
The University of Akron
IdeaExchange@UAkron

Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2017

Smart Fan
Jacob A. Carroll
jac259@zips.uakron.edu

Joshua B. Blanchard
jbb47@zips.uakron.edu

Peter A. Gross
pag35@zips.uakron.edu

Joshua D. Riegel
jdr78@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects

Part of the Computer Engineering Commons, and the Electrical and Computer Engineering
Commons

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of
IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

Recommended Citation
Carroll, Jacob A.; Blanchard, Joshua B.; Gross, Peter A.; and Riegel, Joshua D., "Smart Fan" (2017). Honors Research
Projects. 444.
http://ideaexchange.uakron.edu/honors_research_projects/444

http://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=http://ideaexchange.uakron.edu/honors_research_projects/444
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects/444?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Honors Research Project

Smart Fan

The goal of the Smart Fan project is to design and implement a programmable,

Internet-connected box fan that offers users fine control over the specifics of its

operation. The Smart Fan boasts a powerful DC motor controlled fully by a Raspberry Pi,

a small computer located on the physical device. This computer runs scripts to use both

user input and sensor data to operate the fan in accordance with the user’s choices. The

user offers input to the system through an Android smartphone application, and can do

so anywhere in the world so long as both the smartphone and Smart Fan maintain an

Internet connection.

Jacob Carroll, Computer Engineering, is the Software Lead responsible for coordinating

the software effort of the design process. This includes overseeing the development of

all software for the project and assisting in making high-level design choices, such as

the general functionality of each operation mode of the Smart Fan. He is also

responsible for developing the entirety of the Android application used to control the

Smart Fan. This entails the creation of a robust and aesthetically pleasing application

that offers intuitive control over each aspect of the operation of the Smart Fan. The

application must be full-bodied and visually pleasant, but it must also minimize wireless

data usage and battery consumption. This requires significant design consideration

when developing the application. The resulting software allows the Smart Fan to

function excellently and it has received high praise from those who have seen it.

