
The University of Akron
IdeaExchange@UAkron

Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2017

Indoor Mapping Drone
Benjamin J. Plevny
The University of Akron, bjp46@zips.uakron.edu

Andrew Armstrong
The University of Akron, aga12@zips.uakron.edu

Miguel Lopez
The University of Akron, ml83@zips.uakron.edu

Davidson Okpara
The University of Akron, doo3@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects

Part of the Controls and Control Theory Commons, Navigation, Guidance, Control and
Dynamics Commons, and the Systems and Communications Commons

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of
IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

Recommended Citation
Plevny, Benjamin J.; Armstrong, Andrew; Lopez, Miguel; and Okpara, Davidson, "Indoor Mapping Drone" (2017).
Honors Research Projects. 484.
http://ideaexchange.uakron.edu/honors_research_projects/484

http://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F484&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F484&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F484&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F484&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=http://ideaexchange.uakron.edu/honors_research_projects/484
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F484&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F484&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/226?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F484&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/226?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F484&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F484&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects/484?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F484&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Honors Research Project: Indoor Mapping Drone

Benjamin Plevny

My proposed honors research project was completed with the assistance of three other undergraduate

students in the Electrical and Computer Engineering Department as partial fulfillment of the

department’s senior design project requirement. The objective of this project was to research drone and

mapping technology in order to design an indoor mapping drone system. Such a system is desired for

emergency or military applications in which the exploration of an unmapped indoor space in necessary

and traversal of the space by a human or ground-based vehicle is too dangerous and too difficult. The

following report outlines the design produced by the team to meet this need.

As the “Project Lead” of the team, I was responsible for overall integration of the system as well as the

necessary controls. I produced the code which interacted with the lower-level drone hardware through

the provided libraries, and I created custom C code for closed-loop control of the drone’s position. In

addition to prescribing the method to be used for network communication between components of the

project, I also produced all the code which sends and receives these messages. Due to the nature of the

system, multithreaded processing was a must; I determined what tasks and group of tasks should be

managed by their own threads, and I wrote all the code pertaining to making multithreading a reality. As

the only member of the team who had also studied mechanical engineering, I completed the design of

the physical chassis to which the mapping components of the drone would be mounted. Finally, as the

leader of the team, I organized the internal team meetings as well as the meetings with our faculty

advisor and all other individuals who assisted with the project.

1

Indoor Mapping Drone

Project Design Report

Design Team Number: 05

Andrew Armstrong

Miguel Lopez

Davidson Okpara

Benjamin Plevny

Faculty Advisor: Dr. Arjuna Madanayake

Fall 2016

2

Table of Contents [BJP]

Table of Contents [BJP] 2
Index of Figures [BJP] 4
Index of Tables [BJP] 5
Abstract [ML] 6
Problem Statement 7

Need [BJP] 7
Objective [BJP] 7
Research [AGA] 8

2D - Camera 8
3D - Mapping 8

Marketing Requirements [DOO] 9
Objective Tree [BJP] 10

Design Requirements Specification [BJP] 11
Accepted Technical Design 13

Hardware Theory of Operation [AGA] 13
Software Theory of Operation [AGA] 13
Level Zero Block Diagram [BJP] 13

Level Zero Function Table [BJP] 13
Level Zero Hardware Block Diagram [BJP] 14

Level Zero Hardware Function Table [BJP] 14
Level Zero Software Block Diagram [BJP] 15
Level Zero Software Function Table [BJP] 15

Level One Hardware Block Diagram [BJP, DOO] 16
Level One Hardware Function Tables [AGA] 18

Level One Software Block Diagram [BJP] 19
Level One Software Function Tables [AGA] 20

Level Two Hardware Block Diagram [BJP, DOO] 21
Level Two Hardware Function Tables [AGA] 23
Level Two Software Block Diagram [BJP] 25

Level Two Software Function Tables [AGA] 25
Design Calculations 28

System Dynamics [BJP] 28
Plant Dynamic Model [BJP] 28
Control Scheme [BJP] 30

Discrete Time Model [BJP] 32
Payload Calculations [BJP] 33
Thermal Considerations [BJP] 33
Data Acquisition and Communication [BJP] 34

Hardware Selection 34
Drone Platform [BJP] 34
Remote Processing System [BJP] 35
RF Sensor Research [DOO] 36
Drone Add-On [AGA, ML] 36
Drone Add-On Materials Budget [AGA, BJP] 38

3

Configuration and Communication [BJP] 39

Remote Processing Unit [BJP] 40
Drone Platform [BJP] 41

Wireless Router [BJP] 42
Authentication and Storage [BJP] 42

Testing and Software Development [BJP] 43
Drone Mode Control and Channel Overrides [BJP] 43
UDP Channel Control [BJP] 48

Threaded UDP: Channel and Status Communication [BJP] 52
UDP Command Port [BJP] 61
Final Local Script [BJP] 62

Autonomy and Path Planning [AGA] 63
Parts List [AGA] 64

Project Schedules [AGA] 65
Midterm Design Gantt Chart [AGA] 65

Final Design Gantt Chart [AGA] 66
Proposed Implementation Gantt Chart [AGA] 67

Design Team Information [ML] 68
Conclusion and Recommendations [ML] 69

References [DOO] 70
Appendix [AGA] 71

Datasheets [AGA] 71

4

Index of Figures [BJP]

Figure 1: Objective Tree ... 10
Figure 2: Level Zero Overall .. 13
Figure 3: Level Zero Hardware ... 14
Figure 4: Level Zero Software .. 15
Figure 5: Level One Hardware ... 17

Figure 6: Level One Software ... 19
Figure 7: Level Two Hardware ... 21
Figure 8: Level Two Software .. 25
Figure 9: Local and Global Coordinate Systems .. 29
Figure 10: Simplified Control Diagram .. 31

Figure 11: Modified Control Diagram .. 32
Figure 12: Radar Beam Width .. 36

Figure 13: Beauty Plate 3D Model ... 37
Figure 14: Drone Add-On Sensor Connection Schematic .. 37
Figure 15: Materials Budget, Drone Add-On ... 38
Figure 16: Drone Network Architecture Diagram .. 40
Figure 17: Darcy Unveiled .. 41

Figure 18: Applicable Solo Flight Mode Descriptions ... 41
Figure 19: Automated Backup Generation Script ... 43

Figure 20: Solo Throttle Axis Definition .. 44
Figure 21: Solo Yaw Axis Definition ... 45
Figure 22: Solo Pitch Axis Definition .. 45

Figure 23: Solo Roll Axis Definition .. 46
Figure 24: Drone Python Script For Initial File Communication Test ... 47

Figure 25: Script for Automated ssh File Communication ... 48
Figure 26: Drone Python Code for Initial UDP Test .. 49

Figure 27: Remote Processing Unit Python Code for Initial UDP Test 50
Figure 28: Drone Python Code for Threaded UDP Test ... 53
Figure 29: Remote Processing Unit C Program for Threaded UDP Test 56

Figure 30: C User Library for Threaded UDP Test .. 58
Figure 31: Threaded UDP Test, Remote Processing Unit Output .. 59

Figure 32: Threaded UDP Test, Solo Local Controller Output .. 60
Figure 33: Solo Local Controller Script, Main Thread ... 62
Figure 34: Solo Local Controller Script, Daemon Threads .. 62

Figure 35: Fall Midterm Design Gantt Chart .. 65
Figure 36: Fall Final Design Gantt Chart ... 66
Figure 37: Spring Proposed Implementation Gantt Chart .. 67

5

Index of Tables [BJP]

Table 1: Design Requirements .. 11
Table 2: General Level Zero Function Table .. 13
Table 3: Hardware Level Zero Function Table ... 14
Table 4: Software Level Zero Function Table .. 15
Table 5: Hardware Level One Function Tables .. 18

Table 6: Software Level One Function Tables ... 20
Table 7: Hardware Level Two Function Tables ... 23
Table 8: Software Level Two Function Tables ... 25
Table 9: Payload Calculation Table .. 33
Table 10: Data Speed Calculations ... 34

Table 11: Drone Platform Options .. 34
Table 12: Drone Platform Justification Criteria.. 35

Table 13: Drone Network Addresses .. 39
Table 14: Wireless Broadcasting Configurations ... 39
Table 15: Channel Specifications ... 46
Table 16: Communication Ports Between Solo and RPU .. 51
Table 17: University Funded Parts List .. 64

Table 18: Temperature Data ... 71

6

Abstract [ML]

This project addresses the need for an autonomous indoor mapping system that will create a 3D

map of an unknown physical environment in real time. The aerial system moves and avoids

obstacles autonomously, without the need for human remote control or observation. An aerial

system produces a map of an unknown indoor environment by transmitting data received from

the aerial device’s sensors. The transmission occurs over a wireless channel from the aerial

device to a remote server for processing and storage of the data. As the transmission is done in

real time, the aerial system does not require hardware for storage of the map data. The remote

system connected via the network will use the received information from the aerial device to

create and display a 3D map of the explored space.

The following summarize the objectives of the design outlined herein.

● Create 3D mapping of unknown indoor space

● Utilize an existing aerial drone platform for versatile exploration and maneuvering

● Remove need for human control

● Eliminate reliance on GPS

● Incorporate multiple sensor types and intelligent data fusion

● Use iterative exploration approach, increasing precision with each iteration

7

Problem Statement

Need [BJP]

Emergency and military personnel put their lives at stake every day by entering buildings or

other enclosed areas without knowing what lies ahead. In recent times, many devices have been

produced to conduct unmanned surveillance. However, the majority of these surveillance

solutions are limited by their meager means of travel and require a flat floor on which to

maneuver.

Unmanned aerial vehicles are unique in their ability to traverse any indoor three-dimensional

space without restrictive concerns regarding the terrain. Additionally, because such vehicles are

not required to remain on the ground, small aerial vehicles are able to fully explore the extent of

an enclosed space, regardless of its layout design or lack thereof.

Current experimental use of unmanned aerial vehicles for indoor mapping suffers from a few

shortcomings. First, most implementations generate only two-dimensional maps. Second, a basic

hallway or building layout is assumed, making some uses, such as a rescue mission in a mine,

not feasible. Therefore, a need exists for an indoor autonomous mapping solution that assumes

no initial room layout and adequately explores three-dimensional space.

Objective [BJP]

The objective of the proposed project is to design, utilizing an already available unmanned aerial

vehicle, an autonomous system that produces a three-dimensional map of an enclosed indoor

space. In order to fulfill the objective, a system consisting of appropriate sensors and a controller

must be created to accompany an existing unmanned aerial vehicle. Additionally, extensive

programming has to be completed to realize the necessary autonomy, mobility control, path

planning, and surface recognition required for completion of the device's assigned task. In

particular, the project will explore using digital processing of camera images to augment the

sensory data collected from more traditional sensors. Basic control indoors, where GPS is not

available, still must rely heavily on accelerometers, an electronic compass, and local proximity

sensors.

The three-dimensional map to be produced shall bear resemblance to a basic three-dimensional

model of the space such as could be produced in SolidWorks or a similar software package. This

solid model is the desired outcome. Automatic object recognition is outside the scope of this

project, but would be facilitated by the model produced.

The following assumptions shall be made regarding the space to be mapped:

1. The boundaries of the space and all objects within the space are stationary.

2. The indoor space shall be fully enclosed excepting a single entrance whereat mapping

shall begin.

