
The University of Akron
IdeaExchange@UAkron

Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2017

Gymfo: a Gym Finding iOS App using Google
Maps API
Clay A. Wyers
The University of Akron, caw138@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects

Part of the Other Computer Engineering Commons

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of
IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

Recommended Citation
Wyers, Clay A., "Gymfo: a Gym Finding iOS App using Google Maps API" (2017). Honors Research Projects. 445.
http://ideaexchange.uakron.edu/honors_research_projects/445

http://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F445&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F445&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F445&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F445&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=http://ideaexchange.uakron.edu/honors_research_projects/445
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F445&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F445&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects/445?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F445&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Gymfo: a Gym Finding iOS App using Google Maps API

Clay A. Wyers

The University of Akron

Abstract – This project explores iOS mobile app development. I developed a gym finding app in

Swift, using Google Maps APIs,and called it Gymfo. Other technologies were studied as well,

including the cloud computing service Microsoft Azure. Through this project I learned the basics

of XCode and Swift, Google APIs, and sending and receiving HTTP requests. The final product

is an iOS app that allows users to search for nearby gyms and displays the results on an

interactive map.

I. Introduction

The Apple iPhone was first released in 2007, and revolutionized smart phones. Today,

there are over 100 million iPhone users in the United States, and 52.3% of people who have a

smartphone in the United States and Canada have an iPhone ​(Smith)​. This has created a huge

market for iOS mobile applications, and knowledge of the subject could give a software

developer more job opportunities.

On the App Store, one can find many different kinds of apps: games, utilities, news, and

more. I decided that I was going to create an iOS app that allowed users to search for nearby

gyms. This would expose me to Swift and Google APIs, and would also be a useful app.

Throughout the project I also learned about other technologies I thought I might have needed,

such as Microsoft Azure services, Node.js Servers, and the Google Maps Javascript API. To

complete my implementation I also needed to learn and apply Swift techniques and classes like

https://paperpile.com/c/TXPBed/VBph

querying with URLSession, asynchronous programming with semaphores, and JSON parsing.

II. Required Technologies/Languages

A. Swift

Swift is a general-purpose, multi-paradigm, compiled programming language

developed by Apple Inc. for iOS, macOS, watchOS, tvOS, and Linux ​(Inc)​. An evolution of

Objective-C, Swift was first released in 2015, and advertises itself as “fast, modern, safe, and

interactive.” If I had to compare it to another language I’ve been exposed to, syntax-wise it is

similar to Ruby, requiring only very simple statements to accomplish tasks. No more semicolons

at the end of a statement, and many of the API libraries have had their names simplified as much

as possible. Even the traditional for loops have been removed and replaced.

I thought it might be difficult to code in a completely new language, using an IDE I’ve

never seen before, but I was incorrect. XCode is has some very useful features, the most useful

being its ability to check for errors as you code in real time and offer suggestions. I would

estimate that around 30% of all my lines of code contained syntax errors, usually because I was

calling APIs by their old names, or other simple errors like that. XCode makes correcting these

errors very fast and easy, which saved me a lot of time and resources.

B. Google API

Google has a massive library of APIs available to developers to use in their applications.

The Google Maps APIs give developers access to Google Maps Servers and use them to build

their own map applications. Setting up this functionality is surprisingly simple, simply log into

the API dashboard and request an API key. They offer a guide on getting started, as well as an

https://paperpile.com/c/TXPBed/bgop

extensive reference guide. The APIs are offered as SaaS (Software as a Service), and it's

completely free until an API key gets over 1000 requests a day.

For my project I originally thought I only needed to use the

Places API for iOS, as it contains the GMSPlacePicker class, which

provides an integrated map and UI to display nearby places to the

user. The only issue with the class is that it offers no functionality

for filtering the results of the nearby places it detects. My app only

needed to display gyms, so this wasn’t going to work. I tried

several other Maps APIs in order to work towards a solution, and in

the end I found a solution by using both the Maps API for iOS and

the Web Service Places API.

III. Technologies I Thought I Needed, But Didn’t

Once I realized

that the Web Service

Places API would meet

the requirements of my

project, I studied the

documentation. It states

that the Web Service API is designed for server-side applications, not client-side. It also

suggested that it would work well as a proxy server for mobile applications to connect to

Google’s Servers through. Reading this, and not knowing anything about HTTP requests, I

assumed I needed to make these requests from a server, then send the results to the iOS device.

A. Node.js/Java Server

 At first, I decided to implement a Node.js server, as it was another new technology I was

interested in. Node.js is built on javascript, is asynchronous, event driven, and good for JSON

API based applications. This seemed perfect for a server that would just wait for queries from an

iOS device.

To host my server, I turned to Microsoft Azure. Azure is a

cloud service that offers PaaS (Platforms as a Service) to clients. I set

up an account and found a Node.js package that set up the server with

minimal effort. After messing around with the server for a day or two,

I was having difficulties understanding how all of the components fit together, and how I would

change it to fit the scope of my project. During this time, I implemented a basic version of the

app in HTML, using the Javascript api, as I figured it would be a good primer for writing the

Node.js version. It did help me plan out my app in the end, but did not help much with the server.

I tried a Java server also hosted by Azure, and understood that more due to previous experience.