Smart Fan

Project Design Report

Design Team 11

Joshua Blanchard

Jacob Carroll

Peter Gross

Joshua Riegel

Dr. De Abreu-Garcia

April 28th, 2017

Page 1

Table of Contents

List of Figures ... 3

List of Tables .. 4

Abstract ... 7

Key Features ... 7

1. Problem Statement ... 8

1.1 Project Need ... 8

1.2 Project Objective .. 8

1.3 Research Survey ... 8

1.4 Marketing Requirements .. 10

1.5 Objective Tree .. 10

2. Design Requirements Specification ... 11

3. Accepted Technical Design ... 13

3.1 Hardware Theory of Operation .. 13

3.2 Motor Control ... 26

3.2.1 Theory of Operation .. 26

3.2.2 Component Selection ... 28

3.2.3 Motor Selection ... 29

3.2.4 Feedback ... 30

3.3 Power Supply ... 31

3.4 Physical Interface ... 33

3.5 Sensor ... 34

3.6 Hardware Calculations ... 34

3.7 Software Theory of Operation.. 35

3.8 Microprocessor Flowchart.. 44

3.9 Microprocessor Application Functions .. 45

3.10 Web Server Flowchart .. 55

3.11 Web Server Application Functions .. 56

3.12 Android Application Flowchart ... 58

3.13 Android Application Functions .. 59

3.14 Software Calculations .. 63

4. Parts.. 66

4.1 Parts List ... 66

Page 2

4.2 Budget .. 67

5. Project Schedule... 70

6. Design Team Information .. 72

7. Conclusions and Recommendations .. 72

8. References .. 73

9. Appendices ... 74

9.1 Appendix A: Datasheets ... 74

9.1.1 Raspberry Pi 3 Model B Datasheet .. 74

9.1.2 Triad Magnetics FS24-100-C2 Datasheet ... 76

9.1.3 Linear Technology LT1085 Datasheet .. 77

9.1.4 Fairchild Semiconductor DF04M Datasheet ... 80

9.1.5 Linear Technology LT3791 Datasheet .. 83

9.1.6 Bourns PEC11 Datasheet... 90

9.1.7 ROHM Semiconductor 2SD2444K Datasheet .. 92

9.1.8 NXP Semiconductors BCP69 Datasheet ... 94

9.1.9 AmpFlow E30-150 Schematic... 95

9.1.10 AmpFlow E30-150 Characteristics ... 96

9.1.11 TINSHARP TC1602A-09T Datasheet .. 97

9.1.12 Panasonic HY1-4.5V Datasheet .. 99

Page 3

List of Figures

Figure 1. Priority Objective Tree. ... 10

Figure 2. Hardware Block Diagram Level 0. .. 13

Figure 3. Hardware Block Diagram Level 1. .. 15

Figure 4. Hardware Block Diagram Level 2. .. 19

Figure 5. Schematic for H-bridge motor control circuit. .. 26

Figure 6. Simulation showing current through H-bridge load. ... 27

Figure 7. The current into the base of the H-bridge transistors for forward rotation. 27

Figure 8. The current into the base of the H-bridge transistors for reverse rotation. 28

Figure 9. Simulation showing the PWM being activated by the direction GPIO pin and relay. .. 28

Figure 10. Unity feedback control model for motor control system. .. 30

Figure 11. The 120V/24V,5V AC/DC power supply. .. 31

Figure 12. The 120VAC primary voltage and the transformed 24VAC secondary voltage in

which the capacitor smooths the voltage after the voltage is rectified. .. 31

Figure 13. Voltage and Current output from the LT3791 providing 24V 5A. 32

Figure 14. Voltage output from the LT1085 providing 5V. ... 32

Figure 15. Schematic for physical interface. .. 33

Figure 16. Temperature sensor configuration for the RPi. ... 34

Figure 17. Software Block Diagram Level 0. ... 35

Figure 18. Software Block Diagram Level 1. ... 37

Figure 19. Software Block Diagram Level 2. ... 39

Figure 20. Flowchart for the Microprocessor Software. ... 44

Figure 21. Flowchart for the Manual Operation Mode. .. 46

Figure 22. Flowchart for the Schedule Operation Mode. ... 49

Figure 23. Flowchart for the One Source Temperature Mode. ... 50

Figure 24. Flowchart for the Two Source Temperature Operation Mode. 52

Figure 25. Flowchart for the Web Server Software. ... 55

Figure 26. Flowchart for the Android Application. .. 58

Figure 27. Output Waveform of RPi PWM. ... 64

Figure 28. Final Design Gantt chart. ... 70

Figure 29. Proposed Implementation Gantt chart. .. 71

Page 4

List of Tables

Table 1. Smart Fan Design Requirements. ... 11

Table 2. Hardware Block Diagram Level 0: Smart Fan Hardware. .. 13

Table 3. Hardware Block Diagram Level 1: Power Supply. .. 15

Table 4. Hardware Block Diagram Level 1: Sensors. .. 16

Table 5. Hardware Block Diagram Level 1: Physical Interface. .. 16

Table 6. Hardware Block Diagram Level 1: Microprocessor. .. 17

Table 7. Hardware Block Diagram Level 1: Display. .. 17

Table 8. Hardware Block Diagram Level 1: Motor Control. .. 18

Table 9. Hardware Block Diagram Level 2: Power Supply. .. 20

Table 10. Hardware Block Diagram Level 2: LCD Interface. .. 21

Table 11. Hardware Block Diagram Level 2: Motor Control. .. 22

Table 12. Hardware Block Diagram Level 2: Sensors. .. 23

Table 13. Hardware Block Diagram Level 2: Fan User Interface. ... 24

Table 14. Hardware Block Diagram Level 2: Wireless Communication. 25

Table 15. Power Calculations for AC Box Fan. ... 34

Table 16. Software Block Diagram Level 0: Physical Device. .. 36

Table 17. Software Block Diagram Level 0: Android Application. ... 36

Table 18. Software Block Diagram Level 1: Microprocessor. ... 37

Table 19. Software Block Diagram Level 1: Web Server. ... 37

Table 20. Software Block Diagram Level 1: Code-behind. .. 38

Table 21. Software Block Diagram Level 1: GUI code.. 38

Table 22. Software Block Diagram Level 2: Physical Interface. ... 40

Table 23. Software Block Diagram Level 2: Temperature Sensor. .. 41

Table 24. Software Block Diagram Level 2: Humidity Sensor. ... 41

Table 25. Software Block Diagram Level 2: Python. ... 41

Table 26. Software Block Diagram Level 2: JavaScript... 42

Table 27. Software Block Diagram Level 2: MySQL Database. ... 42

Table 28. Software Block Diagram Level 2: Java. ... 43

Table 29. Software Block Diagram Level 2: XML. ... 43

Table 30. Function table for the MainLoop function of the Microprocessor Software. 45