3. The indoor space shall have ambient conditions conducive to stable drone operation with

minimal disturbance.

8

For the purposes of development and demonstration, a controlled, well-defined test space shall

be used. However, all development must be conducted such that the drone system can handle a

space that is entirely arbitrary. Prior to the ECE design project demonstration, all testing of the

drone system shall be conducted using the controlled test space to minimize risk of damage to

the system. After this crucial event, testing within an office or other more complex unknown

space shall be conducted to further assess the capability of the system and discover any existing

shortcomings.

Research [AGA]

2D - Camera

The goal of the project is to produce a 3D model of an indoor environment. One of the sensors

which may be used in order to achieve this goal is a 2D camera. Location of objects can be

determined through analysis of the 2D images’ pixels. As discussed in US patent US8520935

B2, 3D images can be created using multiple 2D images, and the object’s characteristics can be

determined through analysis of the 3D images. Characteristics such as distance between multiple

objects and a more accurate shape given a viewing perspective are two things that can be

calculated from the analysis of 3D images.

Given the project’s camera, 2D images will be used in order to produce a 3D mapping of space.

One of the methods to determine the depth and distance between objects in an image is to

analyze the pixels. Similar to the process explained in US patent US 20150063681 A1, depth can

be calculated using the differences in RGB pixels in a single image. Multiple images are not

required to calculate depth if each pixel has an identifiable RGB value.

The project requires a data integration system because multiple forms of input will be translated

into a 3D model. As explained in US patent 61636859, an intelligent data integration system can

optimize the storage of sensory input data. A few inputs to be considered for the project include

audio signal response time, 2D images, 3D images, altitude, and indicated direction of motion.

Without the use of an integration system, providing an accurate 3D model of a space would be

impossible. Multiple different types of sensors are required for this project due to flaws specific

to each individual sensor. For example, an audio signal response time might be inaccurate due to

an object sending out another audio signal that interferes with the response time. In order to

properly determine the distance from an object in the audio signal response’s case, a 2D image

could be used by analyzing the color differences between pixels.

3D - Mapping

Environmental mapping is the purpose of the project. The space to be mapped is an unknown

environment and requires an autonomous robot to collect data. One of the project’s sources of

3D information is an RGB camera attached to the robot. A Bayesian framework, which combines

the motion of the robot and its visual features, can be used in the mapping process similar to the

system explained in article “Efficient exploration for real-time robot indoor 3D mapping”.

9

Viewpoints can be filtered to a small set and the next optimal viewpoint can be determined based

on the expected gain of information.

The method of producing a 3D map of space given sensor inputs is called photogrammetry.

Relative to the methods of calculating accuracy discussed in article “Accuracy evaluation

method and experiments for photogrammetry based on 3D reference field”, accuracy of the

mapping is affected by multiple things including optical axes angles and base lines. The level of

accuracy required by the project’s goal is important and factors into how the measurement

schemes are designed and implemented. The project will have to use an appropriate level of

accuracy as to not provide useless detail and to provide at least enough information for an

adequate mapping given the space to be mapped.

Marketing Requirements [DOO]

The items listed below are the marketing requirements for the drone.

1. The drone system should operate autonomously.

2. The drone system should maintain stability.

3. The drone system should avoid obstacles.

4. The drone system should collect data efficiently.

5. The drone system should be sturdy, small, and lightweight.

6. The drone system should be low-cost.

7. The drone system should use power efficiently.

8. The drone system should have high battery life.

9. The drone system should collect accurate data.

10. The drone system should be quiet and stealthy.

11. The drone system’s final produced mapping should be simple to view and use.

12. The drone system should be able to explore spaces that are relatively large.

13. The drone system should withstand hot and cold environments.

10

Objective Tree [BJP]

Figure 1 below displays the objective tree for the projective with relative weightings per level.

Figure 1: Objective Tree

11

Design Requirements Specification [BJP]

The table below presents the design requirements of the Indoor Mapping Drone.

Table 1: Design Requirements

Marketing

Requirements

Engineering Requirements Justification

1,5 Propeller guards should

withstand collisions

occurring at one meter per

second or less.

For an indoor drone application, propeller guards

are simply a must. Although the drone is to avoid

obstacles, a collision occurring at a nominal flight

speed of one meter per second should not put the

drone out of commission.

9 Error between calculated and

actual position should

remain less than ten

centimeters.

In order to produce an accurate mapping, an

accurate measurement of position is essential. All

measurements of distance to objects will be relative

to the drone position, so any error in drone position

will cause error in the produced mapping.

12 The wireless range of the

drone should be at least 30

meters.

For the purpose of exploring a single room, a range

of 30 meters for the drone should be sufficient.

Additional range could be realized by simply using

a stronger wireless signal.

1 The drone must return to

initial takeoff point with no

human interaction.

The purpose of this project is to permit exploration

and mapping of an unknown indoor space without

the need for a human to enter the space. Therefore,

the drone must return to the entrance or this

purpose is defeated.

7,8 Components added to initial

drone must together

consume 30 watts or less.

An implied requirement of nearly any design is that

it completes the desired objective optimally. In this

case, the designed drone add-on should use power

efficiently. This shall also lead to longer battery life

and, consequently, a more detailed mapping.

2,5 Drone must remain stable if

subjected to a forced

disturbance of 30 degrees

from the balanced plane.

During the course of normal operation, the drone is

anticipated to experience rotations about axes

parallel to the ground plane. These rotations,

anticipated to be less than thirty degrees, must not

cause instability in the control system.

10 Operation noise level must

be below 65 dB.

For quiet and stealthy operation, the sound level of

the drone should not exceed 65 dB, which is the

approximate upper limit of the sound level of a

normal conversation at three feet.1

1
 http://www.gcaudio.com/resources/howtos/loudness.html

12

3 Drone should remain clear of

all objects by a minimum of

2.5 centimeters.

To provide a safety blanket and avoid collisions,

the drone should be designed to keep away from all

detected surfaces by at least 2.5 centimeters.

5 Drone must be able to fit

through a width clearance of

80 centimeters.

The drone must enter the indoor space to be

mapped via a door or other opening. To allow

completion of the mapping task, the size of the

drone must be such that the drone can enter the

space. Most doors have a width clearance of at least

80 centimeters; standard residential exterior doors

have a width of about 90 centimeters.

6 The drone and drone add-on

should together cost less

than $1000.

The drone system should be affordable to produce

so that, if marketed, a profit could be obtained from

the design. This cost limit does not consider the

hardware not local to the flying drone.

9 Distance to surface directly

below drone should be

measurable to within 5

centimeters.

A critical aspect of the desired mapping is the

aerial view surface distance because these will be

most useful in object identification.

11 The three-dimensional

mapping should be

exportable to a STL file.

The STL format is supported by nearly all 3d

model software and thus will make the produced

model the most portable.

4 The system should be

capable of collecting data

from all sensors at least ten

times per second.

If the drone is moving at a nominal speed of one

meter per second, then sampling should take place

at least ten times per second to ensure distance is

validated every ten centimeters. With the sampling

rate with respect to time fixed, the accuracy and

resolution can be improved by reducing the speed

and thereby increasing the rate of samples per unit

distance.

7,8 The drone should have a

flight time of at least five

minutes while fully equipped

with added components.

Five minutes is the anticipated minimum time to

produce a basic mapping of a room. Therefore, the

drone must have a battery life that allows the drone

to fly for at least five minutes.

13 The drone should be fully

operable in ambient

temperatures anywhere

between 0ºC and 50ºC.

The indoor space to be mapped may not be at

standard room temperature. In most climates, an

enclosed space is expected to be between 0ºC and

50ºC so the drone should be able to operate fully in

that full range of temperatures.

13

Accepted Technical Design

Hardware Theory of Operation [AGA]

The system utilizes an INS sensor for keeping record of the exploration unit’s positions over

time, LIDAR sensors for precise measurements of floor and ceiling distances, cameras for speed

analysis and image gathering, and RF sensors for determining whether or not the exploration unit

is a safe distance from objects. The local processing unit combines the several sensors’ outputs

and sends a single data signal to the wireless adapter. Data signals are transmitted via Wi-Fi to

the wireless router connected to the remote processing unit. Most of the signal processing is done

on the remote processing unit, consisting of stationary Windows and/or Linux computers. After

processing data signals, the remote processing system sends command signals back to the drone

for exploration control.

Software Theory of Operation [AGA]

The software operation of the system utilizes a data broadcasting module that receives raw

sensor data, formats the data, and transmits formatted data to the data processing module. The

data processing module converts received network data into data for analysis of the environment

and of the exploration unit’s position. Processed data is also sent to the data storage unit for

future retrieval. After receiving the processed data, the autonomy and control module transmits

network commands based on environment and position analysis.

Level Zero Block Diagram [BJP]

The level zero diagram in Figure 2 below illustrates the overall functionality of the Indoor

Mapping Drone System to be designed.

Figure 2: Level Zero Overall

Level Zero Function Table [BJP]

Table 2: General Level Zero Function Table

Module Indoor Mapping Drone System

Inputs ● Unknown Indoor Space

Outputs ● Three Dimensional Mapping

Functionality ● The Indoor Mapping Drone system should explore an unknown indoor

space and produce a three dimensional mapping of the traversed space.

● The Indoor Mapping Drone system must satisfy the constraints as

defined by the Design Requirements Specification.

14

Level Zero Hardware Block Diagram [BJP]

The level zero diagram in Figure 3 below illustrates the overall functionality of the exploration

unit hardware.

Figure 3: Level Zero Hardware

Level Zero Hardware Function Table [BJP]

Table 3: Hardware Level Zero Function Table

Module Indoor Mapping Drone Hardware

Inputs ● Control Commands

● Physical Environment/Object Proximity

Outputs ● Drone Accelerations

● Sensor Signals

Functionality ● The Indoor Mapping Drone Hardware should produce appropriate

motion of the exploring unit by accepting commands in the form of

control signals which are produced by the Indoor Mapping Drone

Software.

● The Indoor Mapping Drone Hardware should produce sensor signals

which can be used to determine the position of the exploring unit as

well as the distance from the exploring unit to surrounding objects. The

sensor signals shall be produced based primarily on the current motion

and environment the exploring unit experiences.

15

Level Zero Software Block Diagram [BJP]

The level zero diagram in Figure 4 below illustrates the overall functionality of the mapping

system’s software.

Figure 4: Level Zero Software

Level Zero Software Function Table [BJP]

Table 4: Software Level Zero Function Table

Module Indoor Mapping Drone Software

Inputs ● Sensor Signals

Outputs ● Control Commands

● Three-Dimensional Mapping

Functionality ● The Indoor Mapping Drone Software must use the sensor signals

produced by the Indoor Mapping Drone Hardware to determine

appropriate control commands.

● The Indoor Mapping Drone Software must also produce a three-

dimensional mapping based on the sensor signals received.

There is a clear interdependence between the hardware and the software of this project. The

control commands are an output of the software and an input for the hardware. The sensor

signals are an output of the hardware and an input for the software.