As I thought through the process I realized that I would be sending HTTP Requests to my Java

server, which would send an HTTP request to Google’s servers. This felt redundant, and if I can

send an HTTP request to my server, why couldn’t I send one straight to Google? As it turns out,

I could, by using the Web Service API along with the URLSession library in Swift.

IV. Walking Through the Implementation

The actual implementation can be broken down into around 5 steps.

A. User Sets Radius

When the user opens the app for the first time, they are

asked if it is okay for the app to track their location, as the phone

will not provide it to the application unless it is authorized, for

privacy reasons. The user is then is presented with the screen to the

right, and prompted to enter a search radius. In version 1.0, the user

must enter their desired search distance in miles, and it is converted

to meters for the HTTP request. The maximum radius is 50,000

meters, according to Google’s documentation. Once the user has set

a distance, they tap on the Find Gyms button in order to start the search.

B. HTTP Request

To get the user’s location, the app uses CLLocationManager, the central class for

delivering location-based events to your app in Swift ​(“CLLocationManager - Core Location |

Apple Developer Documentation”)​. The coordinates are converted to Doubles, and along with

the search radius added to a String containing the URL needed for the query. URLSession is then

used to send the HTTP request to Google’s servers, which returns a response in JSON

(JavaScript Object Notation).

https://paperpile.com/c/TXPBed/h0yL
https://paperpile.com/c/TXPBed/h0yL

C. Parse JSON Response

The JSON contains useful

information about nearby places such as

names, coordinates, formal address,

customer ratings, and whether or not the

gym is currently open. Parsing this data and

storing it into arrays is not very

complicated, but if an entry doesn’t have

certain values such as a rating, then I add a

dummy value to the array. This dummy

value is usually something like -1, so that

all the arrays stay the same size, and that I don’t run into issues when I’m creating markers later.

-1 is a good choice because it is a value that will not be present in the JSON query.

One very interesting issue that came up while developing forced me to learn about

asynchronous programming in Swift. By default URLSession creates a new thread in order to

send and receive the query. I process the data as soon as I get it, and because it was an

asynchronous thread, the main thread of the application would load the map and create all the

markers for local gyms, only the arrays would still be empty at that point, so no markers would

be displayed. To get around this I used semaphores and dispatch_queue(). Semaphores avoids

race conditions in my program restricting access of my marker arrays to one thread at a time, the

thread filling the arrays with the parsed data. Dispatch_queue() was used to make sure that the

markers were created after the arrays were filled and the map was created, assuring that they

appeared on the map. While it may seem inefficient to force my main thread to wait for another

asynchronous thread to continue, the whole process was completed only a few seconds after

hitting the Find Gyms button, so the user is not waiting for long, and there are no potential

deadlocking issues, since only 1 thread modifies the arrays.

D. Create Map and Markers

Once the data about nearby places has been received and processed into

arrays, the app creates a map and displays it on the screen using the

Google Maps API for iOS. it then adds markers by iterating through all

the arrays together, creating markers and plotting them on the map in

their respective locations, using info from the coordinates arrays. Other

information is added to the info window so that the user can tap on a

marker to access it. At the top of this screen is a reset button, that takes

the user back to the first view, so that they can change the search

radius. GMSMarker is a class that allows users to create any kind of

marker they want on a Google API Map. I iterate through the arrays to create the markers, create

the marker at the parsed coordinates, and fill it with relevant information.

V. Recommendations

The app has its core functionality, but there are a few improvements that could be made

in order to improve the user experience:

 A. Set the Map Zoom Based on Search Radius

Currently, the map is always at a default zoom level. most of the time it is at a good

distance, as the user can see all points, and they are mostly distributed across the screen.

However, for very large and very small radii, it isn’t very effective. Dynamically setting the map

zoom level based on the provided radius would be a nice feature.

 B. List Search Results for an Alternative View

Just like the real Google Maps, it would be convenient for users to see all search results

in a scrollable list if they tap a button. This makes it easy to see more data at one time, and

provides an alternative to tapping on each marker to get that location’s name and other info.

VI. Conclusion

Overall, this has been a very educational project. When I proposed this project, I knew

nothing about Swift or Google APIs. Throughout the course of the semester I’ve learned about

them through reading guides and reference materials, and I’ve also learned about other

technologies such as Microsoft Azure Cloud Computing and Node.js servers. Swift is a really

cool language to develop in, and working with Google APIs was interesting as well.

References

“CLLocationManager - Core Location | Apple Developer Documentation.” N.p., n.d. Web. 12

Apr. 2017.

Inc, Apple. “Swift - Apple Developer.” N.p., n.d. Web. 12 Apr. 2017.

Smith, Craig. “50 Amazing iPhone Statistics.” ​DMR​. N.p., 25 Sept. 2015. Web. 12 Apr. 2017.

http://paperpile.com/b/TXPBed/VBph
http://paperpile.com/b/TXPBed/h0yL
http://paperpile.com/b/TXPBed/bgop
http://paperpile.com/b/TXPBed/VBph
http://paperpile.com/b/TXPBed/VBph
http://paperpile.com/b/TXPBed/h0yL

	The University of Akron
	IdeaExchange@UAkron
	Spring 2017

	Gymfo: a Gym Finding iOS App using Google Maps API
	Clay A. Wyers
	Recommended Citation

	tmp.1493222122.pdf.9rEcF

