also allows them to select a target by pressing and dragging to form a

box around the region of interest. After selecting a target, the quadcopter will enter the follow

state where the Hover command becomes available and the Land command becomes

unavailable. The Hover command sends a message to stop tracking and stay in position. This

returns the quadcopter to the hover state and allows the user to click the Land button.

To ensure a secure connection between the smart phone and the quadcopter, Transport

Layer Security (TLS) will be implemented. TLS is a cryptographic protocol that provides a

private connection and maintains data integrity between two communicating devices. So that the

quadcopter cannot be hacked into, TLS enacts a handshake protocol between the quadcopter and

the smart phone at the start of each session that generates keys unique to each session. The

encryption algorithm and cryptographic keys are determined by the two devices before any data

is transmitted negating any potential hackers trying to take over during communications. Each of

the devices can also be authenticated by utilizing public-key cryptography and the integrity of

their messages can be maintained by implementing a message authentication code.

Navigation Controller

The Raspberry Pi 3 model B was chosen to be the processor for the navigation controller.

The Raspberry Pi was chosen because it met the design requirements of using live imaging

processing for fine target tracking. It includes a camera interface, microSD slot, 802.11b/g/n

wireless LAN, 1 GB of RAM, and a 1.2GHz processor. It is also lightweight at only 2.1 ounces.

The power requirements are minimal in that only five volts are required with a current draw from

1.2A to 2.5A. The 802.11 b/g/n wireless LAN card will allow for effective communication to the

smartphone application, as the data rate can range from 11 to 300 Mbps depending on the

receiving smartphone network adapter. The processing power of 1.2 GHz will allow the

navigation controller to use multithreading to support all software features in the design. The 1

GB of RAM will allow for the image processing to utilize high resolution pictures because 1GB

of RAM is plenty of space for the program to run along with image processing. The microSD

slot will allow navigation controller to use a microSD card to record and store the video data.

16

The Raspberry Pi 8MP camera was chosen to use for the image processing method. The

camera allows for the following video modes: 1080p30, 720p60 and 640 × 480p60/90. This will

allow for high quality video and image processing if the navigation controller uses at least the

720p60 which is 720p with 60 frames per second. These different video modes also allow for the

ability to send a lower resolution video feed to the smartphone application, which will in turn

lower the power cost of transmitting data compared to streaming pure 1080p quality video. As

the camera was created for the raspberry pi, there is open access with the camera API to read the

video stream directly.

GPS is added to the navigation controller using the Adafruit Ultimate GPS hat. This GPS

module was chosen because it is able to interface with the raspberry pi using UART to

communicate effectively. This module is able to update at 10Hz, so the GPS data can be pooled

ten times a second, which is fast enough for tracking a moving object. The current draw is only

20mA, so this barely affects the system’s power draw from the battery.

D. Marketing Requirements

In order for the Hovercam to be a successful product, it needs to meet requirements that

make it marketable. By meeting these requirements, the Hovercam becomes valuable to the

customer, providing a service that had previously been left unfulfilled. Table 4 below displays

the marketing requirements that the Hovercam will fulfill.

Table 4: Marketing Requirements for the Hovercam

Marketing Requirements

1. The device will film the target it is tracking.

2. The device will follow a target within a user specified distance.

3. The device will avoid obstacles in flight.

4. The device will be lightweight and durable.

5. The device will have a high quality video output.

6. The device will have a rechargeable battery.

E. Objective Tree

The functionality of the Hovercam is broken down into several simple requirements.

These requirements for the Hovercam are broken down into more simple and measurable

objectives. These objectives are mapped into a flowchart in Figure 3 as the objective tree. By

following the objectives in the objective tree the Hovercam will meet the marketing requirements

mentioned above.

17

Figure 3: Objective Tree

18

6. Design Requirement Specifications:

The design requirements for the Hovercam listed below in Table 5 merge the marketing

requirements with the technical designs that will fulfill those requirements. The engineering

requirements are used to verify that each step of the technical design, in the following section, is

pertinent to the operation and function of the Hovercam.

Table 5: Design Requirements

 Marketing

Requirements

Engineering Requirements Justification

1. 4, 5, 6 The battery must be able to sustain at

least 10 minutes of flight.

The system must fly for at least ten

minutes for actual use.

2. 2, 3 The device must be able to

communicate with the smart phone

within a range of 30m.

The system will typically be used

outside and will need to

communicate within the specified

distance.

3. 1, 5 The device must be able to film the

target using image processing while

within a 10m range.

Video recording of the subject is

crucial for both tracking and filming

the object

4. 3, 4 The device must be able to fly

outdoors without being affected by

weather conditions.

The system must be able to fly in

damp weather and windy conditions

without breaking or being tossed

around.

5. 2 The device must be able to take off,

hover, and land with manual control.

 The user will be able to tell the

device to take off and safely land

overriding the autonomous flight.

6. 1,2,5 The device must be able to reacquire

the target using GPS if the target

leaves the camera’s field of view.

The objective is to film the target so,

if visually lost, the target needs to

return to the camera’s field of view.

7. 5 The device must be able to stream

video to the smartphone with a

minimal delay of 100ms.

The video feed must not lag too far

behind the movement of the device.

8. 2,5 The smartphone application must be

executable on several different types of

android smart phones.

The larger number of android phones

this application works on the greater

number of people will be able to use

this device.

9. 1,5 The communication between the

application and device must be secure

The system must be secure against

others trying to crash or steal the

19

against external interference. device.

10. 2,3,4 The device must be able to detect and

autonomously avoid obstacles within 2

meters of the device

The system must not crash into any

stationary objects.

20

7. Technical Design

F. Hardware Level 0

The Hovercam hardware takes inputs of power control inputs and from sensors to fly

autonomously. The Hovercam outputs thrust from the motors and video to the user. Figure 4

below displays the Level 0 block diagram of the Hovercam and Table 6 is the functionality table

of the level 0 hardware diagram.

Figure 4: Level 0 Hardware Block Diagram

Table 6: Hardware Level 0, Automated Hovercam

Module Automated Hovercam

Inputs o Power

o User Control Input

o Sensors

Outputs o Video Output

o Motors

o User Control Output

Functionality This device calculates its position compared to the input signal position of the

beacon, and it uses the motor controls to maintain a steady distance away from

the beacon. User control input can be used to manually override the device, and

the position and proximity sensors will stop the device from running into any

obstacles. The video output will be sent as a live feed to the user control device,

and the user control output will update the status on the user control device

about the automated Hovercam.

21

G. Hardware Level 1

From the Hardware Level 0 diagram, the blocks have been broken down into manageable parts.

The Level 1 flowchart below in Figure 5 depicts the direction of transfer of information and

power in the Hovercam.

Figure 5: Level 1 Hardware Diagram

Each main block of the level 1 diagram above is broken down and explained in terms of its

functionality, inputs, and outputs. Table 7 displays the microcontroller hardware and

connections.

Table 7: Hardware Level 1, Microcontroller

Module Microcontroller

Designer Adam Fada

Inputs

Power (3.3-5V)

Communications (Position and commands)

Sensors

Outputs Motor

Communications (Video Signal)

Description Microcontroller is collecting data from all of the sensors and determining the

appropriate adjustments to the motors for flight tracking. The microcontroller is

transmitting video from the camera to the cell phone controller.

22

Table 8 below depicts the necessary inputs and the outputs of the motors and how they operate in

the system.

Table 8: Hardware Level 1, Motor

Module Motor

Designer Kevin Rauh

Inputs

Power

Microcontroller

Outputs Thrust to lift the quadcopter

Description Electronic Speed Controls are getting power from the battery and commands from the

microcontroller. The ESCs are then outputting power to the motors which the propellers

are attached to. The ESCs are reading feedback speed data from the motors and feeding

that back to the microcontroller.

Table 9 below depicts the functionality of the smart phone and how the smart phone will interact

with the Hovercam while it is in flight.

Table 9: Hardware Level 1, Smart Phone

Module Smart Phone Application

Designer Ross Palenik

Inputs

GPS signal

Video Feed from microcontroller

Outputs Communications to Microcontroller

Description Smart Phone allows user to choose a target to track and sends that information to

the microcontroller on the quadcopter. It receives video feed from the

quadcopter. Also allows user to send the take-off, land, and hover commands to

the quadcopter microcontroller. Communication is protected using Transport

Layer Security (TLS)

23

H. Hardware Level 2

The Level 1 Hardware diagram is broken down into the base parts needed for the Hovercam.

Each piece in Figure 6 below shows the necessary connections for the Hovercam and flow of

information from one piece to the next. The Tables below describe each of the main components

in the Hovercam and how they relate to one another for the Hovercam to function properly.

Figure 6: Hardware Level 2 Block Diagram

24

Table 10: Hardware Level 2, Electronic Speed Controller

Module Electronic Speed Controller

Designer Ross Palenik

Inputs

Power

Microcontroller

Outputs • Motors

o Propellers

Description The electronic speed controls are supplied power from the battery and commands from

the microcontroller to provide a three phase low voltage source of energy to the motors

and output specific controls to the motors. Attached to the motors are the propellers. The

electronic speed controls will send data from the motors back to the microcontroller.

Table 11: Hardware Level 2, Navigation Controller

Module Navigation Controller

Designer Kevin Rauh

Inputs

Power- from Voltage Regulator

Camera

GPS Sensor

Wi-Fi Adapter

Outputs Microcontroller

Wi-Fi Adapter

Description The navigation controller is powered from the voltage regulator and is reading inputs

from the Camera and GPS sensor to calculate the flight vector needed to maintain a

predetermined distance from the user. The Navigation controller is then sending the

flight control data to the Microcontroller and sending video feed to the smartphone

through the Wi-Fi adapter.

25

Table 12: Hardware Level 2, Sensors

Module Sensors

Designer Kevin Rauh

Inputs

Power- from voltage regulator

Gyroscope- measuring pitch, roll, and yaw

Accelerometer- measuring the acceleration of the Hovercam

Barometer- measuring the height of the Hovercam from the ground

Ultrasonic Proximity Sensor- detecting if there are obstacles in the flight path

Magnetometer- Uses Earth’s magnetic fields for orientation

Outputs Microcontroller

Description All the sensors on the Hovercam are being powered from the voltage regulator. The

sensors are acquiring flight information and sending the data to the microcontroller to

determine corrective flight controls. The accelerometer is gathering speed and

acceleration data, the gyroscope is measuring the pitch, roll, and yaw of the Hovercam.

The Ultrasonic sensors are detecting any nearby obstacles, while the Barometer is

measuring the height of the Hovercam.

Table 13: Hardware Level 2, Voltage Regulator

Module Voltage Regulator

Designer Kevin Rauh

Inputs Power from battery

Outputs Microcontroller

Navigation Controller

Ultrasonic Proximity Sensor

Camera

GPS sensor

Accelerometer

Gyroscope

Barometer

Magnetometer

Description The voltage regulator is taking power from the LiPo battery and converting it 5V or

3.3V. The voltage regulator is then supplying that power to the microcontroller,

navigation controller, ultrasonic sensor, camera, GPS, accelerometer, gyroscope,

Magnetometer, and Barometer.

26

Table 14: Hardware Level 2, Motors

Module Motors

Designer Adam Fada

Inputs ESC

Outputs Thrust to Propellers

Description The Brushless DC Motors (BLDC) are suppling a specific RPM limit with bi-directional

current to the propellers for lift. The amount of thrust provided can change the

Hovercam’s height and orientation.

27

I. Software Level 0

The software of the Hovercam is used to control the movement and the video recording

of the device. Figure 7 is the level 0 software diagram for the Hovercam, depicting the basic data

inputs and outputs. Table 15 includes the basic description of the Hovercam software.

J.

Figure 7 Level 0 Software Diagram

Table 15: Software Level 0, Hovercam

Module Hovercam

Designer Daniel O’Brien

Inputs User Input

Sensor Data

Outputs Motor Control Signal

Data to User

Description The software takes in user input and sensor

data to control the Hovercam. Also, data is

sent to the user control device, including

video and Hovercam status.

K. Software Level 1

From the level 0 diagram the software is broken down into 2 sub blocks. Figure 8 shows the

main system blocks, one on the Hovercam itself and the other for the smart phone application.

Table 16 contains information for the smartphone interface and how it communicates with the

Hovercam. Table 17 below shows the Navigation controller on the Hovercam and Table 18

shows the Flight controller on the Hovercam.

28

Figure 8: Level 1 Software Diagram

Table 16: Software Level 1, GUI

Module GUI

Designer Daniel O’Brien

Inputs User Input

Wireless Communication

• Video Data

• Location

Outputs Wireless Communication

• Commands

• Location

Description Takes in user input from the user to control

the quadcopter. Displays video feed and

location from quadcopter.

Table 17: Software Level 1, Navigation Controller

Module Navigation Controller

Designer Daniel O’Brien

Inputs Video Data Stream

Wireless Communication

• Commands

Location

Outputs Wireless Communication

• Video Data

• Location

Navigation Data

Description Processes commands from android

application to control the flight controller.

Stores video data and streams it to the android

application.

29

Table 18: Software Level 1, Flight Controller

Module Flight Controller

Designer Daniel O’Brien

Inputs Sensor Data

Navigation Data

Outputs Motor Controls

Description Processes sensor data to drive the motors

using PWM control signals. Takes commands

from the navigation controller.