16

Level One Hardware Block Diagram [BJP, DOO]

The drone mapping system shall consist of three major components: the drone, the drone add-on,

and the remote processing device. The drone shall be an unmanned aerial vehicle which is

already stabilized and which can be fully controlled through a wireless signal. The drone add-on

shall consist of necessary sensors for mapping and position tracking, mounting equipment, and

circuitry needed to wirelessly transmit sensor data. The remote processing device will be realized

as a collection of one or more networked computers which is able to receive data from the drone

add-on, send a control signal to the drone, and produce a mapping from the collected data. Each

of these components can be viewed as a subsystem of the overall drone mapping system.

Due to the high amount of computational power and storage anticipated as necessary for data

analysis, it was determined that computation should not take place locally on the exploring unit.

Therefore, the first level of division in hardware is that between the exploring unit and a system

used for remote processing. Throughout this report, components mounted directly to the

exploring unit shall be referred to as local and those not moving with the exploring unit shall be

referred to as remote.

As described in the need statement, the use of an aerial drone was considered necessary to allow

exploration of indoor spaces which may not have the terrain and clearances required for a drone

on the ground. An aerial drone also shall facilitate measurements from points-of-view otherwise

not realizable.

Because quality, stabilized, remotely-controlled aerial drones are commonly and commercially

available, it was determined that the team should select and acquire an existing drone platform

based on project needs rather than designing one from scratch. The existing platform, however,

will need to be augmented with additional components. This is the second hardware distinction:

the existing drone platform shall be referred to as the drone while the additional components

mounted directly to the existing drone platform shall be referred to collectively as the drone add-

on.

17

The level one hardware block diagram is seen in Figure 5 below.

Figure 5: Level One Hardware

The drone and the drone add-on together shall be referred to as the exploration unit while the

remote processing system is the remote unit. Information from the environment is obtained via

sensors and other components on the drone add-on. The information is transmitted to the remote

processing system via the wireless data signal. In the remote processing system, calculations are

performed and algorithms are applied to send an appropriate command to the drone via the

wireless control signal. The wireless control signal dictates the movement of the drone.

18

Level One Hardware Function Tables [AGA]

Table 5: Hardware Level One Function Tables

Module Drone Add-On

Inputs ● Environment and Conditions

Outputs ● Wireless Data Signal

Functionality ● The Drone Add-On should provide wireless data signals about a given

environment and conditions in real-time.

Module Remote Processing System

Inputs ● Wireless Data Signal

Outputs ● Three Dimensional Mapping

Functionality ● The Remote Processing System should produce a three dimensional

mapping from received wireless data signals in real-time.

Module Drone

Inputs ● Wireless Control Signal

Outputs ● Drone Acceleration

Functionality ● The Drone should accelerate in a manner that is determined by received

wireless control signals in real-time.

Procurement of the drone and the remote processing system shall entail selection and

configuration only. The drone add-on should be the only component of this project requiring

hardware design. However, the design of the drone add-on and the selection of the drone itself

are interdependent.

Requirements for the drone subsystem are the following:

1. The drone should incorporate propellor guards.

2. The drone should maintain its position with only small error when not commanded in a

particular direction.

3. The drone should be able to operate for a minimum of about five minutes while equipped

with the drone add-on.

4. The drone should accept wireless commands that can be fully controlled using a major

programming language on a PC.

Requirements for the drone subsystem are the following:

1. The drone add-on must incorporate the sensors necessary to track current position.

2. The drone add-on must incorporate the sensors necessary to determine distance to objects

in a minimum of three directions: above, below, and straight ahead.

3. The drone add-on must be able to transmit collected data live and at a high speed.

19

A remote subsystem shall receive the data transmitted by the drone add-on. The high-level

purpose of this subsystem is twofold. First, the final desired outcome, a three-dimensional

mapping, is to be produced. Second, the control signal for the drone is to be transmitted.

Requirements for the remote processing entity are the following:

1. The remote processing entity must be able to send a control signal and receive the data

signal at reasonable speeds.

2. The remote processing entity must perform calculations necessary for position tracking.

3. The remote processing entity must interpret sensor data to determine the presence of

objects in three-dimensional space.

4. The remote processing entity must render a map.

The end goal is for the entire mapping process to be performed without active human input or

interaction. However, as an intermediate step during the development of the software, the

wireless control signal may be dictated by human input into the remote processing entity until

the path-planning and obstacle-avoidance software can be fully incorporated and deployed.

Level One Software Block Diagram [BJP]

The level one diagram seen in Figure 6 below illustrates the process for creating a three-

dimensional mapping and sending signals to control the exploration unit.

Figure 6: Level One Software

20

Level One Software Function Tables [AGA]

Table 6: Software Level One Function Tables

Module Data Broadcasting

Inputs ● Raw Sensor Data

Outputs ● Network Data

Functionality ● The Data Broadcasting module should format and output raw sensor

data as network data

Module Data Processing

Inputs ● Network Data

Outputs ● Space and Position Data

Functionality ● The Data Processing module should process received network data such

that space and position data can be provided for analysis.

Module Data Storage

Inputs ● Data Signals

Outputs ● Data Memory Location

Functionality ● The Data Storage module should store received processed data into

local storage such that the data is able to be retrieved at a future time.

Module Autonomy and Control

Inputs ● Space and Position Data

Outputs ● Network Commands

Functionality ● The Autonomy and Control module should analyze space and position

data to provide network commands based on the calculated desired

position.

21

Level Two Hardware Block Diagram [BJP, DOO]

The level two diagram seen in Figure 7 below identifies the data-collecting components of the

drone add-on and identifies the network devices in both the drone add-on and the remote

processing unit.

Figure 7: Level Two Hardware

22

The indoor mapping drone system will contain an INS (Inertial Navigation System) as one

sensor that keeps track of the exploration unit’s position.

The system will also have two LIDAR sensors; one will be installed on top of the exploration

unit and the other will be installed on the bottom of the exploration unit. The LIDAR sensors will

detect the distance between the drone and the nearest surface above as well as the distance

between the drone and the nearest surface below.

Cameras will be installed at the front, rear, left, and right sides of the exploration unit. These

cameras will produce images that can be used to detect the speed of the exploration unit and the

distance between the exploration unit and surrounding objects.

In addition to the cameras, RF sensors will be installed on the front, rear, left, and right sides of

the exploration unit. These RF sensors will detect obstacles for collision avoidance and provide

object distance estimates based on radio signals being reflected off of external surfaces.

Information provided by the RF sensors will contribute to determination of how the exploration

unit should adjust its path. The RF sensors should emit signals with a high beamwidth so that the

drone will not collide with hidden obstacles.

Also to be installed as part of the drone add-on will be a local processing unit which includes a

wireless adapter allowing for transmission of data to the remote processing system.

The remote processing system consists of one or more computers as well as a wireless router.

The computer(s) shall be connected to the wireless router via a wired connection. The wireless

router transmits commands from the remote processing unit to the exploration unit and channels

data from the exploration unit to the remote processing unit. The transmission data rate has to be

large enough to transmit the required information. The computers are used for calculation and

execution of algorithms. The commands from the remote processing unit shall dictate the

movement of the drone.

23

Level Two Hardware Function Tables [AGA]

Table 7: Hardware Level Two Function Tables

Module INS

Inputs ● Acceleration and Orientation

Outputs ● Position Signals

Functionality ● The INS should keep track of the explorer unit’s positions in

chronological order and provide position signals.

Module LIDAR Sensor (x2)

Inputs ● Indoor Space

Outputs ● Light Response Data

Functionality ● The LIDAR Sensors should sense and provide the distance between the

explorer unit and objects in the indoor space by measuring the response

time of the laser beam’s reflection.

Module Camera (x4)

Inputs ● Indoor Space

Outputs ● Image Data

Functionality ● The cameras should sense the visual information about the given indoor

space and provide data in the format of images.

Module RF Sensor (x4)

Inputs ● Indoor Space

Outputs ● Radio Frequency Response Data

Functionality ● The RF Sensors should sense and provide the response times of radio

signals reflected off of objects in the given indoor space.

Module Local Processing Unit

Inputs ● INS Signal

● LIDAR Sensor (x2) Signals

● Camera (x4) Signals

● RF Sensor (x4) Signals

Outputs ● Processed Sensor Signals

Functionality ● The Local Processing Unit should take the INS signal, LIDAR sensors’

signals, Cameras’ signals, and RF sensors’ signals and combine them

together and process the signals to be output as a single signal.

24

Module Wireless Adaptor

Inputs ● Processed Sensor Signals

Outputs ● Wireless Data Signal

Functionality ● The Wireless Adaptor should channel processed sensor signals and

transmit the signals wirelessly.

Module Wireless Router

Inputs ● Wireless Data Signal

Outputs ● Wireless Control Signal

● Wired Data Signal

Functionality ● The Wireless Router should receive wireless data signals and send out

control signals over a wireless connection.

● Data signals should be transmitted over a wired connection.

Module Remote Processing System

Inputs ● Wired Connection

Outputs ● Three Dimensional Mapping

Functionality ● The Remote Processing System should take data signals over a wired

connection and produce a three dimensional mapping based on the

analysis of the provided data in real-time.

Module Drone

Inputs ● Wireless Control Signal

Outputs ● Drone Acceleration

Functionality ● The Drone should accelerate in accordance with received control signals

to change current position for exploration.

25

Level Two Software Block Diagram [BJP]

The level two diagram seen in Figure 8 below is an in-depth illustration of how the system is to

process and interpret sensor data, keep track of position, produce control signals, and generate a

three-dimensional mapping.

Figure 8: Level Two Software

Level Two Software Function Tables [AGA]

Table 8: Software Level Two Function Tables

Module Data Sampling

Inputs ● Sensor Signal

Outputs ● Sampled Data

Functionality ● The Data Sampling Module should provide samples of data provided by

sensor signals to be sent to the data transmission module.

26

Module Data Transmission

Inputs ● Sampled Data

Outputs ● Transmitted Data

Functionality ● The Data Transmission module should transmit the received sampled

data as data packets.

Module Data Receiving

Inputs ● Transmitted Data

Outputs ● Received Data

Functionality ● The Data Receiving module should unpack transmitted data from the

data transmission module and provide unpacked received data.

Module Signal Processing and Image Analysis

Inputs ● Received Data

Outputs ● Point Occupancy Probability Arrays

● Processed Signals

Functionality ● The Signal Processing and Image Analysis module should take received

data and process the data to provide analyzable information for

determining position.

● As part of the processed data, images capable of being stored should

also be sent to the image storage module.

Module Data Storage

Inputs ● Processed Images

Outputs ● Image Memory Location

Functionality ● The Image Storage module should store received processed images into

storage and provide a memory location.

Module Postprocessing

Inputs ● Stored Data

Outputs ● Three-Dimensional Mapping

Functionality ● The Postprocessing module should take data stored after all required

information for a given unit of space has been processed and provide

additional visuals of the space in the three-dimensional mapping.

27

Module Position Tracking and Error Correction

Inputs ● Point Occupancy Probability Arrays (Signal Processing)

Outputs ● Current Position

Functionality ● The Position Tracking and Error Correction module should analyze

point occupancy probability arrays provided by the signal processing

and image analysis module to calculate and provide the explorer unit’s

current position in real-time.

Module Position Log

Inputs ● Current Position

Outputs ● Memory Location

Functionality ● The Position Log module should receive the current position of the

explorer unit in real-time and produce a log of the positions in memory.

