
The University of Akron
IdeaExchange@UAkron

Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2017

Stringless Guitar
Kue Z. Yang
University of Akron, kzy1@zips.uakron.edu

Anthony Batey
University of Akron, arb125@zips.uakron.edu

Dominic Mercorelli
University of Akron, dlm158@zips.uakron.edu

Nathaniel Hawk
University of Akron, nah38@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects

Part of the Electrical and Electronics Commons, Signal Processing Commons, and the VLSI and
Circuits, Embedded and Hardware Systems Commons

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of
IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

Recommended Citation
Yang, Kue Z.; Batey, Anthony; Mercorelli, Dominic; and Hawk, Nathaniel, "Stringless Guitar" (2017). Honors
Research Projects. 508.
http://ideaexchange.uakron.edu/honors_research_projects/508

http://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=http://ideaexchange.uakron.edu/honors_research_projects/508
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects/508?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Kue Yang

Computer Engineering

May 1st, 2017

Honors Project

Senior Design Contribution

My main contribution to the design project was mainly designing, testing, and maintaining

the software used for the project. My individual contribution to the project are listed as follows:

• I had selected the microprocessor that our project used. The microprocessor that was used

is the PIC32MX270F512L from Microchip.

• I maintained, documented, and updated the source code throughout the semester. The

project was hosted on GitHub for ease of access both at home and at school. Doxygen

was used to generate the documentation pulled from the source code.

• I research and designed algorithms used in the project. For example, how audio data was

read and written from memory to a digital to analog converter via the use of interrupts.

• I created debugging tools to test the functionality of the guitar. The debugging tool

utilized UART to serial communications via a command terminal to send commands to

the microprocessor.

• I assisted my team members with designing the hardware portions of the project. An

excel sheet was created listing the pinouts of the microprocessor and how it was to be

connected to other components.

1

Stringless Guitar

Senior Project Final Report

Design Team #08

Batey, Anthony

Hawk, Nathaniel

Mercorelli, Dominic

Yang, Kue

Dr. Robert J. Veillette

Monday, May 1st, 2017

2

Abstract

The aim of this project is to improve the design of a typical guitar by designing a digital

stringless guitar. Due to the nonlinearities inherent in a guitar, it would be difficult to reproduce

guitar tones by summing harmonic components; therefore, digital samples of guitar tones were

taken in order to preserve these unique and wonderfully sounding tones. These digital samples

were stored in the guitar and used to produce its tones when played. The digital guitar includes

fingerboard position sensors as well as strum sensors for each string. The fingerboard position

sensors detect the player’s fingers at discrete positions. The strum sensors detect which string is

being strummed. All the sensors are durable and may be replaced as the instrument ages. The

guitar produces sound similar to a typical guitar without requiring strings or tuning. The

stringless guitar has many of the standard features of a typical guitar including a standard guitar

audio jack, volume control and tone control. The hope of this project is to produce a novel digital

guitar that may be admired by professional and beginner musicians alike.

 [NAH, KZY]

3

Table of Contents

List of Figures ... 7

List of Tables .. 9

1. Problem Statement ... 10

1.1 Need ... 10

1.2 Objective .. 10

1.3 Background .. 10

1.3.1 Patent Search ... 10

1.3.2 Article Search.. 11

1.4 Marketing Requirements .. 12

1.5 Objective Tree .. 12

2 Design Requirements Specifications ... 13

3 Accepted Technical Design ... 14

3.1 Hardware Design .. 14

3.1.1 Hardware Theory of Operation ... 14

3.1.2 Block Level Zero Hardware Diagram... 16

3.1.3 Block Level One Hardware Diagram ... 17

3.1.4 Block Level Two Hardware Diagram ... 20

3.2 Software Design ... 27

3.2.1 Software Theory of Operation .. 27

3.2.2 Flow Chart Level Zero Software Diagram ... 28

3.2.3 Flow Chart Level One Software Diagram .. 29

3.2.4 Flow Chart Level Two Software Diagram.. 30

3.3 Mechanical Design ... 31

3.3.1 Strum Sensor Mechanical Design ... 31

3.4 Calculations .. 33

3.4.1 Battery Life Calculations .. 33

3.4.2 Storage Size, Bus Speed and Delay Calculations ... 34

3.4.3 Strum Sensor Calculations .. 35

3.5 Simulations ... 37

4

3.5.1 Summing Amplifier Simulations .. 37

3.6 Schematics .. 39

3.6.1 Power Schematics ... 39

3.6.2 Strum Sensor Schematic ... 40

3.6.3 Fretboard Sensor Schematic and PCB Layout .. 41

3.6.4 Processing Board Schematic ... 44

3.6.5 Schematic for External Connections ... 44

3.6.6 DAC and MicroSD Card Schematic ... 46

3.6.7 Processing Board PCB Layout.. 46

3.6.8 Summing Amplifier Schematic... 47

3.7 Software Components .. 49

3.7.1 PIC Processor .. 49

3.7.2 Digital to Analog Converter.. 51

3.7.3 External Memory .. 51

3.7.4 Sensor Algorithms .. 52

3.7.5 Sound Files.. 53

3.7.6 Pseudocode ... 54

3.8 Completed Prototype .. 62

4 Testing Procedures ... 66

4.1 Strum Sensor Testing ... 66

4.2 Fret Board Testing .. 67

4.3 Processing PCB Testing ... 67

4.4 Summing Amp Testing .. 68

4.5 Power Testing ... 69

4.6 Overall Testing ... 70

5 Operation, Maintenance, and Repair Instructions .. 71

5.1 Operation Instructions .. 71

5.2 Maintenance Instructions ... 71

5.3 Repair Instructions ... 71

6 Parts List .. 72

6.1 Part List .. 72

5

6.2 Budget (Estimated) ... 76

7 Project Schedules ... 81

7.1 Midterm Design Gantt .. 81

7.2 Final Design Gantt ... 82

7.3 Proposed Implementation Gantt ... 83

7.4 Actual Implementation Gantt ... 84

8 Design Team Information .. 86

9 Conclusions and Recommendations .. 86

10 References .. 87

11 Appendices ... 89

11.1 UART Commands .. 89

11.2 Firmware Documentation ... 90

11.3 Module Documentation .. 90

11.3.1 USB configurations ... 90

11.3.2 System and Peripheral Clock Configurations ... 90

11.3.3 Programming Configurations.. 90

11.3.4 Watch Dog Timer Configurations .. 90

11.4 Data Structure Documentation ... 90

11.4.1 AUDIOINFO Struct Reference... 90

11.4.2 COMMANDS Struct Reference ... 91

11.4.3 COMMANDSTR Struct Reference .. 92

11.4.4 FILES Struct Reference .. 93

11.4.5 MON_FIFO Struct Reference ... 93

11.5 File Documentation .. 94

11.5.1 ADC.c File Reference ... 94

11.5.2 ADC.h File Reference ... 97

11.5.3 AUDIO.c File Reference .. 97

11.5.4 AUDIO.h File Reference .. 103

11.5.5 DAC.c File Reference ... 106

11.5.6 DAC.h File Reference ... 108

11.5.7 FIFO.c File Reference ... 111

6

11.5.8 FIFO.h File Reference .. 112

11.5.9 FILEDEF.h File Reference ... 114

11.5.10 FILES.c File Reference ... 116

11.5.11 FILES.h File Reference .. 116

11.5.12 HardwareProfile.h File Reference .. 119

11.5.13 IO.c File Reference ... 120

11.5.14 IO.h File Reference ... 121

11.5.15 main.c File Reference ... 123

11.5.16 SPI.c File Reference.. 124

11.5.17 SPI.h File Reference ... 124

11.5.18 STDDEF.h File Reference .. 126

11.5.19 TIMER.c File Reference ... 127

11.5.20 TIMER.h File Reference ... 127

11.5.21 UART.c File Reference .. 130

11.5.22 UART.h File Reference .. 137

11.5.23 WAVDEF.h File Reference .. 141

7

List of Figures

Figure 1: Objective Tree ... 12

Figure 2: Block Level Zero Hardware Diagram ... 16

Figure 3: Block Level One Hardware Diagram .. 17

Figure 4: Block Level Two Hardware Diagram – Sensor Circuits ... 20

Figure 5: Block Level Two Hardware Diagram – MCU and Memory Circuits 22

Figure 6: Block Level Two Hardware Functional Outputs – Amplifier Circuits 24

Figure 7: Block Level Two Hardware Diagram – Power Supply Unit ... 26

Figure 8: Flow Chart Level Zero Software Diagram .. 28

Figure 9: Flow Chart Level One Software Diagram – Run Main Processes 29

Figure 10: Flow Chart Level Two Software Diagram – Read Audio File from Storage.............. 30

Figure 11: Mechanical Design of the Piezoelectric Strum Sensor ... 31

Figure 12: Piezoelectric Strip Model LDT0-028K ... 35

Figure 13: Piezoelectric voltage verses tip deflection .. 35

Figure 14: Piezo and Steel Plate Deflection .. 36

Figure 15: Summing Amplifier Simulation Schematic .. 37

Figure 16: Finger Position of E Major Chord ... 38

Figure 17: Summing Amplifier Audio Output Results ... 38

Figure 18: Power Schematic ... 39

Figure 19: Piezoelectric Strip Operational Amplifier Circuit. ... 40

Figure 20: Finger Position Sensor Schematic ... 42

Figure 21: Drawing of the Finger Position Sensor PCB Layout .. 43

Figure 22: Drawing of the Left Half of the Finger Position Sensor PCB Layout 43

Figure 23: Drawing of the Right Half of the Finger Position Sensor PCB Layout 43

Figure 24: PIC32MX270F512L Schematic .. 44

Figure 25: Header Connections .. 45

Figure 26: MicroSD Card and DAC Schematic ... 46

Figure 27: PCB Layout of Main Processing Board .. 47

Figure 28: Summing Amplifier Schematic ... 48

Figure 29: AD5689R DAC Package and Pin Layout ... 51

Figure 30: MicroSD card pinout [14]. .. 51

Figure 31: Finger Position Sensor Timing Diagram ... 52

Figure 32: Theoretical Damped Sinusoid ... 52

Figure 33: Focusrite Scarlett Solo... 54

Figure 34: Completed Project Picture ... 62

Figure 35: Picture of the PCBs in the Guitar .. 63

Figure 36: Picture of the Strum Sensors in Guitar .. 64

Figure 37: Picture of the Fret Sensors on the Guitar .. 65

Figure 38: String 1 Hard Strum .. 66

8

Figure 39: String 1 Soft Strum .. 67

Figure 40: LT-Spice Simulation of Summing Amp ... 68

Figure 41: Bench Results of Summing Amp. ... 69

Figure 42: Midterm Design Gantt Chart ... 81

Figure 43: Final Design Gantt Chart ... 82

Figure 44: Proposed Implementation Gantt Chart .. 83

Figure 45: Actual Implementation Gantt Chart .. 85

9

List of Tables

Table 1: Design Requirements .. 13

Table 2: Level Zero Hardware Functional Outputs .. 16

Table 3: Level One Hardware Functional Outputs – Sensor Circuits .. 18

Table 4: Level One Hardware Functional Outputs – MCU and Memory Circuits 18

Table 5: Level One Hardware Functional Outputs – Amplifier Circuit 18

Table 6: Level One Hardware Functional Outputs – Power Supply .. 19

Table 7: Level Two Hardware Functional Outputs – Sensor Circuits: String Finger Position

Sensors.. 21

Table 8: Level Two Hardware Functional Outputs – Sensor Circuits: String Strum Strength

Sensors.. 21

Table 9: Level Two Hardware Functional Outputs – MCU and Memory Circuits: Microcontroller

 .. 23

Table 10: Level Two Hardware Functional Outputs – MCU and Memory Circuits: Memory 23

Table 11: Level Two Hardware Functional Outputs – Amplifier Circuits: DACs 25

Table 12: Level Two Hardware Functional Outputs – Amplifier Circuits: Summing Amplifier 25

Table 13: Level Two Hardware Functional Outputs - Power Supply Unit: Battery 26

Table 14: Level Two Hardware Functional Outputs - Power Supply Unit: Linear Voltage

Regulator .. 26

Table 15: PIC Pin Layout ... 49

Table 16: Main Module (Main Entry Point for the Application).. 55

Table 17: IO Module. .. 56

Table 18: TIMER Module. ... 57

Table 19: ADC Module. ... 58

Table 20: SPI Module. .. 59

Table 21: UART Module (Command Module). ... 60

Table 22: Audio Module. .. 61

Table 23: Ideal and Actual Voltages of Battery [17] .. 69

Table 24: Ideal and Actual Voltages of Linear Regulator [10] .. 70

Table 25: Part List First Round ... 72

Table 26: Final Part List ... 74

Table 27: Material Cost First Round .. 76

Table 28: Final Material Cost ... 78

Table 29: Budget Log ... 79

Table 30: UART Command List... 89

10

1. Problem Statement

1.1 Need

A guitar requires the use of strings to create its sound. Strings frequently need to be

replaced after the sound becomes dull. The guitar must be tuned for it to produce proper

pitch of the tones. Furthermore, the pitch and quality of the guitar sound are sensitive to

temperature changes. Therefore, tuning of the guitar is required before each usage.

[ARB, NAH, DLM, KZY]

1.2 Objective

The objective of this project is to design a guitar that does not require the use of strings.

The neck of the guitar has six arrays of sensors for detecting finger placement and chord

arrangements. The body of the guitar has six sensors for detecting the strumming of each

string. The guitar is battery-powered and can be connected to a standard guitar amplifier.

Other similar features of an electric guitar such as volume and tone controls are included

in the overall design.

[ARB, NAH, DLM, KZY]

1.3 Background

1.3.1 Patent Search

Similar concepts of the stringless guitar have been implemented in various

applications. In [1], an actuator blade on the body of the guitar was strummed or

picked. This strumming action would flex each actuator blade back and forth.

Flexing each of the actuator blades controlled the amplified output of an

oscillator, which in return produced the frequency of the note that should play

based on the finger position detected on the fret board [1]. Another

implementation involved the use of push buttons on the neck of the digital guitar.

These buttons would allow a microcontroller to detect the note that should be

played [2]. A sensor matrix was another method that was used to detect the

position of the fingers on the neck. Change in pressure exerted on the sensor

would increase the pitch of the note. This behavior is implemented to replicate a

small feature that musicians expect when playing a regular guitar with physical

strings [3].

[DLM]

11

1.3.2 Article Search

Many features have been explored in guitar electronics. For example, when

writing music for the guitar many people write either sheet music or tablature

using computer software. This requires that the individual can read sheet music

and is well versed in musical notation. To alleviate this requirement, Fiss and

Kwasinski discuss a computer algorithm that converts guitar audio to guitar

tablature or sheet music automatically. The article explains that this is hard to do

using just guitar audio because there are up to five places on the guitar fretboard

that produces the same musical note. The software would need to determine

which one of the five finger positions are being played. Sheet music and tablature

could be generated based on the data received from the instrument [4].

Another way finger position has been monitored on the fret board is by using

infrared sensors to emulate strings. In [5], an infrared transmitter was placed on

one side of the guitar neck with photodiodes on the body. A microcontroller

would read the output of the photodiodes when a person held a chord on the neck.

The microcontroller would send the finger position to a computer. From there, a

computer application would produce the corresponding guitar tone.

In [6], a digital guitar was created to sound like an acoustic guitar. The actual

pitch of the string was recreated as well as the tone of the pitch produced by the

body of the guitar. In order to create a computational model, algorithms were

developed to mimic the guitar body. The model incorporated the horizontal and

vertical movement of the strings being plucked, which were dependent on the

strength of each pluck. Through various filtering methods and the combination of

the algorithms developed, the acoustic guitar sound synthesized was very similar

the original guitar being studied [6].

In [7], a stringless guitar design was presented where the main problem analyzed

was how to detect chords. This stringless guitar design consists of three parts. The

first part included a “chord glove” composed of FSR and FLEX sensors, which

would detect the guitar chords. The second part of the project involved the use of

a processor that would recognize the guitar chord input from the “chord glove”.

Finally, each chord was transmitted to sound processing software where the chord

formation was displayed graphically. The guitar could detect strumming in up or

down strokes [7].

[ARB, NAH, DLM]

12

1.4 Marketing Requirements

1. The guitar battery will be replaceable and rechargeable.

2. The guitar will last for at least four hours of constant usage.

3. The stringless guitar will have a standard guitar audio output jack.

4. The stringless guitar will be the same size as a normal guitar.

5. The stringless guitar will require no tuning.

6. The stringless guitar will respond and play in real-time.

7. The stringless guitar will operate over a typical range of temperatures.

8. The sensors of the stringless guitar will be durable.

9. The sensors of the stringless guitar will be replaceable.

10. The stringless guitar will weigh less than fourteen pounds.

11. The stringless guitar will have volume and tone controls.

 [ARB, NAH, DLM, KZY]

1.5 Objective Tree

Figure 1 shows the objective tree for the Stringless Guitar. The objective tree lists the

basic objectives met by the Stringless Guitar and are broken down into three different

categories: Input and Output Data, Robust and Portable and User Friendly. The Input and

Output Data category consists of design objectives that are related to the audio processing

implementation of the project. The Robust and Portable category consists of design

requirements related to the hardware components of the project. The User-Friendly

category consists of design requirements that a user would expect from this project.

Stringless

Guitar

Robust and

Portable
User Friendly

Input and Output

Data

Finger Position

on Frets

Strumming Data

Audio Output

Volume and

Tone Settings

Temperature

Invariant

No Strings

Lightweight

Rechargeable

Internal Power

Source

Comfortable

Guitar Neck

No Tuning

Required

Figure 1: Objective Tree

[ARB, NAH, DLM, KZY]

13

2 Design Requirements Specifications

The design requirements for the Stringless Guitar project are listed in Table 1. The design

requirements were derived from the marketing requirements listed above. Each design

requirements corresponds to each of the objectives listed in the objective tree from Figure 1.

Table 1: Design Requirements

Market

Requirements
Engineering Requirements Justification

1 The guitar will have an internal power source that can

be charged by an external power source.

To eliminate the need for the guitar to run off an

external power source.

2 The guitar will last for at least 4 hours with constant

usage.

To operate the components under worst-case

conditions for the required amount of time.

3 The guitar will have a ¼” female audio output

connector.

To connect to pre-existing guitar cables.

4 The guitar will have a scale length within

24 to 26 inches.

Therefore, the average user will be familiar with the

dimensions.

5 The guitar will produce audio output ranging from 20

Hz to 20 kHz.

The user will not need to tune the guitar.

6 The guitar will output the corresponding audio file

under a maximum allowable delay of 100

milliseconds.

The time the device takes to make calculations must

be short enough so that the user does not notice a

delay between their inputs and the audio output.

7 The guitar will operate within typical temperature

ranges of outdoor concerts. Temperature ranges from

30OF to 110OF.

If the user is using the guitar in an outdoor venue,

the electronics will perform as intended.

8 The guitar sensors will last at least one year with

constant usage.

The guitar is designed such that the user will not

need to change the sensors as often as one may need

to change a typical set of guitar strings.

9 The guitar sensors will be replaceable. If a sensor fails, the sensor can be replaced with a

new sensor.

10 The guitar will weigh less than fourteen pounds. The guitar will weigh similarly to other guitars.

11 The guitar will have volume and tone controls ranging

from ±6 dB.

The user will be able to adjust the volume and tone

of the guitar.

[ARB, NAH, DLM, KZY]

14

3 Accepted Technical Design

3.1 Hardware Design

3.1.1 Hardware Theory of Operation

The overall design of the stringless guitar is shown in Figure 2. The hardware

implemented comprises four core modules as shown in Figure 3. The four

modules are: Sensor Circuits, MCU and Memory Circuits, Amplifier Circuit, and

Power Supply.

The Sensors Circuits module handles getting the player’s finger and strumming

inputs to the guitar. The Sensors Circuits module is shown in Figure 4. The

hardware consists of finger and strumming sensors on the neck and body of the

guitar, respectively. The finger position sensors senses the locations of the

player’s fingers on the neck of the guitar. The finger position sensors, when

pressed, generates a digital high that is seen by a microcontroller. The finger

position sensors are digital inputs to the microcontroller. There are a total of

twenty finger position sensors per “string” simulating the twenty frets of a guitar.

The strumming sensor will determine when a “string” is being strummed and how

hard the player strummed. When a force is applied on the strum sensors, the

sensors generates a voltage that is read by a microcontroller as an analog input.

The strumming sensor does not require an outside voltage source.

The MCU and Memory Circuits modules handles reading and processing audio

files from an external memory. The MCU and Memory Circuits modules is shown

in Figure 5. The module consists of an array of six microcontrollers running in

parallel. Each microcontroller will handle processing audio for one of the six

guitar strings to improve the response of the guitar. Each microcontroller has its

own external memory containing audio files corresponding to each note of the

string. In other words, each microprocessor will handle up to 21 different tones.

An audio file is read from external memory when the microcontroller receives

inputs from both the strumming and finger sensors. The microcontroller will send

a sixteen-bit digital data stream to the amplifier circuit as shown in Figure 6.

The Amplifier Circuit module is the module that handles how the analog audio

outputs are generated and processed into an analog signal. This module is shown

in Figure 6. The module contains six, sixteen-bit digital-to-analog converters,

each of which will convert one sixteen-bit digital audio signal to an analog signal.

The six analog signals are added together using a summing amplifier circuit to

produce a single analog audio output. The volume and tone controls are

incorporated into the summing amplifier circuit.