Page 5

Table 31. Function table for the GetCurrentFanData function of the Microprocessor Software. 45

Table 32. Function table for the PostUpdateFanData function of the Microprocessor Software. 46

Table 33. Function table for the ManualMode function of the Microprocessor Software. 47

Table 34. Function table for the SetupPWM function of the Microprocessor Software. 47

Table 35. Function table for the SetPWM function of the Microprocessor Software. 48

Table 36. Function table for the ConfigurePWM function of the Microprocessor Software. 48

Table 37. Function table for the ScheduleMode function of the Microprocessor Software. 49

Table 38. Function table for the OneSourceTemperatureMode function of the Microprocessor

Software. ... 50

Table 39. Function table for the ReadTemp function of the Microprocessor Software. 51

Table 40. Function table for the ReadHumidity function of the Microprocessor Software. 51

Table 41. Function table for the TwoSourceTemperatureMode function of the Microprocessor

Software. ... 53

Table 42. Function table for the WeatherCurrentAddress function of the Microprocessor

Software. ... 53

Table 43. Function table for the WeatherCurrent function of the Microprocessor Software. 53

Table 44. Function table for the LatitudeLongitude function of the Microprocessor Software. .. 54

Table 45. Function table for the Port_Listen function of the Web Server Software. 56

Table 46. Function table for the Get_CurrentFanData function of the Web Server Software. 56

Table 47. Function table for the Post_UpdateFanData function of the Web Server Software. 57

Table 48. Function table for the LoadWebServerInformation function of the Android application

software. .. 59

Table 49. Function table for the QueryWebServer function of the Android application software.

... 59

Table 50. Function table for the AlertUser function of the Android application software. 60

Table 51. Function table for the ParseJSON function of the Android application software. 60

Table 52. Function table for the LoadLastKnownSettings function of the Android application

software. .. 60

Table 53. Function table for the DisplaySettingsToUser function of the Android application

software. .. 61

Table 54. Function table for the ReceiveUpdate function of the Android application software. . 61

Table 55. Function table for the UserInput function of the Android application software. 62

Table 56. Function table for the ValidateInputs function of the Android application software. .. 62

Page 6

Table 57. Function table for the HighlightFields function of the Android application software. 63

Table 58. Function table for the BuildJSON function of the Android application software. 63

Table 59. Function table for the SendToServer function of the Android application software. ... 63

Table 60. Smart Fan Parts List. ... 66

Table 61. Smart Fan Budget. .. 67

Page 7

Abstract

Modern box fans offer a simple solution to cooling an area. However, the simplicity that makes

these fans appealing also limits their potential. A smart box fan that preserves its original

simplicity while providing enhanced technological features such as smartphone connectivity and

variable speed selection should lead to ease of use, improved performance, and increased

customer satisfaction. To this end, a regular box fan will be instrumented and technology-

enhanced, thus “smart fan.” The standard AC motor will be replaced with a DC motor for finer

speed selection over the allowable range. The smart fan will offer three categories of operation:

manual control, scheduled operation, and temperature-sensitive automation. Manual control

operates the smart fan similarly to a standard box fan. Scheduled operation specifies the

operation of the fan for any time. Temperature-sensitive automation will offer two modes. The

first is a single-source mode that operates using a local temperature sensor. The second is a dual-

source mode–intended for use in a window–that uses the temperature sensor and a weather API.

Both modes operate by mapping speeds to a range of temperatures. The smart fan will allow

users to run it when they want, how they want.

[JAC]

Key Features

1. Worldwide Remote Access

2. Variable Speed Control

3. Temperature Sensing Operation Mode

4. Scheduled Operation Mode

5. Manual Operation Mode

6. Bidirectional Blade Rotation

7. Physical Button Interface

[JBB]

Page 8

1. Problem Statement
1.1 Project Need

As technology advances, users demand more options and sophisticated features from their

devices. With the increased accessibility of the Internet and the advent of smartphones, one such

feature is smartphone connectivity. A device that has remained stagnant in its implementation is

the common box fan. Typical box fans are limited to three speeds which are usually controlled

by a physical knob. The potential of a box fan is limited by this simplicity. Adding smartphone

connectivity and programmatic operation, the usefulness of the box fan can be greatly increased,

as it will run when and how the user wants. For example, desirable options would include

temperature sensing, scheduled operations, a wide breadth of fan speeds, and bidirectional

airflow. Being able to control the device from a smartphone would allow users the ability to

update its runtime parameters from anywhere at any time. Further, conditional operations would

also allow a user to set up the device once, and then never have to worry about it again – set it

and forget it.