Module Data Fusion

Inputs ● Point Occupancy Probability Arrays (from Signal Processing)

● Point Occupancy Probability Arrays (from Image Analysis)

Outputs ● In-Progress Space Mapping

Functionality ● The Data Fusion module should take point occupancy probability arrays

from both the signal processing module and the image analysis module

and produce an in-progress space mapping.

● INS sensor data should be supplemented with other sensor data using a

Kalman filter algorithm.

Module Path Planning

Inputs ● Current Position

● In-Progress Space Mapping

Outputs ● Desired Position

Functionality ● The Path Planning module should analyze the in-progress space

mapping data to provide a desired position in comparison to the

explorer unit’s current position.

● Obstacle information provided from the in-progress space mapping

should be considered when calculating the desired position in order to

avoid collisions.

28

Module Control Algorithm

Inputs ● Desired Position

● Current Position

Outputs ● Control Signal

Functionality ● The Control algorithm should provide control signals to be sent to the

explorer unit based on the unit’s current position and the calculated

desired position.

● The control signals are comprised of commands for accelerating the

drone in certain directions.

Design Calculations

System Dynamics [BJP]

Plant Dynamic Model [BJP]

The existing drone platform used in the project will be considered the plant of the control

system. This drone platform shall already have stabilization control integrated. When interfacing

with the platform, it is assumed that the control signal sent shall be able to independently

command motion across three axes as well as rotation parallel to the ground.

At the initial position of the drone, the origin of a global Cartesian coordinate system shall be

established. To the drone’s right, the x0-axis will extend. The y0-axis will extend directly out of

the front of the drone. Finally, the z0-axis will extend directly above the drone. The coordinate

system shall remain fixed.

In addition to the global coordinate system, a coordinate system local to the drone shall also be

defined. This coordinate system is defined in just the same manner as the global coordinate

system, but shall move and rotate along with the drone. Only at the initial position shall the

global and local coordinate systems shall be equivalent. The axes of the local coordinate system

shall be designated as the x1, y1, and z1 axes. As defined by the Denavit and Hartenberg (D–H)

convention, the angle θ shall designate the angle between the x1 and x0 axes as measured about

the z0 axis. This axis of rotation may be referred to as the yaw axis, but the direction is reversed

in comparison with aircraft convention.

29

Figure 9 below illustrates the global and local coordinate systems to be used. Note that the x0-y0

and x1-y1 planes are parallel but separated by an arbitrary distance along the z0 axis.

Figure 9: Local and Global Coordinate Systems

From the systems of coordinates defined, the following important relations can be determined.

𝑥0 = 𝑐 + 𝑥1 𝑐𝑜𝑠(𝜃) − 𝑦1 𝑠𝑖𝑛(𝜃)

𝑦0 = 𝑑 + 𝑥1 𝑠𝑖𝑛(𝜃) + 𝑦1 𝑐𝑜𝑠(𝜃)

By defining the distance between the x1 and x0 axes along the z0 axis as h, the following

additional relation is obtained.

𝑧0 = 𝑧1 + ℎ

The relations developed thus far can be expressed more compactly and conveniently in the

following manner. Note that the convention of right-to-left matrix multiplication must be

followed for correct results from matrix equations throughout this report.

[

𝑥0

𝑦0
𝑧0

1

] = [

cos(𝜃) −sin(𝜃)

sin(𝜃) cos(𝜃)
0 𝑐
0 𝑑

0 0
0 0

1 ℎ
0 1

] [

𝑥1

𝑦1
𝑧1

1

]

The square matrix above is known as a transformation matrix. These are used as operators on

augmented coordinate vectors to conveniently and efficiently transform coordinates from one

coordinate system to another. Standard transformation matrices are defined for rotations or

translations about any of the three axes. These standard transformations can then be combined by

matrix multiplication to form a single transformation matrix. Alternatively, several

transformation matrices can be applied to an augmented coordinate vector in succession.

The one problem with the transformation given above is that it does not account for rotation of

the drone about the pitch and roll axes. Pitch and roll will both have a significant impact on

measurements. Therefore, a third coordinate system, which shall be referred to as the tilt-

compensated local coordinate system, can be defined with respect to the local coordinate system.

30

The axes of the tilt-compensated local coordinate system shall be designated as the x2, y2, and z2

axes. The pitch angle, α, shall be defined as the angle from the z1 axis to the y1-z1-projected z2

axis measured about the x1 axis. Similarly, the roll angle, β, shall be defined as the angle from

the z1 axis to the x1-z1-projected z2 axis measured about the y1 axis. The following coordinate

transformation relationship is then obtained.

[

𝑥1

𝑦1
𝑧1

1

] = [

1 0
0 cos(𝛼)

0 0
−sin(𝛼) 0

0 sin(𝛼)
0 0

cos(𝛼) 0
0 1

] [

cos(𝛽) 0
0 1

sin(𝛽) 0
0 0

−sin(𝛽) 0
0 0

cos(𝛽) 0
0 1

] [

𝑥2

𝑦2
𝑧2

1

]

[

𝑥1

𝑦1
𝑧1

1

] = [

cos(𝛽) 0

sin(𝛼) sin(𝛽) cos(𝛼)
sin(𝛽) 0

−sin(𝛼) cos(𝛽) 0

− cos(𝛼) sin(𝛽) sin(𝛼)
0 0

cos(𝛼) cos(𝛽) 0
0 1

] [

𝑥2

𝑦2
𝑧2

1

]

Finally, a transformation relationship between the tilt-compensated local coordinate system and

the global coordinate system is obtained by applying the transformation matrices in succession or

combining them.

[

𝑥0

𝑦0
𝑧0

1

] = [

cos(𝜃) −sin(𝜃)

sin(𝜃) cos(𝜃)
0 𝑐
0 𝑑

0 0
0 0

1 ℎ
0 1

] [

cos(𝛽) 0

sin(𝛼) sin(𝛽) cos(𝛼)
sin(𝛽) 0

−sin(𝛼) cos(𝛽) 0

− cos(𝛼) sin(𝛽) sin(𝛼)
0 0

cos(𝛼) cos(𝛽) 0
0 1

] [

𝑥2

𝑦2
𝑧2

1

]

[

𝑥0

𝑦0
𝑧0

1

] = [

cos(𝛽) cos(𝜃) − sin(𝛼) sin(𝛽) sin(𝜃) − cos(𝛼) sin(𝜃)

sin(𝛼) sin(𝛽) cos(𝜃) + cos(𝛽) sin(𝜃) cos(𝛼) cos(𝜃)
sin(𝛽) cos(𝜃) + sin(𝛼) cos(𝛽) sin(𝜃) 𝑐

sin(𝛽) sin(𝜃) − sin(𝛼) cos(𝛽) cos(𝜃) 𝑑

− cos(𝛼) sin(𝛽) sin(𝛼)

0 0
cos(𝛼) cos(𝛽) ℎ

0 1

] [

𝑥2

𝑦2
𝑧2

1

]

Control Scheme [BJP]

Using the global coordinate system as a reference, the current position of the is represented by

the point (c,d,h). We shall define a point (m,n,p) in the global coordinate system which shall

represent the desired position of the drone. (The desired value of θ shall be defined as θd.) The

desired position coordinate can be transformed into the local coordinate system in the following

manner.

[

𝑢
𝑣
𝑤
1

] = [

cos(𝜃) −sin(𝜃)

sin(𝜃) cos(𝜃)
0 𝑐
0 𝑑

0 0
0 0

1 ℎ
0 1

]

−1

[

𝑚
𝑛
𝑝
1

]

Thus, the coordinate (u,v,w) is the desired position with respect to the local coordinate system.

This local coordinate can also be viewed as the error signal from a controls point-of-view

because, as the drone approaches the desired position, the constituent values of the coordinate

each approach zero.

31

For the purpose of selecting a compensation model, it will be assumed that, for the x1, y1, z1, and

θ directions, the plant produces an acceleration proportional to the digital command signal

received. PID control will be used to handle the second-order dynamic behavior expected in the

loop transfer function as well as any acceleration disturbances. Accuracy and performance of the

control system will also be degraded because the actual position of the drone must be determined

using the sensor network, which will have varying accuracy depending on various environmental

conditions.

Figure 10 below describes the theory behind the control of the drone assuming that c, d, h, and θ

are controlled independently. The figure represents each of four separate control loops identical

in form: one for c, one for d, one for h, and one for θ.

Figure 10: Simplified Control Diagram

The issue with the above model is that it assumes the value of θ is kept at approximately zero

such that the y1 axis is parallel to the y0 axis and the x1 axis is parallel to the x0 axis. If θ is

allowed to deviate significantly from zero, then the control schemes for c, d, and θ become

coupled. To account for this, the coordinate transformations developed in the previous section

must be utilized to develop a modified control scheme.

32

Seen in Figure 11 below is the control scheme modified to account for variation in yaw angle.

Figure 11: Modified Control Diagram

Discrete Time Model [BJP]

In discrete time, PID control must be implemented differently than in continuous time. In the z-

domain, the transfer function of a PID controller using backward Euler calculation of integrals

and derivatives is that seen below.2

𝐶(𝑧) = 𝐾𝑝 +
𝐾𝑖𝑇𝑠𝑧

𝑧 − 1
+

𝐾𝑑𝑁(𝑧 − 1)

(1 + 𝑁𝑇𝑠)𝑧 − 1

The controller characterized by the above transfer function also implements a low-pass filter into

the derivative term.

2
 Transfer function obtained from http://controlsystemslab.com/discrete-time-pid-controller-implementation/

33

Provided that the sampling rate is high enough, disturbances are not excessive, the position

tracking algorithms operate well, the sensor network has high enough resolution, and the PID

controller is well tuned, the control system should be stable and responsive.

Based on the current position, a control scheme with its own PID parameters should be used. For

example, when the drone is passing through a tight passage, a control scheme with PID

parameters producing a more overdamped response should be used to avoid the possibility of

overshoot and collision. When traveling in an open area, a control scheme with PID parameters

resulting in less damping and a reduced rise time can be used.

Payload Calculations [BJP]

Based on preliminary research, Table 9 below was populated with component weights.

Table 9: Payload Calculation Table

Add-On Component Weight Estimate [g] Quantity Needed Total Weight [g]

LIDAR 15 2 30

Camera 15 4 60

Radar 50 4 200

INS 20 1 20

Transmission Board 50 1 50

Chassis 100 1 100

Propeller Guard 25 4 100

Based on the above table, the payload of the drone system selected must be at least 560 grams.

Using a safety factor of 1.25, the drone should ideally have a specified permissible payload of

700 grams. Certainly, if not all sensors specified above are used, the actual payload will be

reduced and the maximum payload will not be exceeded.

Thermal Considerations [BJP]

In order for the design requirement regarding the acceptable ambient temperature range to be

met, all components used in the design must be rated for operation in ambient temperatures

between 0ºC and 50ºC. Because the drone will be moving through the air, heat will be

continuously convected away from added system components. Therefore, overheating of the

added components is not expected to be a design concern.

Based on research, the estimated operating temperatures for the necessary design components

were determined and tabulated. These values may be found in Table 18 in the appendix at the

end of this report.

34

Data Acquisition and Communication [BJP]

As described in the design requirements, the mapping system must be able to process data from

each sensor at a minimum sampling frequency of 10 Hz. In conjunction with the digital size of

each sample, this sampling frequency will dictate the minimum data transfer rate that the

mapping system must be capable of. Table 10 below summarizes the desired resolution for each

sensor and the resulting digital sample size.