The power supply module is used to supply power to the guitar. The power supply

module is shown in Figure 7. The module consists of a lithium ion battery and a

linear voltage regulator. The +9 VDC source from the battery is used to power the

15

summing amp and the strumming sensors. The +9 VDC source from the battery is

also regulated down to +3.3 VDC to power the MCU, DAC and SD Card reader.

An external supply is used to charge the battery when needed.

Table 2 through Table 14 describe the functionality of each of the modules and

their components as discussed above.

[ARB, NAH, DLM, KZY]

16

3.1.2 Block Level Zero Hardware Diagram

Figure 2: Block Level Zero Hardware Diagram

Table 2: Level Zero Hardware Functional Outputs

Module Stringless Guitar

Designer(s) ARB, NAH, DLM, KZY

Inputs o Power

o Strum Strength

o String Finger Position

o Audio Settings

Outputs o Audio Out

Functionality o The stringless guitar will process the string finger positions and strumming

strength into audio output. The audio output will be similar to the audio

produced at the output of a standard guitar. The stringless guitar will also

process audio settings (e.g. volume) and apply changes to the audio output.

17

3.1.3 Block Level One Hardware Diagram

Figure 3: Block Level One Hardware Diagram

Amplifier Circuit Audio Out

String 6 Strum Strength

String 5 Strum Strength

String 4 Strum Strength

String 3 Strum Strength

String 2 Strum Strength

String 1 Strum Strength

3.3 Volts and 9 Volts

Power Supply Unit

3.3 Volts

Sensor Circuits
MCU and Memory

Circuits

3.3 Volts and 9 Volts

 String 6 Digital Audio Out

String 5 Digital Audio Out

String 4 Digital Audio Out

String 3 Digital Audio Out

String 2 Digital Audio Out

String 1 Digital Audio Out

External Power

Audio Settings

20

String 1 Finger Position

20

String 2 Finger Position

20

String 3 Finger Position

20

String 4 Finger Position

20

String 5 Finger Position

20

String 6 Finger Position

18

Table 3: Level One Hardware Functional Outputs – Sensor Circuits

Module Sensor Circuits

Designer(s) ARB, NAH, DLM

Inputs o +3.3 VDC, 1 A

o +9 VDC, 1 A

Outputs o String Finger Positions (1-6) (Digital Voltages, 0 – 3.3 VDC)

o String Strum Strengths (1-6) (Analog Voltages, 0 – 9.0 VDC)

Functionality o The sensor circuits will produce output voltages corresponding to the finger

positions on the neck of the guitar and how hard the guitar is strummed for

each string.

Table 4: Level One Hardware Functional Outputs – MCU and Memory Circuits

Module MCU and Memory Circuits

Designer(s) ARB, NAH, DLM

Inputs o String Finger Positions (1-6) (Digital Voltages, 0 – 3.3 VDC)

o String Strum Strengths (1-6) (Analog Voltages, 0 – 9.0 VDC)

o +3.3 VDC, 1A

Outputs o String Digital Audio Out (1-6) (SPI communication protocol, 8MHz)

Functionality o The microcontroller unit will process the finger position and strum strength

sensor voltages of each string, and produce a digital audio output.

Table 5: Level One Hardware Functional Outputs – Amplifier Circuit

Module Amplifier Circuit

Designer(s) ARB, NAH, DLM

Inputs o String Digital Audio Out (1-6) (SPI communication protocol, 8MHz)

o Audio Settings

o +9 VDC, 1 A

o +3.3 VDC 1 A

Outputs o Audio Out (Voltage Range of – 4.5 V to + 4.5 V)

Functionality o The amplifier circuit will take multiple digital audio signals from the array of

microcontrollers and produce a single continuous audio output. The audio

settings will change the tone and volume of the audio output.

19

Table 6: Level One Hardware Functional Outputs – Power Supply

Module Power Supply

Designer(s) DLM

Inputs o +13.1 VDC, 1.5 A External Power Supply

Outputs o +3.3 VDC, 1 A

o +9 VDC, 1 A

Functionality o The power supply will apply a constant supply voltage to each of the

components so that the components will run accordingly.

20

3.1.4 Block Level Two Hardware Diagram

Figure 4: Block Level Two Hardware Diagram – Sensor Circuits

21

Table 7: Level Two Hardware Functional Outputs – Sensor Circuits: String Finger Position Sensors

Module String Finger Position Sensor (1-6)

Designer(s) ARB, NAH, DLM

Inputs o +3.3 VDC, 1 A

Outputs o Finger Position Output (1-6) (Digital Voltages, 0 – 3.3 VDC)

Functionality o The finger position sensor will determine which fret is being pressed.

Table 8: Level Two Hardware Functional Outputs – Sensor Circuits: String Strum Strength Sensors

Module String Strum Strength Sensor (1-6)

Designer(s) ARB, NAH, DLM

Inputs o +9 VDC, 1 A

Outputs o Strum Strength Output (1-6) (Analog Voltages, 0 – 9 VDC)

Functionality o The strum strength will determine the amplitude and duration of the audio

signal.

22

Figure 5: Block Level Two Hardware Diagram – MCU and Memory Circuits

23

Table 9: Level Two Hardware Functional Outputs – MCU and Memory Circuits: Microcontroller

Module String Microcontroller (1-6)

Designer(s) ARB, NAH, DLM

Inputs o + 3.3 VDC, 1 A

o String Finger Position (1-6) (Digital Voltages, 0 – 3.3 VDC)

o String Strum Strength (1-6) (Analog Voltages, 0 – 9 VDC)

o String MCU Rx (1-6) (Digital Voltages, 0 – 3.3 VDC)

Outputs o Digital Audio Out (1-6) (Digital Voltages, 0 – 3.3 VDC)

o String MCU Tx (1-6) (Digital Voltages 0 – 3.3 VDC)

Functionality o Each “string” has a microcontroller that reads a specific audio file

corresponding to the finger positions and the strum strength sensor and create a

digital audio output. Each of the microcontrollers will interface with an

external memory, which will provide the audio files.

Table 10: Level Two Hardware Functional Outputs – MCU and Memory Circuits: Memory

Module String Memory (1-6)

Designer(s) ARB, NAH, DLM

Inputs o +3.3 VDC, 1 A

o String MCU Tx (1-6) (Digital Voltages, 0 – 3.3 VDC)

Outputs o String MCU Rx (1-6) (Digital Voltages, 0 – 3.3 VDC)

Functionality o Each “string” has its own external memory that will store multiple audio files

corresponding to the tones of that particular “string”. The microcontroller will

interface with the external memory to read specific sound files as required.

24

Figure 6: Block Level Two Hardware Functional Outputs – Amplifier Circuits

25

Table 11: Level Two Hardware Functional Outputs – Amplifier Circuits: DACs

Module DAC (1-6)

Designer(s) ARB, NAH, DLM

Inputs o 16-bit String Digital Audio (1-6) (SPI communication protocol, 8MHz)

o +3.3 VDC, 1 A

Outputs o Audio Out Signal (1-6) (Analog Voltages, 0 – 3.3 VDC)

o

Functionality o Each “string” has a digital-to-analog converter that will convert the string’s

digital audio output into an analog audio out signal. The summing amplifier

will receive the analog output signal from the DAC.

Table 12: Level Two Hardware Functional Outputs – Amplifier Circuits: Summing Amplifier

Module Summing Amplifier

Designer(s) ARB, NAH, DLM

Inputs o Audio Out Signals (1-6) (Analog Voltages, 0 – 3.3 VDC)

o Audio Settings (Analog Volume and Tone Control)

o +9 VDC, 1 A

Outputs o Audio Out (Analog Voltages, 0 – 9 VDC)

Functionality o The summing amplifier will take six analog audio out signals and convolute

the signals into one audio out signal. The summing amplifier will also control

the volume and tone of the audio out signal depending on the audio settings the

user selects.

26

Figure 7: Block Level Two Hardware Diagram – Power Supply Unit

Table 13: Level Two Hardware Functional Outputs - Power Supply Unit: Battery

Module Battery

Designer(s) DLM

Inputs o +13.1VDC, 1.5 A External Supply

Outputs o +9VDC, 1A

Functionality o The battery is used to supply +9VDC to the input of the linear voltage

regulator. The linear voltage regulator drops the +9V input to +3.3 V. The

external supply voltage of +13.1VDC is used to charge the battery through a

port on the circuit board. The +9VDC is coming from the port on the battery

which is used to supply a constant +9VDC to each of component of the

Stringless guitar.

Table 14: Level Two Hardware Functional Outputs - Power Supply Unit: Linear Voltage Regulator

Module Linear Voltage Regulator

Designer(s) DLM

Inputs o +9 VDC, 1A Battery Supply

Outputs o +3.3 VDC, 1A

o

Functionality o The linear regulator is supplied by a constant +9VDC from the battery, then

the linear voltage regulator is used to supply a constant +3.3 VDC to each

component of the Stringless guitar.

Power Supply Unit

Battery

Linear

Voltage

Regulator

3.3 Volts

9 VoltsExternal Power

27

3.2 Software Design

3.2.1 Software Theory of Operation

The software design of the stringless guitar is shown in Figure 8. At startup, the

device’s peripherals are initialized and then the main application processes start.

The main application processes comprise two main modules during runtime that

run in sequence as shown in Figure 9. The first module, the Timeout module, is

the module that handles resetting the microprocessor if the software stalls during

runtime.

The second module, the Audio Process module, handles how the audio is

processed when a single guitar string is played. The guitar uses a total of six

processors in the final design. The microprocessor will receive input data with

regards to where the user’s fingers are on the neck of the guitar and whether the

user strummed or picked the guitar string. If the user strums the guitar string, the

microprocessor selects the appropriate guitar tone from a lookup table based on

the finger position data. The lookup table has information regarding the file size,

location and name that are mapped to each fret of the guitar. The finger position is

used to read the corresponding audio file from the external memory. As the audio

file is being read, the audio data is buffered into the microprocessor prior to being

written to a digital to analog converter. A more detailed flow chart of how audio

is processed in the Audio Process Module is shown in Figure 10.

For further implementation details, refer to the Software Components Section.

[KZY]

28

3.2.2 Flow Chart Level Zero Software Diagram

Figure 8: Flow Chart Level Zero Software Diagram

[KYZ]

29

3.2.3 Flow Chart Level One Software Diagram

Figure 9: Flow Chart Level One Software Diagram – Run Main Processes

[KYZ]

30

3.2.4 Flow Chart Level Two Software Diagram

Figure 10: Flow Chart Level Two Software Diagram – Read Audio File from Storage

[KYZ]

31

3.3 Mechanical Design

3.3.1 Strum Sensor Mechanical Design

The stringless guitar has a custom mechanoelectrical strum sensing system shown

in Figure 11. The physical design of the strum sensing system is as follows. First,

thin general purpose steel plates are bolted together with thick aluminum plates

and foam between them. The stiffness of the steel plate was determined such that

when the user strums hard, the plate flexes 3mm. The aluminum plates are used to

set the distance between the steel plates to approximately 10 mm (0.375 in.). The

distance between the steel plates was decided to be 10 mm because the string

spacing of a typical guitar was measured to be approximately 10 mm. “Loctite

tak” was used between the steel plates and the aluminum spacers to create a good

mechanical connection.

Foam is also used between the steel plates to provide mechanical isolation from

plate to plate. Additionally, foam with thickness of one inch was used between the

guitar body and the strum sensor assembly to prevent vibrations of individual

steel plates from mechanically coupling through the guitar body. Foam was

chosen to be used to dampen the steel plate oscillations because foam can be used

as a vibration absorbing material. The foam used in the stringless guitar was

reclaimed from discarded Tectronix packaging.

Figure 11: Mechanical Design of the Piezoelectric Strum Sensor

The piezoelectric flex sensors were mounted to the side of each steel plate as

shown in Figure 11(a). The piezoelectric flex sensors were mounted using

“Loctite tak”.

32

The strum sensing system physically functions as follows. First, a steel plate is

plucked or strummed. This force sets the plate into motion and it experiences

oscillations damped by the foam. The top of the plate has a greater displacement

then the bottom of the plate nearest the bolts because the bolts hold the plates

relatively tightly together.

The components chosen for the strumming sensor were chosen for the following

reasons. Steel was chosen because it is flexible and it is not malleable. When a

force is applied to a steel plate, it is flexed out of shape. When the force is

removed, the plate returns to its original form. This characteristic makes steel

appealing to use in this strum sensing system. Aluminum was chosen to be used

as spacers between the steel plates because aluminum relatively light. Foam is

necessary to dampen the oscillations of the streel plates and to provide mechanical

isolation from steel plate to steel plate.

 [NAH]

33

3.4 Calculations

3.4.1 Battery Life Calculations

Calculations were done to determine the battery specs needed for the guitar. The

calculations assume the worst-case scenario and the values can be found in [8].

The power needed for the stringless guitar can be calculated as

𝑷 = 𝑽 ×𝑰 (1)

where P is the power, V is the voltage and I is the current. From [8], a single

microprocessor requires a maximum current of 250 mA at 3.3 V. Using a total of

six microprocessors, the maximum total current needed for the stringless guitar is

1.5 A at 3.3 V. Therefore, from Equation (1), the total power needed to operate

the stringless guitar is 4.95 W.

The battery will be required to last for at least four hours. The energy consumed

by the stringless guitar in this time can be calculated as

𝑬 = 𝑷×𝑻 (2)

where E is energy consumed by the stringless guitar, P is the power consumed by

the stringless guitar and T is the time that the stringless guitar must operate

without a recharge. An approximation of 4.5 hours was used to make the

calculation to ensure that there would be enough power in the battery to last for at

least 4 hours. Therefore, from Equation (2), the energy that were calculated for

the stringless guitar to last for 4.5 hours were 22.275 Wh.

The battery charge needed to last for the desired time can be calculated as

𝑸 =
𝑬

𝑽

(3)

where Q is the battery charge, E is the energy consumed by the guitar and V is the

voltage of the battery. The battery voltage that will be used in the design is 9 V.

The energy was approximated at 22.275 Wh using Equation (2). Using the above

values in Equation (3), the 9 V battery will be required approximately 2.475Ah to

power the stringless guitar for at least four hours.

[NAH, DLM]

34

3.4.2 Storage Size, Bus Speed and Delay Calculations

The following calculations will be used to determine the number of files, the

storage size as well as the bus speed needed for the guitar to function properly.

The number of notes a guitar can play can be calculated as

𝑵 = 𝑺×(𝑭 + 𝟏) (4)

where N is the number of distinct notes, S is the number of strings and F is the

number of frets per string. A typical guitar has six strings and 20 frets. Therefore,

from Equation (4), the total number of notes a guitar can play is 126 distinct

notes.

For the following calculations, the System Clock Frequency of the processor is

assumed to be at 40 MHz. Assume that the file size of a four-second audio file is

1 MB. Using the calculations above, the total storage size needed is

approximately 126 MB. By using six different processors to handle the six

individual guitar strings, the total number of notes that each processor must

handle will be 21 notes. The amount of external memory needed for each

processor is approximately 21 MB.

Again, assume that the file size is 1 MB for four seconds of audio and the bus

uses serial data to transfer data. The file size for one second of audio will be

approximately 250 KB. Converting from bytes to bits, the file size of 250 KB will

be 2 Mbits for one second of audio. The bus speed can be calculated as

𝑩 =
𝑭𝒔

𝑩𝒕

(5)

where B is the bus speed, Fs is the file size per second of audio in bits, and Bt is

the number of bits transferred per clock cycle. From the above assumptions and

calculations, Fs is 2 Mbits/s and Bt is 1 bit/cycle. Using these values in

Equation (5), the bus speed was approximated at 2 MHz to transfer one second of

audio per second.

The delay from when a guitar strum is detected to when the note is heard is

difficult to determine due to the use of interrupts and priorities. Assuming worse

case, the most delay will occur while reading data from external storage. Because

reading data from external storage takes priority over all other functions, timing

the read time was not possible. However, in the final design of the stringless

guitar, there were no noticeable delay.

[KZY]

35

3.4.3 Strum Sensor Calculations

The piezoelectric strip produces a voltage in response to the user strumming the

corresponding steel plate. The piezoelectric strip model LDT0-028K is shown in

Figure 12.

.

Figure 12: Piezoelectric Strip Model LDT0-028K

The relative maximum and relative minimum voltage produced by the LDT0-

028K piezoelectric strip has been estimated using data provided in [9]. The

voltage against piezoelectric strip tip deflection is shown in Figure 13. As

explained in [9], to obtain this given measurement, the piezoelectric strip was held

firmly by its contacts and a charge amplifier was used to measure the piezo strip’s

open circuit voltage as the tip was deflected.

Figure 13: Piezoelectric voltage verses tip deflection

The relative maximum deflection that the tip of the steel plate experiences was

measured to be 1 mm. This relative maximum deflection was measured with a

“hard strum” from the user. Similarly, the relative minimum defection that the tip

of the steel plate experiences was approximated as 0.1 mm. This relative

minimum deflection corresponds with a “soft strum” from the user.

36

𝑑𝑟_𝑚𝑎𝑥 = 1 𝑚𝑚, 𝑑𝑟_𝑚𝑖𝑛 = 0.1 𝑚𝑚 (6)

Next, the relative minimum and relative maximum deflection angles were

approximated using the above displacements approximations and a right triangle

as shown in Figure 14.

Figure 14: Piezo and Steel Plate Deflection

Ѳ = 𝑡𝑎𝑛−1 (

𝑑
2

25 + 21
) (7)

Ѳ𝑟_𝑚𝑎𝑥 = 0.622° , Ѳ𝑟_𝑚𝑖𝑛 = 0.0622° (8)

Using the relative maximum and relative minimum deflection angles above, the

relative maximum and relative minimum deflection of the tip of the piezoelectric

strip was calculated.

𝐿 = 25 tan(Ѳ) (9)

𝐿𝑟_𝑚𝑎𝑥 = 0.2717 𝑚𝑚 , 𝐿𝑟_𝑚𝑖𝑛 = 0.02717 𝑚𝑚 (10)

Finally, the voltage that the piezoelectric strip will produce was approximated

using Figure 13.

𝑉𝑝𝑖𝑒𝑧𝑜 ≈
7

2
𝐿

(11)

𝑉𝑝𝑖𝑒𝑧𝑜_𝑚𝑎𝑥 ≈
7

2
𝐿𝑟_𝑚𝑎𝑥 = 0.95 𝑉

(12)

𝑉𝑝𝑖𝑒𝑧𝑜_𝑚𝑖𝑛 ≈
7

2
𝐿𝑟_𝑚𝑖𝑛 = 0.095 𝑉 ,

(13)

The relative maximum voltage produced by the piezoelectric strip is

approximated at 0.95V and the relative minimum voltage produced by the

piezoelectric strip is approximated at 0.095V.

[NAH]

37

3.5 Simulations

3.5.1 Summing Amplifier Simulations

Figure 15 shows the LTspice schematic used to simulate the summing amplifier

circuit. The op amp is biased between the rails to improve amplification of the

summed signals. The capacitor, C1, is used to remove the DC offset incurred from

the op amp. A pull-down resistor, R10, is used to ensure that the output is not

floating. Each branch is connected to different voltage sources to simulate

different voltages that can be received from each DAC. Because all the audio

signals are similar in magnitude, the same resistors are used for each branch.

Figure 15: Summing Amplifier Simulation Schematic

38

The purpose of this simulation was to sum six sinusoidal input signals together.

The six input signals represent the six audio output signals from the DAC. The

input voltage V1 corresponds to the first string of the guitar; while the input

voltage V6 corresponds to the sixth string of the guitar. The frequencies of these

six inputs were set to represent the E major chord shown in Figure 16.

Figure 16: Finger Position of E Major Chord

The frequency of the first string was set to 82 Hz representing the lowest E note.

The second string frequency was set to 123 Hz representing a B note. The third

string frequency was set to 165 Hz representing a higher E note. The fourth string

frequency was set to 208 Hz representing a G# note. The fifth string frequency

was set to 247 Hz representing a higher B note. The sixth string frequency was set

to 329 Hz representing a high E note. The output of the summing operational

amplifier simulation is shown in Figure 17. The result of this simulation shows

the superposition of these six sinusoidal input waveforms. The resulting audio

output has the periodic form that was expected.

Figure 17: Summing Amplifier Audio Output Results

[ARB, NAH, DLM, KZY]

39

3.6 Schematics

3.6.1 Power Schematics

Figure 18 show the schematic for the power supply components of the stringless

guitar. A 3.3V Texas Instruments Low-dropout linear regulator labeled LR1 is

used to regulate the 9V battery supply to 3.3V. The datasheet for the linear

regulator can be found in [10]. A 10uF capacitor (C1 and C2) was placed on the

9V and 3.3V to filter out some of the noise in the system. A 1A fast blow fuse

along with a SPST switch was placed in between the battery to protect the circuit

from shorts and to turn on and off the guitar. The 9V coming from the battery

along with the 3.3V were used to power up the different components in the

stringless guitar. Furthermore, the battery could be charged by using the 12VDC

port on the battery and the charging adapter provided by the manufacture.

Figure 18: Power Schematic

[DLM]

40

3.6.2 Strum Sensor Schematic

To amplify the voltage produced by the piezoelectric strip, a UA741 operational

amplifier is used in the circuit topology shown below in Figure 19. Resistors R2,

R3, R4 and R5 set the DC bias of the Op-Amp to 4.5V. The resistance value R1

and capacitance value C1 were chosen experimentally to set the gain of the Op-

Amp such that when the user strums hard, the output will produce around 3.3 Vp-

p.