30

L. Software Level 2

The following flowchart in Figure 9 describes the expected behavior of the smartphone

application. The first step that the application must perform is creating a secure wireless

connection to the quadcopter. The application will continuously wait for GPS coordinates

requests from the quadcopter. The User Input Handler will consist of a GUI that will have

commands the user can send to the quadcopter as described in Table 19.

Figure 9: Smart Phone Application Level 2

31

Table 19: Smart Phone Application

Module Smart Phone Application

Designer Ross Palenik

Inputs

Wireless Communication

• Video Data

• Location

Outputs Wireless Communication

• Commands

• Location

Description The application will continuously wait for the GPS coordinates requests from the

quadcopter. The user input handler will handle the sending of user commands to

the quadcopter. The GUI for the application will feature buttons for each of

those basic operation commands as well as screens to set the distance between

the phone and the quadcopter, view the video feed, and select the target.

32

Figure 10 shows the flowchart of the navigation controller. The navigation controller

starts and waits for a connection to be requested by the smartphone application. After the

connection is initialized, a secure connection is created using TLS. Then, the initial variables,

such as flight distance, are initialized. The navigation controller then creates four main threads

that are ran in loops. The first thread waits for video feed requests and transmits it when

requested from the smartphone application. The second thread handles user input from the

smartphone application. The third thread continuously requests the GPS coordinates from the

smartphone application and saves them in a variable for other threads to read. The final thread

stores the video stream onto a microSD card, so the user can retrieve video footage later. The

figure contains two subsystems, User Input Handler and Battery Life Check. Table 20 below

displays the main functions used be the Navigation controller.

Figure 10: Navigation Controller Main Flowchart

33

Table 20: Navigation Controller functions

Function Name Parameter Description

WaitForConnectionFrom

SmartphoneApplication
None

This function waits for a connection from the

smartphone application. When it is created, the

CreateSecureConnection function is called.

CreateSecureConnection

Socket

Information

This function takes the created socket

information for a TCP connection and creates a

secure connection using TLS.

InitializeInitialVariables
Flight

distance

This function takes in the flight distance and

initializes it as well as other default variables

used such as target GPS coordinates, quadcopter

GPS coordinates, height, and battery life.

WaitForVideoFeed

Requests

Socket

Information

This function creates another socket with the

smartphone application and waits for video feed

requests from the smartphone application. When

requests are received, it transmits the video

stream.

UserInputHandler
Socket

Information

This function maintains the current socket

information or connection and handles any

commands that are sent to the navigation

controller from the smartphone application.

RequestTargetGPS

Coordinates

Socket

Information

This function creates another socket with the

smartphone application and continuously

requests GPS coordinates. The GPS coordinates

are then saved in a variable for future use from

other threads.

StoreVideoFeedOnMicro

SDCard

Video

Stream

This function writes the incoming video stream

to memory on the MicroSD card.

34

The following flowchart in Figure 11 describes the flight controller that is on the quadcopter

with the navigation controller. The fight controller handles the basic flight movement of the

quadcopter based on the flight vectors that are sent from the flight controller. The flight vectors

will be used to calculate the speed of each motor, so that the quadcopter moves in the correct

direction. Also, it will use its sensors to avoid obstacles and maintain a stable flight.

Figure 11: Software Level 2 Flowchart, Flight Controller

M. Software Level 3

The smart phone application is used to send commands to the navigation controller. The first

thing the application does on startup is initialize a secure connection between the quadcopter and

itself. This will require a password from the user. After transmitting initial variables, the

quadcopter will continuously wait for the quadcopter to request it's GPS coordinates and transmit

them when requested. The user interface will now be available as well allowing the user to send

commands to the quadcopter via the user input part of the flowchart. The user input handler in

the smart phone application is broken down into more detailed steps for control of the Hovercam.

Figure 12 shows the smart phone application with the user input handler subsystem. This

subsystem handles the user inputs that are to be sent to the quadcopter. The Take Off, Hover,

and Land inputs each are buttons in the application and each send their respective commands to

the quadcopter navigation controller to decipher. The Video Feed button takes the user to a

separate screen where the application continuously requests the video feed from the quadcopter

until the user leaves that screen. The Set Distance button takes the user to a screen where a slider

can be used to set the desired distance between the smart phone and the quadcopter and that

information is sent to the navigation controller. The Select Region of Interest button will take the

user to a separate screen displaying the video feed. The user will be able to click and drag to

form a square around the desired target. This information is then sent to the navigation

controller. Table 21 below displays the functions used by the Smart Phone Application.

35

Figure 12: Smart Phone Application Flowchart

36

Table 21: Smart Phone Application Functions

Function Name Parameters Description

IsTakeOffClicked
Command Byte

Stream

This function sends takeoff state opcodes to

navigation controller.

IsHoverClicked
Command Byte

Stream

This function sends hover state opcodes to

navigation controller.

IsLandClicked
Command Byte

Stream

This function sends land state opcodes to

navigation controller.

IsSetDistanceClicked
Command Byte

Stream

This function sends set distance state

opcodes to navigation controller.

IsRegionOfInterestClicked
Command Byte

Stream

This function sends region of interest state

opcodes to navigation controller.

RequestVideoFeed
Video Byte

Stream

This function requests video feed data from

the quadcopter microcontroller.

37

The navigation controller will the system that communicates with the smartphone application

over Wi-Fi and interfaces with the flight controller on the quadcopter. Wi-Fi was chosen because

smartphones have access to a WLAN network card, and will allow for communication over long

distances outside. The navigation controller sends flight commands to the flight controller to

control the movement of the quadcopter. This process will be done using a combination of GPS

navigation and image processing. GPS has an accuracy of around 7.8 meters at a 95%

confidence, and that is not good enough to accurately record and track an object. To solve this,

image processing will be used for the fine tracking of an object.

The image processing will be implemented using the OpenCV library, which stands for

open source computer vision. This was chosen as it is compatible with the chosen Raspberry Pi

processor and meets the design requirements of live image processing. The OpenCV library

contains many object tracking methods, however, it was determined that the TLD tracking

method fit the project parameters best. This is because the TLD tracking method is useful for

tracking an unknown object in an unconstrained video stream. This accurately describes the

tracking required for this project, as the object to be tracked will be dynamically selected within

an unknown space of movement. TLD, tracking-learning-detecting, is a process in which an

object is learned, tracked, and detected long-term. Using a medium flow algorithm, a region of

interest will be selected as a bounding box in which to learn an object. This object will then be

tracked from frame to frame, while the detector localizes all appearances of the object to identify

any errors and learn. This will allow for improved tracking to prevent loss of object detection in

future frames.

The navigation controller will be a multithreaded program running on a Linux

distribution operating system. Using a Linux based distribution for the operating system will

allow for less overhead of running the program while still maintaining the functionality to do

computation, communicate with the smart phone application, and communicate with the flight

controller.

Figure 13 shows the battery life check subsystem that is run on each thread for safety.

This subsystem will check if the battery life is below a certain threshold, such as 10%, and will

perform an emergency landing if it is. An emergency landing will stop powering all non-vital

systems and land immediately. Table 22 below displays the functions used for the battery life

check.

Figure 13: Battery Life Check Subsystem:

38

Table 22: Battery Life Check Functions

Function Name Parameters Description

CheckBatteryLife None
This function will get the current battery life of

the system.

IsBatterLifeLessThanThreshold
Current

battery life

This function will determine if the battery life

has passed the safety threshold, and it will

return a Boolean.

EmergencyLand None
This function will turn off power to all non-vital

systems and perform a landing.

Figure 14 shows the user input handler subsystem. This subsystem handles commands sent from

the smartphone application. The commands handled are takeoff, land, hover, set distance, and set

region of interest. Each command will have its own opcodes to differentiate between commands.

This subsystem also contains another subsystem block, flight controller handler. Table 23 below

displays the functions used by the User Input Handler.

Figure 14: User Input Handler Subsystem

39

Table 23: User Input Handler Functions

Function Name Parameters Description

RetrieveUserInput Byte stream

This function will handle the incoming byte

stream from the application and send it to all of

the command state handlers.

IsTakeOffState
Command

Byte Stream

This function determines if the bytes sent

contain the takeoff state opcodes. It returns a

Boolean.

IsTakeOffState
Command

Byte Stream

This function determines if the bytes sent

contain the takeoff state opcodes. It returns a

Boolean.

IsLandSate
Command

Byte Stream

This function determines if the bytes sent

contain the land state opcodes. It returns a

Boolean.

IsSetDistanceCommand
Command

Byte Stream

This function determines if the bytes sent

contain the set distance state opcodes. It returns

a Boolean.

IsRegionOfInterestCommand
Command

Byte Stream

This function determines if the bytes sent

contain the region of interest state opcodes. It

returns a Boolean.

SetFlightDistance Float This function sets the distance variable

IsPositionAtTarget None

Determines if the quadcopter is near the target

(within 7.8 meters accuracy). It returns a

Boolean.

SetRegionOfInterest Rectangle
This function sets the bounding box of the region

of interest for the TLD tracker.

Figure 15 shows the flight controller subsystem. This subsystem handles the image processing

and flight vector calculation for controller the flight controller. The image processing algorithm

determines if the tracked object is to the left or right side of the origin of the camera, with a 5%

region of tolerance for the center. If the object is not in the center region, the flight vector will be

influenced to change the yaw to orient either left or right. If the object is no longer detected, the

flight vector fusion will use just the GPS data to track the target. The GPS coordinates are used

to calculate the distance between the quadcopter and the target on the horizontal plane. If the

target is within the specified distance, the quadcopter will move back, while if it exceeds the

specified distance, the quadcopter will move forwards. There is, of course, a default region

around the specified distance in which the quadcopter may hover without following the target if

the target is not in motion. Table 24 below displays the functions used by the Flight Controller

Handler.

40

Figure 15: Flight Controller Handler

41

Table 24: Flight Controller Handler Functions

Function Name Parameters Description

GetPictureFrame
Video byte

stream

This function grabs a frame from the video

stream.

DetectObject Video Frame

This function detects the object’s position in

the video frame. It returns x and y

coordinates.

IsTargetFound
Object

position

This function determines if the object was

found within the video frame. It returns a

Boolean.

CalculateCentroidDifference
Object

position

This function calculates the position of the

tracked object in reference to the origin of the

camera. It returns the difference.

IsMoveLeftOrRight
Position

difference

This function determines if the yaw should

orient left or right based upon the centroid

difference return value. It returns a Boolean.

CalculateDistance

Target GPS

coordinates,

quadcopter

GPS

coordinates

This function determines the difference of the

horizontal plane between the target and

quadcopter GPS coordinates. This returns the

difference as a float.

IsDistanceEqualToSetDistance Distance

This function determines if the distanced

found from calculate distance is equal to the

set distance, with a percent of margin error.

DetermineDirectionBased

UponDistanceDifference

Distance

difference

from GPS

This function determines the direction,

forwards or backwards, that the quadcopter

must move to maintain a specified distance

away from the target.

FuseFlightVectorData
Direction,

Orientation

This function takes the direction provided by

the GPS difference and the orientation from

the image processing to determine the flight

vector the flight controller should move.

SendFlightVectorToFlight

Controller
Flight vector

This function sends the flight commands to

the flight controller to move the quadcopter.

42

The flight controller monitors the current position and orientation of the Hovercam and

compares it to inputs from the navigation controller and the proximity sensors. These compared

values are used to control the thrust output of each motor for different states of flight. If an object

comes within 2 meters from the Hovercam, detected by the ultrasonic sensors the Hovercam will

enter an avoidance state. To avoid the object, the roll of the Hovercam will either increase or

decrease depending on which sensor the object is detected on. If the object is detected on either

of the right sensors the Hovercam will gain positive roll to fly left of the object. If the object is

detected on either of the left sensors the Hovercam will gain negative roll to fly to the right of the

object. In either avoidance direction, the pitch of the Hovercam will be adjusted to half of the set

value. Once the ultrasonic sensors detect that the object is no longer present, the roll and pitch

will return back to the value being sent from the navigation controller. The barometer on the

Pixhawk will be used to monitor the height of the Hovercam. The height the Hovercam will be

set to maintain is 5 meters. If the height is measured to be too low the thrust of the motors will

increase until the correct height is achieved and if the height is measured to be too high the thrust

of the motors will decrease until the correct height is achieved. After the correct height is

achieved then the thrust of the motors will return back to their original state. Figure 16 below

depicts the flow of operation for the flight controller.

Table 25 below displays the functions used by the flight controller.

Figure 16: Level 3 Flight Controller Flowchart

43

Table 25: Flight Controller Functions

Function Name Parameters Description

IsObstacleFoundOnLeft Left side Ultrasonic

Sensor above threshold

This function will calculate if there is

an object to the left of the Hovercam.

Will enter the AvoidLeft function

IsObstacleFoundOnRight Right side Ultrasonic

Sensor above threshold

This function will calculate if there is

an object to the right of the Hovercam.