Table 10: Data Speed Calculations

Sensor Resolution Range/Density Bits Per Sample Quantity Transfer Rate

LIDAR 10 mm 15 m 11 bits 2 220 bit/s

Camera 640x480 px 32 bit color 9830400 bits 4 39.322 Mbit/s

Radar 50 mm 4 m 7 bits 4 280 bit/s

INS 0.01 m/s2 100 m/s2 14 bits 1 140 bit/s

Clearly, the camera data transfer rate is orders of magnitude larger than any of the other sensors.

Using a design factor of 1.5 and rounding up, the achievable data transfer rate of the wireless

communication protocol selection should be 60 Mbit/s. This is ten percent of the maximum data

transfer rate of 802.11n wireless communication.

Hardware Selection

Drone Platform [BJP]

The process of specific hardware component selection was initiated by choosing an appropriate

drone platform from the available choices in the marketplace. Based upon the hardware block

diagrams and function tables, a core requirement of the drone is that it must be able to respond in

accordance with command signals sent via a custom external system. Thus, the drone system

selected must have available resources for modifying and controlling the programming of the

drone using a standard wireless router. Ideally, the drone system should have publicly available

software able to be run on standard PC hardware to facilitate communication with, and control

of, the drone.

Based on internet research, two platforms were found that fulfilled the above requirements.

Table 11 below lists these drone systems.

Table 11: Drone Platform Options

Manufacturer Model Amazon Price (11/12/16)

DJI Matrice 100 $3,299.00

3DR Solo $319.89

35

Clearly, the use of the DJI platform, which costs more than ten times the 3DR platform, is not

justified unless use of the 3DR system turns out to be unworkable. Thus, the selection process

will proceed by verifying the suitability of the 3DR Solo.

Table 12 below summarizes the specifications and features used to determine the suitability of

the 3DR Solo for the indoor mapping drone project.

Table 12: Drone Platform Justification Criteria

Criteria 3DR Solo Specification Requirement

Propeller-to-

Propeller Width

28” ≈ 71cm < 75cm

Maximum Payload 700g 700g

Expected Battery

Life

Approximately 25 minutes 5 minutes

Available API Yes: Dronekit (open source,

Python 2.7)

Yes: Executable on PC (preferably

open source)

Control Signal Wi-Fi Wi-Fi

On-Board

Controller Software

Yocto Linux, remotely

accessible and modifiable3

Remotely accessible and modifiable

(preferably open source)

Stable operation

without GPS

Yes, in preconfigured advanced

flight modes

Yes

Based on the results presented above, the 3DR Solo was deemed an appropriate selection for the

drone platform. No noise level data could be found for the 3DR Solo, but the sound requirement

was determined to be of secondary importance.

Another feature of the 3DR Solo which makes it attractive for use in this project is the inclusion

of a Wi-Fi based remote control unit which also runs Yocto Linux. This remote control unit

could potentially be used for the project by placing it at the starting location of the drone to act as

a signal extender for communication between the drone and the custom remote processing

system.

Remote Processing System [BJP]

The selection of the PC hardware is immaterial to the success of the project provided that

adequate computational power and communication speed is available. Once the necessary

software is developed, it should be portable to any modern computer hardware. However, to

3 Information about accessibility of onboard software found at http://dev.3dr.com/ online.

http://dev.3dr.com/

36

satisfy the wired communication speed requirement between the wireless router and the

processing system, gigabit ethernet ports must be available.

The selection of an appropriate wireless router is of somewhat greater importance. To meet the

communication requirements, the wireless router must support 802.11n wireless communication

and have at least one RJ-45 port supporting Gigabit ethernet. Based on availability, the ASUS

RT-N66U, which meets the aforementioned requirements, was selected for use in the project.

RF Sensor Research [DOO]

Our focus on radar in this project is to use an RF sensor to detect distance to objects. For our

project, radar is preferable to use at the front and sides of the drone due to its higher beam width

hence the ability to detect obstacles which are not directly opposite to the sensor. Figure 12

below shows how radar beam width is defined.4

Figure 12: Radar Beam Width

Drone Add-On [AGA, ML]

The drone add-on consists of all sensory equipment and microcomputer hardware that is to be

installed onto the drone for exploration purposes. To properly fit all equipment onto the 3DR

Solo drone, a STEP file of the beauty plate was downloaded and will be modified to design a

chassis which can securely house necessary additional hardware.

4 Figure 12 was obtained from http://msi.nga.mil/MSISiteContent/StaticFiles/NAV_PUBS/RNM/310ch1.pdf which

is contained in the reference section at the end of this report.

http://msi.nga.mil/MSISiteContent/StaticFiles/NAV_PUBS/RNM/310ch1.pdf

37

Shown in Figure 13 below is the unmodified STEP file of the 3DR Solo’s beauty plate.

Figure 13: Beauty Plate 3D Model

The drone add-on camera is a Raspberry Pi 5MP Camera Board Module that is connected to the

Raspberry Pi 3’s CSI port via ribbon cable. Two LiDAR Lite v3 sensors are connected to the

Raspberry Pi’s I2C bus using pins 3 and 5. These LiDAR sensors have configurable I2C

addresses and can be connected in series without the need for additional hardware. In order to

accurately track the points in space which the drone travels through, an MPU-6050 Inertial

Navigation System is also connected to the Raspberry Pi’s I2C bus. The INS provides a tri-axis

angular rate sensor and tri-axis accelerometer, which are both necessary for path-planning

implementations. Shown in Figure 14 below is how the drone add-on’s camera, LiDAR sensors,

INS, and Raspberry Pi are all connected.

Figure 14: Drone Add-On Sensor Connection Schematic

38

Drone Add-On Materials Budget [AGA, BJP]

The University of Akron provides $400 of funding ($100 per team member) towards hardware.

With this money, the most critical drone add-on hardware components, which are shown in the

list below, were purchased. Other necessary equipment, including the drone itself and the

wireless router, was purchased out of pocket by the design members. Any additional sensors or

hardware not listed below that become necessary shall also be sacrificially procured through the

use of funds from individual team member accounts at private financial institutions.

Figure 15: Materials Budget, Drone Add-On

39

Configuration and Communication [BJP]

Table 13 below presents the addresses assigned for the drone network devices:

Table 13: Drone Network Addresses

Drone Network

Device

IP Address Subnet Mask Default

Gateway

Hostname

3DR Solo (Drone) 10.1.1.10 (Set by

manufacturer)

255.255.255.0 10.1.1.255 3dr_controller

3DR Solo Remote

Controller

10.1.1.1 (Set by

manufacturer)

255.255.255.0 10.1.1.255 3dr_solo

Wireless Router 10.1.1.100 255.255.255.0 10.1.1.255

Remote

Processing Unit

10.1.1.101 255.255.255.0 10.1.1.255 ECE-DT05-

PowerEdge-1950

Drone Add-On

Network Adaptor

10.1.1.200 255.255.255.0 10.1.1.255 raspberrypi

Table 14 below lists the devices broadcasting WLAN ESSIDs along with their function.

Table 14: Wireless Broadcasting Configurations

Device Function ESSID Security Passcode

3DR Solo Remote

Controller

Wireless

Routing

SoloLink_DT05 WPA2-

Personal

eceDT051617

Wireless Router

(ASUS RT-N66U)

Wireless

Repeating

SoloLink_DT05_RPT WPA2-

Personal

eceDT051617

40

Figure 16 below is the network architecture diagram displaying the physical links, both wired

and wireless, between the networked devices.

Figure 16: Drone Network Architecture Diagram

Remote Processing Unit [BJP]

As noted in the network architecture seen above, Debian GNU/Linux was chosen as the

operating system to be used on the remote processing unit. A Linux distribution was desired

because, compared to other operating systems such a Microsoft Windows, Linux is more

customizable and can run with less overhead to maximize the performance of the hardware.

Among the abundant Linux distributions available, Debian was selected because it can be

installed as a base system without frilly features or a preconfigured desktop environment,

because of its reputation for stability, and, lastly, because of its long history of community

documentation and support.

Once the base operating system was installed, necessary software was added using Debian’s

package manager known as aptitude. The basic X.org Server was installed along with the

window manager Openbox to provide a minimalistic X Window System environment for

running graphical applications. Emacs was installed for advanced text editing and code

development. FreeCAD was installed for the viewing and creation of three-dimensional models.

MATLAB was installed for the possible eventual use of image analysis tools. The latest stable

release of GCC in the Debian repository was installed for c code compilation. Python 2.7 along

with necessary libraries was set up for using the DroneKit-Python API which communicates with

the drone system. ROX-Filer, the best file manager in existence, was installed for simple and

snappy manipulation of files. And, of course, Firefox was installed for viewing of web pages.

41

Drone Platform [BJP]

Upon receipt and examination of the purchased 3DR Solo drone system, the drone was

affectionately named Darcy by the team on November 12, 2016. Figure 17 is an image of Darcy.

Figure 17: Darcy Unveiled

The preliminary configuration of the 3DR Solo was facilitated by the use of the Android app

from the manufacturer. Through this simple utility, the ESSID and passcode for the solo remote

controller were configured and advanced flight modes were unlocked.

The 3DR Solo comes with a default built-in flight mode known as standard flight. However, for

this project, standard flight cannot be used because it relies upon GPS lock. The 3DR Solo comes

with five alternative “advanced” flight modes. Four of these could potentially be used for this

project because they do not require GPS lock. Of the four flight modes which do not require

GPS, two were identified as the most reasonable selections: the “Fly:Manual” and “Stabilize”

modes. The descriptions of these two modes as listed in the Solo User Manual can be seen in

Figure 18 below.

Figure 18: Applicable Solo Flight Mode Descriptions

The primary difference between the two modes described in the figure above is that

“Fly:Manual” mode offers some level of altitude control while “Stabilize” mode provides more

direct control of throttle.

42

Wireless Router [BJP]

The wireless router was configured via its web-based GUI by connecting it to the server via LAN

cable. With the ethernet port of the server configured for DHCP, the default IP address of the

router (192.168.1.1) was typed into to the address bar of Firefox on the server to access the

router configuration interface. Through the web-based ASUS configuration utility, the router was

set to repeater mode with the prescribed static IP settings to broadcast and extend the wireless

network of the solo remote controller. After configuring the router, the second ethernet port of

the server, labeled eth1 by the operating system device naming scheme, was configured with the

static IP address settings seen in the network device table. At this point, the remote processing

unit, wireless router, solo remote controller, and solo local controller are all on the same network

and accessible by the remote processing unit. To add the drone add-on to the network, its

wireless adapter will simply be configured to connect to the solo remote controller network using

the prescribed static IP settings.

Authentication and Storage [BJP]

To allow expedient and automated ssh connections between the remote processing unit and the

solo local controller, ssh-genkey was used to produce public RSA keys on both systems. These

keys were then exchanged using scp and added to the other system’s authorized_keys

configuration text file in the ~/.ssh directory. For the duration of the project, all tasks on the

remote processing unit will be completed as the user “user” while all tasks on the solo remote

controller and the solo local controller will be completed with “root” as the user. The “user” on

the remote processing system was added to the sudo group such that administrative tasks may be

completed with root privileges.

