
The University of Akron
IdeaExchange@UAkron

Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2017

Implementation of CUDA Accelerated Bayesian
Network Learning
Joseph Haddad
jsh77@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects

Part of the Numerical Analysis and Scientific Computing Commons

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of
IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

Recommended Citation
Haddad, Joseph, "Implementation of CUDA Accelerated Bayesian Network Learning" (2017). Honors Research
Projects. 499.
http://ideaexchange.uakron.edu/honors_research_projects/499

http://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=http://ideaexchange.uakron.edu/honors_research_projects/499
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects/499?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Haddad �1

Joseph Haddad

Honors Research Project

April 14, 2017

Implementation of CUDA Accelerated Bayesian Network Learning

Introduction
Inferring relations among genes requires a significant amount of data. Bayesian

networks may be used to correlate this data and extract relationships among the genes

[12]. We do not know what this relationship is, but we do know it has a high likelihood of

existing. These relationships can then be used to make testable hypotheses to deter-

mine how gene interactions influence life in organisms or humans. As a result, tests can

be performed in the lab with more confidence and a reduced chance of wasting time

and resources.

This concept has been applied to smaller data sets and shows promising results

[12], however remains too slow to be applied to a larger problem. It is our objective to

decrease the runtime required to form a network which may reveal genetic interactions.

Bayesian network learning, however, is inherently slow because it is an NP-hard algo-

rithm [4]. Search space reduction algorithms may be utilized to reduce the computation-

al complexity. K2 is a great example of a search space reduction algorithm, and is our

algorithm of choice. However, it introduces a new problem. K2 restricts the parent hier-

archy of genes within the network [4], and thus introduces bias in the computed rela-

tions. To achieve high confidence in the generated networks, an abundance of Bayesian

networks need to be computed using random search space restrictions. These random

Haddad �2

search space restrictions (or topologies) remove the bias and provide results which can

be interpreted at various levels of confidence.

By eliminating one problem and introducing another, consensus networks enable

the ability of parallelization by requiring multiple units of work rather than just one faster

unit of work. Other authors describe parallel implementations that can increase the

speed of Bayesian network learning [2] [9]. However, no libraries existed which compute

multiple Bayesian networks concurrently.

This paper is an extension to the initial implementation of the program, which

shows why the algorithm needs to be sped up [7]. An increase in samples causes linear

growth of the problem and introduction of additional genes causes exponential growth of

the problem [7].

This project examines the value of Bayesian network learning within a GPGPU

accelerated environment in order to reduce the time needed to generate consensus

networks using many topological inputs.

Haddad �3

Background
BAYESIAN NETWORKS

Bayesian networks capture qualitative relationships among variables within a di-

rected acyclic graph (or DAG). Nodes within the DAG represent variables, and edges

represent dependencies between the variables [8] [11]. Bayesian networks have a

search space which grows exponentially when introducing new nodes and not placing

restrictions on the structure of the network. This complication can be overcome by using

the K2 algorithm. The K2 algorithm reduces the computational cost of learning by im-

posing restraints on parent node connections via topological ordering [4]. Here, a topol-

ogy refers to a hierarchical structure of parenthood that the K2 algorithm will utilize to

reduce overall computational complexity while scoring data relationships. Restricting the

parent ordering, however, creates an issue of bias, which is inherent within a constraint-

based search space reduction [12]. Sriram [12] proposed a solution to this issue by cre-

ating a consensus network, or the combination of multiple Bayesian networks derived

from several topological inputs. To eliminate the bias created by these restraints, many

randomly generated topologies are used. By increasing the number of topological in-

puts, the consensus network has a greater chance of reflecting the true nature of the

gene interactions with higher levels of confidence.

OPENMP
OpenMP or (Open Multi-Processing) is a cross-platform, multilingual application

programming interface (API) which enables shared-memory parallel programming on a

single machine. The OpenMP specification consists of compiler directives and library

functions used to parallelize portions of a program's control flow [10]. The most rudi-

mentary example of OpenMP would be to distribute a for-loop across multiple threads.

Haddad �4

An advisory board of top entities in computation controls its specification [1]

which can be implemented by various compilers to target specific system capabilities

and architectures. The specification includes language-specific APIs, compiler direc-

tives, and standardized environment variables [10]. The model of OpenMP is compara-

ble to the fork-join model, but provides additional convenience (cross-platform) features

through compiler directives. These directives consist of, but are not limited to, barriers,

critical regions, variable atomicity, shared memory, and reductions [10].