Will enter the AvoidRight function

AvoidLeft IsObstacleFoundOnLeft If the object is detected on the left

sensors the Hovercam will gain

negative roll to fly to the right of the

object

AvoidRight IsObstacleFoundOnRight If the object is detected on the right

sensors the Hovercam will gain

positive roll to fly to the left of the

object

AtHeight Barometer If Barometer reads below 5 meters

enter GainAltitude function, if

Barometer reads above 5 meters enter

DecreaseAltitude function

GainAltitude Below 5 meters Increase all 4 motors output thrust by

10% of maximum thrust

DecreaseAltitude Above 5 meters Decrease all 4 motors output thrust by

10% maximum thrust

CheckPitch Pitch from Gyroscope,

Pitch from Navigation

controller

Verify the pitch of the Hovercam is at

the level sent from the Navigation

controller. If they are not the same the

pitch is adjusted

CheckRoll Roll from Gyroscope,

Roll from Navigation

controller

Verify the roll of the Hovercam is at

the level sent from the Navigation

controller. If they are not the same the

roll is adjusted

CheckYaw Yaw from Gyroscope,

Yaw from Navigation

controller

Verify the yaw of the Hovercam is at

the level sent from the Navigation

controller. If they are not the same the

yaw is adjusted

44

8. Accepted Technical Design

Hardware Design

Voltage Regulator [Kevin Rauh]

The Voltage regulator is responsible for regulating the battery voltage down from about 12V to

5V. A LM2576 step down voltage regulator is used, the switching regulator outputs 5V at 3A

maximum load and can have a input voltage range of anywhere between 7V and 40V . The

maximum output voltage from the battery is 12.6V which is well below the maximum for the

regulator and a fully discharged 3S2P LiPo battery is 9.00V, above the minimum 7V that is

necessary for the regulator. Figure 17 below shows the layout of the Voltage regulator circuit.

Figure 17: Voltage Regulator Circuit

The input voltage, pin 1 on the regulator will be connected to the battery and the regulated output

voltage, pin 4, will be connected to both the navigation controller and the flight controller. The

physical circuit for the voltage regulator is shown below in Figure 18.

45

Figure 18: 5V switcher circuit

 ESC Wiring [Kevin Rauh]

For a Quadcopter to fly, some motors must spin clockwise and some counterclockwise. The

motors spinning in opposite directions keeps the quadcopter stable in flight and will keep it from

rotating. To achieve proper stability motors opposite each other must spin the same direction.

The Hovercam’s motors are spinning such that the front right and back left motors are spinning

counterclockwise, and the top left and bottom right motors are spinning clockwise. For the

motors to spin in the proper direction, they must be wired to the ESC’s in the proper fashion.

Figure 19 below depicts the proper wiring for each rotational direction of the motors.

46

Figure 19: Wiring of the ESC's

Final Schematic of Hovercam [Adam Fada]

The complete circuit layout for the Hovercam is shown below in Figure 20. The voltage source

in this circuit is a 3S2P LiPo battery that is directly powering the ESCs, and voltage regulator

circuit.

47

Figure 20: Schematic for Hovercam

Required Parts [Kevin Rauh]

In the preliminary design of the Hovercam, Table 26 was constructed listing the parts that were

necessary for the construction of the project. As the design of the Hovercam progressed new

parts were needed to fill design gaps in the original plan. Table 27 below is the final parts list for

he Hovercam.

Table 26: Estimated Parts List

Qty. Part Num. Description

1 DJI 450 Frame Kit multi-rotor Wheel ARF kit

1 Pixhawk PX4 32Bit ARM Flight Controller

1 114990584 Raspberry Pi 3

6 SEN-13959 Ultrasonic Sensor 40kHz

1 2324 GPS HAT for Raspberry Pi

1 Floureon 2 packs 3s2p 8000mAh 40C Lipo Battery

48

1 Raspberry Pi Camera V2 Video module

Table 27: Final Parts List

Qty Part Number Description
1 DJI 450 Frame Kit multi-rotor Wheel ARF kit

1 Pixhawk PX4 32Bit ARM Flight Controller

1 114990584 Raspberry Pi 3

6 SEN-13959 Ultrasonic Sensor 40kHz

1 Floureon 2 packs 3s2p 8000mAh 40C Lipo Battery

1 Raspberry Pi Camera V2 Video module

1 Male to Female Jumper Wire 40pcs

1 GPS and Compass for Pixhawk

1 Male Deans Connector 2 pack

1 Micro USB cable

1 9450 Propellers 4 pairs

4 3D printed Ultrasonic Sensor mounts

1 LM2576 Series SIMPLE SWITCHER 3-A Step-Down Voltage Regulator

2 50 uH Inductor

1 100uF Capacitor

1 1000uF Capacitor

1 1N5822 Schottky Barrier Plastic Rectifier

Added to the original parts list were items needed to construct a Voltage regulator as discussed

previously. Spare propellers were also needed because in testing of the Hovercam some of the

original propellers were broken. The original GPS hat for the Raspberry Pi did not fit on our

Hovercam so a different style was used of the final product. To wire the ultrasonic sensors and

the Pixhawk to the Raspberry Pi, female connectors were needed because the GPIO pins on the

Raspberry Pi had male leads.

Software Design

The software used in the accepted technical design of this project consists of a

smartphone application, navigation controller, and flight controller. These three components are

used to autonomously control the quadcopter, record video, and stream video. The navigation

controller is connected directly to the flight controller with wires, however, the smartphone

application connects to the navigation controller through Wi-Fi. Wi-Fi was chosen because

smartphones have access to a WLAN network card, and will allow for communication over long

distances outside. The specific distance that the device can allow, with the embedded Wi-Fi

adapter on the raspberry pi, is at least 50 meters. The navigation controller was setup as an

access point using WPA security protocol for the smartphone user to connect to before

connecting with the application.

 Smart Phone Application [Ross Palenik]

The smartphone application is an Android application created using Xamarin with Visual Studio.

The language used to implement the application is c#. This language was chosen as Visual

Studio is a nice IDE for a new programmer to use, as was the case for this project’s smartphone

49

application developer. The smart phone application is used to send commands to the navigation

controller. The first thing the application does on startup is initialize a secure connection between

the quadcopter and itself using SSL with a SHA-256 certificate. The user is then required to

enter a password that is used to authenticate them. The password that is stored on the quadcopter

was saved as a salted hash, so that anyone recovering this saved password will not be able to

grab the actual password used.

After transmitting initial variables, the quadcopter will continuously wait to receive any

commands from the smartphone application. Also, the smartphone application has another thread

created that continuously sends the phones GPS location every two seconds to the navigation

controller. The user interface will now be available as well allowing the user to send commands

to the quadcopter via the user input part of the flowchart. The user input handler in the smart

phone application is broken down into more detailed steps for control of the Hovercam. Figure

21 shows the smart phone application with the user input handler subsystem. This subsystem

handles the user inputs that are to be sent to the quadcopter. The Take Off, Hover, and Land

inputs each are buttons in the application and each send their respective commands to the

quadcopter navigation controller to decipher. The Video Feed, or Video Stream, button takes the

user to a separate screen where the application reads a video stream that is being sent from the

navigation controller. The Set Distance button takes the user to a screen where a slider can be

used to set the desired distance between the smart phone and the quadcopter and that information

is sent to the navigation controller. Table 28 below displays the functions used by the Smart

Phone Application.

50

Figure 21: Smart Phone Application Flowchart

Table 28: Smart Phone Application Functions

Function Name Parameters Description

IsTakeOffClicked
Command

Byte Stream

This function sends takeoff state opcodes to

navigation controller.

IsHoverClicked
Command

Byte Stream

This function sends hover state opcodes to

navigation controller.

IsLandClicked
Command

Byte Stream

This function sends land state opcodes to

navigation controller.

51

IsSetDistanceClicked
Command

Byte Stream

This function sends set distance state opcodes

to navigation controller.

IsGPSCoordinatesRequest boolean

This function checks if the GPS position has

changed, and if so, transmit to the navigation

controller.

RequestVideoFeed
Video Byte

Stream

This function requests video feed data from the

quadcopter microcontroller.

Navigation Controller [Daniel O’Brien]

The navigation controller is the system that communicates with the smartphone

application over Wi-Fi and interfaces with the flight controller on the quadcopter. The navigation

controller sends flight commands to the flight controller to control the movement of the

quadcopter. This process is done using GPS locations to determine where the quadcopter should

move. GPS has an accuracy of around 7.8 meters at a 95% confidence. Since this was not the

most accurate, image processing was chosen to do fine tracking of the target.

The image processing was implemented using the OpenCV library, which stands for open

source computer vision. This was chosen as it is compatible with the chosen Raspberry Pi

processor and meets the design requirements of live image processing. The OpenCV library

contains many object tracking methods, however, it was determined that the TLD tracking

method fit the project parameters best. This is because the TLD tracking method is useful for

tracking an unknown object in an unconstrained video stream. This accurately describes the

tracking required for this project, as the object to be tracked will be dynamically selected within

an unknown space of movement. TLD, tracking-learning-detecting, is a process in which an

object is learned, tracked, and detected long-term. Using a medium flow algorithm, a region of

interest will be selected as a bounding box in which to learn an object. This object will then be

tracked from frame to frame, while the detector localizes all appearances of the object to identify

any errors and learn. This will allow for improved tracking to prevent loss of object detection in

future frames. While this method was implemented, it was found that it was not accurate enough

in a fast enough time frame to autonomously control the quadcopter.

The image processing did not work as was intended as the camera was not on a gimble,

as the budget for the project could not support purchasing one, and the target was being lost

continuously in a round of testing when the wind would slightly deviate the target from the

camera. This cased a stuttering in the following of the target that was not as good as just relying

on GPS positioning to follow. This led to the project just depending on GPS coordinates to

follow the target, as it was more reliable.

The navigation controller is a multithreaded server created in Python that runs on the

Linux distribution, Jessie, for the raspberry pi. Using a Linux based distribution for the operating

system allows for less overhead of running the program while still maintaining the functionality

to do computation, communicate with the smart phone application, and communicate with the

52

flight controller. The server itself starts up a subprocess that runs the video streaming and

recording. The video streaming and recoding is done at the same time by using raspivid, a native

video output application working with the raspberry pi camera, and the Linux bash command

‘tee’. The ‘tee’ command outputs the video coming from camera to a video file and a streamer

library called gstreamer. The video file itself is saved as a h264 file format. Gstreamer was

chosen to stream video as, out of all the methods tried, it had the lowest streaming latency of

around 200-300 ms. The gstreamer application was run using a TCP server listening on a

different port than the server, and streams video to any client requesting it.

The server’s main thread uses the TCPServer class to listen for users to connect and send

commands shown in Figure 21. This connection is wrapped using the SSL class and a sha-256

certificate to verify the client connecting is valid. Whenever a command is sent, it is parsed and

the navigation controller performs one of the valid commands. If the command is takeoff, a new

thread is created that autonomously controls and follows the smartphone that initiated the

command. This is done by getting the set target GPS position, which was set by using the set

GPS coordinates command, and calculating the bearing and distance to the target to move the

quadcopter. If the distance is less than 50m, the maximum range set for Wi-Fi, and the minimum

distance set using the distance variable, then the quadcopter will move to the target GPS

coordinates position. One failsafe implemented is if the Wi-Fi connection to the smartphone

application is lost, the quadcopter will return to the position in which it took off from before

landing.

The takeoff mode arms the quadcopters motors and waits for them to initialize and arm

before attempting to fly. There is a Config file that is used to store any configurable variables as

well as global variables set by the target GPs, altitude, and set distance. After the motors are

armed and ready to fly, the quadcopter then attempts to reach the altitude set in the Config file.

After that altitude is reached, the quadcopter then follows the target. Every two seconds of

following the target, the altitude is checked to see if it has deviated from the set altitude in the

configuration file, as the wind does blow it off course. If the quadcopter’s altitude has deviated

from its set altitude, it adjusts its altitude within five seconds before proceeding to go to a new

GPS location.

When the commands to land or hover are sent, the takeoff thread is killed. Then, the

quadcopter beings to either land or hover after the thread is killed. Any errors that occur during

takeoff or the startup of the server are sent to the smartphone application as long as there is an

active connection. These errors or warnings appear on the smartphone application as popup box.

Any update messages are sent to the smartphone application’s text field to notify the user of any

changes.

Figure 22 shows the user input handler subsystem. This subsystem handles commands

sent from the smartphone application. The commands handled are takeoff, land, hover, set

distance, and set target GPS position. Each command will have its own opcodes to differentiate

between commands. This subsystem also contains another subsystem block, flight controller

handler. Table 29 below displays the functions used by the User Input Handler.

53

Figure 22: User Input Handler Subsystem

Table 29: User Input Handler Functions

Function Name Parameters Description

RetrieveUserInput Byte stream

This function will handle the incoming byte

stream from the application and send it to all of

the command state handlers.

IsTakeOffState
Command

Byte Stream

This function determines if the bytes sent

contain the takeoff state opcodes. It returns a

Boolean.

IsTakeOffState
Command

Byte Stream

This function determines if the bytes sent

contain the takeoff state opcodes. It returns a

Boolean.

IsLandSate
Command

Byte Stream

This function determines if the bytes sent

contain the land state opcodes. It returns a

Boolean.

IsSetDistanceCommand
Command

Byte Stream

This function determines if the bytes sent

contain the set distance state opcodes. It returns

a Boolean.

SetFlightDistance Float This function sets the distance variable

IsSetGPSCommand
Command

Byte Stream

This function sets the target GPS coordinates

sent from the smartphone application.