When the steel plate of the sensor is strummed and the piezo is flexed, a voltage is

produced at the output of the Op-Amp that is proportional to the velocity of the

piezo flexing. The output of the Op-Amp is AC coupled to the input of the ADC

where the DC bias is set to 1.65V. There are one of these strum sensor OP-Amps

for each of the six piezoelectric sensors.

Figure 19: Piezoelectric Strip Operational Amplifier Circuit.

[NAH]

41

3.6.3 Fretboard Sensor Schematic and PCB Layout

Figure 20 shows the schematic of the Finger Position Sensor Board. The sensor

board is connected to nine of the microprocessor’s digital input/output pins. The

input pins of the microprocessor will be tied to ground using a resistor of 12 MΩ,

which is approximately three times the measured resistance of a human finger.

The users’ finger will act as a resistor and therefore complete the circuit creating a

voltage that will be read as a digital high from the perspective of the

microprocessor. To determine the fret being pressed, the microprocessor

individually toggles pins 81 to 84 to a digital high of 3.3 VDC and proceeds to

scan through input pins 76 to 80. When one of the frets is pressed, the

corresponding pin is shown as a digital high, the microprocessor will exit the

finger position sensor scan and continue to execute the rest of the program. If

there are no frets detected, the microprocessor executes the finger position sensor

scan and play the note of the open string. The only time the microprocessor will

scan the sensors is after the triggering of the strum indicator. The Finger Position

Sensors are connected to the main processor board through a connector of ten

pins, shown as Con3 in Figure 20.

42

Figure 20: Finger Position Sensor Schematic

Figure 21 shows the overall PCB layout of the Finger Position Senor Board while

Figure 22 and Figure 23 shows the finer details. Figure 22 shows the portion of

the circuit board located at the head of the guitar. A hole with a radius of 1.25 mm

will be drilled out to mount the board to the guitar head. The spacing between

frets 1 and 2 is 2.38 mm. The spacing between frets are uniform and therefore not

labeled for each individual instance. The lengths of the frets are shown clearly in

Figure 21. The fret lengths were determined by measuring the actual length of

each fret on a real guitar. Figure 23 shows the portion of the board that is located

nearest the body of the guitar. Each mounting hole has a radius of 1.25 mm and a

two by five grid of through hole pads with a radius of 0.5 mm each. The through

hole pads will be used for the mounting of the two by five connector, Con3.

43

Figure 21: Drawing of the Finger Position Sensor PCB Layout

Figure 22: Drawing of the Left Half of the Finger Position Sensor PCB Layout

Figure 23: Drawing of the Right Half of the Finger Position Sensor PCB Layout

[ARB]

44

3.6.4 Processing Board Schematic

The schematic for the PIC32MX270F512L [11] is shown below in Figure 24. All

the pins being used are labeled and can be seen more clearly in Table 15. All

power pins are equipped with two decoupling capacitors, one value being 10 uF

and the second being 0.1 uF. These capacitors were chosen to filter out any type

of unwanted, high frequency spikes on the power rail. These capacitors help

protect all the integrated circuits being used. The value of resistors R43 and R44

and capacitor C29 were chosen according to the manufacturers recommendations.

Figure 24: PIC32MX270F512L Schematic

[ARB]

3.6.5 Schematic for External Connections

The external connections can be seen in Figure 25 as J1, J2, J3, J4, and J5. The J1

connector handles the signals being sent to the Fret Sensor board. The resistors

R8, R9, R10, R11, and R12 were chosen to be 20 MΩ after rounding up the

minimum 12 MΩ. J2 and J3 were placed to make extra pins accessible if extra

features need to be added. J4 is the connector that provides power to the

integrated circuits, carries the DAC output to the summing amplifier shown in

Figure 15, and connects the piezo sensor to the board. J5 allows for the

programming pins to be accessible as well as the pins declared for UART

45

communication. R13, R14, R15, and R16 are unpopulated allowing the user to

choose the preferred pins. To use these pins, the pads will be shorted together.

Figure 25: Header Connections

[ARB]

46

3.6.6 DAC and MicroSD Card Schematic

The MicroSD card and DAC schematics are shown in in Figure 26. R54, R55,

R56, and R57 are used to keep the communication pins held high since the

MicroSD card is an active low device. The DAC interfaces directly to the

processor, requiring no additional resistors or capacitors.

Figure 26: MicroSD Card and DAC Schematic

[ARB]

3.6.7 Processing Board PCB Layout

The main processing board is shown in Figure 27. The piezo electric operational

amplifier circuit and the DAC are both placed relatively close to the connector J4.

This allows the incoming and outgoing signal traces to be as short as possible.

The MicroSD card is placed below the DAC and close to the edge of the board

such that the hinge of the MicroSD card holder can fully open. The PIC was the

placed as close as possible to the DAC and MicroSD card holder to allow for

short traces but still allowing space for decoupling capacitors. The programming

header J5 is placed close to the programming pins and the Fret Sensor header J1

was placed close to the respective pins. J2 and J3 were placed close to the edge of

the board as to not be in the way of any other signals. The 3.3 VDC trace was

intentionally made much larger than all other traces to allow for more current to

47

be drawn if needed. All other traces were then routed in such a way that allowed

every ground point on the board to have a direct path to the ground pin. The LEDs

were placed in the top right corner of the board and four mounting holes were

placed in all four corners of the board. Most vias that were placed ended up being

covered up by mask, however, select vias were left uncovered acting as a test

point.

Figure 27: PCB Layout of Main Processing Board

[ARB]

3.6.8 Summing Amplifier Schematic

The summing amplifier schematic is shown in Figure 28. The summing amplifier

is used to sum the six audio signals received from the six DACs. The rails of the

amplifier will range from 0 V to +9 V and the amp is biased at 4.5 V. The resistor,

labeled R1, could be changed to adjust the gain of the amplifier. The gain of the

amplifier is given as

𝑨𝑽 =
𝑽𝑶𝑼𝑻

𝑽𝑰𝑵
=

𝑹𝒇

𝑹𝑰𝑵
 (14)

48

where Rf is the feedback resistor, R1, and RIN is the resistance of each branch. The

resistance in the each of the six branches will be the same. For this application,

the RIN is 10 kΩ and Rf is 5 kΩ which means that the gain of the system is 0.5

[V/V]

A voltage divider is used to bias the op-amp between the rails to improve

amplification of the input signal. A resistance of 1 MΩ was chosen for R2 and R3

to reduce the amount of current in the feedback loop and in the voltage divider.

Capacitors (C3, C7, C8, C9, C10, C11 and C12) is used as a DC block to

remove DC biasing at the output and inputs of the op amp. A simple RC network

and voltage divider was placed after capacitor C3 like seen in Figure 28 for tone

control and volume control before the audio out was sent to the guitar amplifier

through a ¼ female audio out connector.

Figure 28: Summing Amplifier Schematic

[ARB, NAH, DLM, KZY]

49

3.7 Software Components

3.7.1 PIC Processor

The microprocessor used is Microchip’s PIC32MX270F512L [11]. The PIC is a

100-pin microprocessor thatis configured for 40 MHz. The PIC has 48, 10-bit

analog inputs, four UART modules, five Timer modules and four SPI modules.

The application requires one UART module, two Timer modules and two SPI

modules. Each module configurations (e.g. bus speed) are described in the

pseudocode below. The pinout for the pic is listed in Table 15.

Table 15: PIC Pin Layout

PIN

Function

Input/

Output
Connected Device

PIN

Function

Input/

Output
Connected Device

1 AN28 OUT Strum_Sensor 51 IO IN/OUT Not Used

2 VDD

+3.3V 52 IO IN/OUT Not Used

3 U1TX OUT UART_TX 53 IO IN/OUT Not Used

4 IO IN/OUT Not Used 54 VBUS VDD

5 IO IN/OUT Not Used 55 VBUS_3V3 VDD

6 U1RX IN UART_RX 56 D- Not Used

7 IO IN/OUT Not Used 57 D+ Not Used

8 IO IN/OUT Not Used 58 IO IN/OUT Not Used

9 DIO_SYNC OUT DAC_SYNC 59 IO IN/OUT Not Used

10 SCK2 OUT DAC_SCK 60 IO IN/OUT Not Used

11 SDI2 OUT DAC_SDO 61 IO IN/OUT Not Used

12 SDO2 IN DAC_SDI 62 VDD +3.3V

13 MCLR

Master Clear 63 IO IN/OUT Not Used

14 IO IN/OUT Not Used 64 IO IN/OUT Not Used

15 IO IN/OUT Not Used 65 VSS GND

16 IO IN/OUT Not Used 66 IO IN/OUT Not Used

17 IO IN/OUT Not Used 67 IO IN/OUT Not Used

18 IO IN/OUT Not Used 68 IO IN/OUT Not Used

19 IO IN/OUT Not Used 69 IO IN/OUT Not Used

20 IO IN/OUT Not Used 70 IO IN/OUT Not Used

21 IO IN/OUT Not Used 71 IO IN/OUT Not Used

22 PGED3

Programmer_PGED 72 IO IN/OUT Not Used

23 PGEC3

Programmer_PGEC 73 IO IN/OUT Not Used

24 PGED1

Programmer_PGED 74 IO IN/OUT Not Used

25 PGEC1

Programmer_PGEC 75 VSS GND

26 IO IN/OUT Not Used 76 IO IN/OUT Not Used

27 IO IN/OUT Not Used 77 IO IN/OUT Not Used

28 IO IN/OUT Not Used 78 IO IN/OUT Not Used

29 IO IN/OUT Not Used 79 IO IN/OUT Not Used

30 AVDD (2)

+3.3V 80 IO IN/OUT Not Used

50

31 AVSS (2)

GND 81 DIO8 OUT
Fret_15, Fret_14,

Fret_13, Fet_12, Fret_11

32 DIO_DETECT IN SD_CARD_DETECT 82 IO IN/OUT Not Used

33 SDI3 OUT SD_CARD_SDO 83 IO IN/OUT Not Used

34 SDO3 IN SD_CARD_SDI 84 IO IN/OUT Not Used

35 DIO_SELECT OUT SD_CARD_SELECT 85 VCAP (3) GND

36 VSS

GND 86 VDD +3.3V

37 VDD

+3.3V 87 IO IN/OUT Not Used

38 IO IN/OUT Not Used 88 IO IN/OUT Not Used

39 SCK3 OUT SD_CLK 89 DIO1 IN
Fret_01, Fret_06,

Fret_11, Fret_16

40 IO IN/OUT Not Used 90 DIO2 IN
Fret_02, Fret_07,
Fret_12, Fret_17

41 IO IN/OUT Not Used 91 DIO3 IN
Fret_03, Fret_08,

Fret_13, Fret_18

42 IO IN/OUT Not Used 92 DIO4 IN
Fret_04, Fret_09,
Fret_14, Fret_19

43 IO IN/OUT Not Used 93 DIO5 IN
Fret_05, Fret_10,

Fret_15, Fret_20

44 IO IN/OUT Not Used 94 DIO6 OUT
Fret_05, Fret_04,

Fret_03, Fret_02, Fret_01

45 VSS

GND 95 DIO7 OUT
Fret_10, Fret_09,

Fret_08, Fret_07, Fret_06

46 VDD

+3.3V 96 IO IN/OUT Not Used

47 IO IN/OUT Not Used 97 DIO9 OUT
Fret_20, Fret_19,

Fret_18, Fret_17, Fret_16

48 IO IN/OUT Not Used 98 DIO21 OUT LED_ON

49 IO IN/OUT Not Used 99 DIO22 OUT LED_ERROR

50 IO IN/OUT Not Used 100 DIO23 OUT LED_No_SD

Notes:

1. Analog and Digital VDD and VSS pins are coupled with a 0.1uF capacitor.

2. Analog VDD and VSS are connected to Digital VDD and VSS pin.

3. A 10uF Tantalum or ceramic capacitor connected in series.

4. Pins 76-80 will have a pull-down resistor so that the pins would not be floating.

[ARB, DLM, KZY]

51

3.7.2 Digital to Analog Converter

The digital to analog converter used is Analog Devices’ AD5689R. The

AD5689R has two 16-bit DACs channels that can be configured via SPI. The

AD5689R can have a clock speed up to 50 MHz and runs on a power supply

ranging from 2.7 V and 5.5 V. The input is 16-bits, mono audio data and will only

require one channel for the output [12]. The pinout of AD5689R is shown in

Figure 29.

Figure 29: AD5689R DAC Package and Pin Layout

[KZY]

3.7.3 External Memory

The external memory used for the project is a microSD card because the main

memory of the pic is small and the number of files that is required is large. The

memory size required is approximated at 21 MB per pic as discussed in earlier

sections. The application will interface with the microSD card via SPI and is

configured using the Fatfs Library [13]. The pinout for microSD card using SPI is

given in Figure 30.

Figure 30: MicroSD card pinout [14].

[KZY]

52

3.7.4 Sensor Algorithms

Figure 31 shows a timing diagram for the finger position sensor from the

perspective of the microprocessor. The fret sensors are grouped into four groups

of five frets. When scanning the frets, the pic will set each group high and then

check if any of the frets within the group is also set high to determine which fret

was pressed. The microprocessor will scan down each group until it finds a fret

that was pressed. If no frets are pressed, the application will assume the user is

playing an “open” string.

Figure 31: Finger Position Sensor Timing Diagram

The strum sensor uses an algorithm to determine how hard a user strums. The

voltage at the input of the ADC after the user strums resembles a damped

sinusoid. The damped sinusoid shown in Figure 32 shows a theoretical signal that

would be expected if the user strums hard.

Figure 32: Theoretical Damped Sinusoid

53

The following algorithm detects local maximums relative to the 1.65V level.

The ADC continually samples (about one hundred times per 1.65V) crossing and

it keeps a variable called tempmax. It continually updates the value of tempmax

if the new value is greater than the current value. Once the new value is lower

than the value in tempmax, the code reports that the local max average must be

performed. Four of the samples just before this latest tempmax sample have been

saved as well. The four previous samples and the current tempmax sample are

doubled, added together and the result is divided by ten. The result of this

calculation is stored in a local max array. This averaging is done because the real

signal is not quite as clean as a theoretical damped sinusoid.

The algorithm detects 1.65V crossing and it uses this to clear the variable

tempmax. Local maximums are repeatedly calculated like this.

The complement to this part of the algorithm is implemented to detect local

minimums relative to the 1.65V level.

Each time a local maximum or local minimum is detected, the code preforms the

new strum check. The magnitude of the new local maximum (or minimum) is

calculated and compared with the average of the previous two local peak

magnitudes. If the new peak magnitude is greater than the average of the previous

two peak magnitudes plus a small threshold (0.1V), then a new strum is detected.

When a new strum is detected, the sound file begins to get written to the DAC

with a scaling factor determined from the most recent peak magnitude.

There are a few additional thresholds built in as well. Local peaks below 0.5V in

magnitude are not considered. This is the noise threshold. The electrical noise is

from the Op-Amp and Piezoelectric flex sensor circuitry.

Once a new strum is detected, a second strum can’t be detected for the time

duration that it takes to detect at least two local peaks. The local peaks are still

calculated though. This is because the local peak magnitude arrays are initialized

to zero after each strum.

 [ARB, NAH, KZY]

3.7.5 Sound Files

Sound files were sampled from a Fender Squire guitar. The sampling was done as

follows. A Focusrite Scarlett Solo shown in Figure 33 was used to record the

sound files. The three-state switch of the Fender Squire was set to the middle

state, which enabled both of the single coil pickups. Volume and tone nobs of the

54

guitar were turned all the way up. The guitar was strummed directly above the

pickup closest to the bridge of the guitar with a Fender medium pick. The Fender

Squire had a new set of D’Addario XL nickel wound super light gauge EXL120-

3D strings and the guitar was set up and very well in tune.

Figure 33: Focusrite Scarlett Solo

The Scarlett Solo was able to sample the sound files at 196 kHz, 24 bit. One string

was recorded at a time, but once recording a string every tone of that string was

recorded in one session. Ableton Live sound engineering software was used to

record and split up each total string sound file into small sound files containing

each individual tone. A library of sound files was created for each string

separately and each string library was loaded to a separate microSD card.

No effects were used to change the sound files from their raw form, but the

amplitude of the files were normalized using an Ableton exporting feature so that

each tone was the same volume. The sound files were exported as .WAV file

format, 48kHz 16bit. This format is compatible with the PIC32 and the DAC that

was selected for the stingless guitar. The 196 kHz, 24-bit audio files sound

excellent relative to most any digital recording you can find today.

[NAH]

3.7.6 Pseudocode

The pseudocode for the main modules used are presented. The main modules are

listed as follows: Main, IO, TIMER, ADC, SPI, UART and Audio. The tables

corresponding to the modules listed above are Table 16, Table 17, Table 18, Table

19, Table 20, Table 21 and Table 22, respectively. Parts of the pseudocode

algorithm for processing audio files from external memory were based on an

example project from [15]. The application requires the Microchip’s Legacy

Peripheral Libraries [16] and the Fatfs Library [13]. The Fatfs library is used to

interface with the external memory while the peripheral library is used to

configure some of the peripheral modules.

55

The Main module is shown in Table 16. The module is the main entry point for

the entire application. The module is responsible for configuring the

microprocessor (e.g. system clock), initializing peripherals (e.g. timers) and

running the main processes of the application. The Timeout module discussed in

earlier sections is the watchdog timer, which is a hardware timer built into the pic

processor. When the watchdog timer is enabled, the timer will set a flag prior to

running the application. In the main process loop, the flag is cleared in software,

indicating that there were no stalls and then resets the flag. If the timer overflows

and the flag has not been cleared within the configured period, the pic will assume

a stall has occurred during runtime and resets the application from the very

beginning.

Table 16: Main Module (Main Entry Point for the Application).

Main Module

INCLUDE Microchip_Peripheral_Library

INCLUDE IO_Module

INCLUDE TIMER_Module

INCLUDE ADC_Module

INCLUDE SPI_Module

INCLUDE Audio_Module

/* Clock Configurations: */

SYS_CLK = 40 MHz

PB_CLK = 40 MHz

/* Watch dog Configurations, assumes a 32 KHz clock speed. */

Watch_Dog_Timer = ENABLED

Watch_Dog_Timer_Prescalar = 1:2024 // Watch dog timer will time out after 2 seconds

Main:

 /* Initializes all peripherals. */

 Initialize_IO; // Initializes all digital and analog IOs

 Initialize_TIMER; // Initializes the TIMER module

 Initialize_ADC; // Initializes the ADC module.

 Initialize_SPI; // Initializes the SPI module.

 Initialize_UART; // Initializes the UART module.

 Initialize_AUDIO; // Initializes the SD_Card and DAC modules.

 /* Main Process */

 While(1):

 Clear_Watchdog_Timer(); // Clears the watch dog timer.

 AUDIO_Process(); // Processes audio data.

56

The IO module is shown in Table 17. The IO module is responsible for initialize

all the pins that are used for each of the peripherals (e.g. ADC). The module will

also handle scanning the fret sensors.

Table 17: IO Module.

IO_Module

int currentFret; // Variable used to store the fret that is pressed.

boolean isProcess; // Flag used to indicate that a fret press has been processed.

Initialize_IO():

 Analog_IO_Init; // Initialize all Analog IO, used for ADC.

 Digital_IO_Init; // Initialize all Digital IO, used for fret inputs.

 UART_IO_Init; // Initialize IO for UART

 SPI_IO_Init; // Initialize IO for SPI

IO_ReadSensors():

 currentFret = 0; // Sets the current fret to 0, which means no frets has been pressed.

 /* Scans each group for a fret press and sets the current fret to the pressed fret. */

 currentFret = readGroup1Sensors();

 IF currentFret EQUAL 0 THEN

 currentFret = readGroup2Sensors();

 IF currentFret EQUAL 0 THEN

 currentFret = readGroup3Sensors();

 IF currentFret EQUAL 0 THEN

 currentFret = readGroup4Sensors();

57

The TIMER module is shown in Table 18. The module handles creating delays

and writing audio data to the DAC. The module utilizes interrupts to process data

periodically. The interrupts are enabled and disabled in the ADC and Audio

modules.

Table 18: TIMER Module.

TIMER_Module

INCLUDE Audio_Module

Ms_Tick; // Used to store the millisecond count.

Initialize_TIMER():

 Initialize_TIMER1(); // Initializes the TIMER1 module.

 Initialize_TIMER3(); // Initializes the TIMER3 module.

Initialize_TIMER1():

 TIMER1_ON_OFF = OFF; // Turns off the TIMER1 module.

 TIMER1_PERIOD = 1_ms; // Initialize the period for 1 ms.

 TIMER1_Interrupt = ENABLED; // Enable the TIMER1 interrupt.

 TIMER1_ON_OFF = ON; // Turns on the TIMER1 module.

Initialize_TIMER3():

 TIMER3_PERIOD = 22_µs; // Initialize the period for 22 µs.

 TIMER3_Interrupt = ENABLED; // Enable the TIMER3 interrupt.

 TIMER3_ON_OFF = OFF; // Turns off the TIMER3 module. Will be enabled in the ADC Module.

MSecond_Delay(delay) :

 msCount = Ms_Tick; // Stores the current millisecond count.

 while(Ms_Tick – msCount < delay); // Wait until the delay is over.

Timer1_Interrupt():

 Ms_Tick = Ms_Tick + 1; // Increments the millisecond count.