OpenMP enables parallel code portability at a level which would not be achiev-

able while retaining an ideal code climate. OpenMP, by nature allows simple and

straight-forward parallelization of loops with a compiler directive that targets the system

for which the program is compiled on. Without OpenMP, the program would have to in-

clude many different libraries and routines to achieve parallel code across different sys-

tems. The result of this would be a program which only works on a specific set of ma-

chines, or a code base which is hard to maintain and debug when changes are made to

the underlying algorithm.

CUDA
CUDA is a parallel computing platform and application programming interface

(API) developed by NVIDIA [6]. CUDA allows software developers to utilize CUDA-en-

abled GPUs for general purpose processing (or GPGPU). CUDA introduces a concept

called kernels, which are extensions of C functions that, when called, are executed in

parallel by CUDA threads instead of once like regular C functions [5]. The primary use

case is when work is independent and many things need to be done in parallel (e.g.

scaling a vector). Due to the structure of threads on the GPU, operations such as

branches or jumps are permitted but highly discouraged. This is because threads run in

Haddad �5

lockstep and when a branch happens, the branches are executed serially. This means

threads are suspended and do not continue execution while the opposite branch is be-

ing explored. After the branch completes and the instructions converge, all threads re-

sume running [5]. This has many detrimental performance implications. Knowing this,

the GPU is best suited for vector-operations like scaling or other arithmetic which does

not branch. The memory for CUDA also resides on the GPU itself, which means before

any kernels are executed memory must be copied to the GPU. Memory must then also

be copied back to the host machine for use by the CPU [5]. This adds a delay which

may invalidate the benefits of CUDA for smaller workloads. We will evaluate this in this

study.

Haddad �6

Methodology
Testing was performed on the � machine at the University of Akron's Com-

puter Science Department. The machine contains a Tesla K40C and 2x Intel(R) Xeon(R)

CPU X5690 @ 3.47GHz. All tests utilize purely synthetic data in the form of a gene-by-

sample matrix consisting of the presence or absence of each gene within the sample.

This data was generated according to a model we defined. We then ensured the result

of the consensus network(s) matched our model to validate functionality and evaluate a

degree of correctness for our algorithm. Each test was run five times with the mean cal-

culated to use in our measurements.

The library being used to run the tests is available online [3]. This library was im-

plemented as described in this paper.

PROCESSORS
The first natural step in parallelizing computation is to attempt to use multiple

cores (or threads) simultaneously on the machine. This can be done by running multiple

instances of the program, or by implementing code which takes advantage of multiple

threads. There is a lot of shared memory in the program, however, which adds addition-

al complexity and latency when running multiple instances of the program. To keep

things simple and quick, a single program instance will be utilized. Analyzing the pro-

gram reveals a couple potential places for parallelization. There are many for-loops

which perform actions which are independent from one another. The for-loops identified

for inspection are the generation of topologies and the iteration over the topologies to

generate networks.

tesla

Haddad �7

The generation of topologies results in a a predetermined number of topologies

filled into an array. This operation can be easily parallelized across multiple cores as

they are independent. The appropriate tool to perform this parallelization is OpenMP.

OpenMP was implemented with a simple compiler directive which sped up computation.

#pragma omp parallel for
for (...) { }

Iterating over the topologies to generate networks can also be parallelized. The

creation of Bayesian networks are independent from one another, and thus, networks

can be asynchronously generated. Implementation of this parallelization is straight-for-

ward as Bayesian network computation does not mutate its data set. This prevents us

from having to replicate the memory and increase the space complexity of the algo-

rithm. OpenMP was implemented again as shown above. Additionally, within the parallel

for, the resulting network must be appended to the consensus network. The consensus

network, however, is not thread-safe and must be operated on within a critical section. A

critical section specifies that the code can only be executed on one thread at a time.

#pragma omp critical
for (...) { }

This ensures the networks are properly summed together, otherwise, an addition

may be lost. For example, if � and � attempt to increment a variable at

the same time, they may both access the value before the other commits the new value.

This will result in a lost operation, as the threads are not aware of one another.