54

IsPositionAtTarget None

Determines if the quadcopter is near the target

(within 7.8 meters accuracy). It returns a

Boolean.

SetRegionOfInterest Rectangle
This function sets the bounding box of the region

of interest for the TLD tracker.

Figure 23 shows the flight controller subsystem. This subsystem flight vector calculation for the

flight controller. The GPS coordinates are used to calculate the distance between the quadcopter

and the target on the horizontal plane. If the target is within the specified distance, the

quadcopter will not move, while if it exceeds the specified distance, the quadcopter will move

towards the calculated bearing of the target. Table 30 below displays the functions used by the

Flight Controller Handler.

Figure 23: Flight Controller Handler

Table 30: Flight Controller Handler Functions

Function Name Parameters Description

55

CalculateDistance

Target GPS

coordinates,

quadcopter

GPS

coordinates

This function determines the difference of the

horizontal plane between the target and

quadcopter GPS coordinates. This returns the

difference as a float.

IsDistanceEqualToSetDistance Distance

This function determines if the distanced

found from calculate distance is equal to the

set distance, with a percent of margin error.

DetermineDirectionBased

UponDistanceDifference

Distance

difference

from GPS

This function determines the bearing that the

quadcopter must move to maintain a specified

distance away from the target.

SendFlightVectorToFlight

Controller
Flight vector

This function sends the flight commands to

the flight controller to move the quadcopter.

Flight Controller [Kevin Rauh and Daniel O’Brien]

The flight controller monitors the current position and orientation of the Hovercam and

compares it to inputs from the navigation controller and the proximity sensors. These compared

values are used to control the thrust output of each motor for different states of flight. If an object

comes within 2 meters from the Hovercam, detected by the ultrasonic sensors the Hovercam will

enter an avoidance state. To avoid the object, the roll of the Hovercam will either increase or

decrease depending on which sensor the object is detected on. If the object is detected on either

of the right sensors the Hovercam will gain positive roll to fly left of the object. If the object is

detected on either of the left sensors the Hovercam will gain negative roll to fly to the right of the

object. In either avoidance direction, the pitch of the Hovercam will be adjusted to half of the set

value. Once the ultrasonic sensors detect that the object is no longer present, the roll and pitch

will return back to the value being sent from the navigation controller. The barometer on the

Pixhawk will be used to monitor the height of the Hovercam. The height the Hovercam will be

set to maintain is 5 meters. If the height is measured to be too low the thrust of the motors will

increase until the correct height is achieved and if the height is measured to be too high the thrust

of the motors will decrease until the correct height is achieved. After the correct height is

achieved then the thrust of the motors will return back to their original state. Figure 24 below

depicts the flow of operation for the flight controller. Table 31 below displays the functions used

by the flight controller.

During the actual test of the obstacle avoidance, it was found that the sensors were

receiving a lot of false readings. The tests of the ultrasonic sensors by themselves were okay, but

the vibration from the quadcopter moving and the actual propellers were causing the ultrasonic

sensors to send false readings. This caused the quadcopter to move around randomly when a

false reading was received, so it was decided to disable the obstacle avoidance, as it was less of a

hazard without it.

56

Figure 24: Level 4 Flight Controller Flowchart

Table 31: Flight Controller Functions

Function Name Parameters Description

IsObstacleFoundOnLeft Left side Ultrasonic

Sensor above threshold

This function will calculate if there is

an object to the left of the Hovercam.

Will enter the AvoidLeft function

IsObstacleFoundOnRight Right side Ultrasonic

Sensor above threshold

This function will calculate if there is

an object to the right of the Hovercam.

Will enter the AvoidRight function

AvoidLeft IsObstacleFoundOnLeft If the object is detected on the left

sensors the Hovercam will gain

negative roll to fly to the right of the

object

AvoidRight IsObstacleFoundOnRight If the object is detected on the right

sensors the Hovercam will gain

positive roll to fly to the left of the

object

AtHeight Barometer If Barometer reads below 5 meters

enter GainAltitude function, if

57

Barometer reads above 5 meters enter

DecreaseAltitude function

GainAltitude Below 5 meters Increase all 4 motors output thrust by

10% of maximum thrust

DecreaseAltitude Above 5 meters Decrease all 4 motors output thrust by

10% maximum thrust

CheckPitch Pitch from Gyroscope,

Pitch from Navigation

controller

Verify the pitch of the Hovercam is at

the level sent from the Navigation

controller. If they are not the same the

pitch is adjusted

CheckRoll Roll from Gyroscope,

Roll from Navigation

controller

Verify the roll of the Hovercam is at

the level sent from the Navigation

controller. If they are not the same the

roll is adjusted

CheckYaw Yaw from Gyroscope,

Yaw from Navigation

controller

Verify the yaw of the Hovercam is at

the level sent from the Navigation

controller. If they are not the same the

yaw is adjusted

58

9. Operation, Maintenance, and Repair Instructions

The Hovercam consists of a DJI Flamewheel F450 frame kit with integrated navigation

and flight controllers. Since this is an autonomous quadcopter there are a lot of safety hazards

and precautions to take into consideration. As stated in the DJI Flamewheel F450 disclaimer

“We strongly recommend customers to remove all propellers, use power supply from R/C system

or flight pack battery, and keep children away during system calibration and parameter setup.

Please respect the AMA’s National Model Aircraft Safety Code.”

When flying, the fast rotating motors and propellers of the Hovercam can cause serious

damage and injury. Therefore, when flying be alert and aware of your surroundings and follow

the general guidelines below:

• When flying keep away from objects, such as obstacles, human beings, high-voltage

lines, etc.

• Do not get close to or touch the working motors and propellers,

• Do not over load the quadcopter.

• Check whether the propellers and the motors are installed correctly and firmly before

flight.

• Make sure the rotation direction of each propeller is correct

• Check whether all parts of quadcopter are in good condition before flight. Do not fly with

old or broken parts.

Operation

When operating the Hovercam always make sure you are in an open environment. First

attach the propellers to the correct motor, CW or CCW. If the propeller is not on the correct

motor the propeller will not screw on and attach firmly. Each propeller, close to the center there

will be a small imprint with lock and unlock directional arrows. Once propellers are attached

make sure that the micro USB cable is firmly plugged into the Raspberry Pi. Once the propellers

are secured and the Raspberry Pi is plugged in you can prepare to launch. First, strap the battery

into the Velcro so that the battery is secured. Then, connect the battery deans connector to the

receiving end on the Hovercam. After the Hovercam is powered, press and hold the motor

arming button on the Hovercam, once the ESCs stop beeping the motors are armed. After arming

the motors, connect to the Wi-Fi titled “Hovercam” on your smartphone. Once connected open

the Hovercam application, login, and make sure you have a secure connection to the Raspberry

Pi. The default password for both the Wi-Fi and login is set to “password”. If you wish to

change the default passwords, refer to Note 1 below.

After opening the application, give the Hovercam about 15-30 seconds to make a solid

connection to the GPS module. Select Take off on the main screen of the application. If

everything is done correctly a message “Vehicle is taking off” will appear on the application

under the Set Distance button. Once the Hovercam is in the air, proceed to walk away from the

Hovercam. Once out of the set following range, the GPS should pick up your new location and

proceed towards you. If the Hovercam loses connection the application, it will go into a “Land”

sequence and proceed back to a home location at the takeoff position. To make the Hovercam

59

stay in one position and not follow you, select “Hover” on the smartphone application, the

Hovercam will then stay at its current location and height.

To land the Hovercam, select the “Land” command on the application and it will go into

a landing sequence. As the Hovercam lands it will touch down on the ground and then rise in the

air again briefly before settling down, doing a little “hop”. This hop is so the copter recognizes

ground below it before its cuts power to the motors and doesn’t accidently land in the middle of

the air if the barometer reading is incorrect. When landing, if the Hovercams propellers are still

spinning do not approach. Only proceed to the Hovercam if he propellers have stopped moving.

If there are any problems with connecting to the hovercam, please unplug the battery, wait 10

seconds, and plug it back in, allowing the system to reboot. If the issue persists remote into the

Raspberry Pi and check what errors are being displayed. The details of how to do this are

explained in Note 2.

Note 1: The Wi-Fi password can be changed on the raspberry pi by opening the hostapd

configuration file at /etc/hostapd/hostapd.conf and changing the configuration key
wpa_passphrase. The login password can be changed by opening the user file at

/home/pi/Documents/Python_Scripts/Server/user.config and changing the

configuration key password.

Note 2: The specific errors are logged into the file

/home/pi/Documents/Python_Scripts/Server/hovercam_logs.txt. To remote into the server, you

can use Windows Remote Desktop to connect using the static IP 192.168.10.1. The user account

id is pi and the password is password. These can be changed after logging into the Linux

operating system.

Maintenance and Assembly

After each use remove the propellers from the quadcopter so that they don’t accidently

break in storage or in transit. Also, remove the battery after use and recharge it using a charging

case so that in the off-chance of a fire the surrounding will be protected. When attaching the

propellers make sure they are going on the correct motors. There are two different directional

motors on the Hovercam: CW and CCW. There are indications on both the motors and

propellers. While installing propellers always make sure the battery is disconnected. Before

flight always make sure all the connections are secure and the wires are tied down neatly and out

of the way of the spinning propellers. Below in Figure 25 is an assembly diagram for the proper

assembly of the DJI Flamewheel F450 frame kit, used for the Hovercam

60

Figure 25: Assembly Diagram for DJI Flamewheel

Repair

When repairing the hovercam the first step is to identify the problem. If a propeller is broken

remove it following the arrows on the propeller to unlock it. When replacing a propeller make

sure you identify if the propeller is CW or CCW (shown in the assembly diagram above) so you

place the correct propeller back on the motor. If a propeller/motor is not spinning correctly first

check and make sure all the wires to the ESC are connected correctly. If all the wires are correct,

then check the PCB board if the soldering joint failed. If the Hovercam needs disassembled,

Figure 26 below depicts the tools needed and a wiring diagram of the ESCs.

61

Figure 26: Disassembly Tools

Troubleshooting

If there are any problems starting the Hovercam refer to this document. As the Pixhawk is being

powered, a main LED will be flashing with the status of the Hovercam. Below in Table 32 is a

list of the different states that the Pixhawk can enter.

Table 32: Pixhawk LED status

LED Status Meaning

Flashing red and blue Initializing gyroscopes. Hold the vehicle still and

level while it initializes the sensors.

Flashing blue Disarmed, no GPS lock found. Autopilot, loiter and

return-to-launch modes require GPS lock.

Solid blue Armed with no GPS lock

Flashing green Disarmed (ready to arm), GPS lock acquired. Quick

double tone when disarming from the armed state.

62

Fast Flashing green Same as above but GPS is using SBAS (so should

have better position estimate).

Solid green Armed, GPS lock acquired. Ready to fly!

Double flashing yellow Failing pre-arm checks (system refuses to arm).

Single Flashing yellow Radio failsafe activated

Flashing yellow (#2) Battery failsafe activated

Flashing yellow and blue GPS glitch or GPS failsafe activated

Flashing red and yellow EKF or Inertial Nav failure

Flashing purple and yellow Barometer glitch

Solid Red Error

Solid Red (#2) SD Card missing (or other SD error like bad format

etc.)

Most of the errors that will be encountered are going to be arming issues (Double Flashing

Yellow), or a GPS lock/ GPS Fence issue. As stated before, when you start up the Hovercam

give about 15-30 seconds to establish a full connection. To fix the GPS lock error, move the

Hovercam to an open area to the sky and give the system about 1-5 minutes to establish a GPS

connection.

10. Testing Procedures:

The Hovercam has many parts that must be integrated so that the vehicle is operational. Each of

the devices was tested before and while they were integrated into a final working quadcopter.

The 5V regulator was first assembled on a breadboard and an input voltage of 12V, the

maximum input voltage from the battery, was applied to the regulator. The output and the input

of the regulator was attached to an oscilloscope so the voltage levels could be monitored. At

every possible voltage level that the battery could supply to the system, from 9V to 12V, a steady

5V was outputted from the regulator circuit.

While testing the maximum distance that the Hovercam could be away from the phone and still

stream video feed was tested. In the navigation controls, a maximum of 50m was set, so that if

the Hovercam got “lost” or too far away from the user it would return to home, and land. While

testing the Hovercam in the field, we exceeded the 50m range set for the Hovercam, and the

vehicle returned to land. While it was landing, we were still getting video feed on the cell phone

application from the Hovercam. Since we were still able to get video feed while the Hovercam

was in a routine for when the vehicle is more than 50m away from the user we know that the

communication between the application and the Hovercam can exceed 50m.

63

To get accurate video feed to the user from the Hovercam there needs to be a low amount of

latency between the two systems. To test the latency between the Raspberry Pi and the cell

phone application one cell phone was connected to the Raspberry Pi and a second phone had a

stopwatch. The two phones were placed side by side and the Hovercam was held in place and

recorded the phone with the stopwatch. The recorded image was then displayed on the adjacent

phone. In Figure 27 below the latency between the two devices is shown to be between 200 and

300 ms.