 Clear_Timer1_Interrupt_Flag(); // Clears the TIMER1 interrupt flag.

Timer3_Interrupt():

 Write_Data_To_DAC(); // Writes the audio to the DAC at the sampling rate of the original audio file.

 Clear_Timer3_Interrupt_Flag(); // Clears the TIMER3 interrupt flag.

58

The ADC module is shown in Table 19. The ADC module is responsible for

reading the strumming sensor and starting the audio process as needed. The ADC

interrupt checks for a voltage change read from the strumming sensor. If a change

is detected, the application will assume that the user is strumming and start

scanning the frets and the audio process.

Table 19: ADC Module.

ADC_Module

Initialize_ADC():

 ADC_ON_OFF = OFF; // Turns off the ADC module.

 ADC_Channels = 1; // Using only one ADC channel per processor

 ADC_Acquisition_Time = 3_µs // Configuring sample acquisition time to 3 µs

 ADC_Interrupt_Config = Interrupt_When_Conversion_Done; // ADC interrupts after conversion.

 ADC_Interrupt = ENABLED // Enables ADC interrupts

 ADC_ON_OFF = ON; // Turn on the ADC module.

ADC_Interrupt():

 data = read_ADC_Channel(); // Reads the data from the ADC channel.

 IF (data > 0) THEN // If the ADC data is not zero, strumming has occurred.

 currentFret = IO_ReadSensors(); // Scans the fret sensors, called from the IO module.

 setCurrentFile(currentFret); // Sets the corresponding audio file

 Enable_Timer3(); // Enables Timer3, which will start reading the audio file periodically.

59

The SPI module is shown in Table 20. Two SPI modules are used for the entire

application. The first SPI module is used for interfacing with the external memory

and is configured using the Fatfs library. The pseudocode shown below is used to

interface with the DAC.

Table 20: SPI Module.

SPI_Module

Initialize_SPI():

 SPI2_ON_OFF = OFF; // Disables the SPI2 module.

 SPI2_Baud_Rate_Source = PBCLK; // Sets the baud rate source to the peripheral clock

 SPI2_Baud_Rate = 8 MHz; // Sets the baud rate to 8 MHz

 SPI2_ON_OFF = ON; // Enable the SPI2 module.

SPI_ReadWrite(data) :

 dummy = SPI2_BUF; // Clears the SPI shift register.

 SPI2_BUF = data; // Write data to the SPI shift register.

 While(SPI2_Not_Done_Transmitting); // Wait until transmission is done.

 dummy = SPI2_BUF // Read data from the shift register.

 return dummy; // Returns the read data

60

The UART module is given in Table 21. The module is responsible for processing

commands received via serial communications. The module is used mainly for

debugging and testing purposes only. The command module has the lowest

priority out of all the modules discussed. The list of supported commands can be

found in the Appendices under

UART Commands.

Table 21: UART Module (Command Module).

UART_Module

INCLUDE IO_Module

INCLUDE TIMER_Module

INCLUDE ADC_Module

INCLUDE SPI_Module

INCLUDE Fatfs_Library

commandList =[

 {cmd1Name, cmd1Description, cmd1Handler},

 {cmd2Name, cmd2Description, cmd2Handler},

 etc…

] // Stores the list of available commands that can be ran.

receiveBuffer; // Buffer stores the commands received by the UART Receive Interrupt Handler.

Initialize_UART():

 UART1_ON_OFF = OFF; // Turns off the UART module.

 UART1_Baud_Rate = 19200 // Configures UART’s baud rate to 19200

 UART1_TR_RX = ENABLED // Enable only the TX and RX UART pins

 UART1_Interrupt_Rx = ENABLED // Enables UART Receive interrupts

 UART1_ON_OFF = ON; // Turns on the UART module.

UART_Process():

 IF isThereACommand() THEN

 UART_Process_Command(); // Verifies a command was received and processes it.

UART_Process_Command():

 Cmd = parseCommand(); // Parses the command and command arguments received by the PIC.

 IF isValidCommand(cmd) THEN

 runCmdHandler(); // If the received command is valid, run the command handler.

UART_sendCharacter(char) :

 UART1_TX = char; // Writes data to the UART TX register.

 While(UART1_Not_Done_Transmitting); // Wait until the transmission is completed.

UART_Interrupt():

 IF isReceiveData() THEN // Checks if there is any received data. If there is data, store the data.

 data = UART_RX_BUFFER; // Reads data from the UART receive buffer.

 storeData(data); // Store the data into the receive buffer.

 Clear_UART_Flag(); // Clears the UART interrupt flag.

61

The Audio module is shown in Table 22. The module is responsible for setting up

handlers to read data from external memory and writing data to the DAC. The

Fatfs library and the DAC are initialized in this module as well. The audio process

checks if the entire file has been read and if all the data has been written to the

DAC. The audio process ends when all data has been written out to the DAC.

Table 22: Audio Module.

Audio Module

INCLUDE Fatfs_Library

INCLUDE SPI_Module

INCLUDE ADC_Module

INCLUDE IO_Module

currentFilePtr // Stores a pointer to the current file that is opened.

fileHeaderData // Object that stores the header information of the current opened file (data size, sample rate, etc.).

audioDataBuffer // Buffer stores the audio data read from the file.

currentFret // Stores the current fret being processed.

readByteCount // Stores the byte count read from the audio file.

writeByteCount // Stores the byte count written to the DAC.

Initialize_Audio():

 Initialize_File_System_Library(); // Initializes Fatfs Library.

 currentFile = file1; // Defaults to the current file to an “open string” note.

 currentFret = 0; // Sets the fret to the current fret press

 readByteCount = 0; // Sets the byte count read from the file.

 writeByteCount = 0; // Sets the byte count for writing to the DAC.

 Initialize_DAC(); // Turns on the DAC.

Audio_Process():

 IF (isTimerON() && !isDoneReadingData()) THEN

 Read_Audio_From_File():

isDoneReadingData():

 IF (readByteCount >= fileHeaderData.dataSize) THEN

 return TRUE;

 return FALSE;

isDoneWritingData():

 IF (writeByteCount >= fileHeaderData.dataSize) THEN

 return TRUE;

 return FALSE;

setCurrentFile(fret):

 currentFile = openFile(fret); // Sets the current file to the corresponding fret.

Read_Audio_From_File():

 audioData = Read_File(currentFile); // Read the audio data from the audio file.

 readByteCount = readByteCount + 1; // Increments the read byte count.

62

Write_Data_To_DAC():

 writeByteCount = writeByteCount + 1; // Increments the byte write count.

 SPI_ReadWrite(DAC_Cmd_Addr); // Writes the command and address bits to the dac.

 SPI_ReadWrite(audioDataBuffer); // Writes the data from the audioData buffer to the dac.

[KZY]

3.8 Completed Prototype

Figure 34 shows the complete prototype of the stringless guitar. The individual

components are shown in Figure 35 through Figure 37.

Figure 34: Completed Project Picture

63

Figure 35: Picture of the PCBs in the Guitar

64

Figure 36: Picture of the Strum Sensors in Guitar

65

Figure 37: Picture of the Fret Sensors on the Guitar

[NAH, DLM]

66

4 Testing Procedures

4.1 Strum Sensor Testing

To test the strum sensor, the stringless guitar is powered on. The voltage at the input of

the ADC is measured at the PIC_STRUM_IN node shown in Figure 19.

For a hard strum, the measured voltage should have a maximum peak to peak voltage

near 3.3V. Figure 38 shows a typical voltage waveform that results from a hard strum.

The maximum peak to peak voltage of this waveform is about 3V.

Figure 38: String 1 Hard Strum

67

For a soft strum, the measured voltage should be greater than the minimum threshold

within the PIC32 that corresponds to a soft strum. This minimum threshold for a soft

strum currently corresponds to 1V peak to peak voltage. Figure 39 shows a typical

voltage waveform that results from a soft strum. The maximum peak to peak voltage of

this waveform is about 1.2V.

Figure 39: String 1 Soft Strum

[NAH]

4.2 Fret Board Testing

A continuity was made by placing one probe on a single header pin and the second on

every exposed pad on the board. The test should be performed while checking the PBC

layout. If any pads are connected that should not be, there is something wrong with the

board or there is a short somewhere. Furthermore, testing was performed by hooking the

fret sensor up to the PIC32 [8] and using the fret sensor algorithm which is explain

Sensor Algorithms section of the report, each fret was pressed down and confirmed by

displaying the fret number the PIC32 saw on the computer screen through UART.

 [ARB]

4.3 Processing PCB Testing

Before placing any components on the PCB a continuity check was made to make sure all

traces are properly routed. The 3.3 VDC trace should be check first to ensure power will

be delivered to the proper places. The GND plane should be checked afterwards to make

sure nothing is left floating. Finally check to make sure the signal traces are going to the

proper places. The continuity check was performed while consulting the PCB layout.

Once the board was assembled, the PIC was programmed and test vias were probed by

68

using the oscilloscope’s probes to make sure that the right information was being sent and

received. The test vias that were probed were the data lines from the PIC32 to the DAC,

the data lines from the SD Card to the PIC, the Strum Sensor output to the Analog Pin on

the PIC, and the analog audio out of the DAC.

 [ARB]

4.4 Summing Amp Testing

To see if the summing amp would work correctly on the bench, a 293.665 Hz sine wave

and 440 Hz sine wave were inputted into the summing amp schematic shown in Figure 15.

Both sine waves had amplitudes of 0.5VDC peak to peak. A LT-Spice simulation was

taken and was compare to the actual results taken from the bench circuit. Figure 40 show

the results taken from LT-Spice and Figure 41 shows the results from the bench.

Comparing the results, the summing amp worked on the bench correctly like expected

from simulation. The bench results amplitude match the simulated results amplitude.

Furthermore, the wave forms for both the simulated and bench results are identical, thus

confirming that the summing amp would be able to work correctly with the six DAC audio

signals coming in to produce one audio signal out.

Figure 40: LT-Spice Simulation of Summing Amp

69

Figure 41: Bench Results of Summing Amp.

[DLM]

4.5 Power Testing

For testing the battery [17] , the [17] was turned on and using a voltage meter, a

measurement of +12VDC, +9VDC and +5VDC were taken. Table 23 shows the actual and

ideal results of the data collected for the different voltage supplies. The largest difference

between the ideal and actual voltage reading was 0.33VDC for a percent error of 2.75%.

For the +9VDC, which was the only power supply used off the battery for the design,

there was a percent error of 1.22%. Which means that the actual voltage reading was close

enough to ideal voltage reading to run the different components of the guitar.

Table 23: Ideal and Actual Voltages of Battery [17]

Ideal Voltage Readings Actual Voltage Readings

+12VDC +12.33VDC

+9VDC +8.89VDC

+5VDC +5.023VDC

70

Once the battery was tested, the +3.3VDC linear regulator [10] like seen in Figure 18 was

set up on the bread board and tested. Once again, a voltage meter was used to measure the

actual value of the linear regulator [10]. Table 24 contains the data collected from the

voltage meter.

Table 24: Ideal and Actual Voltages of Linear Regulator [10]

Ideal Voltage Readings Actual Voltage Readings

+3.3VDC +3.28VDC

For the +3.3VDC, the percent error between the ideal and actual voltage reading is 0.6%.

Which means that actual voltage of the +3.3VDC linear regulator, will be able to operate

all the individual components of the stringless guitar. Furthermore, a measurement of the

current was taken for one string of the guitar. When the PIC, strumming sensor, DAC, SD

card reader, fret sensor is operating, the maximum currently that was measured was 50

mA. So, for all six strings a maximum current of 300 mA is needed to operate the guitar,

which can be provide by the linear regulator [10] and the battery [17] for at least four

hours. This was tested on senior design demo day, when the guitar was played constantly

by users that came to the display table from 12:30pm until 4:30pm. Thus, showing that the

guitar meets the design requirement of lasting for at least 4 hours with constant usage.

[DLM]

4.6 Overall Testing

This test requires that all the above tests have been successful. To begin, power on the

guitar by switching on the battery switch near the guitar jack. The battery’s LEDs should

light up if the battery is charged. Next, flip the switch on front of the guitar from off to on.

After powering on, look inside the guitar case and ensure that six green LEDs are on.

Then, use a guitar cable and hook up the guitar to an amp and/or speaker. Prior to

plugging in the cable, turn the volume dial down (counter-clock wise). Finally, pick and/or

strum the guitar and check if any sound can be heard from the amp and/or speakers. If no

sound is heard, double check the connection between the guitar and the amp or speakers.

Furthermore, once all the components were placed inside the guitar body, the weight of

the guitar body was taken by placing the guitar on the scaled. The weight of the guitar was

9 pounds which is well under the design requirement of 14 pounds.

[DLM, KZY]

71

5 Operation, Maintenance, and Repair Instructions

5.1 Operation Instructions

All tests discuss in the previous section should be done prior to using the Stringless

Guitar. Assuming all tests have been successful, the first thing to do is that needs done is

to power the guitar. First, turn on the battery by pressing the on switch on the battery

located towards the guitar jack. Afterwards, press the power switch on the front panel of

the guitar to turn on the rest of the guitar. Once both of those switches have been turned

on, the green LEDs will light up on the boards to indicate that the boards are powered on

and running correctly. If at any time a blue LED is on, the corresponding board has an

initialization issue that needs to be fixed prior to continue use of the guitar. If at any time

a red LED is on, the corresponding board has a system error and will either need replacing

and/or reprogram prior to using the guitar. Playing the Stringless Guitar is similar to

playing that of a regular guitar.

[DLM, KZY]

5.2 Maintenance Instructions

The Stringless Guitar does not require a lot of maintenance. The main components that

need to be maintain is the guitar battery and the fret sensors. The battery can be recharged

by connecting a charging connector to the 12 V port on the battery. Cleaning the frets will

ensure proper conductivity of the copper traces when playing.

[DLM, KZY]

5.3 Repair Instructions

All components of the Stringless Guitar can be removed from the guitar and be replaced.

For example, if one of the fret board sensors malfunctions, the screws holding the fret

sensor in place can be unscrewed allowing the fret sensor to come off the guitar.

Similarly, the piezoelectric strips are tacked on the strumming plates which are also

screwed into the guitar. The PCBs are held in the guitar via Velcro strips attached on the

back of each board and can be pulled off from the guitar.

If any blue LEDs comes on after powering up the guitar, the corresponding board has

failed to initialize properly. First, check that the corresponding SD card has the correct

files for the specific board. Each board should have a unique set of audio files associated

with them. If the SD card is not the problem, the board will require reprogramming.

If any red LEDs comes on, the corresponding board has failed to run properly. First,

reprogram the board and check again if the red LED turns on. If the red LED turns on

again, replace the board with a new board.

72

[DLM, KZY]

6 Parts List

6.1 Part List

Table 25 contains the all the parts needed to complete the project coming out of fall

design semester. However, most of these components ended up not being used because

the components were part of the charging power circuit that was scrapped for a simpler

circuit and battery that already had the recharging feature in it.

Table 25: Part List First Round

Qty. Labels Part Num. Description

1 V_Bat SLA-12V2-3
12 Volt 2.2 Ah Sealed Lead Acid Rechargeable Battery - F1

Terminal

1 V_supply PP3-002B
Power Barrel Connector Plug 2.50mm ID(0.098"), 5.50mm OD

(0.217") Free Hnaging (In-Line)

1 V_supply PJ-202B
Power Barrel Connector Jack 2.50mm ID(0.098"), 5.50mm OD

(0.217") Through Hole, Right Angle

1 V_supply N/A

RGBZONE AC To DC 3A 12V 36W Output Switching Power

Supply Converter Transformers With DC Jack for LED Light

Strip CCTV

2
CON1,

CON2
DT06-2S TE Connectivity, Automotive Connectors DT Plug 2 Way

1 U1 NDC7002N Fairchild Semiconductor, MOSFET 2N-CH 50V 0.51A SSOT6

3 U2, U3, U5 FDC5614P Fairchild Semiconductor, MOSFET P-CH 60V 3A SSOT-6

1 D1 MBR140T3G
On Semiconductor, Diode Schottky 40V 1A Surface Mount

Powermite

1 LED1 WP7113GD
Kingbright, Green 568nm LED Indication - Discrete 2.2V

Radial

1 LED2 WP710A10LSRD Kingbright, Red 640nm LED Indication - Discrete 1.65V Radial

1 C1 GRM155R71H103KA88D
Ceramic Capacitor, 10000pF ±10% 50V Ceramic Capacitor

X7R 0402 (1005 Metric)

1 C2 GRM155R71C224KA12D
Ceramic Capacitor, 0.22µF ±10% 16V Ceramic Capacitor X7R

0402 (1005 Metric)

3 R3, R5, R7 CRCW060310K0FKEAHP Vishay Dale, RES SMD 10K OHM 1% 1/4W 0603

2 R1, R4 ERJ-PA3F6200V Panasonic, RES SMD 620 OHM 1% 1/4W 0603

4
R6, R31,

R22, R23
ERJ-PA3F1003V Panasonic, RES SMD 100K OHM 1% 1/4W 0603

1 R2 CRCW060327K0FKEAHP Vishay Dale,, RES SMD 2.7K OHM 1% 1/4W 0603

1 R8 RCS0603100RFKEA Vishay Dale, RES SMD 100 OHM 1% 1/4W 0603

1 F1 0438003.WR Fuse, BRD MNT 3A 12VAC 32VDC 0603

73

1 R9, AS520R0FLF
TT Electronics, Wirewound Resistors - Through Hole 20 OHM

1% 7W

1 U4 LT8616EFE#PBF

Linear Tech, Buck Switching Regulator IC Positive Adjustable

0.79V 2 Output 1.5A, 2.5A 28-TSSOP (0.173", 4.40mm Width)

Exposed Pad

2 C3, C8 GRM1555C1H101JA01D
Murata, 100pF ±5% 50V Ceramic Capacitor C0G, NP0 0402

(1005 Metric)

2 C4, C6 GRM1555C1H4R7CA01D
Murata, 4.7pF ±0.25pF 50V Ceramic Capacitor C0G, NP0 0402

(1005 Metric)

1 C5 04026D226MAT2A
AVX, 22µF ±20% 6.3V Ceramic Capacitor X5R 0402 (1005

Metric)

1 C7 GRM21BR60G476ME15L
Murata, 47µF ±20% 4V Ceramic Capacitor X5R 0805 (2012

Metric)

2 C9, C10 GJM1555C1H1R0BB01D
Murata, 1pF ±0.1pF 50V Ceramic Capacitor C0G, NP0 0402

(1005 Metric)

1 C11 GRM155R60J105KE19D
Murata, 1µF ±10% 6.3V Ceramic Capacitor X5R 0402 (1005

Metric)

1 L1 SLF7032T-3R3M1R9-2PF
TDK, 3.3µH Shielded Wirewound Inductor 1.9A 27.6 mOhm

Max Nonstandard

1 L2 NR6020T2R2N
Taiyo Yuden, 2.2µH Shielded Wirewound Inductor 2.7A 40.8

mOhm Max Nonstandard

6

R13, R19,

R15, R16,

R20, R21

HMC0603JT100M Stackpole, RES SMD 100M OHM 5% 1/10W 0603

1 R14 RC0603FR-07187KL Yageo, RES SMD 187K OHM 1% 1/16W 00603

1 R17 RC0603FR-07316KL Yageo RES SMD 316K OHM 1% 1/10W 0603

1 R18 RC0603FR-0714K7L Yageo, RES SMD 14.7K OHM 1% 1/10W 0603

1 D2 NSR20F20NXT56 Diode Schottky 20V 2A (DC) Surface Mount 2-DSN (1.6x.80)

1 SW1 M2011SS1W01/UC NKK Switches, Toggle Switch SPST Panel Mount

6 - PIC32MX270F512L
32-bit Microcontrollers - MCU 32bit MCU, 100TQFP 512KB

Flash 64KB RAM

6 - AD5689RARUZ
Digital to Analog Converters - DAC 16B 2-CH SPI IF w/ on-

chip ref

6 - N/A mirco SD Card 19MB

6 - 472192001
8 Position Card Connector Secure Digital - microSD™ Surface

Mount, Right Angle Gold

6 Con3 FTS-105-01-F-D CONN HEADER 10POS DUAL .05" SMD

6 - SFMC-105-01-LD CONN Plug 10POS DUAL .05" SMD

30 - RC0402JR-0720ML RES SMD 20M OHM 1% 1/10W 0603

1 C1 CL05A106MP5NUNC 10µF ±20% 10V Ceramic Capacitor X5R 0402 (1005 Metric)

6

R25, R26,

R27, R28,

R29, R30,

R31

ESR03EZPJ102 RES SMD 1K OHM 5% 1/4W 0603

7 - LME49724 Audio Amplifier 1 Circuit Differential 8-SO

1 R24 P160KNPD-2QC25B2K
2k Ohm 1 Gang Linear Panel Mount Potentiometer None 1 Turn

Conductive Plastic 0.2W, 1/5W PC Pins

1 - Ecoflex0020Kit Smooth-On ECOFLEX 00-20 SuperSoft Silicone

74

1 - 6544K13
General Purpose Low-Carbon Steel, Sheet, 0.030" Thick, 12" x

24"

6 - 1002794 SENSOR PIEZO FILM VIBRA TABS

1 - 8954K195
Ultra-Machinable 360 Brass, Rectangular Bar, 3/8" x 5/8" ,x 3

FEET LONG

2 - CHS-06TB
Dip Switch SPST 6 Position Surface Mount Slide (Standard)

Actuator 100mA 6VDC

Table 26 contains the all the parts needed to complete the final project which can be seen in the

Completed Prototype section. Some the parts like connectors (Mfg P/N: FTS-105-01-F-D and

SFMC-105-01-LD) , PICs, and DAC were sampled from the individual company. Other

components needed like fuses and fuse holder were sampled from the ECE’s stock room. So

between sampling from the company, the ECE’s stock room, the final part list and some of the

components in Table 25, all components were gather or ordered to complete the project. The

labels of each part in the table corresponds to their respective labels discussed in the Schematics

section of the report.