To measure the resulting computational runtime decrease, multiple tests were

performed with varying number of processors. A single set of synthetic data was used

which consisted of 10 genes and 102,400 samples. Using � (2x Intel(R) Xeon(R)

T hrea d A T hrea d B

tesla

Haddad �8

CPU X5690 @ 3.47GHz), tests were run by varying the number of processors (up to 12)

and measuring the algorithm performance for the creation of 16 Bayesian networks per

gene (160 total). We have reached the resource limits on the system(s) which we have

access to, and cannot test beyond 12 cores. The selection of 10 genes and 16

Bayesian networks was arbitrarily chosen as sufficient means to measure computation

time.

CUDA
Since network generation relies heavily on matrix math, which consists of many

vector operations, it makes sense to explore acceleration using CUDA. Parallelizing

code in CUDA requires memory stored in contiguous memory on the host machine.

With these two characteristics (vector operations and contiguous memory),

adding CUDA is relatively trivial but requires an understanding of some low level units

and architecture. Executing CUDA code consists of grids, blocks, and threads. These

units are important to understand so you can achieve maximum occupancy (utilization)

of the cores on the GPU.

Simply put, these units are simply ways to split up work which is to be processed

by the GPU. In terms of the hierarchy, threads make up a block and blocks make up a

grid. A grid is executed on the GPU which is composed of many multiprocessors. Each

multiprocessor is responsible for executing one or more of the blocks in the grid. The

multiprocessors consist of many stream processors, which then are responsible for run-

ning one or more of the threads in the block.

It is also important to be aware of the physical architecture of your GPU device.

There is a maximum number of threads that can be executed per block. It is important

Haddad �9

to know this, because over scheduling threads will not cause an error, but instead cor-

rupt memory.

Determining maximum occupancy without exceeding the capability of the GPU is

very simple since CUDA 6.5 (it used to be difficult), which introduced

� . This function reasonably determines the

optimal execution configuration for a user defined kernel. Invoking this method returns

the � and � optimal to execute a kernel with the given shared

memory usage (�) and total number of elements you intend to do

work on (� , e.g. array length).

template <class T>
cudaError_t cudaOccupancyMaxPotentialBlockSize(int *minGridSize,
int *blockSize, T kernel, size_t dynamicSMemSize, int blockSizeLim-
it);

Within the kernel, you must determine the unit of work the thread is responsible

for. To compute this, you must use some CUDA defined runtime variables to decode the

thread's index.

With this knowledge and the hierarchy as explained previously, we can deduce

the following expression to determine our thread index:

� .

cu daOccupanc yMa xPotent ialBlockSize()

minGr idSize blockSize

d ynamicSMemSize

blockSizeLimit

Variable Type Description

blockDim dim3 Dimensions of the block
executing in this context

blockIdx uint3 Current block index within
executing grid

threadIdx uint3 Current thread index within
executing block

block Id x . x * block Dim . x + threa d Id x . x

Haddad �10

Applying this, we can easily implement an expensive mathematical function in

CUDA:

__global__ void vec_lgamma(double *a, double *c, const unsigned int
n) {
 const long idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (idx < n) {
 c[idx] = lgamma(a[idx]);
 }
}

Secondly, we can also easily implement matrix addition and then subtraction

(with small modification):

__global__ void vec_add(double *a, double *b, double *c, const un-
signed int n) {
 const long idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (idx < n) {
 c[idx] = a[idx] + b[idx];
 }
}

Haddad �11

Results and Discussion

PROCESSORS

When increasing the number of processors, a very strange anomaly occurs.

When first increasing the amount of work to two processors, runtime actually increases

significantly. This remains true until about 4 or 5 processors, where the runtime finally

proceeds to drop below the initial runtime execution. Exact results may be seen in

� .Table 1

Table 1: Runtimes for the program across increasing numbers of processors.
Cores Mean Time

1 202.377s

2 346.851s

3 259.284s

Figure 1: Comparison of CPU vs CUDA

1
2
3
4
5
5
7
8
9

10
11
12

Seconds
90 110 130 150 170 190 210 230 250 270 290 310 330 350

CPU CUDA

Haddad �12

The program runtime is not consistent with how OpenMP distributes its work.

OpenMP distributes the task of an independent Bayesian network computation across

multiple threads simultaneously. These independent tasks are non-blocking and do not

lock one another, and thus should have very little contention. There is one lock after

each computation which appends the network to the consensus network, but it has

been negligible in previous experiments [7] to the total time taken to compute the

Bayesian networks.

It's difficult to reason about this, but it’s possible our system (�) is not de-

signed for this type of workload. It is possible that introducing multithreading lessened

performance due to a variety of factors, such as bus speed. The machine we used has

two separate sockets (and two separate CPUs), which may be the cause for the slow

down. There may be an unnecessary number of memory cache misses and memory

sharing/switching between the processors which accounts for this detrimental perfor-

mance.