Figure 27: Communication Latency

To test the preliminary flying of the Hovercam, a string was attached to the bottom of the

quadcopter and the other end was held by a team member. This string was used so that if the

Hovercam started flying towards an object or another person we could restrain the vehicle and

avoid any injuries. The string proved to be a good addition to the preliminary testing of the

Hovercam, when the navigation controls were first being tested the quadcopter seemed to have a

mind of its own and the string was imperative in keeping the Hovercam from getting damaged

and from damaging anyone. Figure 28 below shows the string attached to the Hovercam that was

used in testing.

64

Figure 28: Stringed Testing of Hovercam

To test the GPS tracking of the Hovercam we preformed the take-off protocol in the middle of an

empty field. We first ran a test to check if the GPS and compass were accurate and calibrated

correctly. The Hovercam was instructed to make a square, first by going north, then east, south,

and west. After verifying that the compass and GPS were calibrated we entered the standard

flight protocol, where the Hovercam would follow GPS coordinates until it was 10m from the

target. The user, with the cell phone, then ran around the field and verified that the Hovercam

was following them. Figure 29 below is a snapshot from the Hovercam verifying that it was

following and recording the user.

65

Figure 29: 1st Person View Verifying GPS Tracking on Hovercam

11. Parts List and Budget:

The table below shows the projected necessary parts list for the Hovercam. The total estimated

cost of the parts came to $471.93. With $400 from the engineering department and $200 from

honors this project is within budget, allowing for extra parts if needed in testing.

Table 33: Estimated Budget

 Unit Total

Qty. Part Num. Description Cost Cost

1 DJI 450 Frame Kit multi-rotor Wheel ARF kit 165.99 165.99

1 Pixhawk PX4 32Bit ARM Flight Controller 73.99 73.99

1 114990584 Raspberry Pi 3 47.50 47.50

6 SEN-13959 Ultrasonic Sensor 40kHz 3.95 23.70

1 2324 GPS HAT for Raspberry Pi 45.95 45.95

1 Floureon 2 packs 3s2p 8000mAh 40C Lipo Battery 89.99 89.99

1 Raspberry Pi Camera V2 Video module 24.81 24.81

 Total Cost 471.93

As the project progressed additional parts were added to the project. Some of these additional

parts added more cost to the budget of the project. Table 34 below depicts the final budget for

the Hovercam project.

Table 34: Final Budget

Qty Part Number Description Unit Cost Total

Cost
1 DJI 450 Frame Kit multi-rotor Wheel ARF kit 165.99 165.99

66

1 Pixhawk PX4 32Bit ARM Flight Controller 73.99 73.99

1 114990584 Raspberry Pi 3 47.50 47.50

6 SEN-13959 Ultrasonic Sensor 40kHz 3.95 23.70

1 2324 GPS HAT for Raspberry Pi 45.95 45.95

1 Floureon 2 packs 3s2p 8000mAh 40C Lipo Battery 89.99 89.99

1 Raspberry Pi Camera V2 Video module 24.81 24.81

1 Male to Female Jumper Wire 40pcs 4.99 4.99

1 GPS and Compass for Pixhawk 33.99 33.99

1 Male Deans Connector 2 pack 5.78 5.78

1 Micro USB cable 26.68 26.68

1 9450 Propellers 4 pairs 13.65 13.65

 Total Cost 557.02

The final cost of the project comes to $557.02, over the $400 that was given to us from the

Department. Several of these items were paid for out of pocket so that they would be received in

a timely fashion. The added parts for our project were discussed in the Accepted Technical

Design section above.

12. Gantt Chart:

Figure 30 below is the Gantt chart layout for the Hovercam design project for the fall of 2016.

Figure 31 is the Gantt chart layout for the Hovercam design project for the spring of 2017. Each

task is assigned to a start time and a completion time. Leveled breakdowns are included for task

to make the completion of the project attainable with the amount of time available.

67

68

69

70

Figure 30: Fall Semester Gant Chart

71

Figure 31: Spring 2017 Tentative Gant Chart

72

Figure 32: Spring 2017 Final Gant Chart

 The Gantt chart for the 2017 Spring semester saw some changes from its original

iteration. The major reason for these changes is due to the amount of time it took to get the parts

ordered and delivered. This pushed back much of the hardware construction which, in turn,

delayed software testing necessary for furthering the implemented software. Revisions for each

73

of the controllers and application were made very late in the timeline and had to be done quickly

since so many delays in the hardware and testing compounded.

74

13. Design Team Information

Kevin Rauh, Electrical Engineering, Controls Systems II, Programmable Logic, Embedded

Systems Interfacing, Active Circuits, VLSI Design, Electromagnetic Compatibility

Ross Palenik, Electrical Engineering, Controls Systems II, Programmable Logic, Embedded

Systems Interfacing, Electromagnetic Compatibility, Active Circuits, VLSI Design

Adam Fada, Electrical Engineering, Digital Communications, Embedded Systems Interfacing,

Analog IC Design, VLSI Design, Electromagnetic Compatibility, Antenna Theory.

Daniel O’Brien, Computer Engineering, Data Structures, Programmable Logic, Embedded

Scientific Computing, Algorithms, Object-Oriented Programming

75

14. Conclusions and Recommendations

When building a quadcopter, two things to take into consideration are weight and power

consumption. The total weight of the quadcopter should include everything: frame, controllers,

PCB, wires, motors, ESC’s, battery, and payload, such as a HD camera. By knowing the size of

the frame, the maximum propeller size can be determined. Once these two things have been

chosen, the thrust of the motors can now be roughly calculated to deliver enough lift for the

Hovercam to achieve flight. A general rule is that at least twice as much thrust than the weight of

the quadcopter should be provided. This is the bare minimum to ensure you have a stable

copter that is easy to control in a hover state. If the thrust provided by the motors is too little, the

quadcopter would not respond well to control, it might even have difficulties taking off. For

example, if a quadcopter weights 1.5kg, like the Hovercam, the total thrust generated by the

motors at 100% throttle should be at least 3kg, or 750g per motor, for a quadcopter. For faster

flying drones, like drone racing, the ratio should be much higher than 2:1. It’s not uncommon to

see a mini quad with a thrust to weight ratio of 8:1 or even 10:1. The quadcopter’s performance

is much more agile and dynamic with this higher ratio, it accelerates faster and corners better.

When there is an excessively high thrust to weight ratio, the quadcopter becomes hard to control

since a little increase in throttle is enough to “shoot the quad into orbit”. It is recommended to

build quadcopter between a 3:1 and 4:1 ratio, like the Hovercam, if it is meant to fly as a slow

aerial photography platform. This lower ratio gives better controllability, but also the room for

adding extra payload in the future, such as heavier cameras or extra batteries to extend flight

time. After choosing a frame size, appropriate motors were chosen. The frame size limits

propeller size and propeller size limits motor size. The motor thrust output test data was used to

determine the maximum thrust of the motor, when pairing the chosen propellers. The decision to

use 1045 propellers, which was within the constraints of the frame size, let the team opt for the

motors that were chosen. It is also important to understand that voltage had a large impact on the

motor and propeller choice. Motors try to spin much harder when a higher voltage is applied, and

thus draw a higher current. When choosing the best motor, the following factors were

considered: thrust, current draw, efficiency, and weight. When using less efficient motors not

only is a lot of energy wasted and flight time lost, but the maximum possible thrust will decrease.

When a motor runs inefficiently, the response time of the quadcopter suffers. It will take the

motors longer to reach desired RPM and this will have negative influence on stability and

responsiveness. Higher thrust results in high speeds, but changes the efficiency. It was necessary

to make sure the selected ESCs had a higher current rating than the motors. The choice of motors

and propellers affected which battery was used. If the quadcopter draws a large amount of

current at full throttle, the battery’s max discharge rate must be able to provide that amount of

current continuously. The same applies to brushless motor, the higher efficiency the better. A

70% efficient motor produces 70% power and 30% heat. A 90% efficient motor produces 90%

power and 10% heat. After considering all the information above, appropriate motors, ESC's,

propellers, batteries, and an appropriate frame were chosen to meet the requirements of the

project.

76

The software design of the Hovercam meets most of the design requirements. The choice

of using an android smartphone was a cost-effective decision as the majority of people who

would use the Hovercam would have a smartphone. Using Wi-Fi for the connection between the

smartphone application and the navigation controller is more than adequate for the specified

range requirement of 30m, but a stronger Wi-Fi module than one the team had to use due to

budgetary constraints would have made the Hovercam more reliable and capable of longer range

communication. Using a Raspberry Pi 3 Model B for the navigation controller was adequate to

perform as required for live streaming the recorded footage to the smartphone and for storing a

copy on itself. The design of the smartphone application worked well and was not too hard to

create, but creating a way for the application to communicate with the hardware was quite

challenging. Writing the software for the navigation controller and for the application in the

same computer language is recommended. The idea to use proximity sensors for obstacle

avoidance worked well on paper as the sensors performed perfectly when tested in the lab, but

utterly failed in practice as they returned obstacles when there were none. It is believed that the

sensors were picking up the movement of the propellers which would cause this issue. A

potential fix would be to construct mounts for the sensors that are angled down as to not allow an

potential for the propellers to cross into the range of the sensors. The design of using a

navigation controller with image processing to control the yaw of the quadcopter turned out to be

a more difficult task than anticipated when trying to handle everything else the team was tasked

with. The success of using GPS to control the direction of the quadcopter as it followed the

smartphone user was quite an accomplishment in itself. Stabilization became a little bit of a

problem as the testing period went on and the video feedback would become relatively shaky at

some points. It would be recommended to perform hardware stabilization of the camera such as

adding a gimbal instead of software as that would require less processing for the Raspberry Pi 3.

15. References

Y. Colin, B. Bertrand, A. Patron, V. Pho, “Skyteboard quadcopter and method”, U.S.

Patent US9004396 B1, April 14, 2015.

L. Gang, L.S Wei, “Method and system for unmanned plane to conduct vehicle tracking”,

Patent CN104766481 A, June 8, 2015.

H.L.M. Chow, C.C.J. Chung, K.Y.C. Lai, “Personal tracking device with low power

consumption”, U.S. Patent US8195192 B2, June 5, 2012

Kalal, K. Mikolajczyk, and J. Matas, “Tracking-Learning- Detection,” Pattern Analysis

and Machine Intelligence 2011.

<http://kahlan.eps.surrey.ac.uk/featurespace/tld/Publications/2011_tpami>

http://www.gps.gov/technical/ps/2008-SPS- performance-standard.pdf

http://www.gps.gov/technical/ps/2008-SPS-%20performance-standard.pdf

77

"Flamewheel F450 User Manual". http://download.dji-

innovations.com/downloads/flamewheel/en/F450_User_Manual_v2.1_en.pdf.

N.p., 2017. Web. 30 Apr. 2017.

78

16. Appendix:

Raspberry Pi 3 model B

79

80

Camera

81

Pixhawk

82

83

Voltage Regulator

84

85

86

87

88

89

The following python scripts are run on the raspberry pi and handle communication between the

smartphone application and flight controller.

Server.py – Main communication server that runs on the raspberry pi as the navigation

controller.

import SocketServer

import sys

import os

import subprocess

import logging

import Config

import time

import shlex

from threading import Thread

from enum import Enum

from BinaryStream import BinaryStream

from BinaryStream import BinaryStreamEOFException

from dronekit import connect, VehicleMode

from pymavlink import mavutil

from Takeoff import TakeoffThread

from OpenSSL import SSL

import ConfigParser

logging.basicConfig(filename='Hovercam_Server.log', level=logging.INFO)

class Commands(Enum):

 LOGIN = 0

 TAKEOFF = 1

 HOVER = 2

 LAND = 3

 SET_DISTANCE = 4 # Get in future, instead of Set

 SET_GPS = 5 # Get in future, instead of Set

 SET_BATTERY_LIFE = 6 # Get in future, instead of Set

 SET_TARGET = 7

 REQUEST_VIDEO = 8

def startVideoStreamAndRecording():

 i = 0

 while os.path.exists("/home/pi/Desktop/Video/hovercam_%s_%s.h264" %

(time.strftime("%m-%d-%Y"), i)):

 i+= 1

 filename = "/home/pi/Desktop/Video/hovercam_%s_%s.h264" %

(time.strftime("%m-%d-%Y"), i)

 cmd = 'raspivid -vf -hf -t 0 -b 5000000 -w 854 -h 480 -fps 30 -o - |

tee %s | gst-launch-1.0 -e -v fdsrc ! h264parse ! rtph264pay config-

interval=1 pt=96 ! gdppay ! tcpserversink host=192.168.10.1 port=5000' %

filename

 # other resolutions: 1280x720, 854x480

 global p

 p = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE)

class SSlSocketServer(SocketServer.ThreadingMixIn, SocketServer.TCPServer):

 def __init__(self, server_address, RequestHandlerClass,

bind_and_activate=True):

 SocketServer.BaseServer.__init__(self, server_address,

90

 RequestHandlerClass)

 ctx = SSL.Context(SSL.SSLv3_METHOD)

 cert = 'client_cert.pem'

 key = 'private_key.pem'

 ctx.use_privatekey_file(key)

 ctx.use_certificate_file(cert)

 self.socket = SSL.Connection(ctx, socket.socket(self.address_family,

 self.socket_type))

 if bind_and_activate:

 self.server_bind()

 self.server_activate()

 def shutdown_request(self,request):

 request.shutdown()

class Decoder(SocketServer.StreamRequestHandler):

 """

 The RequestHandler/Decoder class for our server. This handles commands

sent from

 the smartphone application.