On the remote processing system, a folder named “Darcy” was created in the /home/user

directory. All created files necessary for the operation of the indoor mapping drone are to be kept

in this folder for ease of backup. All created files stored on the solo local controller shall simply

be kept in the /home/root folder of that device, but shall be backed up to ~/Darcy/drone_files on

the remote processing unit.

43

To automate the backup of the generated files for the project, a bash shell script named

Darcy_backup.sh was created. This script first copies the (non-hidden) contents of /home/root on

the solo local controller to ~/Darcy/drone_files on the remote processing unit. The script then

proceeds to create a compressed tarball of the contents of ~/Darcy (which now contains the

generated files for both the remote processing system and the solo local controller) using a

timestamped filename. The script must be executed from /home/user and the produced tarball is

stored in /home/user. However, for backup purposes, a copy of the script shall be kept in

~/Darcy/scripts for safekeeping. The script can be seen in Figure 19 below.5

Figure 19: Automated Backup Generation Script

Testing and Software Development [BJP]
With the remote processing unit and solo controllers now networked, the team proceeded to test

communication between the remote processing unit and the drone. Ultimately, control of the

drone by the remote processing unit must be made possible. In particular, the activation of the

drone, the flight mode of the drone, and the values normally controlled by the four joystick axes

should be available to manipulate over the network.

Drone Mode Control and Channel Overrides [BJP]

DroneKit-Python is the API available to interface with the drone and facilitate the required

functionality. The official documentation for the API is available at http://python.dronekit.io/

online.

5 This and subsequent screenshots taken on the remote processing unit were taken using the procedure described in

the website http://www.ibm.com/developerworks/aix/library/au-screenshots2/index.html online.

http://python.dronekit.io/
http://www.ibm.com/developerworks/aix/library/au-screenshots2/index.html

44

The team first needed to verify that activation of the drone, the flight mode of the drone, and the

four axes could be manipulated using DroneKit-Python over the network. To use DroneKit-

Python, a connection is first established with the drone from within Python using the connect

function from the dronekit library. This function returns a vehicle object which can subsequently

be used to manipulate the drone. For this project, the vehicle object representing the indoor

mapping drone will be given the variable name “Darcy” in all code. The activation of the drone

is managed by setting the “armed” attribute of the vehicle object (Darcy.armed) and the vehicle

mode is managed by altering the “mode” attribute of the vehicle object (Darcy.mode). The

VehicleMode function from the dronekit library is used to set the mode attribute. Lastly, and

perhaps most importantly, the values representing the physical positions of the joysticks and the

solo remote controller can be overridden and controlled by setting the “overrides” attribute of the

“channels” class of the vehicle object (Darcy.channels.overrides).

Before proceeding, it is necessary to identify the four channels to be manipulated. The channels

are each described in the Solo User Manual with respect to their corresponding physical axes on

the solo remote controller. These descriptions shall be each examined to determine the effect of

each channel on the drone model. Experimentally, the channel number corresponding to each

axis shall be determined using DroneKit-Python.

Figure 20 below is the excerpt from the drone user manual describing the throttle axis. This axis

was experimentally determined to correspond to channel number 3. With respect to the drone

model, channel number 3 controls acceleration in the z1 direction and the controller for this

channel should be fed the value of w.

Figure 20: Solo Throttle Axis Definition

45

Figure 21 below is the excerpt from the drone user manual describing the yaw axis. This axis

was experimentally determined to correspond to channel number 4. Clearly, channel number 4

controls acceleration in the θ direction and the controller for this channel should be fed the value

of θd.

Figure 21: Solo Yaw Axis Definition

Figure 22 below is the excerpt from the drone user manual describing the pitch axis. This axis

was experimentally determined to correspond to channel number 1. According to the definition

of the local coordinate system, channel number 1 controls acceleration in the y1 direction and this

channels controller should have v as an input.

Figure 22: Solo Pitch Axis Definition

46

Figure 23 below is the excerpt from the drone user manual describing the roll axis. This axis was

experimentally determined to correspond to channel number 2. This last channel controls

acceleration in the y1 direction and the value of u should be used as the input for this channel’s

controller.

Figure 23: Solo Roll Axis Definition

Table 15 below summarizes the channel information obtained.

Table 15: Channel Specifications

Channel Control Value Minimum Maximum Joystick Orientation

1 Pitch Integer 1000 2000 Right Vertical

2 Roll Integer 1000 2000 Right Horizontal

3 Throttle Integer 1000 2000 Left Vertical

4 Yaw Integer 1000 2000 Left Horizontal

47

Figure 24 below displays the first script the team used to verify that the channel values could be

controlled by the remote processing unit over the network. For testing purposes, the most

straightforward method was employed: the channel values were continuously read in from a file

local to the drone using an infinite loop.

Figure 24: Drone Python Script For Initial File Communication Test

48

The local file containing the channel values could then be modified manually through an ssh

connection from the remote processing unit. However, it was desired for the channel values to be

read from the remote processing unit. Thus, a simple bash script was employed and run on the

drone to continuously overwrite the channel-value file locally stored on the drone with a

channel-value file copied from the remote processing unit using scp. Figure 25 below displays

this simple infinite-loop script.

Figure 25: Script for Automated ssh File Communication

This initial communications test was successful, but the method of file transfer and file reading

caused the response to a value change at the server to be unacceptably slow. Thus,

communication over UDP is to be implemented. UDP is preferred over TCP for this application

because speed is of much higher priority than error correction features. For this application,

dropping packets is preferred over waiting for delayed packets.

UDP Channel Control [BJP]

UDP communication in Unix-like operating systems is achieved through the use of sockets.

These sockets have data sent to them and received from them by the networked devices which

are communicating. The socket must have a host (which will be identified by an IP address) and

a port over which to communicate. Because the drone system by default already employs UDP

communication through port 14550, and the team does not want to interfere with the internal

workings of the drone system, UDP communication between the solo local controller and the

remote processing system will be set up to utilize port 14551 and other sequentially subsequent

unused ports.

Through experimental monitoring of the channel values while varying the actual joystick

position, the range of each channel value was determined to be 1000 to 2000. These channel

values are integers, thus the number of possible values for each channel is 1001. The minimum

message size needed to transmit all four channel values without loss of resolution is therefore

calculated as follows:

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑠𝑖𝑧𝑒 = ⌈log2(10014)⌉ = 40 𝑏𝑖𝑡𝑠 = 5 𝑏𝑦𝑡𝑒𝑠

49

The most straightforward way to transmit the channels, however, is to represent each integer as a

four-character string. These four four-character strings can then be concatenated into a single

sixteen-character string. If standard ASCII character encoding is used, then each character of the

string is a single byte. Therefore, using this method, the message size will be 16 bytes. Although

this message size is about three times the theoretical minimum, the team decided that this amount

of additional overhead was justified due to the simplicity of the code and calculations needed for

implementation of this message format.

The team proceeded to develop the code required to test control of the channel values by the

remote processing unit over UDP. First, the python code to run on the solo local controller was

written. This code is seen in Figure 26 below.

Figure 26: Drone Python Code for Initial UDP Test

50

In the code given above, the parameter socket.SOCK_DGRAM passed to the socket creation

function specifies that the socket is to be used for UDP communication. Note also that port

14551 was selected for communication of the channel values.

To test the functionality of the channel receiving code, the channel sending code was also

written. This code is to be executed on the remote processing server. The figure below displays

this code for testing the sending of manually set channel values over UDP. The user at the

remote processing unit is prompted for channel values. These values are then sent as a UDP

message.

Figure 27: Remote Processing Unit Python Code for Initial UDP Test

51

For testing purposes, the code given above was written in python. However, to reduce overhead

for the remote processing unit (which will be doing the majority of the calculations for the

project), the final implementation of this code will likely be written in C. Note also that this code

could have been shortened and been better structured if an array of four strings had been used in

place of four individually named strings. However, the individual naming of the strings was

straightforward for testing and allowed easy commenting out of all but a single channel of

interest. Clearly, arrays should be used in the final code.

Testing of udp_send_test.py on the remote processing unit in conjunction with udp_test.py on

the solo local controller was a great success. The delay between the sending of the UDP message

and the audible change in drone motor speed was not substantial enough to even be perceivable

by the ear alone. The code running on the remote processing unit also verified that the message

size was 16 bytes.

Since UDP communication of the channels has been successfully demonstrated over port 14551,

this port will remain dedicated for this purpose. However, it is also desired to communicate

status from the solo remote controller to the remote processing unit. A dedicated port should also

be available for sending higher-level command signals from the remote processing unit to the

solo local controller. Table 16 below displays the project-specific ports which will be used to

communicate between the remote processing unit and the drone.

Table 16: Communication Ports Between Solo and RPU

Port Protocol IP Address Data Direction

14551 UDP 10.1.1.10 Channel Values From Remote Processing Unit

14552 UDP 10.1.1.101 Drone Status From Solo Local Controller

14553 UDP 10.1.1.10 Drone Commands From Remote Processing Unit

In the final code for both the drone local controller and the remote processing unit, the portion of

the code responsible for managing data over each port should run in its own thread. Threads can

be managed in python code using the “threading” library6 and in C code using the “pthread”

library.7

6 Information on using the Python threading library was found at the website

http://www.devshed.com/c/a/Python/Basic-Threading-in-Python/ online.
7 Information on using POSIX threads in C was found at https://computing.llnl.gov/tutorials/pthreads/ online.

http://www.devshed.com/c/a/Python/Basic-Threading-in-Python/
https://computing.llnl.gov/tutorials/pthreads/

52

Threaded UDP: Channel and Status Communication [BJP]

The team next developed code to test sending of the attitude measured by the drone to the remote

processing unit via the status UDP port. The attitude consists of three floating point angles

measured in radians: the yaw angle, the pitch angle, and the roll angle. Because the

communication of a string over UDP has already been successfully achieved, it was decided to,

at least for this test, convert the attitude to a string for communication purposes. Using python

syntax at the solo local controller, each angle value can be converted to a string of a fixed

number of characters. These strings can be concatenated, sent via UDP, and decoded at the

remote processing unit. To minimize loss of precision, the strings will each be forced to sixteen

characters and use exponential (scientific) notation. This is surely more than adequate, since at

most only the first five non-zero digits are expected to be significant.

To enable both the receiving of channel data via UDP and sending of status data via UDP at the

solo local controller, threads were employed using the Python 2.7 threading module. The threads

created to handle UDP sending and receiving were configured to be daemon threads such that

ending the main thread would also kill the communications threads.8 This python code developed

to test status sending and the use of threads on the solo local controller is seen in Figure 28

below.9 Because command receiving has not yet been implemented, the python code was simply

set to exit the test after running in the main loop for twenty seconds.