Table 26: Final Part List

Qty. Labels Part Num. Description

1 Battery: TalentCell Rechargeable 72W 100WH battery

10

LDT0-028K
Strum-Sensor: Peizo LDT with Crimps Vibration

Sensor/Switch

7

SD: SD Memory Card

1

14072 Power: USB connector to leads

2

PP3-002B
Power: Power Barrel Connector Plug 2.50mm ID(0.098"),

5.50mm OD (0.217") Free Hnaging (In-Line)

2

LM1117T-3.3/NOPB
Power: Linear Voltage Regulator IC Positive Fixed Output

3.3V 800mA TO-220-3

3

Summing Amp: Bourns Guitar & Amp Potentiometer, 500K ,

Audio, Knurled Split Shaft

2

Summing Amp: Switchcraft L11 Mono Female 1/4-Inch Jack

Long Shaft with Nut and Washer, Nickel Finish

3

LM158 Summing Amp: IC OPAMP GP 1.1MHZ 8SO

5

92095A491 bolt, stainless steel, metric 6, 1mm pitch, 80mm long

12

98676A200 nut, black oxide metric 4, 0.7mmpitch,

12

91239a158 bolt, black oxide metric 4, 0.7mmpitch,

6 PIC PIC32MX270F512L 32-bit Microcontrollers - MCU 32bit MCU, 100TQFP 512KB

75

Flash 64KB RA

6 DAC
AD5689RARUZ Digital to Analog Converters - DAC 16B 2-CH SPI IF w/ on-

chip re

30
J1, J4,J3,J5,

J2

FTS-105-01-F-D CONN HEADER 10POS DUAL .05" SM

30
J1, J4,J3,J5,

J2

SFMC-105-01-LD CONN Plug 10POS DUAL .05" SM

Main Boards (6 Boards)

10 OP UA741CDT
Board: Strum-Sensor: General Purpose Amplifier 1 Circuit 8-

SOIC

10 R1 RCS040210M0JNED Board: RES SMD 10M OHM 5% 1/5W 0402

50
R2,R3,R4,R5,

R6,R7
CRCW04021M00JNEDHP Board: RES SMD 1M OHM 5% 1/5W 0402

25 C1 04025C101KAT2A Board: CAP CER 100PF 50V X7R 0402

15 C2 C0402C102J4RACTU Board: CAP CER 1000PF 16V X7R 0402

100

C7,C22,C20,

C15,C17,

C10, C12, C9,

C3, C4, C6,

C5

CL05A106MP8NUB8 Board: CAP CER 10UF 10V X5R 0402

100

C8,C21,C19,

C16, C18,

C11,C13,

C14, C28,

C26, C27,

C30, C25

GRM155R71C104JA88D Board: CAP CER 0.1UF 16V X7R 0402

35
R54,

R55,R56,R57
CRCW0402100KJNEDHP Board: RES SMD 100K OHM 5% 1/5W 0402

15 R43 RCS040210K0JNED Board: RES SMD 10K OHM 5% 1/5W 0402

15 R44 CRCW04021K00JNEDHP Board: RES SMD 1K OHM 5% 1/5W 0402

10 C29 TPSR106K006R1000 Board: CAP TANT 10UF 6.3V 10% 0805 ESR

50
R10, R11, R9,

R8, R12
RC0402JR-0720ML Board: RES SMD 20M OHM 5% 1/16W 0402

25 R17,R18,R19 ERJ-PA2F1500X Board: RES SMD 150 OHM 1% 1/5W 0402

[ARB, NAH, DLM, KZY]

76

6.2 Budget (Estimated)

Table 27 shows the estimated material cost for the parts needed to complete the project

coming out of fall design semester. However, most of these components ended up not

being used because the components were part of the charging power circuit that was

scrapped for a simpler circuit and battery that already had the recharging feature in it. If a

cost is not listed for a part, then the part has already been bought and/or sampled.

Table 27: Material Cost First Round

Qty. Labels Part Num. Description Cost
Total

Cost

1 V_Bat SLA-12V2-3
12 Volt 2.2 Ah Sealed Lead Acid

Rechargeable Battery - F1 Terminal
$12.95 $12.95

1 V_supply PP3-002B

Power Barrel Connector Plug 2.50mm

ID(0.098"), 5.50mm OD (0.217") Free

Hnaging (In-Line)

$1.36 $1.36

1 V_supply PJ-202B

Power Barrel Connector Jack 2.50mm

ID(0.098"), 5.50mm OD (0.217") Through

Hole, Right Angle

$0.93 $0.93

1 V_supply N/A

RGBZONE AC To DC 3A 12V 36W

Output Switching Power Supply Converter

Transformers With DC Jack for LED Light

Strip CCTV

$9.99 $9.99

2
CON1,

CON2
DT06-2S

TE Connectivity, Automotive Connectors

DT Plug 2 Way
$1.42 $2.84

1 U1 NDC7002N
Fairchild Semiconductor, MOSFET 2N-CH

50V 0.51A SSOT6
$0.47 $0.47

3 U2, U3, U5 FDC5614P
Fairchild Semiconductor, MOSFET P-CH

60V 3A SSOT-6
$0.62 $1.86

1 D1 MBR140T3G
On Semiconductor, Diode Schottky 40V 1A

Surface Mount Powermite
$0.39 $0.39

1 LED1 WP7113GD
Kingbright, Green 568nm LED Indication -

Discrete 2.2V Radial
$0.38 $0.38

1 LED2 WP710A10LSRD
Kingbright, Red 640nm LED Indication -

Discrete 1.65V Radial
$0.38 $0.38

1 C1 GRM155R71H103KA88D
Ceramic Capacitor, 10000pF ±10% 50V

Ceramic Capacitor X7R 0402 (1005 Metric)
$0.10 $0.10

1 C2 GRM155R71C224KA12D
Ceramic Capacitor, 0.22µF ±10% 16V

Ceramic Capacitor X7R 0402 (1005 Metric)
$0.10 $0.10

3 R3, R5, R7 CRCW060310K0FKEAHP
Vishay Dale, RES SMD 10K OHM 1%

1/4W 0603
$0.17 $0.51

2 R1, R4 ERJ-PA3F6200V
Panasonic, RES SMD 620 OHM 1% 1/4W

0603
$0.16 $0.32

4
R6, R31,

R22, R23
ERJ-PA3F1003V

Panasonic, RES SMD 100K OHM 1% 1/4W

0603
$0.16 $0.64

1 R2 CRCW060327K0FKEAHP
Vishay Dale,, RES SMD 2.7K OHM 1%

1/4W 0603
$0.17 $0.17

77

1 R8 RCS0603100RFKEA
Vishay Dale, RES SMD 100 OHM 1%

1/4W 0603
$0.14 $0.14

1 F1 0438003.WR Fuse, BRD MNT 3A 12VAC 32VDC 0603 $1.15 $1.15

1 R9, AS520R0FLF
TT Electronics, Wirewound Resistors -

Through Hole 20 OHM 1% 7W
$1.25 $1.25

1 U4 LT8616EFE#PBF

Linear Tech, Buck Switching Regulator IC

Positive Adjustable 0.79V 2 Output 1.5A,

2.5A 28-TSSOP (0.173", 4.40mm Width)

Exposed Pad

$9.40 $9.40

2 C3, C8 GRM1555C1H101JA01D
Murata, 100pF ±5% 50V Ceramic Capacitor

C0G, NP0 0402 (1005 Metric)
$0.10 $0.20

2 C4, C6 GRM1555C1H4R7CA01D
Murata, 4.7pF ±0.25pF 50V Ceramic

Capacitor C0G, NP0 0402 (1005 Metric)
$0.10 $0.20

1 C5 04026D226MAT2A
AVX, 22µF ±20% 6.3V Ceramic Capacitor

X5R 0402 (1005 Metric)
$0.69 $0.69

1 C7 GRM21BR60G476ME15L
Murata, 47µF ±20% 4V Ceramic Capacitor

X5R 0805 (2012 Metric)
$0.47 $0.47

2 C9, C10 GJM1555C1H1R0BB01D
Murata, 1pF ±0.1pF 50V Ceramic Capacitor

C0G, NP0 0402 (1005 Metric)
$0.15 $0.30

1 C11 GRM155R60J105KE19D
Murata, 1µF ±10% 6.3V Ceramic Capacitor

X5R 0402 (1005 Metric)
$0.10 $0.10

1 L1 SLF7032T-3R3M1R9-2PF
TDK, 3.3µH Shielded Wirewound Inductor

1.9A 27.6 mOhm Max Nonstandard
$1.08 $1.08

1 L2 NR6020T2R2N

Taiyo Yuden, 2.2µH Shielded Wirewound

Inductor 2.7A 40.8 mOhm Max

Nonstandard

$0.47 $0.47

6

R13, R19,

R15, R16,

R20, R21

HMC0603JT100M
Stackpole, RES SMD 100M OHM 5%

1/10W 0603
$0.40 $2.40

1 R14 RC0603FR-07187KL
Yageo, RES SMD 187K OHM 1% 1/16W

00603
$0.10 $0.10

1 R17 RC0603FR-07316KL
Yageo RES SMD 316K OHM 1% 1/10W

0603
$0.10 $0.10

1 R18 RC0603FR-0714K7L
Yageo, RES SMD 14.7K OHM 1% 1/10W

0603
$0.10 $0.10

1 D2 NSR20F20NXT56
Diode Schottky 20V 2A (DC) Surface

Mount 2-DSN (1.6x.80)
$0.51 $0.51

1 SW1 M2011SS1W01/UC
NKK Switches, Toggle Switch SPST Panel

Mount
$3.31 $3.31

6 - PIC32MX270F512L
32-bit Microcontrollers - MCU 32bit MCU,

100TQFP 512KB Flash 64KB RAM
- -

6 - AD5689RARUZ
Digital to Analog Converters - DAC 16B 2-

CH SPI IF w/ on-chip ref
- -

6 - N/A mirco SD Card 19MB - -

6 - 472192001

8 Position Card Connector Secure Digital -

microSD™ Surface Mount, Right Angle

Gold

$1.11 $6.66

6 Con3 FTS-105-01-F-D CONN HEADER 10POS DUAL .05" SMD - -

6 - SFMC-105-01-LD CONN Plug 10POS DUAL .05" SMD - -

30 - RC0402JR-0720ML RES SMD 20M OHM 1% 1/10W 0603 $0.01 $0.25

1 C1 CL05A106MP5NUNC
10µF ±20% 10V Ceramic Capacitor X5R

0402 (1005 Metric)
$0.36 $0.36

78

6

R25, R26,

R27, R28,

R29, R30,

R31

ESR03EZPJ102 RES SMD 1K OHM 5% 1/4W 0603 $0.10 $0.60

7 - LME49724 Audio Amplifier 1 Circuit Differential 8-SO $3.58 $35.84

1 R24 P160KNPD-2QC25B2K

2k Ohm 1 Gang Linear Panel Mount

Potentiometer None 1 Turn Conductive

Plastic 0.2W, 1/5W PC Pins

$0.76 $0.76

1 - Ecoflex0020Kit
Smooth-On ECOFLEX 00-20 SuperSoft

Silicone
$42.95 $42.95

1 - 6544K13
General Purpose Low-Carbon Steel, Sheet,

0.030" Thick, 12" x 24"
$8.27 $8.27

6 - 1002794 SENSOR PIEZO FILM VIBRA TABS - -

1 - 8954K195
Ultra-Machinable 360 Brass, Rectangular

Bar, 3/8" x 5/8" ,x 3 FEET LONG
$35.95 $35.95

2 - CHS-06TB
Dip Switch SPST 6 Position Surface Mount

Slide (Standard) Actuator 100mA 6VDC
$2.44 $4.88

 Total: $191.88

Table 28 shows the material cost for the parts needed to complete the final project which

can be seen in the Completed Prototype section. If a cost is not listed for a part, then the

part has already been bought and/or sampled.

Table 28: Final Material Cost

Qty. Labels Part Num. Description Cost
Total

Cost

1
Battery: TalentCell Rechargable 72W

100WH battery
- -

10

LDT0-028K
Strum-Sensor: Peizo LDT with Crimps

Vibration Sensor/Switch
$2.09 $20.90

7

SD: SD Memory Card $4.98 $34.86

1

14072 Power: USB conector to leads $4.95 $4.95

2

PP3-002B

Power: Power Barrel Connector Plug

2.50mm ID(0.098"), 5.50mm OD (0.217")

Free Hnaging (In-Line)

$1.36 $2.72

2

LM1117T-3.3/NOPB

Power: Linear Voltage Regulator IC

Positive Fixed Output 3.3V 800mA TO-

220-3

$1.41 $2.82

3

Summing Amp: Bourns Guitar & Amp

Potentiometer, 500K , Audio, Knurled Split

Shaft

$5.65 $16.95

2

Summing Amp: Switchcraft L11 Mono

Female 1/4-Inch Jack Long Shaft with Nut

and Washer, Nickel Finish

$3.60 $7.20

5 92095A491
bolt, stainless steel, metric 6, 1mm pitch,

80mm long
 $8.14

12 98676A200 nut, black oxide metric 4, 0.7mmpitch, $8.08

12 91239a158 bolt, black oxide metric 4, 0.7mmpitch, $12.30

6 - PIC32MX270F512L
32-bit Microcontrollers - MCU 32bit MCU,

100TQFP 512KB Flash 64KB RAM
- -

79

6 - AD5689RARUZ
Digital to Analog Converters - DAC 16B 2-

CH SPI IF w/ on-chip ref
- -

30
J1, J2,

J3,J4,J5
FTS-105-01-F-D CONN HEADER 10POS DUAL .05" SMD - -

30 - SFMC-105-01-LD CONN Plug 10POS DUAL .05" SMD - -

Main Boards (6 Boards)

50
R2,R3,R4,R5,

R6,R7
CRCW04021M00JNEDHP Board: RES SMD 1M OHM 5% 1/5W 0402 $0.06 $3.19

25 C1 04025C101KAT2A Board: CAP CER 100PF 50V X7R 0402 $0.13 $3.32

15 C2 C0402C102J4RACTU Board: CAP CER 1000PF 16V X7R 0402 $0.03 $0.42

100

C7,C22,C20,

C15,C17,

C10, C12, C9,

C3, C4, C6,

C5

CL05A106MP8NUB8 Board: CAP CER 10UF 10V X5R 0402 $0.10 $10.17

100

C8,C21,C19,

C16, C18,

C11,C13,

C14, C28,

C26, C27,

C30, C25

GRM155R71C104JA88D Board: CAP CER 0.1UF 16V X7R 0402 $0.01 $1.04

35
R54,

R55,R56,R57
CRCW0402100KJNEDHP

Board: RES SMD 100K OHM 5% 1/5W

0402
$0.08 $2.87

15 R43 RCS040210K0JNED
Board: RES SMD 10K OHM 5% 1/5W

0402
$0.11 $1.58

15 R44 CRCW04021K00JNEDHP Board: RES SMD 1K OHM 5% 1/5W 0402 $0.12 $1.79

10 C29 TPSR106K006R1000
Board: CAP TANT 10UF 6.3V 10% 0805

ESR
$0.59 $5.91

50
R10, R11, R9,

R8, R12
RC0402JR-0720ML

Board: RES SMD 20M OHM 5% 1/16W

0402
$0.01 $0.29

25 R17,R18,R19 ERJ-PA2F1500X
Board: RES SMD 150 OHM 1% 1/5W

0402
$0.12 $3.06

Total:

$159.22

Table 29 shows the budget log for the project. As seen from the log, different

components were brought to either replace components that were broken or needed

changed in order to get the project working. Other parts like a break-out board for the 100

pin PIC32 was brought in order to test the PIC32 on the bread board. Finally, PCB boards

were order so that the components could be solder up nice and the final project would

have a nice completed board to show off. Once everything was brought, there is a total of

$7.76 left in the budget.

Table 29: Budget Log

Budget $500.00

Total

Left: $7.76

 Date Amount Description

12/6/2016 $95.73 First Round of Ordering Parts (Table 27)

80

1/19/2017 $9.40 More Linear Voltage Regulator

1/24/2017 $19.49 Break-out board for the 100 pin PIC32

1/30/2017 $28.52 Screws and Bolts for Strum Sensor

2/3/2017 $29.60 Fret Board PCB Three Prototype

3/24/2017 $130.70 Final Ordering Parts (Table 28)

3/27/2017 $93.80 Final Fret Board Sensors

3/28/2017 $85.00 Final Process Boards

[ARB, NAH, DLM, KZY]

81

7 Project Schedules

7.1 Midterm Design Gantt

Figure 42 shows the midterm Gantt chart of the tasks that needs completed for the

midterm design report. Each of the tasks has been assigned a due date and a team

member(s) to complete the task.

Figure 42: Midterm Design Gantt Chart

[DLM]

82

7.2 Final Design Gantt

Figure 43 shows the final Gantt chart of the tasks that needs completed for the final

design report. Each of the tasks has been assigned a due date and a team member(s) to

complete the task.

Figure 43: Final Design Gantt Chart

[DLM, KZY]

83

7.3 Proposed Implementation Gantt

Figure 44 shows the proposed implementation Gantt chart for next semester that will be

completed prior to demo day. Each of the tasks has been assigned a start date, a due date

and team member(s) to complete the task.

Figure 44: Proposed Implementation Gantt Chart

[DLM, KZY]

84

7.4 Actual Implementation Gantt

Figure 45 shows the Actual implementation Gantt chart for implementation semester.

Each of the tasks has been was assigned to a team member and the start and end date

corresponds to when the task actually got completed by the team member(s).

The tasks of the Actual Implementation Gantt Chart is the exactly the same as the tasks of

the Proposed Implementation Gantt Chart. However, there was only one change to the

dates that the task where completed. First off, everything was going as planned up until

the midterm demonstration. Once the midterm demonstration was completed, the team

switch to a different PIC32 in the family, for more pins. However, when this happened

there was problem getting the new PIC32 to communicate with the DAC via SPI. So

Kue, the software lead spent a couple of extra week trying to figure out why the DAC

would not communicate with the PIC32. With this problem, everything after the midterm

demonstration in the Gantt chart got pushed back a couple of weeks. However, that was

the only big set back from the proposed implementation Gantt chart and the final

implementation Gantt chart. All the tasks were still completed on time for Senior Design

Demo Day.

85

Figure 45: Actual Implementation Gantt Chart

[DLM, KZY]

86

8 Design Team Information

Anthony R. Batey, EE, Sensor and Actuators, Embedded Systems Interfacing, Controls

II, Embedded Sci. Computing, Analog IC Design, Electromagnetic Compatibility

Nathaniel A. Hawk, EE, Electrical Properties of Materials, Analog IC Design, Optical

Electronic and Photonic Devices, Active Circuits, Embedded Systems Interfacing, Digital

Communications

Dominic L. Mercorelli, EE, Sensor and Actuators, Embedded Systems Interfacing,

Controls II, Active Circuits, Analog IC Design, Electromagnetic Compatibility

Kue Z. Yang, CpE, Data Structures, Analog IC Design, Embedded Sci. Computing, VLSI

Circuits and Systems, System Simulation

9 Conclusions and Recommendations

In order to implement the stringless guitar many systems have been developed. A library

of sound files was made by recording samples from a standard electric guitar. These

sound files were loaded onto an SD card. Sensors were designed to detect the position of

the users’ fingers on the fretboard and to detect how hard the user strums the guitar.

Software was developed in order to interface with these sensors, and algorithms were

written in order to make logical decisions from the sensor data. Sound files were read

from an SD card and were written out to a digital to analog converter as determined from

the algorithms. A PCB layout of this subsystem was made. Six of these PCB boards were

used to implement the six “strings” of our stringless guitar in parallel to improve response

time. A summing amplifier, with subsequent volume and tone control stages, was used to

sum the analog sound signals from these six boards together and the resulting signal was

sent to an external guitar amplifier. A lithium ion battery pack was used with an

additional linear voltage regulator to produce the necessary voltages. Finally, a semi-

hollow guitar body was packed with all of these components.

Throughout this design, a constant effort was made to meet the design specifications and
marketing requirements for the stringless guitar. A Gantt chart was used to keep track of

the different tasks that were assigned to team members.

The overall outcome of the project was a success. The finger sensors were able to detect

the position of a user’s finger and the strum sensor could detect the strength of the users

strum. The correct sound files were selected and played through the summing amp.

Future students should start their project early and should test their different subsystems

intensely before assembling the final product. Always save revisions of code and design

documentation so that when problems arise team members can revert back to a functional

version.

[NAH, DLM, KZY]

87

10 References

[1] F. Evangelista, "Stringless Electronic Musical Instrument". U.S. Patent RE31,019, 31 August 1982.

[2] I. Mladek, "Stringless Twitch Fret Instrument". U.S. Patent 6,018,119, 25 January 2000.

[3] E. H. Chapman, "Stringless Fingerboard Synthesizer Controller". U.S. Patent 5,140,887, 25 August

1992.