 """

 def setup(self):

 self.connection = self.request

 self.rfile = socket._fileobject(self.request, "rb", self.rbufsize)

 self.wfile = socket._fileobject(self.request, "wb", self.wbufsize)

 def parse(self, stream, vehicle):

 binaryStream = BinaryStream(stream)

 global thread

 thread = None

 flag = False

 try:

 packetId = binaryStream.read('int32')

 #print("packetID: ", packetId, Commands.HOVER)

 if packetId > -1 and packetId < 11: # Valid Packet Range

 if Commands(packetId) == Commands.LOGIN:

 password = binaryStream.read('string')

 config = ConfigParser.ConfigParser()

 config.read("user.conf")

 saltedHashPassword = config.get("myvars", "password")

 if password == saltedHashPassword:

 binaryStream.write('int32', 1) # true

 else:

 binaryStream.write('int32', 0) # false

 return False

 elif Commands(packetId) == Commands.TAKEOFF:

 print('Taking off...')

 logging.info('Taking off...')

 if thread is None:

 thread = TakeoffThread(vehicle, binaryStream)

 thread.start()

 else:

 if not thread.isAlive():

 thread = TakeoffThread(vehicle, binaryStream)

 thread.start()

 else:

 print("Taking off thread already exists.")

 thead.join() # kill thread

 i = 10 # try to start new thread within 10

91

seconds of killing old thread

 while i < 10:

 if not thread.isAlive():

 thread = TakeoffThread(vehicle)

 thread.start()

 flag = True

 break

 i += 1

 time.sleep(1)

 elif Commands(packetId) == Commands.HOVER:

 #hover

 print('Hovering...')

 logging.info('Hovering')

 if thread is not None:

 if thread.isAlive():

 thread.join()

 else:

 print("Thread is dead")

 vehicle.mode = VehicleMode("LOITER")

 elif Commands(packetId) == Commands.LAND:

 #Land

 print('Landing...')

 logging.info('Landing...')

 if thread is not None:

 if thread.isAlive():

 thread.join()

 else:

 print("Thread is dead")

 vehicle.mode = VehicleMode("LAND")

 elif Commands(packetId) == Commands.SET_DISTANCE:

 #Set Distance

 distance = binaryStream.read('int32')

 print('Setting distance to ', distance, 'ft')

 logging.info('Setting distance to: ' + str(distance) +

'ft')

 Config.distance = distance

 elif Commands(packetId) == Commands.SET_GPS:

 #SET_GPS

 print('Reading and Setting GPS...')

 logging.info('Reading and setting GPS')

 Config.longitude =

binaryStream.read('string').decode('UTF-8')

 Config.latitude =

binaryStream.read('string').decode('UTF-8')

 else:

 logging.info('Invalid packetId: ', packetId)

 except BinaryStreamEOFException:

 # One of our attempts to read a field went beyond the end of the

file.

 print("Error: Connection has been terminated.")

 logging.error('Error: Connection has been terminated')

 print("Landing drone...")

 if thread is not None:

 if thread.isAlive():

 thread.join()

 else:

 print("Thread is dead")

92

 logging.info('Landing drone after disconnection.')

 vehicle.mode = VehicleMode("RTL") # Return to home location and

land if disconnected from client

 p.kill()

 return False

 return True;

 def handle(self):

 flag = True;

 print("Establishing new connection")

 logging.info('Connection to client established')

 vehicle = connect('/dev/ttyS0', wait_ready=True, baud=57600)

 logging.info('Connected to vehicle')

 print("Connected to vehicle")

 request = self.connection

 try: # Update the smartphone application to allow for commands to be

sent

 binaryStream = BinaryStream(request)

 binaryStream.write('int32', 0)

 binaryStream.write('string', "Vehicle is connected")

 binaryStream.write('int32', 2)

 binaryStream.write('string', "Ready for commands.")

 except:

 print("Error sending messages")

 print("Connection messages sent.")

 vehicle.mode = VehicleMode("GUIDED")

 while flag:

 flag = self.parse(request, vehicle)

if __name__ == "__main__":

 HOST, PORT = "0.0.0.0", 43594 # for linux, use 0.0.0.0

 startVideoStreamAndRecording()

 server = SSlSocketServer((HOST, PORT), Decoder)

 logging.info('Starting Hovercam')

 # The server will keep running until it is interrupted by pressing Ctrl-

C

 server.serve_forever()

Takeoff.py – Script that handles moving the quadcopter in takeoff mode

import io

import socket

import struct

import time

import math

import geopy

import threading

import Config

import logging

from geopy.distance import VincentyDistance

from dronekit import VehicleMode, LocationGlobal, LocationGlobalRelative,

connect

from pymavlink import mavutil

93

from time import sleep

from ObstacleAvoidance import startObstacleAvoidance

logging.basicConfig(filename='Hovercam_Takeoff.log', level=logging.INFO)

class TakeoffThread(threading.Thread):

 ##def CalculateDistance(lat1, long1, lat2, long2):

 ## distance = gpxpy.geo.haversine_distance(lat1, long1, lat2, long2)

 ## return distance

 ##def CalculateDirection(lat1, long1, lat2, long2):

 ## earing = atan2(sin(long2-long1)*cos(lat2), cos(lat1)*sin(lat2)-

sin(lat1)*cos(lat2)*cos(long2-long1))

 ## bearing = degrees(bearing)

 ## bearing = (bearing + 360) % 360

 ## return bearing

 def get_distance_meters(self, location1, location2):

 lat = location2.lat - location1.lat

 long = location2.lon - location1.lon

 return math.sqrt((lat*lat)+(long*long)) * 1.113195e5

 def getReducedPosition(self, latitude, longitude, bearing, distance):

 origin = geopy.Point(latitude, longitude)

 d = distance / 1000 # mto km

 destination = VincentyDistance(kilometers=d).destination(origin,

bearing)

 return destination.latitude, destination.longitude

 def getBearing(self, lat1, long1, lat2, long2):

 off_x = long2 - long1

 off_y = lat2 - lat1

 bearing = 90.00 + math.atan2(-off_y, off_x) * 57.2957795

 if bearing < 0:

 bearing += 360.00

 return bearing

 def sendMessage(self, i, message):

 try:

 self.stream.write('int32', i)

 self.stream.write('string', message)

 except:

 print "Connection was dropped."

 def gotoAltitude(self):

 aTargetAltitude = Config.altitude

 print("Target altitude: " + str(aTargetAltitude) + ", current alt: "

+ str(self.vehicle.location.global_relative_frame.alt))

 if self.vehicle.location.global_relative_frame.alt > aTargetAltitude

* 1.05 or self.vehicle.location.global_relative_frame.alt < aTargetAltitude

* 0.95:

 print("current altitude: " +

str(self.vehicle.location.global_relative_frame.alt))

 self.vehicle.simple_takeoff(aTargetAltitude) # Take off to

target altitude

 #Wait until the vehicle reaches a safe height before processing

the goto (otherwise the command

 #after Vehicle.simple_takeoff will execute immediately).

 #time.sleep(3)

 i2 = 0

 while True and (i2 <= 3) and not self._stopevent.isSet():

 print " Altitude: ",

self.vehicle.location.global_relative_frame.alt

94

 if self.vehicle.location.global_relative_frame.alt <=

aTargetAltitude*1.05 and self.vehicle.location.global_relative_frame.alt >=

aTargetAltitude*0.95: #Trigger just below target alt.

 print "Reached target altitude"

 break

 i2 += 1

 time.sleep(1)

 def arm_and_takeoff(self, aTargetAltitude):

 """

 Arms vehicle and fly to aTargetAltitude.

 """

 print "Basic pre-arm checks"

 self.sendMessage(2, "Running basic pre-arm checks..")

 # Don't let the user try to arm until autopilot is

 i = 0

 while not self.vehicle.is_armable and (i != 15) and not

self._stopevent.isSet():

 print " Waiting for vehicle to initialize..."

 logging.info("Waiting for vehicle to initialize...")

 print "gps: ", self.vehicle.gps_0.fix_type

 time.sleep(1)

 i += 1

 if i == 15:

 print("Microcontroller could not initialize.")

 logging.info("Microcontroller could not initialize.")

 self.sendMessage(1, "Microcontroller could not initialize.")

 self._stopevent.set()

 if self.thread is not None:

 if self.thread.isAlive():

 self.thread.join()

 return False

 print "Arming motors"

 self.sendMessage(2, "Arming motors...")

 # Copter should arm in GUIDED mode

 self.vehicle.mode = VehicleMode("GUIDED")

 self.vehicle.armed = True

 i = 0

 while not self.vehicle.armed and (i != 15) and not

self._stopevent.isSet():

 print " Waiting for arming..."

 logging.info('Waiting for arming...')

 time.sleep(1)

 i += 1

 #if i == 15:

 # print("Quadcopter stuck in arming loop. Reconnecting

drone...")

 #self.vehicle.close();

 #self.vehicle = connect('/dev/ttyS0', wait_ready=True,

baud=57600)

 if i == 15:

 print ("Quadcopter stuck in arming loop.")

 logging.info("Quadcopter stuck in arming loop.")

 self.sendMessage(1, "Microcontroller could not arm motors.")

 self._stopevent.set()

 if self.thread is not None:

 if self.thread.isAlive():

95

 self.thread.join()

 return False

 print "Taking off!"

 self.sendMessage(2, "Vehicle is taking off.")

 self.vehicle.simple_takeoff(aTargetAltitude) # Take off to target

altitude

 #Wait until the vehicle reaches a safe height before processing the

goto (otherwise the command

 #after Vehicle.simple_takeoff will execute immediately).

 time.sleep(5)

 i2 = 0

 while True and (i2 <= 15) and not self._stopevent.isSet():

 print " Altitude: ",

self.vehicle.location.global_relative_frame.alt

 if

self.vehicle.location.global_relative_frame.alt>=aTargetAltitude*0.95:

#Trigger just below target alt.

 print "Reached target altitude"

 break

 i2 += 1

 time.sleep(1)

 self.sendMessage(2, "Altitude has been adjusted to set height.")

 return True

 def __init__(self,vehicle, stream, name='TakeoffThread'):

 self._stopevent = threading.Event()

 self._sleepperiod = 1.0

 self.vehicle = vehicle

 self.stream = stream

 self.thread = None

 threading.Thread.__init__(self, name=name)

 def getNewPosition(self, target, pos):

 if (pos - target) > 0:

 target -= 2

 else:

 target += 2

 def gotoGPS(self, location):

 currentLocation = self.vehicle.location.global_frame

 distance = self.get_distance_meters(currentLocation, location)

 print "Distance to target: " + str(distance)

 if distance < 50 and distance > Config.distance * 0.3048:

 self.vehicle.simple_goto(location)

while not self._stopevent.isSet() and self.vehicle.mode.name==

"GUIDED":

distanceToTarget =

self.get_distance_meters(self.vehicle.location.global_frame, location)

print "distance to target: " + str(distanceToTarget)

if distanceToTarget < distance*0.95: # add little

threshold to meet target

print "GPS target reached"

logging.info("GPS target reached")

break;

time.sleep(1)

 else:

 print "Distance to GPS target is too far or close: " +

str(distance)

 logging.info("Distnace to GPS target is too far or close: " +

96

str(distance))

 def run(self):

 print "Takeoff thread started."

 takeoffSuccess = self.arm_and_takeoff(Config.altitude)

 # Commented out obstacle avoidance:

 #self.startObstacleAvoidance()

 #self.thread = startObstacleAvoidance(self.vehicle)

 #self.thread.start()

 if takeoffSuccess:

 self.sendMessage(2, "Following target..")

 while not self._stopevent.isSet() and self.vehicle.mode.name ==

"GUIDED":

 # If Image processing

 # else, gps

 #print "Sending location: ", Config.latitude,

Config.longitude

 srcLatitude = self.vehicle.location.global_frame.lat

 srcLongitude = self.vehicle.location.global_frame.lon

 dstLatitude = float(Config.latitude)

 dstLongitude = float(Config.longitude)

 print "source lat: " + str(srcLatitude) + " long: " +

str(srcLongitude)

 print "destination lat: " + str(dstLatitude) + " long: " +

str(dstLongitude)

 logging.info("source lat: " + str(srcLatitude) + " long: " +

str(srcLongitude))

 logging.info("destination lat: " + str(dstLatitude) + "

long: " + str(dstLongitude))

 #distance = Config.distance * 0.3048

 #target = LocationGlobal(dstLatitude, dstLongitude)

 ## if False:

#self.get_distance_meters(self.vehicle.location.global_frame, target) >

distance:

 ## bearing = self.getBearing(srcLatitude, srcLongitude,

dstLatitude, dstLongitude)

 ## lat, long = self.getReducedPosition(dstLatitude,

dstLongitude, distance, bearing)

 ## print "new lat: ", lat, " long: ", long

 ## logging.info("new lat: " +str(lat) + " long: "+

str(long))

 ## location = LocationGlobalRelative(lat, long,

Config.altitude)

 target = LocationGlobalRelative(dstLatitude, dstLongitude,

Config.altitude)

 self.gotoGPS(target) #,second parameter: groundspeed=10

 time.sleep(2) # wait 5 seconds before setting GPS

 self.gotoAltitude()

 self.sendMessage(2, "Following has ended...")

 print "Takeoff thread ending.."