CUDA

4 214.646s

5 180.662s

6 156.596s

7 140.779s

8 128.487s

9 117.792s

10 109.486s

11 103.762s

12 94.739s

Cores Mean Time

tesla

Haddad �13

When performing matrix operations on CUDA, the performance increase is nega-

tive. In a couple cases, the CUDA implementation beats out the CPU by fractions of a

second. The tests were performed on a Tesla K40c card, which contains 15 multipro-

cessors at 192 stream processors each (2880 cores vs. the system's 12 cores).

Figure 1 illustrates that when using CUDA, the runtime generally increases. Ex-

act results may be seen in Table 2.

The detrimental performance (and seldom marginal increase) is unfortunate, but

understandable. Essentially, the time it takes to copy memory to and from the GPU out-

weighs that of the performance gain of � operations, as computing networks does

not perform any matrix multiplication (approx. �) and strictly � operations (e.g.

addition, subtraction, scalars).

Table 2: Runtimes for the program across increasing numbers of processors while using
Cores Mean Time

1 294.369s

2 349.657s

3 260.654s

4 220.396s

5 180.566s

6 156.880s

7 140.821s

8 128.177s

9 119.473s

10 109.909s

11 103.632s

12 94.461s

O(n)

O(n3) O(n)

Haddad �14

This test exhibits the same odd behavior as the processors, where runtime first

increases before it decreases. This behavior is then made worse by the memory copies

to and from the GPU, effectively nullifying any benefit or speed increase the GPU is

providing.

Haddad �15

Conclusion
We have concluded that utilizing parallelization through means of CUDA increas-

es or insignificantly decreases the time to generate a consensus network. Unfortunately,

it would suggest that GPU acceleration is not worth the investment and resource utiliza-

tion for Bayesian network learning.

The implementation of this � library may still have value when applied to

different scenarios, however. It is important to note that the reasons for decreased per-

formance is more likely attributed to computing � problems, instead of matrix multi-

plication (approx. �). Additionally, the library may be more performant on single-

CPU systems where there is not increased memory contention between the CPUs.

Acknowledgments
This research was funded in part by a grant from the Choose Ohio First Bioin-

formatics scholarship. Additional resources were provided by the The University of

Akron's Buchtel College of Arts and Sciences.

The data, statements, and views within this paper are solely the responsibility of

the author.

Matr i x

O(n)

O(n3)

Haddad �16

References
[1] About the OpenMP ARB and OpenMP.org: http://openmp.org/wp/about-openmp/.

[2] Altekar, G. et al. 2004. Parallel metropolis coupled Markov chain Monte Carlo for

Bayesian phylogenetic inference. Bioinformatics.

[3] Bayesian Learning source code: https://github.com/Timer/bayesian-learning.

[4] Cooper, G.F. and Herskovits, E. 1992. A Bayesian method for the induction of proba-

bilistic networks from data. Machine Learning.

[5] CUDA C Programming Guide: http://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html.

[6] CUDA Parallel Computing Platform: http://www.nvidia.com/object/cuda_home-

_new.html.

[7] Haddad, J.S. et al. 2016. Analysis of Parallel Bayesian Network Learning. Proceed-

ings of the 31st International Conference on Computers and Their Applications.

[8] Korb, K. and Nicholson, A. 2003. Bayesian artificial intelligence. Chapman and Hall/

CRC.

[9] Misra, S. et al. 2014. Parallel Bayesian network structure learning for genome-scale

gene networks. International Conference for High Performance Computing, Networking,

Storage and Analysis.

[10] OpenMP Application Program Interface: http://www.openmp.org/mp-documents/

OpenMP4.0.0.pdf.

[11] Pearl, J. 1998. Probabilistic inference in intelligent systems. Morgan Kaufmann

Publishers.

http://OpenMP.org
http://openmp.org/wp/about-openmp/
https://github.com/Timer/bayesian-learning
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

Haddad �17

[12] Sriram, A. 2011. Predicting Gene Relations Using Bayesian Networks. MS thesis,

University of Akron.

	The University of Akron
	IdeaExchange@UAkron
	Spring 2017

	Implementation of CUDA Accelerated Bayesian Network Learning
	Joseph Haddad
	Recommended Citation

	honors-research-project