[4] X. Fiss and A. Kwasinski, "Automatic Real-Time Electric Guitar Audio Transcription," Acoustics

Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on, pp. 373-376,

2011.

[5] R. Setiyono, A. S. Prihatmanto and P. H. Rusmin, "Design and Implementation Infrared Guitar

Based on Playing Chords," System Engineering and Technology (ICSET), 2012 International

Conference on, pp. 1-5, 2012.

[6] K. Bradley, M.-H. Cheng and V. L. Stonick, ""Automated Analysis and Computationally Efficient

Synthesis of Acoustic Guitar Strings and Body," Applications of Signal Processing to Audio and

Acoustics, 1995., IEEE ASSP Workshop on, pp. 238-241, 1995.

[7] K. Myeongsu, S. Cho, K. Jongmyon and C. Uipil, ""Implementation of Non-Stringed Guiatr using

ATMegal 128," Strategic Technology, 2007. IFOST 2007. International Forum on, pp. 585-588,

2007.

[8] Microchip Technology, "32-bit Microcontrollers (up to 128 KB Flash and 32 KB SRAM) with Audio

ad Graphics Interfaces, USB, and Advanced Analog", DS61168E Datasheet, 2012.

[9] Measurement Specialties, LDT with Crimps Vibration Sensor/Switch, Hampton: LDT0-028K

Datasheet, 2008.

[10] T. Instruments, LM1117 800-mA Low-Dropout Linear Regulator, LM1117 datasheet, 2016.

[11] Microchip, "32-bit Microcontrollers (up to 512 KB Flash and 64 KB SRAM) with

Audio/Graphics/Touch (HMI), CAN, USB, and Advanced Analog", Datasheet., 2016.

[12] Analog Devices, Dual 16-/12-Bit nanoDAC+ with 2 ppm/C On-Chip Reference, Norwood:

AD5689R Datasheet., 2014.

[13] "FatFs - Generic FAT File System Module," 2017. [Online]. Available: http://elm-

88

chan.org/fsw/ff/00index_e.html. [Accessed 8 Feburary 2017].

[14] "TechShop," 2013. [Online]. Available: https://www.techshopbd.com/product-categories/breakout-

boards/1240/micro-sd-card-breakout-board-techshop-bangladesh. [Accessed 2 December 2016].

[15] S. T. Mahbub, "PIC32 Based Audio Player With MicroSD Storage," January 2015. [Online].

Available: http://tahmidmc.blogspot.com/2015/01/audio-player-using-pic32-microsd-card.html.

[Accessed 2 November 2016].

[16] Microchip, "PIC32 Peripheral Library," Microchip, 2016. [Online]. Available:

http://www.microchip.com/SWLibraryWeb/product.aspx?product=PIC32%20Peripheral%20Library.

[Accessed 2 November 2016].

[17] Amazon, "TalentCell Rechargeable 72W 132WH 12V/11000mAh 9V/14500mAh 5V/26400mAh

DC Output Lithium Ion Battery Pack for LED Strip and CCTV Camera, Portable Li-ion Power

Bank, Black," TalentCell, 2017. [Online]. Available: https://www.amazon.com/TalentCell-

Rechargeable-11000mAh-14500mAh-26400mAh/dp/B016BJCRUO.

[18] On Semiconductor, "60V P-channel Logic Level PowerTrench MOSFET", FDC5614 datasheet,

2015.

[19] Linear Technology, "Dual 42V Synchronous Monolithic Step-Down regulator with 6.5 uA Quiescent

Current", LT8616 datasheet, 2015.

[20] On Semiconductor, "Dual N-Channel Enchancement Mode Field Effect Transistor", NDC7002N

datasheet, 1996.

[21] On Semiconductor, "Small signal MOSFET, Single N-Channel with ESD Proctect", NTA4153N

datasheet, 2014.

[22] Texas Instruments, LinCMOS Precision Dual Operational Amplifiers, Dallas: Datasheet., 2002.

[23] Littelfuse Inc., 438 Series-0603 Fast-Acting Fuse, 0438003.WR Datasheet, 2015.

[DLM, KYZ]

89

11 Appendices

11.1 UART Commands

Table 30 lists commands that are supported by the firmware. Assuming a rs232 to USB

connector is used, the microprocessor can be sent commands via a command terminal. The

command terminal that was used for this project was Putty.

Table 30: UART Command List

Command Function Command Format

HELP Display the list of commands available.

LIST Lists all WAV files from external memory.

SET Sets the file to read. SET “filename”

RESET Resets the file pointer to beginning of file.

READ Reads numOfBytes from current file. Read

from beginning of the file if reset is set to 1.

READ “reset” “numOfBytes”

DAC Sets an output value on the DAC. DAC “value”

ZERO Sets all DAC outputs to zero.

SIN Tests the DAC using a sin wave.

TONE Toggles on/off the Audio Timer (Timer 3).

PDG Get the current period set on Timer 3.

PDS Configures the Timer 3 period. PDS “period”

90

11.2 Firmware Documentation

The firmware for this project was hosted on Github. The firmware can be found via the

following link: https://github.com/KueYang/SeniorDesignProject.

11.3 Module Documentation

11.3.1 USB configurations

All USB related tasks are disabled and not used in the application.

11.3.2 System and Peripheral Clock Configurations

The configurations used to configure the system and peripheral clocks. The system clock is

configured for 40 Mhz using the internal 8 MHz oscillator. The system clock configuration can be

configured as follow: SYSCLK = 40 MHz (8 MHz Crystal / FPLLIDIV * FPLLMUL /

FPLLODIV) where FPLL related configurations are used to adjust the clock. The peripheral clock

is configured to the same clock speed as the system clock. The peripheral clock configuration can

be configured as follow: PBCLK = 40 MHz (SYSCLK / FPBDIV) where the FPB configuration is

used to adjust the clock.

11.3.3 Programming Configurations

The PIC is configured to be programmed on pins ICE3 and ICD3. JTAG and the internal switch

over configurations are disabled. Code protection and program flash protection are disabled.

11.3.4 Watch Dog Timer Configurations

The watch dog is enabled in software for this application.

11.4 Data Structure Documentation

11.4.1 AUDIOINFO Struct Reference

AUDIOINFO data structure.

#include <FILES.h>

Data Fields

• UINT16 bitsPerSample

• UINT16 numOfChannels

• UINT16 sampleRate

• UINT16 blockAlign

https://github.com/KueYang/SeniorDesignProject

91

• UINT32 dataSize

• char fileName [16]

Detailed Description

AUDIOINFO data structure.

The AUDIOINFO data structure is used to store the audio header data and file name.

Field Documentation

UINT16 bitsPerSample

Variable used to store the bits per sample.

UINT16 blockAlign

Variable used to store the block align.

UINT32 dataSize

Variable used to store the size of the file data.

char fileName[16]

Variable used to store the file name.

UINT16 numOfChannels

Variable used to store the number of channels.

UINT16 sampleRate

Variable used to store the sample rate.

The documentation for this struct was generated from the following file:

• FILES.h

11.4.2 COMMANDS Struct Reference

COMMANDS data structure.

#include <UART.h>

Data Fields

• const char * name

• const char * description

• void(* handler)(void)

92

Detailed Description

COMMANDS data structure.

The COMMANDS data structure is used to store a command with its corresponding command

handler. The command handler is used in conjunction with the serial communication for

processing a command that is received from the user.

Field Documentation

const char* description

Variable used to store a description of the command.

void(* handler) (void)

Variable used to point to the command handler.

const char* name

Variable used to store the command name

The documentation for this struct was generated from the following file:

• UART.h

11.4.3 COMMANDSTR Struct Reference

COMMANDSTR data structure.

#include <UART.h>

Data Fields

• char name [32]

• char arg1 [32]

• char arg2 [32]

Detailed Description

COMMANDSTR data structure.

The command string data structure is used to store a command with its corresponding arguments.

Field Documentation

char arg1[32]

Variable used to store the first command argument.

93

char arg2[32]

Variable used to store the second command argument.

char name[32]

Variable used to store the name of the command.

The documentation for this struct was generated from the following file:

• UART.h

11.4.4 FILES Struct Reference

FILES data structure.

#include <FILES.h>

Data Fields

• FIL File

• FSIZE_t startPtr

• DWORD cluster

• DWORD sector

• AUDIOINFO audioInfo

Detailed Description

FILES data structure.

The FILES data structure is used to store the file data used in conjunction with the Fatfs File

System Library. The structure also stores the audio header data corresponding to the specified file.

The documentation for this struct was generated from the following file:

• FILES.h

11.4.5 MON_FIFO Struct Reference

MON_FIFO data structure.

#include <FIFO.h>

94

Data Fields

• char buffer [MON_BUFFERSIZE]

• UINT16 headPtr

• UINT16 tailPtr

• UINT16 bufferSize

Detailed Description

MON_FIFO data structure.

The FIFO data structure is used to create and store a FIFO queue.

Field Documentation

char buffer[MON_BUFFERSIZE]

Variable used to store the FIFO data.

UINT16 bufferSize

Variable used to stores the queue size.

UINT16 headPtr

Variable used to point to the front of the queue.

UINT16 tailPtr

Variable used to point to the back of the queue.

The documentation for this struct was generated from the following file:

• FIFO.h

11.5 File Documentation

11.5.1 ADC.c File Reference

#include <p32xxxx.h>
#include "plib/plib.h"
#include "HardwareProfile.h"

#include "STDDEF.h"
#include "IO.h"
#include "TIMER.h"

#include "ADC.h"

Macros

95

• #define NUM_OF_ADCCHANNELS 1

• #define ADC_ARRAY_SIZE 5

• #define ADC_MIDRAIL 480

• #define ADC_NOISEMAG 150

• #define ADC_MINDELTA 10

• #define ADC_MINSAMPLE 256

Functions

• void ADC_ZeroBuffer (void)

Reinitializes ADC buffers to the midrail.

• void ADC_Init (void)

Initializes the ADC module.

• void __ISR (_ADC_VECTOR, IPL2AUTO)

ADC Interrupt Service Routine.

Variables

• BOOL isPositive

• UINT16 peakMax [ADC_ARRAY_SIZE]

• UINT16 localMax [ADC_ARRAY_SIZE]

• UINT32 sampleCount

• BOOL startStrumDetection

Detailed Description

Author:

Kue Yang

Date:

2/27/2017

The ADC module will handle reading strumming sensor data and kick start the audio playback

process.

Macro Definition Documentation

#define ADC_ARRAY_SIZE 5

Defines the ADC local array size.

#define ADC_MIDRAIL 480

Defines the ADC mid-rail.

#define ADC_MINDELTA 10

Defines the minimum change in ADC sample for indicating strum.

96

#define ADC_MINSAMPLE 256

Defines the minimum sample count for strum detection.

#define ADC_NOISEMAG 150

Defines the minimum noise magnitude ADC thread hold.

#define NUM_OF_ADCCHANNELS 1

Defines the number of ADC channels used.

Function Documentation

void __ISR (_ADC_VECTOR , IPL2AUTO)

ADC Interrupt Service Routine.

The interrupt service routine is used read the strummer sensor.

Returns:

Void.

void ADC_Init (void)

Initializes the ADC module.

Returns:

Void

void ADC_ZeroBuffer (void)

Reinitializes ADC buffers to the midrail.

Returns:

Void

Variable Documentation

isPositive

Indicates if the sample is the positive or negative part of signal.

localMax

Stores max values for different peaks.

peakMax

Stores max values for a single peak.

sampleCount

Counts the number of adc samples since playing a tone.

startStrumDetection

Boolean used to enable the strum detection.

97

11.5.2 ADC.h File Reference

Functions

• void ADC_Init (void)

Initializes the ADC module.

Detailed Description

Author:

Kue Yang

Date:

11/22/2016

Function Documentation

void ADC_Init (void)

Initializes the ADC module.

Returns:

Void

11.5.3 AUDIO.c File Reference

#include <p32xxxx.h>
#include <stdio.h>

#include <string.h>
#include "STDDEF.h"
#include "IO.h"
#include "DAC.h"

#include "FILES.h"
#include "FILEDEF.h"
#include "AUDIO.h"

Functions

• UINT8 AUDIO_GetHeader (int index)

Reads the header of a WAV file.

98

• BOOL AUDIO_GetAudioData (FILES *file, UINT16 bytes)

Reads a number of bytes from the audio file.

• void AUDIO_Init (void)

Initializes the Audio module.

• void AUDIO_Process (void)

Process audio data.

• void AUDIO_ListFiles (void)

Displays the list of audio files.

• BOOL AUDIO_setNewFile (UINT16 selectedFile)

Sets a new file to be read.

• void AUDIO_setNewTone (int fret, UINT16 factor)

Sets a new tone.

• void AUDIO_resetFilePtr (void)

Resets the file pointer for selected file.

• UINT32 AUDIO_getBytesRead (void)

Returns the number of bytes read.

• BOOL AUDIO_isDoneReading (void)

Checks if reading the selected file is done.

• UINT32 AUDIO_getBytesWritten (void)

Returns the number of bytes written.

• BOOL AUDIO_isDoneWriting (void)

Checks if writing to the DAC is done.

• BOOL AUDIO_ReadFile (UINT16 bytesToRead)

Reads a number of bytes from the audio file.

• BYTE * AUDIO_GetRecieveBuffer (void)

Gets buffer pointer.

• void AUDIO_WriteDataToDAC (void)

Writes audio data out to the DAC.

Variables

• FILES files [MAX_NUM_OF_FILES]

• BYTE receiveBuffer [REC_BUF_SIZE]

• UINT16 LAUDIOSTACK [AUDIO_BUF_SIZE]

• UINT16 RAUDIOSTACK [AUDIO_BUF_SIZE]

• UINT16 fileIndex

• UINT16 audioInPtr

• UINT16 audioOutPtr

• UINT32 bytesRead

• UINT32 bytesWritten

• BOOL hasReadFile

• UINT16 scaleFactor

• char buf [64]

99

Detailed Description

Author:

Kue Yang

Date:

11/22/2016

The Audio module will handle all audio processing related tasks. Tasks includes: initializing Fatfs

File System library, reading data from external memory and writing audio data to the DACs.

Remarks:

The Audio module requires Fatfs File System library. The library uses the library from the pic24

example project.

Function Documentation

BOOL AUDIO_GetAudioData (FILES * file, UINT16 bytes)

Reads a number of bytes from the audio file.

• file The files to read from.

• bytes The number of bytes to read.

• Returns:

Returns a boolean indicating if the file was read successfully.

• Return values:

TRUE if the file was read successfully.

FALSE if the file was read unsuccessfully.

UINT32 AUDIO_getBytesRead (void)

Returns the number of bytes read.

Returns:

Returns the number of bytes read

UINT32 AUDIO_getBytesWritten (void)

Returns the number of bytes written.

Returns:

Returns the number of bytes written.

UINT8 AUDIO_GetHeader (int index)

Reads the header of a WAV file.

• index The file that is being read.

100

• Returns:

A code indicating if reading the file is successful or not.

• Return values:

1,Read the header successfully

2,Header size is invalid

3,Chunk ID is invalid

4,Header format is invalid

5,Chunk ID 1 is invalid

6,Chunk ID 1 Data is invalid

7,Chunk ID 2 is invalid

BYTE* AUDIO_GetRecieveBuffer (void)

Gets buffer pointer.

Gets a pointer to the buffer that stores the bytes read from the SD Card.

Returns:

Returns a pointer to the read buffer.

void AUDIO_Init (void)

Initializes the Audio module.

Initializes the SD card and Microchip MDD File library. After initialization, all the audio

files that are specific to the PIC are opened.

Returns:

Void

BOOL AUDIO_isDoneReading (void)

Checks if reading the selected file is done.

Returns:

Returns a boolean indicating if done reading the selected audio file.

Return values:

TRUE,if done reading the file.

FALSE,if not done reading the file.

BOOL AUDIO_isDoneWriting (void)

Checks if writing to the DAC is done.

Returns:

Returns a boolean indicating if writing to the DAC is done.

101

Return values:

TRUE,if done writing to the DAC.

FALSE,if not done writing to the DAC.

void AUDIO_ListFiles (void)

Displays the list of audio files.

Finds all WAV files in the root directory of the SD card and displays them via UART to serial.

Remarks:

Requires the UART module and SD card to be initialized.

Returns:

Void

void AUDIO_Process (void)

Process audio data.

The audio data will process audio data based on data received from the IO and ADC modules. The

data received by the IO module will correspond to the fret location. The data received by the ADC

module will correspond to the strumming data.

Remarks:

Requires the IO and ADC modules to be initialized.

Returns:

Void

BOOL AUDIO_ReadFile (UINT16 bytesToRead)

Reads a number of bytes from the audio file.

• bytesToRead The number of bytes to read.

• Returns:

Returns a boolean indicating if the file was read successfully.

• Return values:

TRUE if the file was read successfully.

FALSE if the file was read unsuccessfully or is already done reading.

void AUDIO_resetFilePtr (void)

Resets the file pointer for selected file.

Returns:

Void

BOOL AUDIO_setNewFile (UINT16 selectedFile)

Sets a new file to be read.

• selectedFile The selected file to be set.

102

• Returns:

A boolean indicating if the file has been set successfully.

• Return values:

TRUE,file has been set successfully.

FALSE,file has not been set successfully.

void AUDIO_setNewTone (int fret, UINT16 factor)

Sets a new tone.

Sets a new tone based on the fret that is passed into the function. Resets all related variables

prior to reading the new tone.

• fret The fret that is being played.

• factor The strum strength scale factor.

• Returns:

Void

void AUDIO_WriteDataToDAC (void)

Writes audio data out to the DAC.

Writes audio data out to the DAC. Handles stopping and resetting all the selected after writing all

audio data out to the DAC.

Returns:

Void

Variable Documentation

audioInPtr

The index used to store audio data into to audio buffer.

audioOutPtr

The index used to write audio data out of the audio buffer.

buf

Buffer used to store a string.

bytesRead

Stores the number of bytes that have been read.

bytesWritten

Stores the number of bytes that have been written.

fileIndex

The index used to specify the audio file that is being read.

files

The list of audio files that are to be used.

hasReadFile

Stores boolean indicating the specified audio file has been read.

LAUDIOSTACK

A buffer used to store left channel audio data.

103

RAUDIOSTACK

A buffer used to store right channel audio data.

receiveBuffer

A buffer used to store data read from the audio file.

scaleFactor

Stores the scaling factor.

11.5.4 AUDIO.h File Reference

#include "WAVDEF.h"
#include "FILES.h"

Macros

• #define REC_BUF_SIZE 512

• #define AUDIO_BUF_SIZE REC_BUF_SIZE/4

Functions

• void AUDIO_Init (void)

Initializes the Audio module.

• void AUDIO_Process (void)

Process audio data.

• BYTE * AUDIO_GetRecieveBuffer (void)

Gets buffer pointer.

• BOOL AUDIO_ReadFile (UINT16 bytesToRead)

Reads a number of bytes from the audio file.

• void AUDIO_WriteDataToDAC (void)

Writes audio data out to the DAC.

• void AUDIO_ListFiles (void)

Displays the list of audio files.

• void AUDIO_setNewTone (int fret, UINT16 factor)

Sets a new tone.

• BOOL AUDIO_setNewFile (UINT16 selectedFile)

Sets a new file to be read.

• void AUDIO_resetFilePtr (void)

Resets the file pointer for selected file.

• UINT32 AUDIO_getBytesRead (void)

Returns the number of bytes read.

• UINT32 AUDIO_getBytesWritten (void)

Returns the number of bytes written.

104

Detailed Description

Author:

Kue Yang

Date:

11/22/2016

Macro Definition Documentation

#define AUDIO_BUF_SIZE REC_BUF_SIZE/4

Defines the audio buffer size.

#define REC_BUF_SIZE 512

Defines the receive buffer size.

Function Documentation

UINT32 AUDIO_getBytesRead (void)

Returns the number of bytes read.

Returns:

Returns the number of bytes read

UINT32 AUDIO_getBytesWritten (void)

Returns the number of bytes written.

Returns:

Returns the number of bytes written.

BYTE* AUDIO_GetRecieveBuffer (void)

Gets buffer pointer.

Gets a pointer to the buffer that stores the bytes read from the SD Card.

Returns:

Returns a pointer to the read buffer.

void AUDIO_Init (void)

Initializes the Audio module.

Initializes the SD card and Microchip MDD File library. After initialization, all the audio files that

are specific to the PIC are opened.

Returns:

Void

void AUDIO_ListFiles (void)

Displays the list of audio files.

105

Finds all WAV files in the root directory of the SD card and displays them via UART to serial.

Remarks:

Requires the UART module and SD card to be initialized.

Returns:

Void

void AUDIO_Process (void)

Process audio data.

The audio data will process audio data based on data received from the IO and ADC modules. The

data received by the IO module will correspond to the fret location. The data received by the ADC

module will correspond to the strumming data.

Remarks:

Requires the IO and ADC modules to be initialized.

Returns:

Void

BOOL AUDIO_ReadFile (UINT16 bytesToRead)

Reads a number of bytes from the audio file.

• bytesToRead The number of bytes to read.

• Returns:

Returns a boolean indicating if the file was read successfully.

• Return values:

TRUE if the file was read successfully.

FALSE if the file was read unsuccessfully or is already done reading.

void AUDIO_resetFilePtr (void)

Resets the file pointer for selected file.

Returns:

Void

BOOL AUDIO_setNewFile (UINT16 selectedFile)

Sets a new file to be read.