 # Commented out obstacle avoidance:

if self.thread is not None:

if self.thread.isAlive():

self.thread.join()

else:

print "Obstacle avoidance thread is dead."

else:

97

print "Obstacle avoidance thread does not exist."

 def join(self, timeout=None):

 # Stop thread

 self._stopevent.set()

 if self.thread is not None:

 if self.thread.isAlive():

 self.thread.join()

 threading.Thread.join(self, timeout)

Config.py – Script that contains the configuration variables

latitude = 0

longitude = 0

altitude = 4

distance = 5

isObstacleDeteched = False

isLeft = False

isRight = False

BinaryStream.py – Script that contains methods to write data types to a TCP stream, especially

to a c# TCP Stream

import struct

import sys

class BinaryStreamEOFException(Exception):

 def __init__(self):

 pass

 def __str__(self):

 return 'Not enough bytes in file to satisfy read request'

"""

 This class is used to write data types to the connection stream. This is

set to the format that will allow

 the c# Tcp Client libraries to interpret.

"""

class BinaryStream:

 # Map well-known type names into struct format characters.

 typeNames = {

 'int8' :'b',

 'uint8' :'B',

 'int16' :'h',

 'uint16' :'H',

 'int32' :'i',

 'uint32' :'I',

 'int64' :'q',

 'uint64' :'Q',

 'float' :'f',

 'double' :'d',

 'char' :'s',

 'string' :'string'} # add special case string if it is required

 def __init__(self, stream):

 self.stream = stream

98

 def byte_length(self, i):

 return (i.bit_length() + 7) // 8

 def utf8len(self, s):

 return len(s.encode('utf-8'))

 def read(self, typeName):

 typeFormat = BinaryStream.typeNames[typeName.lower()]

 typeSize = 0

 if typeFormat == 'string':

 typeSize = self.read('uint8')

 value = self.stream.recv(typeSize)

 return value

 else:

 typeSize = struct.calcsize(typeFormat)

 value = self.stream.recv(typeSize)

 if typeSize != len(value):

 raise BinaryStreamEOFException

 unpacked_bytes = struct.unpack(typeFormat, value)

 return unpacked_bytes[0]

 def write(self, typeName, value):

 typeFormat = BinaryStream.typeNames[typeName.lower()]

 if typeFormat == 'string':

 length = self.utf8len(value)

 self.write('uint8', length)

 self.stream.send(value.encode())

 else:

 typeSize = struct.calcsize(typeFormat)

 # Removed value comparison, as we sometimes cast values

 #value = self.stream.recv(typeSize)

 #print("TypeSize: ", typeSize)

 #print("actual size: " , self.byte_length(value))

 #if typeSize != self.byte_length(value):

 # raise BinaryStreamEOFException

 packed_bytes = struct.pack(typeFormat, value)

 self.stream.send(packed_bytes)

The following classes consist of the smartphone application written in c# using Xamarin in

Visual Studio:

Login.cs – Handles the Login screen activity

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Android.App;
using Android.Content;
using Android.OS;
using Android.Runtime;
using Android.Views;
using Android.Widget;
using System.Net.Security;
using System.IO;

99

namespace HovercamMobile
{
 [Activity(Label = "Login")]
 public class Login : Activity
 {
 private EditText password;
 private Button login;
 private ProgressBar ConnectionProgress;

 protected override void OnCreate(Bundle savedInstanceState)
 {
 base.OnCreate(savedInstanceState);

 Window.RequestFeature(Android.Views.WindowFeatures.NoTitle);

 SetContentView(Resource.Layout.Login_Screen);

 //Login variables
 login = FindViewById<Button>(Resource.Id.Login);
 password = FindViewById<EditText>(Resource.Id.Login_Box);
 ConnectionProgress =
FindViewById<ProgressBar>(Resource.Id.ConnectionProgress);
 login.Click += login_Click;

 }

 void login_Click(object sender, EventArgs e)
 {
 ConnectionProgress.Visibility = ViewStates.Visible;

 //Login process
 // bool areEqual = String.Equals(sPassword, password.Text,
StringComparison.Ordinal);

 try
 {
 SslStream client = ClientSocket.Instance;
 BinaryWriter writer = new BinaryWriter(client, Encoding.UTF8, true);
 writer.Write((int)Commands.LOGIN);
 writer.Write(password.Text);
 writer.Close();
 BinaryReader reader = new BinaryReader(client, Encoding.UTF8, true);
 int isValid = reader.ReadInt32();
 if (isValid == 0)
 {

 new AlertDialog.Builder(this).SetPositiveButton("Close", (s, args)
=>
 {
 // User pressed yes
 }).SetMessage("Incorrect password
entered!").SetTitle("Error").Show();
 }
 else
 {
 Finish();

100

 }
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex);
 ConnectionProgress.Visibility = ViewStates.Invisible;
 }

 }
 }
}

MainActivity.cs – Handles the main window activity with the control buttons

using Android.App;
using Android.Widget;
using Android.OS;
using System;
using System.Threading;
using Android.Content;
using Android.Locations;
using System.Collections.Generic;
using Android.Util;
using System.Linq;
using System.Text;
using Android.Runtime;
using System.Net.Security;
using System.IO;

namespace HovercamMobile
{
 [Activity(Label = "HovercamMobile", MainLauncher = true, Icon =
"@drawable/Quadcopter")]
 public class MainActivity : Activity, ILocationListener
 {
 //Global variables
 System.Timers.Timer timer;
 private TextView Textview1;
 /*LocationManager locMgr;
 Location currentLocation;*/
 public static Location _currentLocation;
 public static Location _previousLocation;
 LocationManager _locationManager;
 String _locationProvider;
 TextView latitude;
 TextView longitude;
 //string tag = "MainActivity";

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 Window.RequestFeature(Android.Views.WindowFeatures.NoTitle);
 StartActivity(typeof(Login));

101

 //Set our view from the "main" layout resource
 SetContentView(Resource.Layout.Main);

 Button Set_Distance = FindViewById<Button>(Resource.Id.Set_Distance);
 TextView Textview1 = FindViewById<TextView>(Resource.Id.Yo);
 Button Take_Off = FindViewById<Button>(Resource.Id.Take_Off);
 Button Hover = FindViewById<Button>(Resource.Id.Hover);
 Button Land = FindViewById<Button>(Resource.Id.Land);
 Button Video_Stream = FindViewById<Button>(Resource.Id.VideoStream);

 //Clicking Set Distance button sends you to Set Distance Screen
 Set_Distance.Click += delegate
 {
 StartActivity(typeof(Set_Distance_Activity));
 };

 //Clicking Video Stream button sends you to Video Stream Screen
 Video_Stream.Click += delegate
 {
 StartActivity(typeof(VideoStream));
 };

 //Changes textview1 based on button clicked and a 3 sec timer
 Take_Off.Click += delegate
 {
 //Textview1.Text = "Take Off sequence initiated...";
 timer = new System.Timers.Timer();
 timer.Enabled = true;
 timer.Interval = 3000; //3 seconds
 timer.Elapsed += new System.Timers.ElapsedEventHandler(t_Elapsed);
 };

 //Take Off, Hover, and Landing Sequences

 Take_Off.Click += delegate
 {
 Take_Off.Enabled = false;
 Hover.Enabled = true;
 Land.Enabled = true;
 try
 {
 SslStream client = ClientSocket.Instance;
 BinaryWriter writer = new BinaryWriter(client, Encoding.UTF8,
true);
 writer.Write((int)Commands.TAKEOFF);
 writer.Close();
 }
 catch (Exception ex)
 {
 new AlertDialog.Builder(this).SetPositiveButton("Close", (sender,
args) =>
 {
 // User pressed yes
 }).SetMessage("The connection to the raspberry pi has been lost!\n"
+ ex.Message).SetTitle("Error").Show();
 Take_Off.Enabled = false;

102

 Hover.Enabled = true;
 }
 };
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 Window.RequestFeature(Android.Views.WindowFeatures.NoTitle);
 StartActivity(typeof(Login));

 //Set our view from the "main" layout resource
 SetContentView(Resource.Layout.Main);

 Button Set_Distance = FindViewById<Button>(Resource.Id.Set_Distance);
 TextView Textview1 = FindViewById<TextView>(Resource.Id.Yo);
 Button Take_Off = FindViewById<Button>(Resource.Id.Take_Off);
 Button Hover = FindViewById<Button>(Resource.Id.Hover);
 Button Land = FindViewById<Button>(Resource.Id.Land);
 Button Video_Stream = FindViewById<Button>(Resource.Id.VideoStream);

 //Clicking Set Distance button sends you to Set Distance Screen
 Set_Distance.Click += delegate
 {
 StartActivity(typeof(Set_Distance_Activity));
 };

 //Clicking Video Stream button sends you to Video Stream Screen
 Video_Stream.Click += delegate
 {
 StartActivity(typeof(VideoStream));
 };

 //Changes textview1 based on button clicked and a 3 sec timer
 Take_Off.Click += delegate
 {
 //Textview1.Text = "Take Off sequence initiated...";
 timer = new System.Timers.Timer();
 timer.Enabled = true;
 timer.Interval = 3000; //3 seconds
 timer.Elapsed += new System.Timers.ElapsedEventHandler(t_Elapsed);
 };

 //Take Off, Hover, and Landing Sequences

 Take_Off.Click += delegate
 {
 Take_Off.Enabled = false;
 Hover.Enabled = true;
 Land.Enabled = true;
 try
 {
 SslStream client = ClientSocket.Instance;
 BinaryWriter writer = new BinaryWriter(client, Encoding.UTF8,
true);
 writer.Write((int)Commands.TAKEOFF);
 writer.Close();

103

 }
 catch (Exception ex)
 {
 new AlertDialog.Builder(this).SetPositiveButton("Close", (sender,
args) =>
 {
 // User pressed yes
 }).SetMessage("The connection to the raspberry pi has been lost!\n"
+ ex.Message).SetTitle("Error").Show();
 Take_Off.Enabled = false;
 Hover.Enabled = true;
 }
 };

 Hover.Click += delegate
 {
 Hover.Enabled = false;
 Land.Enabled = true;
 Take_Off.Enabled = true;
 try
 {
 SslStream client = ClientSocket.Instance;
 BinaryWriter writer = new BinaryWriter(client, Encoding.UTF8,
true);
 writer.Write((int)Commands.HOVER);
 writer.Close();
 }
 catch (Exception ex)
 {
 new AlertDialog.Builder(this).SetPositiveButton("Close", (sender,
args) =>
 {
 // User pressed yes
 }).SetMessage("The connection to the raspberry pi has been lost!\n"
+ ex.Message).SetTitle("Error").Show();
 }
 };

 Land.Click += delegate
 {
 Take_Off.Enabled = true;
 Land.Enabled = false;
 Hover.Enabled = false;
 try
 {
 SslStream client = ClientSocket.Instance;
 BinaryWriter writer = new BinaryWriter(client, Encoding.UTF8,
true);
 writer.Write((int)Commands.LAND);
 writer.Close();
 }
 catch (Exception ex)
 {
 new AlertDialog.Builder(this).SetPositiveButton("Close", (sender,
args) =>
 {
 // User pressed yes

104

 }).SetMessage("The connection to the raspberry pi has been lost!\n"
+ ex.Message).SetTitle("Error").Show();
 }
 };

 //Shows dialog box with progress bar. Not actually goning to be used but i
may want to reference it for something later
 //Land.Click += BatteryLife_Indicator;

 //Thread for progressBar displaying battery consumption
 /* new Thread(new ThreadStart(delegate
 {
 int progressBarStatus = 100;
 BatteryLife.Progress = 98;

 //while (true)
 //{
 while (progressBarStatus > 5)
 {
 progressBarStatus -= 5;
 BatteryLife.Progress = progressBarStatus;
 Thread.Sleep(60000); // Sleep 1000ms
 }

 this.RunOnUiThread(() => new
AlertDialog.Builder(this).SetPositiveButton("Close", (sender, args) =>
 {
 // User pressed yes
 }).SetMessage("Battery is low!").SetTitle("Warning").Show());
 //BatteryLife.Progress = 100;
 //progressBarStatus = 100;
 //}
 })).Start();*/

 // receive data
 new Thread(() => // Thread (like Timer)
 {
 try
 {
 SslStream client = ClientSocket.Instance;
 BinaryReader reader = null;
 string message = string.Empty;
 int messageId = -1;
 while (true)
 {
 reader = new BinaryReader(client, Encoding.UTF8, true);
 /*
 * 0 - Vehicle is connected
 * 1 - Error message
 * 2 - Vehicle state
 * */
 messageId = reader.ReadInt32();
 message = reader.ReadString();
 if (messageId == 0)
 {
 this.RunOnUiThread(() =>
 {

105

 Set_Distance.Enabled = true;
 Take_Off.Enabled = true;
 Hover.Enabled = false;
 Land.Enabled = false;
 });
 }
 else if (messageId == 1)
 {
 this.RunOnUiThread(() => new
AlertDialog.Builder(this).SetPositiveButton("Close", (sender, args) =>
 {
 // User pressed yes
 }).SetMessage(message).SetTitle("Warning").Show());
 }
 else if (messageId == 2)
 {

 this.RunOnUiThread(() => { Textview1.Text = message; if
(message.Equals("Following has ended.")) { Take_Off.Enabled = true; } });
 }
 reader.Close();