8 Information on how to start a Python thread as a daemon was found at the website

http://sebastiandahlgren.se/2014/06/27/running-a-method-as-a-background-thread-in-python/ online.
9 This code text file as well as subsequent codes in this report were formatted using https://tohtml.com/ online.

http://sebastiandahlgren.se/2014/06/27/running-a-method-as-a-background-thread-in-python/
https://tohtml.com/

53

#!/usr/bin/python #thread_test.py

import time

import socket

import threading

from dronekit import connect,VehicleMode

UDP_IP = "10.1.1.10"

RPU_IP = "10.1.1.101"

CHANNEL_PORT = 14551

STATUS_PORT = 14552

COMMAND_PORT = 14553

MIN_MSG_DELAY = 0.02

class channel_thread(threading.Thread) :

 def __init__(self) :

 thread = threading.Thread(target=self.run)

 thread.daemon = True

 thread.start()

 def run(self) :

 chan_sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 chan_sock.bind((UDP_IP,CHANNEL_PORT))

 while True :

 chan_data = chan_sock.recvfrom(16)

 print chan_data

 chan_str = str(chan_data[0])

 chan1_str = chan_str[0:4]

 chan2_str = chan_str[4:8]

 chan3_str = chan_str[8:12]

 chan4_str = chan_str[12:16]

 Darcy.channels.overrides = {'1':int(chan1_str), '2':int(chan2_str),

'3':int(chan3_str), '4':int(chan4_str)}

 time.sleep(MIN_MSG_DELAY)

class status_thread(threading.Thread) :

 def __init__(self) :

 thread = threading.Thread(target=self.run)

 thread.daemon = True

 thread.start()

 def run(self) :

 stat_sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 while True :

 yaw_str = "%016.8e" % Darcy.attitude.yaw

 pitch_str = "%016.8e" % Darcy.attitude.pitch

 roll_str = "%016.8e" % Darcy.attitude.roll

 stat_sock.sendto(yaw_str + pitch_str + roll_str, (RPU_IP, STATUS_PORT))

 time.sleep(MIN_MSG_DELAY)

global Darcy

Darcy = connect('udp:127.0.0.1:14550', wait_ready=True)

Darcy.mode = VehicleMode("STABILIZE")

status_thread()

Darcy.channels.overrides['3'] = 1000

Darcy.armed = True

while (Darcy.armed == 'False') :

 # Do nothing

 print 'Waiting for armed state'

 time.sleep(1)

 Darcy.armed = True

channel_thread()

exit_flag = 0

while (exit_flag == 0) :

 time.sleep(20)

 exit_flag = 1

 print "exit_flag = " + str(exit_flag)

exit()
Figure 28: Drone Python Code for Threaded UDP Test

54

To implement the testing of status receiving on the remote processing unit, it was decided that

the team should move towards using C for greater computational efficiency and programming

flexibility. Because C is a lower-level programming language than Python, the syntax for

communicating via UDP is slightly more complex.10 For this reason, the team began

development of a user library file for use with the project’s C programs to simplify usage of

UDP communication (and other tasks) in the main code files. This user library was named

“darcy.h” and was stored in ~/Darcy/c on the remote processing unit. All other C program code

files shall also be stored in the same location.

In Figure 29 below is the initial C code, named “udp_test2.c” developed to test simultaneous

receiving of drone status via UDP and manual commanding of throttle via UDP. Continuous

monitoring of the status-receiving UDP socket was achieved by deploying a dedicated thread for

the task. Threading in C code shall be achieved using <pthread.h> which is the standard POSIX

thread library offering low-level control of threads on Unix-like operating systems (such as

Debian GNU/Linux running on the remote processing unit). The values of the yaw, pitch, and

roll angles are continuously updated (with a minimum delay of ten milliseconds) but are only

displayed to the user at a single instant upon request. The received status message is parsed by

populating individual strings with the characters representing the corresponding angle. Each

string is then converted to a numerical value using the standard library function atof().

10 The syntax for using UDP in C was discovered at https://www.cs.rutgers.edu/~pxk/417/notes/sockets/udp.html

online.

https://www.cs.rutgers.edu/~pxk/417/notes/sockets/udp.html

55

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <pthread.h>

#include "darcy.h"

#define STAT_UPDATE_DELAY 0.01

struct stat_update_args

{

 int stop_flag;

 struct attitude angles;

};

int main(void);

void parse_attitude(char * msg, struct attitude * angles_ptr);

void print_attitude(struct attitude angles);

void * stat_update(void * stat_args_ptr);

int main(void)

{

 /* Initialize user input character for CLI */

 char user_char;

 user_char = '0';

 /* Set up channel socket */

 int chan_sock;

 chan_sock = get_udp_sock();

 if (chan_sock < 0)

 {

 fprintf(stderr, "Could not create channel socket!\n");

 return 1;

 }

 struct sockaddr_in chan_addr;

 set_udp_addr(&chan_addr, SOLO_IP, CHANNEL_PORT);

 struct stat_update_args * stat_args_ptr;

 stat_args_ptr = malloc(sizeof(struct stat_update_args));

 stat_args_ptr->stop_flag = 0;

 stat_args_ptr->angles.yaw = 0;

 stat_args_ptr->angles.pitch = 0;

 stat_args_ptr->angles.roll = 0;

 pthread_t stat_thread;

 pthread_create(&stat_thread, NULL, stat_update, (void *)stat_args_ptr);

 /* User selection loop */

 while (user_char != '3')

 {

 user_char = '0';

 while (user_char == '0')

 {

 printf("1: Set Low Throttle\n");

 printf("2: Set High Throttle\n");

 printf("3: Exit Program\n");

 printf("4: View Attitude\n");

 printf("Type one char and hit return: ");

 grabonechar(&user_char);

 }

 printf("You typed %c\n", user_char);

 if (user_char == '1')

 {

 send_udp_msg("1500150010001500", chan_sock, &chan_addr);

 }

 else if (user_char == '2')

 {

 send_udp_msg("1500150020001500", chan_sock, &chan_addr);

 }

 else if (user_char == '4')

 {

 print_attitude(stat_args_ptr->angles);

 }

 }

 close(chan_sock);

56

 stat_args_ptr->stop_flag = 1;

 pthread_exit(NULL);

 free(stat_args_ptr);

 return(0);

}

void parse_attitude(char * msg, struct attitude * angles_ptr)

{

 int i = 0;

 char yaw_raw[] = "0123456789ABCDEF";

 char pitch_raw[] = "0123456789ABCDEF";

 char roll_raw[] = "0123456789ABCDEF";

 for (i = 0; i < 16; i++)

 {

 yaw_raw[i] = msg[i];

 pitch_raw[i] = msg[i + 16];

 roll_raw[i] = msg[i + 32];

 }

 angles_ptr->yaw = atof(yaw_raw);

 angles_ptr->pitch = atof(pitch_raw);

 angles_ptr->roll = atof(roll_raw);

}

void print_attitude(struct attitude angles)

{

 printf("Yaw:\t\t%f\n", angles.yaw);

 printf("Pitch:\t\t%f\n", angles.pitch);

 printf("Roll:\t\t%f\n", angles.roll);

}

void * stat_update(void * stat_args_ptr)

{

 /* Set up status socket */

 int stat_sock;

 stat_sock = get_udp_sock();

 if (stat_sock < 0)

 {

 fprintf(stderr, "Could not create status socket!\n");

 pthread_exit(NULL);

 }

 struct sockaddr_in stat_addr;

 set_udp_addr(&stat_addr, RPU_IP, STATUS_PORT);

 if (bind_udp_sock(stat_sock, &stat_addr) < 0)

 {

 fprintf(stderr, "Could not bind status socket!\n");

 pthread_exit(NULL);

 }

 char stat_msg[STAT_SIZE + 1];

 int recv_len = 0;

 while (((struct stat_update_args *)stat_args_ptr)->stop_flag == 0)

 {

 recv_len = recv_udp_msg(stat_msg, STAT_SIZE, stat_sock);

 if (recv_len == STAT_SIZE)

 {

 parse_attitude(stat_msg, &(((struct stat_update_args *)stat_args_ptr)->angles));

 }

 sleep(STAT_UPDATE_DELAY);

 }

 close(stat_sock);

 pthread_exit(NULL);

}
Figure 29: Remote Processing Unit C Program for Threaded UDP Test

57

The code in Figure 30 below is the revision of the user library “darcy.h” used with “udp_test2.c”

above for testing. Note that the ports, the IP addresses, the status message size, and the receiving

socket timeout interval are all defined here.11

11 The method for setting the timeout value of a socket in C was at link http://stackoverflow.com/a/13547864 given.

#include <stdio.h>

#include <string.h>

#include <sys/socket.h>

#include <netinet/in.h> /* needed for sockaddr_in */

#define RPU_IP (unsigned long)0x0A010165 /* 10.1.1.101 */

#define SOLO_IP (unsigned long)0x0A01010A /* 10.1.1.10 */

#define CHANNEL_PORT 14551

#define STATUS_PORT 14552

#define COMMAND_PORT 14553

#define STAT_SIZE 48

#define TIMEOUT_SEC 1

#define TIMEOUT_USEC 0

struct attitude

{

 double yaw;

 double pitch;

 double roll;

};

void grabonechar(char * char1);

int get_udp_sock(void);

void set_udp_addr(struct sockaddr_in * addr_ptr, long sock_ip, short sock_port);

int bind_udp_sock(int fd, struct sockaddr_in * addr_ptr);

int send_udp_msg(char * msg_str, int fd, struct sockaddr_in * addr_ptr);

int recv_udp_msg(char * msg_str, int msg_len, int fd);

void grabonechar(char * char1)

{

 int charcount = 0;

 *char1 = getchar();

 if(*char1 != '\n')

 {

 while(getchar() != '\n')

 {

 charcount++;

 }

 }

 if((*char1 == '\n') | (charcount++ > 0))

 {

 *char1 = '0';

 }

}

int get_udp_sock(void)

{

 return(socket(AF_INET, SOCK_DGRAM, 0));

}

void set_udp_addr(struct sockaddr_in * addr_ptr, long sock_ip, short sock_port)

{

 memset((void *)addr_ptr, 0, sizeof(*addr_ptr));

 (*addr_ptr).sin_family = AF_INET;

 (*addr_ptr).sin_addr.s_addr = htonl(sock_ip);

 (*addr_ptr).sin_port = htons(sock_port);

}

int bind_udp_sock(int fd, struct sockaddr_in * addr_ptr)

http://stackoverflow.com/a/13547864

58

Figure 30: C User Library for Threaded UDP Test

{

 int return_val;

 return_val = bind(fd, (struct sockaddr *)addr_ptr, sizeof(*addr_ptr));

 struct timeval timeout_val;

 timeout_val.tv_sec = TIMEOUT_SEC;

 timeout_val.tv_usec = TIMEOUT_USEC;

 if (setsockopt(fd, SOL_SOCKET, SO_RCVTIMEO, &timeout_val, sizeof(timeout_val)) < 0)

 {

 fprintf(stderr, "Failed to set socket timeout option!\n");

 }

 return return_val;

}

int send_udp_msg(char * msg_str, int fd, struct sockaddr_in * addr_ptr)

{

 int return_val;

 return_val = sendto(fd, msg_str, strlen(msg_str), 0, (struct sockaddr *)addr_ptr,

sizeof(*addr_ptr));

 if (return_val < 0)

 {

 fprintf(stderr, "UDP send of following message failed: %s\n", msg_str);

 }

 return(return_val);

}

int recv_udp_msg(char * msg_str, int msg_len, int fd)

{

 int recv_len;

 recv_len = recvfrom(fd, msg_str, msg_len, 0, 0, 0);

 if (recv_len < 0)

 {

 fprintf(stderr, "Error receiving UDP message. (Timeout?)\n");

 }

 else if (recv_len != msg_len)

 {

 fprintf(stderr, "Expected UDP message of size %d, received %d\n", msg_len, recv_len);

 }

 return(recv_len);

}

59

The test using “thread_test.py” on the solo local controller and “udp_test2.c” on the remote

processing unit was conducted by first starting “threads_test.py” through ssh using the remote

processing unit. The compiled executable “udp_test2” of “udp_test2.c” was then started on the

remote processing unit. In the terminal running “udp_test2” the throttle was commanded high

using the user input character “2” and then low using “1” as the user input character.