• selectedFile The selected file to be set.

• Returns:

A boolean indicating if the file has been set successfully.

• Return values:

TRUE,file has been set successfully.

FALSE,file has not been set successfully.

106

void AUDIO_setNewTone (int fret, UINT16 factor)

Sets a new tone.

Sets a new tone based on the fret that is passed into the function. Resets all related variables prior

to reading the new tone.

• fret The fret that is being played.

• factor The strum strength scale factor.

• Returns:

Void

void AUDIO_WriteDataToDAC (void)

Writes audio data out to the DAC.

Writes audio data out to the DAC. Handles stopping and resetting all the selected after writing all

audio data out to the DAC.

Returns:

Void

11.5.5 DAC.c File Reference

#include <p32xxxx.h>
#include "STDDEF.h"
#include "SPI.h"

#include "DAC.h"

Functions

• void DAC_Init (void)

Initializes the DAC.

• DWORD DAC_WriteToDAC (BYTE cmd_addr, WORD data)

Writes data to the DAC.

• void DAC_Zero (void)

Sets the DAC output to mid-scale.

• void DAC_ZeroOutput (void)

Sets the DAC output to zero.

• DWORD DAC_ReadBack (BOOL channelA)

Reads the DAC registers.

Detailed Description

Author:

Kue Yang

Date:

11/22/2016

107

The DAC module handles all DAC related operations such as configuring and writing to the DAC.

DAC configurations are defined in the header file.

Function Documentation

void DAC_Init (void)

Initializes the DAC.

Powers on the DAC with only one channel open.

Remarks:

Requires the SPI module to be initialized.

Returns:

Void.

DWORD DAC_ReadBack (BOOL channelA)

Reads the DAC registers.

• channelA The channel to read back data.

• Returns:

The DAC register value.

DWORD DAC_WriteToDAC (BYTE cmd_addr, WORD data)

Writes data to the DAC.

The current DAC can only handle 12-bit data. Therefore, the data that is transmitted are the first

12 MSB.

• cmd_addr The command and channel of the DAC.

• data The data that will be written to the DAC.

• Remarks:

Requires SPI and the DAC to be initialized.

• Returns:

Returns a boolean indicating if writing to the DAC is successful.

• Return values:

TRUE If the file was read successfully

FALSE If the file was read unsuccessfully

void DAC_Zero (void)

Sets the DAC output to mid-scale.

Remarks:

Requires SPI and the DAC to be initialized.

Returns:

Void

void DAC_ZeroOutput (void)

108

Sets the DAC output to zero.

Remarks:

Requires SPI and the DAC to be initialized.

Returns:

Void

11.5.6 DAC.h File Reference

Macros

• #define AC_ZERO 0x7777

• #define SYNC PORTCbits.RC4

• #define DAC_A 0x1

• #define DAC_B 0x8

• #define DAC_B_A DAC_B | DAC_A

• #define POWER_ON_DAC_B_A 0x3C

• #define CMD_WRITE_TO_DAC 0x1

• #define CMD_UPDATE_DAC 0x2

• #define CMD_WRITE_UPDATE_DAC 0x3

• #define CMD_POWER_ON_OFF 0x4

• #define CMD_LDAC_MASK_REG 0x5

• #define CMD_SOFT_RESET 0x6

• #define CMD_INTERN_REF 0x7

• #define CMD_SET_DCEN_REG 0x8

• #define CMD_READ_CHN_REG 0x9

• #define WRITE_INPUT_CHN_A (CMD_WRITE_TO_DAC << 4) | DAC_A

• #define UPDATE_CHN_A (CMD_UPDATE_DAC << 4) | DAC_A

• #define WRITE_UPDATE_CHN_A (CMD_WRITE_UPDATE_DAC << 4) | DAC_A

• #define READ_CHN_A (CMD_READ_CHN_REG << 4) | DAC_A

• #define WRITE_INPUT_CHN_B (CMD_WRITE_TO_DAC << 4) | DAC_B

• #define UPDATE_CHN_B (CMD_UPDATE_DAC << 4) | DAC_B

• #define WRITE_UPDATE_CHN_B (CMD_WRITE_UPDATE_DAC << 4) | DAC_B

• #define READ_CHN_B (CMD_READ_CHN_REG << 4) | DAC_B

• #define POWER_ON_OFF_CHN_A_B (CMD_POWER_ON_OFF << 4) | DAC_B_A

• #define WRITE_INPUT_CHN_A_B (CMD_WRITE_TO_DAC << 4) | DAC_B_A

• #define UPDATE_CHN_A_B (CMD_UPDATE_DAC << 4) | DAC_B_A

• #define WRITE_UPDATE_CHN_A_B (CMD_WRITE_UPDATE_DAC << 4) | DAC_B_A

Functions

• void DAC_Init (void)

Initializes the DAC.

• void DAC_Zero (void)

Sets the DAC output to mid-scale.

• void DAC_ZeroOutput (void)

109

Sets the DAC output to zero.

• DWORD DAC_WriteToDAC (BYTE cmd_addr, WORD data)

Writes data to the DAC.

Detailed Description

Author:

Kue Yang

Date:

11/22/2016

Macro Definition Documentation

#define AC_ZERO 0x7777

Defines the mid-scale value for the 16-bit DAC.

#define CMD_INTERN_REF 0x7

Defines the configuration bit to enable internal references.

#define CMD_LDAC_MASK_REG 0x5

Defines the configuration bit to mask the LDAC pin.

#define CMD_POWER_ON_OFF 0x4

Defines the configuration bit to power on the DAC.

#define CMD_READ_CHN_REG 0x9

Defines the configuration bit to read the DAC SDO pin.

#define CMD_SET_DCEN_REG 0x8

Defines the configuration bit to enable daisy chain.

#define CMD_SOFT_RESET 0x6

Defines the configuration bit to soft reset the DAC.

#define CMD_UPDATE_DAC 0x2

Defines the configuration bit to update the DAC, single channel.

#define CMD_WRITE_TO_DAC 0x1

Defines the configuration bit to write to DAC, single channel.

#define CMD_WRITE_UPDATE_DAC 0x3

Defines the configuration bit to write and update the DAC, both channels.

#define DAC_A 0x1

Defines the selection bit for channel A on the DAC.

#define DAC_B 0x8

Defines the selection bit for channel B on the DAC.

#define DAC_B_A DAC_B | DAC_A

Defines the selection bit for both channel A and channel B.

#define POWER_ON_DAC_B_A 0x3C

Defines the power on selection for channel A and channel B.

110

#define POWER_ON_OFF_CHN_A_B (CMD_POWER_ON_OFF << 4) | DAC_B_A

Defines the command to turn on DAC and both channel A and channel B.

#define READ_CHN_A (CMD_READ_CHN_REG << 4) | DAC_A

Defines the command to read channel A.

#define READ_CHN_B (CMD_READ_CHN_REG << 4) | DAC_B

Defines the command to read channel B.

#define SYNC PORTCbits.RC4

Defines the Enable pin used to write data to DAC.

#define UPDATE_CHN_A (CMD_UPDATE_DAC << 4) | DAC_A

Defines the command to update the registers for channel A.

#define UPDATE_CHN_A_B (CMD_UPDATE_DAC << 4) | DAC_B_A

Defines the command to update the registers for both channel A and channel B.

#define UPDATE_CHN_B (CMD_UPDATE_DAC << 4) | DAC_B

Defines the command to update the registers for channel B.

#define WRITE_INPUT_CHN_A (CMD_WRITE_TO_DAC << 4) | DAC_A

Defines the command to write to channel A.

#define WRITE_INPUT_CHN_A_B (CMD_WRITE_TO_DAC << 4) | DAC_B_A

Defines the command to write to both channel A and channel B.

#define WRITE_INPUT_CHN_B (CMD_WRITE_TO_DAC << 4) | DAC_B

Defines the command to write to channel B.

#define WRITE_UPDATE_CHN_A (CMD_WRITE_UPDATE_DAC << 4) | DAC_A

Defines the command to write and update channel A.

#define WRITE_UPDATE_CHN_A_B (CMD_WRITE_UPDATE_DAC << 4) | DAC_B_A

Defines the command to write and update both channel A and channel B.

#define WRITE_UPDATE_CHN_B (CMD_WRITE_UPDATE_DAC << 4) | DAC_B

Defines the command to write and update channel B.

Function Documentation

void DAC_Init (void)

Initializes the DAC.

Powers on the DAC with only one channel open.

Remarks:

Requires the SPI module to be initialized.

Returns:

Void.

DWORD DAC_WriteToDAC (BYTE cmd_addr, WORD data)

Writes data to the DAC.

The current DAC can only handle 12-bit data. Therefore, the data that is transmitted are the first

12 MSB.

• cmd_addr The command and channel of the DAC.

• data The data that will be written to the DAC.

111

• Remarks:

Requires SPI and the DAC to be initialized.

• Returns:

Returns a boolean indicating if writing to the DAC is successful.

• Return values:

TRUE If the file was read successfully

FALSE If the file was read unsuccessfully

void DAC_Zero (void)

Sets the DAC output to mid-scale.

Remarks:

Requires SPI and the DAC to be initialized.

Returns:

Void

void DAC_ZeroOutput (void)

Sets the DAC output to zero.

Remarks:

Requires SPI and the DAC to be initialized.

Returns:

Void

11.5.7 FIFO.c File Reference
#include "STDDEF.h"
#include "FIFO.h"

Functions

• BOOL FIFO_MonPush (MON_FIFO *fifo, char ch)

Pushes data into the FIFO queue.

• char FIFO_MonPop (MON_FIFO *fifo)

Pops data from the FIFO queue.

Detailed Description

Author:

Kue Yang

112

Date:

11/22/2016

The FIFO module handles all FIFO related tasks. The FIFO module handles pushing and popping

data into a given FIFO queue for processing.

Function Documentation

char FIFO_MonPop (MON_FIFO * fifo)

Pops data from the FIFO queue.

• fifo The FIFO buffer that will be reading data from.

• Returns:

Returns the next character in the FIFO buffer.

BOOL FIFO_MonPush (MON_FIFO * fifo, char ch)

Pushes data into the FIFO queue.

• fifo The FIFO buffer that will be receiving data.

• ch The data that will be inserted into the FIFO.

• Returns:

Returns a boolean to indicate whether operation is successful or not.

• Return values:

TRUE If pushing data to queue is successful.

FALSE If pushing data to queue is unsuccessful.

11.5.8 FIFO.h File Reference

Data Structures

• struct MON_FIFO

MON_FIFO data structure.

Macros

• #define MON_BUFFERSIZE 1024

Typedefs

• typedef struct MON_FIFO MON_FIFO

113

MON_FIFO data structure.

Functions

• char FIFO_MonPop (MON_FIFO *fifo)

Pops data from the FIFO queue.

• BOOL FIFO_MonPush (MON_FIFO *fifo, char ch)

Pushes data into the FIFO queue.

Detailed Description

Author:

Kue Yang

Date:

11/22/2016

Macro Definition Documentation

#define MON_BUFFERSIZE 1024

Defines the buffer size used for the FIFO queue.

Typedef Documentation

typedef struct MON_FIFO MON_FIFO

MON_FIFO data structure.

The FIFO data structure is used to create and store a FIFO queue.

Function Documentation

char FIFO_MonPop (MON_FIFO * fifo)

Pops data from the FIFO queue.

• fifo The FIFO buffer that will be reading data from.

• Returns:

Returns the next character in the FIFO buffer.

BOOL FIFO_MonPush (MON_FIFO * fifo, char ch)

114

Pushes data into the FIFO queue.

• fifo The FIFO buffer that will be receiving data.

• ch The data that will be inserted into the FIFO.

• Returns:

Returns a boolean to indicate whether operation is successful or not.

• Return values:

TRUE If pushing data to queue is successful.

FALSE If pushing data to queue is unsuccessful.

11.5.9 FILEDEF.h File Reference

Macros

• #define PIC1

• #define MAX_NUM_OF_FILES 21

• #define FILE_0 0

• #define FILE_1 1

• #define FILE_2 2

• #define FILE_3 3

• #define FILE_4 4

• #define FILE_5 5

• #define FILE_6 6

• #define FILE_7 7

• #define FILE_8 8

• #define FILE_9 9

• #define FILE_10 10

• #define FILE_11 11

• #define FILE_12 12

• #define FILE_13 13

• #define FILE_14 14

• #define FILE_15 15

• #define FILE_16 16

• #define FILE_17 17

• #define FILE_18 18

• #define FILE_19 19

• #define FILE_20 20

Variables

• const char * fileNames [MAX_NUM_OF_FILES]

115

Detailed Description

Author:

Kue Yang

Date:

11/22/2016

Macro Definition Documentation

#define FILE_0 0

Defines file index 0.

#define FILE_1 1

Defines file index 1.

#define FILE_10 10

Defines file index 10.

#define FILE_11 11

Defines file index 11.

#define FILE_12 12

Defines file index 12.

#define FILE_13 13

Defines file index 13.

#define FILE_14 14

Defines file index 14.

#define FILE_15 15

Defines file index 15.

#define FILE_16 16

Defines file index 16.

#define FILE_17 17

Defines file index 17.

#define FILE_18 18

Defines file index 18.

#define FILE_19 19

Defines file index 19.

#define FILE_2 2

Defines file index 2.

#define FILE_20 20

Defines file index 20.

#define FILE_3 3

Defines file index 3.

#define FILE_4 4

Defines file index 4.

#define FILE_5 5

Defines file index 5.

116

#define FILE_6 6

Defines file index 6.

#define FILE_7 7

Defines file index 7.

#define FILE_8 8

Defines file index 8.

#define FILE_9 9

Defines file index 9.

#define MAX_NUM_OF_FILES 21

Defines the max number of audio files to be open.

PIC1

Defines the selected PIC.

Variable Documentation

fileNames

Stores the list of audio file names.

11.5.10 FILES.c File Reference

#include <p32xxxx.h>

#include <stdio.h>
#include "STDDEF.h"

#include "./fatfs/diskio.h"

#include "./fatfs/ffconf.h"
#include "./fatfs/ff.h"

#include "FILES.h"

Detailed Description

Author:

Kue Yang

Date:

11/22/2016

The FILES module will handle all file related tasks. Tasks includes: opening and closing files,

searching for files and reading files. This module requires the Fatfs File System Library.

11.5.11 FILES.h File Reference

117

#include "./fatfs/ff.h"

Data Structures

• struct AUDIOINFO

• AUDIOINFO data structure. struct FILES

• FILES data structure.

Typedefs

• typedef struct AUDIOINFO AUDIOINFO

AUDIOINFO data structure.

• typedef struct FILES FILES

FILES data structure.

Functions

• FRESULT FILES_ReadFile (FIL *file, BYTE *buffer, UINT16 bytes, UINT16 *ptr)

Reads a file.

• FRESULT FILES_FindFile (DIR *dir, FILINFO *fileInfo, const char *fileName)

Finds a file.

• BOOL FILES_ListFiles (const char *selectedName)

Displays a list of files.

• FRESULT FILES_CloseFile (FIL *file)

Closes a file.

• FRESULT FILES_OpenFile (FIL *file, const char *fileName, int mode)

Opens a file.

Detailed Description

Author:

Kue Yang

Date:

11/22/2016

Typedef Documentation

typedef struct AUDIOINFO AUDIOINFO

AUDIOINFO data structure.

The AUDIOINFO data structure is used to store the audio header data and file name.

118

typedef struct FILES FILES

FILES data structure.

The FILES data structure is used to store the file data used in conjunction with the Fatfs File

System Library. The structure also stores the audio header data corresponding to the specified file.

Function Documentation

FRESULT FILES_CloseFile (FIL * file)

Closes a file.

Closes the specified file

• file The file data structure

• Returns:

Returns a code indicating if a file successfully closes or not.

FRESULT FILES_FindFile (DIR * dir, FILINFO * fileInfo, const char *

fileName)

Finds a file.

Finds a specific file

• dir The directory data structure

• fileInfo The file data structure

• fileName The file name to find

• Returns:

Returns a code indicating if a file successfully found or not.

BOOL FILES_ListFiles (const char * selectedName)

Displays a list of files.

Displays a list of files and indicates which file is currently selected.

• selectedName The file name that is selected.

• Returns:

Returns a boolean indicating if the list of files is found.

FRESULT FILES_OpenFile (FIL * file, const char * fileName, int mode)

Opens a file.

Opens the specified file with the specified access attributes.

• file The file data structure

• fileName The name of the file to be read

• mode The file access mode

• Returns:

Returns a code indicating if a file successfully opens or not.

FRESULT FILES_ReadFile (FIL * file, BYTE * buffer, UINT16 bytes, UINT16

* ptr)

Reads a file.

119

Reads a specific file

• file The file data structure

• buffer The buffer to store the bytes read.

• bytes The number of bytes to read

• ptr A pointer to the number of bytes read

• Returns:

Returns a code indicating if a file successfully read or not.

11.5.12 HardwareProfile.h File Reference

Defines System Configurations.

Macros

• #define SYS_FREQ (40000000L)

• #define GetPeripheralClock() (SYS_FREQ/(1 << OSCCONbits.PBDIV))

• #define GetInstructionClock() (SYS_FREQ)

• #define CLEAR_WATCHDOG_TIMER WDTCONbits.WDTCLR = 0x01;

Detailed Description

Defines System Configurations.

Author:

Kue Yang

Date:

11/22/2016

Macro Definition Documentation

#define CLEAR_WATCHDOG_TIMER WDTCONbits.WDTCLR = 0x01;

Clears the watchdog timer.

#define GetInstructionClock() (SYS_FREQ)

Calculates and returns the Instruction Clock Speed.

#define GetPeripheralClock() (SYS_FREQ/(1 << OSCCONbits.PBDIV))

Calculates and returns the Peripheral Clock Speed.

#define SYS_FREQ (40000000L)

Defines the System Clock Speed.

120

11.5.13 IO.c File Reference
#include <p32xxxx.h>
#include <stdio.h>

#include "HardwareProfile.h"
#include "STDDEF.h"

#include "IO.h"

Macros

• #define FRET_GROUP_COUNT 4

• #define FRETS_PER_GROUP 5

Functions

• void IO_setGroupOutput (int group)

Sets the fret group to be scan.

• void IO_Init (void)

Initializes the IO module.

• int IO_scanFrets (void)

Scans a selection of frets.

Detailed Description

Author:

Kue Yang

Date:

11/22/2016

The IO module will handle all IO related tasks. The module will be initialize both the analog and digital

IOs for all other modules (e.g. UART). The process of checking for finger placement for each frets is

handled in this module.

Macro Definition Documentation

#define FRET_GROUP_COUNT 4

Defines the number of fret groups.

#define FRETS_PER_GROUP 5

Defines the number of frets per group.

121

Function Documentation

void IO_Init (void)

Initializes the IO module.

Initializes all pins used for all hardware modules in the application.

Returns:

Void

int IO_scanFrets (void)

Scans a selection of frets.

Scans all frets groups to determine which fret was pressed. Sets the currently selected fret to the

fret that is pressed. Defaults to an open fret.

Returns:

Void

void IO_setGroupOutput (int group)

Sets the fret group to be scan.

• group The fret group to be scan.

• Returns:

Void

11.5.14 IO.h File Reference

Macros

• #define GROUP4_OUT PORTEbits.RE1

• #define GROUP3_OUT PORTGbits.RG14

• #define GROUP2_OUT PORTDbits.RD4

• #define GROUP1_OUT PORTGbits.RG13

• #define FRET5 PORTGbits.RG1

• #define FRET4 PORTGbits.RG0

• #define FRET3 PORTAbits.RA6

• #define FRET2 PORTAbits.RA7

• #define FRET1 PORTEbits.RE0

• #define ON_LED PORTEbits.RE2

• #define ERROR_LED PORTEbits.RE3

• #define INITIALIZE_LED PORTEbits.RE4

Functions

• void IO_Init (void)

Initializes the IO module.

• int IO_scanFrets (void)

122

Scans a selection of frets.

Detailed Description

Author:

Kue Yang

Date:

11/22/2016

Macro Definition Documentation

#define ERROR_LED PORTEbits.RE3

Defines the LED for ERROR.

#define FRET1 PORTEbits.RE0

Defines the input PORT for Fret 1

#define FRET2 PORTAbits.RA7

Defines the input PORT for Fret 2

#define FRET3 PORTAbits.RA6

Defines the input PORT for Fret 3

#define FRET4 PORTGbits.RG0

Defines the input PORT for Fret 4

#define FRET5 PORTGbits.RG1

Defines the input PORT for Fret 5

#define GROUP1_OUT PORTGbits.RG13

Defines the output PORT for Group 1

#define GROUP2_OUT PORTDbits.RD4

Defines the output PORT for Group 2

#define GROUP3_OUT PORTGbits.RG14

Defines the output PORT for Group 3

#define GROUP4_OUT PORTEbits.RE1

Defines the output PORT for Group 4

#define INITIALIZE_LED PORTEbits.RE4

Defines the LED for finishing INITIALIZATION.

#define ON_LED PORTEbits.RE2

Defines the LED for ON.

Function Documentation

void IO_Init (void)

Initializes the IO module.

Initializes all pins used for all hardware modules in the application.

123

Returns:

Void

int IO_scanFrets (void)

Scans a selection of frets.

Scans all frets groups to determine which fret was pressed. Sets the currently selected fret to the

fret that is pressed. Defaults to an open fret.

Returns:

Void

11.5.15 main.c File Reference

The main entry point of the application.