 }
 //writer.Write((int)Commands.TAKEOFF);
 }
 catch (Exception ex)
 {
 this.RunOnUiThread(() => new
AlertDialog.Builder(this).SetPositiveButton("Close", (sender, args) =>
 {
 // User pressed yes
 }).SetMessage("The connection to the raspberry pi has been lost!\n"
+ ex.Message).SetTitle("Error").Show());
 }

 }).Start(); // Start the Thread
 //GPS

 latitude = FindViewById<TextView>(Resource.Id.latitude);
 longitude = FindViewById<TextView>(Resource.Id.longitude);

 // initialize location manager
 InitializeLocationManager();

 }
 public void InitializeLocationManager()
 {
 _locationManager = (LocationManager)GetSystemService(LocationService);
 Criteria criteriaForLocationService = new Criteria
 {
 Accuracy = Accuracy.Fine
 };
 IList<string> acceptableLocationProviders =
_locationManager.GetProviders(criteriaForLocationService, true);

 if (acceptableLocationProviders.Any())
 {
 _locationProvider = acceptableLocationProviders.First();

106

 }
 else
 {
 _locationProvider = String.Empty;
 }
 }
 public void OnLocationChanged(Location location)
 {
 try
 {
 Location loc = location;
 latitude.Text = "Latitude: " + loc.Latitude.ToString();
 longitude.Text = "Longitude: " + loc.Longitude.ToString();
 try
 {
 SslStream client = ClientSocket.Instance;
 BinaryWriter writer = new BinaryWriter(client, Encoding.UTF8,
true);
 writer.Write((int)Commands.SET_GPS);
 writer.Write(loc.Longitude.ToString());
 writer.Write(loc.Latitude.ToString());
 writer.Close();
 }
 catch (Exception ex)
 {
 Console.WriteLine("Error sending GPS position: " + ex);
 //new AlertDialog.Builder(this).SetPositiveButton("Okay", (sender,
args) =>
 //{
 // // User pressed yes
 //}).SetMessage("The connection to the raspberry pi has been
lost!\n" + ex.Message).SetTitle("Error").Show();
 }
 _currentLocation = loc;
 //longitude.Text = "Longitude: " + location.Longitude.ToString();

 }
 catch (Exception ex)
 {
 Console.WriteLine("error: " + ex);
 new AlertDialog.Builder(this).SetPositiveButton("Close", (sender, args)
=>
 {
 // User pressed yes
 }).SetMessage("Error: " + ex.Message).SetTitle("Error").Show();
 }
 }

 public void OnProviderDisabled(string provider)
 {
 }

 public void OnProviderEnabled(string provider)
 {
 Console.WriteLine("Provider is enabled");
 }

107

 public void OnStatusChanged(string provider, Availability status, Bundle
extras)
 {
 Console.WriteLine(status.ToString());
 }

 protected override void OnResume()
 {
 base.OnResume();
 _locationManager.RequestLocationUpdates(_locationProvider, 1000, 0.5f,
this);
 }
 protected override void OnPause()
 {
 base.OnPause();
 //_locationManager.RemoveUpdates(this);
 }

 //Timer to change textview1
 private void t_Elapsed(object sender, System.Timers.ElapsedEventArgs e)
 {
 RunOnUiThread(() =>
 {
 Textview1 = FindViewById<TextView>(Resource.Id.Yo);
 //Textview1.Text = "Take Off sequence complete.";
 timer.Stop();
 });
 }

 }
}

ClientSocket.cs – Handles the SSLStream connection as a singleton to allow for different

activities to access the connection stream

using System;
using System.Net.Sockets;
using System.Security.Cryptography;
using System.Security.Cryptography.X509Certificates;
using System.Security.Authentication;
using System.Net.Security;

public class ClientSocket
{
 private static SslStream instance;
 private static TcpClient client;
 //Server certificate name
 private static readonly string ServerCertificateName = "MyServer";
 //Directory of client certificate used in SSL authentication
 private static readonly string ClientCertificateFile = "./Cert/client.pfx";
 private static readonly string ClientCertificatePassword = null;

 private ClientSocket() { }

 public static SslStream Instance

108

 {
 get
 {
 if (instance == null || !client.Connected)
 {
 client = new TcpClient();
 client.Connect("192.168.10.1", 43594);
 var clientCertificate = new X509Certificate2(ClientCertificateFile,
ClientCertificatePassword);
 var clientCertificateCollection = new X509CertificateCollection(new
X509Certificate[] { clientCertificate });
 instance = new SslStream(client.GetStream(), false,
App_CertificateValidation);
 Console.WriteLine("Client connected.");
 instance.AuthenticateAsClient(ServerCertificateName,
clientCertificateCollection, SslProtocols.Tls12, false);
 }
 return instance;
 }
 }
 /// <summary>
 /// Authenticates the client's certificate.
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="certificate"></param>
 /// <param name="chain"></param>
 /// <param name="sslPolicyErrors"></param>
 /// <returns></returns>
 private static bool App_CertificateValidation(Object sender, X509Certificate
certificate, X509Chain chain, SslPolicyErrors sslPolicyErrors)
 {
 if (sslPolicyErrors == SslPolicyErrors.None) { return true; }
 if (sslPolicyErrors == SslPolicyErrors.RemoteCertificateChainErrors) { return
true; } //we don't have a proper certificate tree
 Console.WriteLine("*** SSL Error: " + sslPolicyErrors.ToString());
 return false;
 }
}

Commands.cs – Contains the enum for all the different commands

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Android.App;
using Android.Content;
using Android.OS;
using Android.Runtime;
using Android.Views;
using Android.Widget;

namespace HovercamMobile
{
 public enum Commands

109

 {
 LOGIN = 0,
 TAKEOFF = 1,
 HOVER = 2,
 LAND = 3,
 SET_DISTANCE = 4,
 SET_GPS = 5,
 SET_BATTERY_LIFE = 6,
 SET_TARGET = 7,
 REQUEST_VIDEO = 8,
 }
}

Set_Distance.cs – The Set distance activity class to handle setting the distance

using Android.App;
using Android.Content;
using Android.OS;
using Android.Widget;
using Java.Lang;
using static Android.Widget.SeekBar;
using Android.Preferences;
using Android.Util;
using System.Net.Security;
using System.IO;
using System.Text;

namespace HovercamMobile
{
 [Activity(Label = "Set_Distance")]
 public class Set_Distance_Activity : Activity, SeekBar.IOnSeekBarChangeListener
 {
 SeekBar Set_Distance;
 TextView Display_Distance;
 Button Set_Button;
 int distance;
 protected override void OnDestroy()
 {
 base.OnDestroy();

 //Sets up preferences manager in order to save strings, ints, or bools on
closure of activity
 ISharedPreferences prefs =
PreferenceManager.GetDefaultSharedPreferences(Application.Context);
 ISharedPreferencesEditor editor = prefs.Edit();
 editor.PutInt("User_Distance_Set", Set_Distance.Progress);
 editor.Apply(); // applies changes asynchronously
 }

 protected override void OnCreate(Bundle savedInstanceState)
 {
 base.OnCreate(savedInstanceState);
 Window.RequestFeature(Android.Views.WindowFeatures.NoTitle);
 distance = 0;
 SetContentView(Resource.Layout.Set_Distance_Screen);

110

 // Seek Bar code for setting the distance
 Set_Distance = FindViewById<SeekBar>(Resource.Id.Set_Distance_SeekBar);
 Display_Distance = FindViewById<TextView>(Resource.Id.Display_Distance);

 //Resets the distance set to whatever it was when activity was destroyed
last
 ISharedPreferences prefs =
PreferenceManager.GetDefaultSharedPreferences(Application.Context);
 Set_Distance.Progress = prefs.GetInt("User_Distance_Set", 0);

 //Displays text displaying Distance Set
 Display_Distance.Text = string.Format("The user adjusted the value of the
SeekBar to {0}ft.", Set_Distance.Progress);

 Set_Distance.SetOnSeekBarChangeListener(this);
 //Clicking Back button sends you to the Main Screen
 Set_Button = FindViewById<Button>(Resource.Id.SDBack);
 Set_Button.Click += delegate
 {
 try
 {
 SslStream client = ClientSocket.Instance;
 BinaryWriter writer = new BinaryWriter(client, Encoding.UTF8,
true);
 writer.Write((int)Commands.SET_DISTANCE);
 writer.Write(distance);
 writer.Close();
 Finish();
 }
 catch (Exception ex)
 {
 new AlertDialog.Builder(this).SetPositiveButton("Close", (sender,
args) =>
 {
 Finish();
 }).SetMessage("The connection to the raspberry pi has been lost!\n"
+ ex.Message).SetTitle("Error").Show();
 }
 };

 }
 public void OnProgressChanged(SeekBar seekBar, int Progress, bool fromUser)
 {

 if (fromUser)
 {
 Display_Distance.Text = string.Format("The user adjusted the value of
the SeekBar to {0}ft.", seekBar.Progress + 1);
 }
 distance = seekBar.Progress;
 }

 public void OnStartTrackingTouch(SeekBar seekBar)
 {
 //System.Diagnostics.Debug.WriteLine("Tracking changes.");
 }

 public void OnStopTrackingTouch(SeekBar seekBar)

111

 {
 //System.Diagnostics.Debug.WriteLine("Stopped tracking changes.");
 }

 }
}

VideoStream.cs – Class that handles the backend of showing the TCP video stream from

gstreamer

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Android.App;
using Android.Content;
using Android.OS;
using Android.Runtime;
using Android.Views;
using Android.Widget;
using System.Net.Sockets;
using System.IO;
using Android.Webkit;
using Java.Lang;

namespace HovercamMobile
{
 [Activity(Label = "VideoStream", ScreenOrientation =
Android.Content.PM.ScreenOrientation.Landscape)]
 public class VideoStream : Activity
 {

 protected override void OnCreate(Bundle savedInstanceState)
 {
 base.OnCreate(savedInstanceState);

 Window.RequestFeature(Android.Views.WindowFeatures.NoTitle);

 SetContentView(Resource.Layout.Videostream_Screen);

 // Set web view content to be the raspberry pi camera stream
 /* WebView webView = FindViewById<WebView>(Resource.Id.webView1);
 webView.Settings.JavaScriptEnabled = true;

 // Get the width and height of the view because its different for
different phone or table layouts
 // Pass these values to the URL in the web view to display the HTTP
stream
 int width = 640;
 int height = 320;
 string stream = "http://192.168.10.1:8080/stream";
 webView.LoadUrl(stream + "?width=" + width + "&height=" + height);
 */
 //Clicking Back button sends you to the Main Screen
 Intent intent = new Intent("pl.effisoft.rpicamviewer2.PREVIEW");

112

 int camera = 0;

 //--------- Basic settings
 intent.PutExtra("full_screen", true);

 intent.PutExtra("name" + camera, "My pipeline name");
 intent.PutExtra("host" + camera, "192.168.10.1");
 intent.PutExtra("port" + camera, 5000);
 intent.PutExtra("description" + camera, "My pipeline description");
 intent.PutExtra("uuid" + camera, System.Guid.NewGuid().ToString());
 intent.PutExtra("aspectRatio" + camera, 1.6);
 intent.PutExtra("autoplay" + camera, true);

 //--------- Enable advanced mode
 intent.PutExtra("advanced" + camera, true); //when advanced=true, then
custom_pipeline will be played
 //when advanced=false, then
pipeline will be generated from host, port (use only for backward compatibility with
previous versions)
 intent.PutExtra("custom_pipeline" + camera, "tcpclientsrc host=192.168.10.1
port=5000 ! gdpdepay ! rtph264depay ! avdec_h264 ! videoconvert ! autovideosink
sync=false");

 //--------- Enable application extra features
 intent.PutExtra("extraFeaturesEnabled" + camera, false);

 //--------- Add autoaudiosink to featured pipeline
 intent.PutExtra("extraFeaturesSoundEnabled" + camera, false);

 //--------- Scale Video Stream option
 intent.PutExtra("extraResizeVideoEnabled" + camera, false);
 intent.PutExtra("width" + camera, 320); //used only when
extraResizeVideoEnabled=true
 intent.PutExtra("height" + camera, 200); //used only when
extraResizeVideoEnabled=true

 //--------- Add plugins
 //ArrayList<String> plugins = new ArrayList<String>();
 Bundle b = new Bundle();
 intent.PutExtra("plugins" + camera, b);
 intent.SetPackage("pl.effisoft.rpicamviewer2");

 StartActivityForResult(intent, 0);
 Button Back_Button = FindViewById<Button>(Resource.Id.VSSBack);
 Back_Button.Click += delegate
 {
 Finish();
 };

 }
 }
}

113

AndroidManifest.xml – Manifest for permissions and application name

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="HovercamMobile.HovercamMobile" android:versionCode="1"
android:versionName="1.0">
 <uses-sdk android:minSdkVersion="16" />
 <application android:label="HovercamMobile"></application>
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission android:name="android.permission.INTERNET" />
</manifest>

	The University of Akron
	IdeaExchange@UAkron
	Spring 2017

	Hovercam
	Kevin Rauh
	Ross Palenik
	Recommended Citation

	tmp.1493669125.pdf.vQiV3