Subsequently, the attitude was displayed at the remote processing unit twice by inputting “4” two

times in succession. The “udp_test2” program was then ended. Figure 31 below displays the

output of “udp_test2” during the test.

Figure 31: Threaded UDP Test, Remote Processing Unit Output

From the output above, the status communication is clearly working correctly. The level of noise

to be expected in these signals can also be approximated by examining the two successive

readings. Theoretically, the values should be exactly the same because the drone was sitting still

on the bench. Though its motors were running, no propellers were attached. The change in the

throttle, however, could still be validated as occurring nearly instantly by the ear. No delay was

perceptible.

60

The output from “udp_test2” is only half of the complete picture. Figure 32 below displays the

output from “thread_test.py” on the solo local controller as viewed on the remote processing unit

through the ssh connection.

Figure 32: Threaded UDP Test, Solo Local Controller Output

From the above output, positive confirmation is obtained that the transported channel values

arrived at their intended destination correctly. The program then exited as intended twenty

seconds after initialization of the quadcopter. The message “PreArm: Need 3D Fix” is displayed

prior to the selection of the non-standard flight mode which does not require GPS.

The exceptions thrown by the two communications threads are not worrisome. These arise

because, as stated earlier, the communications treads are initialized as daemons. This means that

when the main thread terminates, the communications threads are immediately killed. In Python

2.7, this can cause the threads to raise an exception. A bug was filed for this issue, and although

the issue has been resolved in Python 3, the fix for Python 2 led to more issues; therefore, the

exceptions remain.12 Because the communications threads are not handling files or other system

resources that could be damaged by immediate shutdown, these exceptions can safely be

accepted and ignored throughout the duration of this project.

12 Python 2.7 daemon thread bug: https://joeshaw.org/python-daemon-threads-considered-harmful/

https://joeshaw.org/python-daemon-threads-considered-harmful/

61

The more sophisticated way to prevent the thread-killing issue, as was done with the receiving

thread in the C code, is to send a command to the thread to exit its loop when the loop in the

main thread has ended. However, for this to be successful, the receive command in the

communication thread must somehow have a timeout; otherwise the thread may never exit

because no more messages are coming. If it is discovered that a timeout can be easily configured

for the receiving socket in the Python script, this issue may be revisited and resolved more

professionally.

In future code, the status message from the solo local controller should also include at minimum

the armed status of the drone (Darcy.armed) and the flight mode of the drone (Darcy.mode).

Besides the addition of other values to the status message, the next feature to be implemented is

command communication over UDP.

UDP Command Port [BJP]

The sending of commands from the remote processing unit to the solo local controller will take

place using UDP over port 14553. The following commands should be accepted and interpreted

by the Python code on the solo local controller:

• Arm the drone Darcy.armed = True

• Disarm the drone Darcy.armed = False

• Set flight mode to Stabilize Darcy.mode = VehicleMode(“STABILIZE”)

• Set flight mode to Fly:Manual Darcy.mode = VehicleMode(“ALT_HOLD”)

62

Final Local Script [BJP]

Figure 33 below is the flowchart for the main thread of the final version of the Python script that

will run on the solo local controller. The command port monitoring will be handled in the main

thread. Audible indication of successful command execution may also be implemented.

Figure 33: Solo Local Controller Script, Main Thread

Figure 34 below shows the flowcharts for the daemon threads to be included in the final version

of the Python script to be run on the solo local controller. These daemon threads will be initiated

by the main thread as described in Figure 33.

Figure 34: Solo Local Controller Script, Daemon Threads

63

Autonomy and Path Planning [AGA]

The main goal of this project is to produce a fully autonomous drone that is capable of exploring

an indoor space to its entirety in a timely manner without collisions. To achieve this goal, sensor

data from the drone add-on is constantly transmitted to the remote processing unit in real-time.

Many cases must be considered when determining a path to take.

One example case would be the exploration within four inches of an extended desk drawer. In

this example, the LiDAR sensors which provide the distances to the ceiling and floor relative to

the exploration unit make it seem that there is no obstacle and the best path to take is vertically

up or down. The shelf however, is directly in the path of one of the exploration unit’s propellers.

In this case, the LiDAR sensors should not hold the most priority when it comes to path

planning, because other sensors such as radar or camera provide feedback suggesting an obstacle

is more likely in the chosen path.

When it comes to determining a path to take, the probabilities of collision in all six movable

directions are calculated as a weighted average based on sensor feedback. As mentioned in the

example in the previous paragraph, there are different cases that require certain sensors to have a

heavier weight coefficient when calculating the probability of collision for a certain direction.

LiDAR sensors are exceptional at detecting distances to ceilings and floors, but the LiDAR Lite

v3 has a narrow beam and is not ideal for detecting small objects.

In order to return to the exploration unit’s initial position after exploring an indoor space to its

entirety, the history of the unit’s explored locations is logged chronologically based on the

feedback from the INS. Not only does the INS provide a simple method for returning to the

initial position for landing, but it also takes part in path planning algorithms. It would be of little

use for the exploration unit to repetitively travel to the same points in space if there is no new

information to be gathered at such points, so having a record of locations already visited allows

for path deduction.

The exploration unit is designed to explore a space in repetitive scanning intervals, prioritizing

movement along one axis at a time. That is, the space will be explored near the ceiling first,

descend to the middle of the space and explore, and then finally descend again to the floor for

exploration. This systematic method of exploration allows for detection of objects that may be

hanging from a ceiling or tall objects protruding from a floor. Also, exploration can be

completed faster in cases where few or no obstacles are detected, such as in an empty rectangular

room. An empty room with no obstacles does not require additional levels of resolution, thus

making the exploration process faster.

64

Parts List [AGA]

Table 17: University Funded Parts List

65

Project Schedules [AGA]

Midterm Design Gantt Chart [AGA]

Figure 35: Fall Midterm Design Gantt Chart

66

Final Design Gantt Chart [AGA]

Figure 36: Fall Final Design Gantt Chart

67

Proposed Implementation Gantt Chart [AGA]

Figure 37: Spring Proposed Implementation Gantt Chart

68

Design Team Information [ML]

Andrew Armstrong (CpE) Software Lead

Miguel Lopez (CpE) Archivist

Davidson Okpara (EE) Hardware Lead

Benjamin Plevny (ME/EE) Team Leader

69

Conclusion and Recommendations [ML]

Limitations of the current existing indoor mapping solutions apart from our project leave much

to be desired in robustness against treacherous terrain due to ground-mode space traversal. Most

existing indoor systems are also limited in that they can only provide a two-dimensional map. By

designing the indoor mapping drone proposed in this report, valuable indoor environment

information can be provided while addressing the aforementioned limitations.

The indoor mapping drone was designed by utilizing a drone that can function despite any kind

of ground terrain while keeping portability and maneuverability in mind. The indoor mapping

drone will be designed for autonomous operation to deliver unmanned control without constant

observation. The indoor mapping drone is to provide surveillance of an unknown indoor space

assuming no initial layout and to adequately explore the three-dimensional space. The indoor

mapping drone is also to provide a 3D map of any indoor space through postprocessing of the

data received from the sensors.

The greatest difficulty in completion of the project is anticipated to be signal processing and

limitations of the physical sensors. The algorithms handling sensor data must be robust enough

to handle the error which is intrinsic to each sensor used. Sensor error will lead to uncertainty,

and for successful operation of the system, the designed programming logic must consider and

cope with this uncertainty.

70

References [DOO]

Xiaoling Wang et al., “2D to 3D Image conversion based on image content,” U.S. Patent 8 520

935, Aug 27, 2013.

Anurag Bhardwaj et al., “Estimating depth from a single image,” U.S. Patent 2015/0063681, Mar

5, 2016.

Christopher Allen Taylor et al., “Intelligent data integration system,” U.S. Patent 9 262 469, Feb

16, 2016.

Du Jianhao et al., “Efficient exploration for real-time robot indoor 3D mapping,” in Control

Conference, Hangzhou, 2015, pp. 6078-6083.

Dong Mingli et al., “Accuracy evaluation method and experiments for photogrammetry based on

3D reference field,” in Advanced Technology of Design and Manufacture, Beijing, 2010, pp.

489-492

Stephen M Lavelle. (2012, April 20). Planning Algorithms [Online]. Available:

http://msl.cs.uiuc.edu/planning/node102.html

Heather Dunlop. (2006, May 21). Three-Dimensional Kinematics for a passively steered, dual

axle vehicle [Online]. Available:http://dunlop1.net/kdc/index.html

National Imagery and Mapping Agency. (2001). “Radar Navigation and Maneuvering Board

Manual” (7th edition). [Online].

Available:http://msi.nga.mil/MSISiteContent/StaticFiles/NAV_PUBS/RNM/310ch1.pdf

[December 4, 2014].

71

Appendix [AGA]

Table 18: Temperature Data

Component Operating Temperature

(Degrees Celsius)

LIDAR -45 to 85

Camera 15

Radar 50

INS 20

Transmission Board 50

Chassis 100

Propeller Guard 25

Datasheets [AGA]

Lidar Lite v3

http://static.garmin.com/pumac/LIDAR_Lite_v3_Operation_Manual_and_Technical_Specificati

ons.pdf

Raspberry Pi 3 Model B

https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/RPI-3B-V1_2-

SCHEMATIC-REDUCED.pdf

MPU-6050 Triple Axis Accelerometer and Gyro Breakout

http://43zrtwysvxb2gf29r5o0athu.wpengine.netdna-cdn.com/wp-content/uploads/2015/02/MPU-

6000-Datasheet1.pdf

3DR Solo User Manual

https://3dr.com/support/articles/208396893/user_manual/

Raspberry Pi 5MP Camera Module

http://cdn.sparkfun.com/datasheets/Dev/RaspberryPi/ov5647_full.pdf

http://static.garmin.com/pumac/LIDAR_Lite_v3_Operation_Manual_and_Technical_Specifications.pdf
http://static.garmin.com/pumac/LIDAR_Lite_v3_Operation_Manual_and_Technical_Specifications.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/RPI-3B-V1_2-SCHEMATIC-REDUCED.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/RPI-3B-V1_2-SCHEMATIC-REDUCED.pdf
http://43zrtwysvxb2gf29r5o0athu.wpengine.netdna-cdn.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
http://43zrtwysvxb2gf29r5o0athu.wpengine.netdna-cdn.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://3dr.com/support/articles/208396893/user_manual/
http://cdn.sparkfun.com/datasheets/Dev/RaspberryPi/ov5647_full.pdf

	The University of Akron
	IdeaExchange@UAkron
	Spring 2017

	Indoor Mapping Drone
	Benjamin J. Plevny
	Andrew Armstrong
	Miguel Lopez
	Davidson Okpara
	Recommended Citation

	tmp.1493406983.pdf.MTMk1