#include <p32xxxx.h>
#include "plib/plib.h"
#include "HardwareProfile.h"

#include "STDDEF.h"
#include "IO.h"
#include "TIMER.h"

#include "ADC.h"
#include "SPI.h"
#include "UART.h"

#include "DAC.h"
#include "AUDIO.h"

Functions

• int main (void)

The main entry point of the application.

Detailed Description

The main entry point of the application.

Author:

Kue Yang

Date:

11/22/2016

124

Function Documentation

int main (void)

The main entry point of the application.

Returns:

An integer 0 upon exit success.

11.5.16 SPI.c File Reference

#include <p32xxxx.h>

#include "plib/plib.h"
#include "HardwareProfile.h"

#include "STDDEF.h"
#include "SPI.h"

Detailed Description

Author:

Kue Yang

Date:

11/22/2016

The SPI module will handle all SPI related tasks. The SPI module is used by the DAC module to

write to the DAC.

11.5.17 SPI.h File Reference

Functions

• void SPI_Init (void)

Initializes the SPI modules.

• BYTE SPI1_ReadWrite (BYTE)

Reads and write data to SPI buffer.

• BYTE SPI2_ReadWrite (BYTE)

Reads and write data to SPI buffer.

• void SPI3_Init (int clk)

Initializes the SPI3 module.

• BYTE SPI3_ReadWrite (BYTE ch)

Reads and write data to SPI buffer.

125

Detailed Description

Author:

Kue Yang

Date:

11/22/2016

Function Documentation

BYTE SPI1_ReadWrite (BYTE ch)

Reads and write data to SPI buffer.

• ch The data to be written to SPI buffer.

• Returns:
Returns the data read from the SPI buffer.

BYTE SPI2_ReadWrite (BYTE ch)

Reads and write data to SPI buffer.

• ch The data to be written to SPI buffer.

• Returns:
Returns the data read from the SPI buffer.

void SPI3_Init (int clk)

Initializes the SPI3 module.

• clk The clock rate to set the SPI module to.

• Returns:
Void.

BYTE SPI3_ReadWrite (BYTE ch)

Reads and write data to SPI buffer.

• ch The data to be written to SPI buffer.

• Returns:
Returns the data read from the SPI buffer.

void SPI_Init (void)

Initializes the SPI modules.

126

Returns:

Void.

11.5.18 STDDEF.h File Reference

Macros

• #define TRUE 1

• #define FALSE 0

• #define BOOL int

• #define INT32_MAX_NUM 1<<31

• #define INT16_MAX_NUM 1<<15

Typedefs

• typedef unsigned char UINT8

Typedef definition for UINT8.

• typedef unsigned short UINT16

Typedef definition for UINT16.

• typedef unsigned long UINT32

Typedef definition for UINT32.

• typedef unsigned char BYTE

Typedef definition for BYTE datatype.

• typedef unsigned short WORD

Typedef definition for WORD datatype.

• typedef unsigned long DWORD

Typedef definition for DWORD datatype.

Detailed Description

Author:

Kue Yang

Date:

11/22/2016

Macro Definition Documentation

#define BOOL int

Boolean datatype definition.

#define FALSE 0

Boolean datatype.

127

#define INT16_MAX_NUM 1<<15

Defines the max value for a 16-bit variable.

#define INT32_MAX_NUM 1<<31

Defines the max value for a 32-bit variable.

#define TRUE 1

Boolean datatype.

11.5.19 TIMER.c File Reference
#include <p32xxxx.h>

#include "plib/plib.h"

#include "HardwareProfile.h"
#include "STDDEF.h"

#include "./fatfs/diskio.h"
#include "AUDIO.h"

#include "TIMER.h"

• #define ONE_MS_PERIOD 40000

Detailed Description

Author:

Kue Yang

Date:

11/22/2016

The TIMER module will handle timers and delays used in the application.

Macro Definition Documentation

#define ONE_MS_PERIOD 40000

Timer 1 Period for one ms.

11.5.20 TIMER.h File Reference

#include "STDDEF.h"

Functions

• void TIMER_Init (void)

Initializes all timer modules.

• void TIMER_Process (void)

Runs timer related operations.

• UINT32 TIMER_GetMSecond (void)

128

Returns the millisecond count.

• void TIMER_MSecondDelay (int)

Delays the application for a given set time.

• BOOL TIMER1_IsON (void)

Checks if Timer 1 is on/off.

• void TIMER1_ON (BOOL ON)

Toggles on/off Timer 1.

• BOOL TIMER3_IsON (void)

Checks if Timer 3 is on/off.

• void TIMER3_ON (BOOL ON)

Toggles on/off Timer 3.

• Void TIMER3_SetSampleRate (UINT16 sampleRate)

Sets the Timer 3 period.

Detailed Description

Author:

Kue Yang

Date:

11/22/2016

Function Documentation

BOOL TIMER1_IsON (void)

Checks if Timer 1 is on/off.

Returns:

Returns a boolean indicating if Timer 1 is on/off.

Return values:

TRUE Timer 1 is on.

FALSE Timer 1 is off.

void TIMER1_ON (BOOL ON)

Toggles on/off Timer 1.

• ON Toggles the timer on/off (TRUE/FALSE).

• Returns:

Void

BOOL TIMER3_IsON (void)

Checks if Timer 3 is on/off.

129

Returns:

Returns a boolean indicating if Timer 3 is on/off.

Return values:

TRUE Timer 3 is on.

FALSE Timer 3 is off.

void TIMER3_ON (BOOL ON)

Toggles on/off Timer 3.

• ON Toggles the timer on/off (TRUE/FALSE).

• Returns:

Void

void TIMER3_SetSampleRate (UINT16 sampleRate)

Sets the Timer 3 period.

• sampleRate The sample rate to set Timer 3 at.

• Returns:

Void

UINT32 TIMER_GetMSecond (void)

Returns the millisecond count.

Returns:

Returns the millisecond count of the application since startup.

void TIMER_Init (void)

Initializes all timer modules.

Returns:

Void

void TIMER_MSecondDelay (int timeDelay)

Delays the application for a given set time.

• timeDelay The delay in milliseconds.

• Returns:

Void

void TIMER_Process (void)

Runs timer related operations.

130

Returns:

Void

11.5.21 UART.c File Reference
#include <p32xxxx.h>

#include "plib/plib.h"

#include <stdio.h>
#include <string.h>

#include "HardwareProfile.h"

#include "STDDEF.h"
#include "Timer.h"

#include "FIFO.h"
#include "DAC.h"

#include "AUDIO.h"

#include "UART.h"

Macros

• #define DESIRED_BAUDRATE (19200)

• #define WRITE_BUFFER_SIZE 128

• #define CMD_SIZE 16

• #define DESCRIPTION_SIZE (WRITE_BUFFER_SIZE-CMD_SIZE)

Functions

• int UART_GetBaudRate (int desireBaud)

Calculates the baud rate configuration.

• BOOL UART_isBufferEmpty (MON_FIFO *buffer)

Checks if the specified buffer is empty.

• char UART_getNextChar (MON_FIFO *buffer)

Pops a character from the buffer.

• void UART_putNextChar (MON_FIFO *buffer, char ch)

Pushes the specified character into the buffer.

• void UART_processCommand (void)

Processes commands received by the UART module.

• int MON_parseCommand (COMMANDSTR *cmd, MON_FIFO *buffer)

Parses the received commands.

• COMMANDS MON_getCommand (const char *cmdName)

Gets the handler for the specified command.

• void MON_GetHelp (void)

Displays the list of available commands.

• void MON_GetFileList (void)

Command used to display a list of files.

• void MON_Set_File (void)

131

Command used to select a specific file.

• void MON_Reset_File (void)

Command used to reset the selected file pointer.

• void MON_Read_File (void)

Command used to read the selected file.

• void MON_TestDAC (void)

Command used to write data to the DAC.

• void MON_ZeroDAC (void)

Command used to zero the DAC's output.

• void MON_SinDAC (void)

Command used to write a sin wav to the DAC.

• void MON_Timer_ON_OFF (void)

Command used to Toggle on/off the Timer 3 module.

• void MON_Timer_Get_PS (void)

Command used to display a Timer 3 period.

• void MON_Timer_Set_PS (void)

Command used to set Timer 3 period.

• void UART_Init (void)

Initialize the UART module.

• void UART_Process (void)

Processes all UART related tasks.

• void MON_SendChar (const char *character)

Transmit a character.

• void MON_SendString (const char *str)

Transmit a string.

• void MON_SendStringNR (const char *str)

Transmit a string.

• char MON_lowerToUpper (const char *ch)

Changes character to undercase.

• BOOL MON_stringsMatch (const char *str1, const char *str2)

Checks if two strings matches.

• void MON_removeWhiteSpace (const char *string)

Removes white spaces from a string.

• UINT16 MON_getStringLength (const char *string)

Gets the length of a string.

• void __ISR (_UART1_VECTOR, IPL2AUTO)

The UART1 Interrupt Service Routine.

Variables

• COMMANDSTR cmdStr

• MON_FIFO rxBuffer

• MON_FIFO txBuffer

• BOOL cmdReady

• UINT16 actualBaudRate

132

• UINT16 numOfCmds

• COMMANDS MON_COMMANDS []

Detailed Description

Author:

Kue Yang

Date:

11/22/2016

The UART module will handle serial communication. The module will be used to receive

commands via serial communications and can be use as a debugging tool. The serial

communication uses the rs232 serial interface.

Macro Definition Documentation

#define CMD_SIZE 16

The size of the command name string.

#define DESCRIPTION_SIZE (WRITE_BUFFER_SIZE-CMD_SIZE)

The size of command description string.

#define DESIRED_BAUDRATE (19200)

The desired UART baud rate.

#define WRITE_BUFFER_SIZE 128

The buffer size for writing.

Function Documentation

void __ISR (_UART1_VECTOR , IPL2AUTO)

The UART1 Interrupt Service Routine.

The UART1 interrupt service routine will handle receiving data. If data is received, the data is

pushed into a FIFO queue for later processing. If data is received is a return key, the received data

has ended and the command is ready flag is set.

Returns:

Void.

COMMANDS MON_getCommand (const char * cmdName)

Gets the handler for the specified command.

• cmdName The name of the command.

• Returns:

Returns the command handler.

void MON_GetFileList (void)

Command used to display a list of files.

133

Returns:

Void.

void MON_GetHelp (void)

Displays the list of available commands.

Commands Handlers.

Returns:

Void.

UINT16 MON_getStringLength (const char * string)

Gets the length of a string.

• string The string that is being modified.

• Returns:

Returns the string length.

char MON_lowerToUpper (const char * ch)

Changes character to undercase.

Changes character to undercase.

• ch The character to undercase.

• Returns :

The undercase character

int MON_parseCommand (COMMANDSTR * cmd, MON_FIFO * buffer)

Parses the received commands.

• cmd The command data structure used to store the command.

• buffer The receive buffer.

• Returns:

Returns the number of command arguments.

void MON_Read_File (void)

Command used to read the selected file.

Returns:

Void.

void MON_removeWhiteSpace (const char * string)

Removes white spaces from a string.

• string The string that is being modified.

• Returns:

Void.

void MON_Reset_File (void)

134

Command used to reset the selected file pointer.

Returns:

Void.

void MON_SendChar (const char * character)

Transmit a character.

Add character to transmit fifo buffer.

• character The character to transmit.

• Returns:

Void.

void MON_SendString (const char * str)

Transmit a string.

Adds string to transmit fifo buffer.

• str The string to transmit.

• Returns:

Void.

void MON_SendStringNR (const char * str)

Transmit a string.

Transmit a string without a newline or return character.

• str The string to transmit.

• Returns:

Void.

void MON_Set_File (void)

Command used to select a specific file.

Returns:

Void.

void MON_SinDAC (void)

Command used to write a sin wav to the DAC.

Returns:

Void.

BOOL MON_stringsMatch (const char * str1, const char * str2)

Checks if two strings matches.

• str1 The first string to compare.

• str2 The second string to compare.

• Returns:

Returns a boolean indicating if the strings matches.

135

• Return values:

TRUE if both strings matches.

FALSE if the strings does not match.

void MON_TestDAC (void)

Command used to write data to the DAC.

Returns:

Void.

void MON_Timer_Get_PS (void)

Command used to display a Timer 3 period.

Returns:

Void.

void MON_Timer_ON_OFF (void)

Command used to Toggle on/off the Timer 3 module.

Returns:

Void.

void MON_Timer_Set_PS (void)

Command used to set Timer 3 period.

Returns:

Void.

void MON_ZeroDAC (void)

Command used to zero the DAC's output.

Returns:

Void.

int UART_GetBaudRate (int desireBaud)

Calculates the baud rate configuration.

UART Helper Functions.

• desireBaud The desired baud rate.

• Returns:

Returns the baud rate for the given peripheral clock.

char UART_getNextChar (MON_FIFO * buffer)

Pops a character from the buffer.

136

• buffer The buffer to pop the character from.

• Returns:

Returns the character that is popped off from the buffer.

void UART_Init (void)

Initialize the UART module.

Returns:

Void

BOOL UART_isBufferEmpty (MON_FIFO * buffer)

Checks if the specified buffer is empty.

FIFO helper functions.

• buffer The buffer that is being checked.

• Returns:

Returns a boolean indicating if the buffer is empty.

• Return values:

TRUE if the buffer is empty.

FALSE if the buffer is not empty.

void UART_Process (void)

Processes all UART related tasks.

Returns:

Void.

void UART_processCommand (void)

Processes commands received by the UART module.

Command Helper Functions.

Returns:

Void.

void UART_putNextChar (MON_FIFO * buffer, char ch)

Pushes the specified character into the buffer.

• buffer The buffer used to store the character.

• ch The character to push into buffer.

• Returns:

Void.

137

Variable Documentation

actualBaudRate

The configured UART baud rate.

cmdReady

The UART command receive flag.

cmdStr

The command string.

MON_COMMANDS

Initial value:= {

 {"HELP", " Display the list of commands avaliable. ", MON_GetHelp},

 {"LIST", " Lists all WAV files. ", MON_GetFileList},

 {"SET", " Sets the file to read. FORMAT: SET fileName.", MON_Set_File},

{"RESET", " Resets the file pointer to beginning of file.",

MON_Reset_File},

{"READ", " Reads numOfBytes from current file. Read from beginning of the

file if reset is set to 1. FORMAT: READ reset numOfBytes.",

MON_Read_File},

{"DAC", " Sets an output value on the DAC. MIN: 0, MAX: 65535. FORMAT: DAC

value. ", MON_TestDAC},

 {"ZERO", " Sets all DAC outputs to zero. ", MON_ZeroDAC},

 {"SIN", " Tests the DAC using a sin wave. ", MON_SinDAC},

 "TONE", " Toggles on/off the Audio Timer. ", MON_Timer_ON_OFF},

{"PDG", " Get the current period set on timer 3. FORMAT: PDG.",

MON_Timer_Get_PS},

{"PDS", " Configures the timer period. FORMAT: PDS period .",

MON_Timer_Set_PS},

 {"", "", NULL}

}

The list of commands.

numOfCmds

The number of commands.

rxBuffer

The UART receive buffer.

txBuffer

The UART transmit buffer.

11.5.22 UART.h File Reference

Data Structures

• struct COMMANDS

• COMMANDS data structure. struct COMMANDSTR

COMMANDSTR data structure.

138

 Typedefs

• typedef struct COMMANDS COMMANDS

COMMANDS data structure.

• typedef struct COMMANDSTR COMMANDSTR

COMMANDSTR data structure.

Functions

• void UART_Init (void)

Initialize the UART module.

• void UART_Process (void)

Processes all UART related tasks.

• void MON_removeWhiteSpace (const char *string)

Removes white spaces from a string.

• UINT16 MON_getStringLength (const char *string)

Gets the length of a string.

• BOOL MON_stringsMatch (const char *str1, const char *str2)

Checks if two strings matches.

• char MON_lowerToUpper (const char *ch)

Changes character to undercase.

• void MON_SendStringNR (const char *str)

Transmit a string.

• void MON_SendString (const char *str)

Transmit a string.

• void MON_SendChar (const char *character)

Transmit a character.

Detailed Description

Author:

Kue Yang

Date:

11/22/2016

Typedef Documentation

typedef struct COMMANDS COMMANDS

COMMANDS data structure.

The COMMANDS data structure is used to store a command with its corresponding command

handler. The command handler is used in conjunction with the serial communication for

processing a command that is received from the user.

typedef struct COMMANDSTR COMMANDSTR

COMMANDSTR data structure.

139

The command string data structure is used to store a command with its corresponding arguments.

Function Documentation

UINT16 MON_getStringLength (const char * string)

Gets the length of a string.

• string The string that is being modified.

• Returns:

Returns the string length.

char MON_lowerToUpper (const char * ch)

Changes character to undercase.

Changes character to undercase.

• ch The character to undercase.

• Returns:

The undercase character

void MON_removeWhiteSpace (const char * string)

Removes white spaces from a string.

• string The string that is being modified.

• Returns:

Void.

void MON_SendChar (const char * character)

Transmit a character.

Add character to transmit fifo buffer.

• character The character to transmit.

• Returns:

Void.

void MON_SendString (const char * str)

Transmit a string.

Adds string to transmit fifo buffer.

• str The string to transmit.

• Returns:

Void.

void MON_SendStringNR (const char * str)

Transmit a string.

Transmit a string without a newline or return character.

• str The string to transmit.

140

• Returns:

Void.

BOOL MON_stringsMatch (const char * str1, const char * str2)

Checks if two strings matches.

• str1 The first string to compare.

• str2 The second string to compare.

• Returns:

Returns a boolean indicating if the strings matches.

• Return values:

TRUE if both strings matches.

FALSE if the strings does not match.

void UART_Init (void)

Initialize the UART module.

Returns:

Void

void UART_Process (void)

Processes all UART related tasks.

Returns:

Void.

141

11.5.23 WAVDEF.h File Reference

Macros

• #define WAV_HEADER_SIZE 44

• #define WAV_CHUNK_ID 0

• #define WAV_CHUNK_SIZE 4

• #define WAV_FORMAT 8

• #define WAV_CHUNK1_SUB_ID 12

• #define WAV_CHUNK1_SUB_SIZE 16

• #define WAV_AUDIO_FORMAT 20

• #define WAV_NUM_CHANNELS 22

• #define WAV_SAMPLE_RATE 24

• #define WAV_BYTE_RATE 28

• #define WAV_BLOCK_ALIGN 32

• #define WAV_BITS_PER_SAMPLE 34

• #define WAV_CHUNK2_SUB_ID 36

• #define WAV_CHUNK2_SUB_SIZE 40

• #define WAV_DATA 44

• #define WAV_SUCCESS 1

• #define WAV_HEADER_SIZE_ERROR 2

• #define WAV_CHUNK_ID_ERROR 3

• #define WAV_FORMAT_ERROR 4

• #define WAV_SUB_CHUNK1_ID_ERROR 5

• #define WAV_SUB_CHUNK1_SIZE_ERROR 6

• #define WAV_SUB_CHUNK2_ID_ERROR 7

Detailed Description

Author:

Kue Yang

Date:

11/22/2016

Macro Definition Documentation

#define WAV_AUDIO_FORMAT 20

Defines the index of the WAV audio format.

#define WAV_BITS_PER_SAMPLE 34

Defines the index of the WAV bits per sample.

#define WAV_BLOCK_ALIGN 32

Defines the index of the WAV block alignment.

#define WAV_BYTE_RATE 28

Defines the index of the WAV byte rate.

142

#define WAV_CHUNK1_SUB_ID 12

Defines the index of the WAV chunk1 sub ID.

#define WAV_CHUNK1_SUB_SIZE 16

Defines the index of the WAV chunk1 sub size.

#define WAV_CHUNK2_SUB_ID 36

Defines the index of the WAV chunk2 sub ID.

#define WAV_CHUNK2_SUB_SIZE 40

Defines the index of the WAV chunk2 sub size.

#define WAV_CHUNK_ID 0

Defines the index of the WAV chunk ID.

#define WAV_CHUNK_ID_ERROR 3

Defines the error code for invalid chunk ID.

#define WAV_CHUNK_SIZE 4

Defines the index of the WAV chunk size.

#define WAV_DATA 44

Defines the index of the WAV data.

#define WAV_FORMAT 8

Defines the index of the WAV format.

#define WAV_FORMAT_ERROR 4

Defines the error code for invalid WAV format.

#define WAV_HEADER_SIZE 44

Defines the size of a WAV file header.

#define WAV_HEADER_SIZE_ERROR 2

Defines the error code for the wrong header size.

#define WAV_NUM_CHANNELS 22

Defines the index of the WAV number of channels.

#define WAV_SAMPLE_RATE 24

Defines the index of the WAV sample rate.

#define WAV_SUB_CHUNK1_ID_ERROR 5

Defines the error code for invalid chunk1 ID.

#define WAV_SUB_CHUNK1_SIZE_ERROR 6

Defines the error code for invalid chunk1 size.

#define WAV_SUB_CHUNK2_ID_ERROR 7

Defines the error code for invalid chunk2 ID.

#define WAV_SUCCESS 1

Defines the success code when accessing a WAV header.

	The University of Akron
	IdeaExchange@UAkron
	Spring 2017

	Stringless Guitar
	Kue Z. Yang
	Anthony Batey
	Dominic Mercorelli
	Nathaniel Hawk
	Recommended Citation

	tmp.1493852139.pdf.wvjGz