[JBB]

1.2 Project Objective

The objective of this project is to design a system by which a box fan is controlled by a

smartphone application via a microprocessor. Using a microprocessor adds programmability and

precision control over the operating range of the box fan. This includes, but is not limited to,

usage of a continuous speed curve as opposed to a set of finite discrete speeds. The application

would grant the user direct control over the operation of the fan, as well as display information

such as room temperature and running times. The system would also have internet connectivity

to allow the application to control the fan remotely via an internet connection. The system could

be programmed to run the fan under pre-specified conditions, such as during a specific time of

day or when the room reaches a given temperature threshold. Other features might include

motion activation and sleep settings to run the fan for a specified time duration and to help

reduce total running time and power consumption.

[JAC]

1.3 Research Survey

A device to provide an improved electrical circuit for an air conditioner with a temperature

switch is described in patent #5,088,645. The device described in this patent can respond quickly

and operate reliably without regard to the condition of the air circulating system. The electrical

circuit of this air conditioning unit has several components. There is a series-connected

temperature switch that opens when the temperature of the motor reaches a predetermined

threshold. There is a thermostat which positions its connector piece to “open” or “closed” by

comparing the room temperature with a user-set temperature level. There is also a relay which

turns the compressor on or off. Finally, there is a second temperature switch which opens when

the electric heater temperature reaches a given threshold.

A self-programming temperature control system to automatically adjust the temperature control

set point of a heating and cooling system based upon the present or anticipated occupancy status

of the space to be air-conditioned is described in patent #5,131,455. The control system detects

the occupancy status of the space and creates an occupancy record at regular time intervals. The

stored time-stamped data is then provided to a programmed processor, which is instructed to read

Page 9

and process the past occupancy record of the space to derive an anticipated occupancy status for

the space and thus control the temperature of the space accordingly.

A standard fan design with the addition of a microcontroller, memory, and the ability to interface

with a host computer is described in patent #6,318,965. The host computer is able to

communicate with and send commands to the microcontroller. The microcontroller processes

these commands and then dynamically controls the fan speed via an attached motor. The device

also has an optional temperature sensor to sense and relay ambient temperatures to the host

computer. These sensor readings are then used to generate commands to control the fan speed to

maintain a relative temperature.

A controller that can be attached to different kinds of fans and turn them on or off is described in

patent #8,441,155. The controller uses a programmable schedule or schedules to determine when

the fan will turn on and off. The controller has up to three buttons that can be used to override a

programmed schedule. These buttons can also override a programmed schedule for a set amount

of time.

Cui, et al., describe a design for a smart fan that uses a Programmable System-on-Chip (PSoC)

as its main control [5]. The control, with the support of an external auxiliary circuit and wireless

remote control, allows functions such as switching between manual control and temperature

control, natural wind, etc.

The design described by Pang, et al., of a microcontroller-based motor controller with a heat

sensor is used to vary the speed of a fan motor with respect to ambient temperature in a smart

home [6]. The controller is embedded into a stand fan. A phase control method is selected to

implement the design. The power delivery to the motor is determined by the firing angle of a

Triac that controls the AC power supply. The Triac allows precise control over the input power

to the motor. In addition, a hand-clap circuit is used as a switch to activate or deactivate the

motor.

Guillot, et al., describe a design for a fan control unit that would require high motor currents, of

up to 30A, and a 20kHz Pulse Width Modulation (PWM) signal [7]. Using a programmable

integrated circuit they are able to monitor the current during switching as well as the

electromagnetic interference (EMI) that occurs with high current and high frequency switching.

This allows Guillot, et al., to counteract some of that interference using a 16-bit microcontroller

and a control area network to interface with the control unit.

[PAG, JAC]

Page 10

1.4 Marketing Requirements

1. The smart fan should be comparable or superior to current box fans in terms of minimum

and maximum speed, dimensions, noise level, and energy rating.

2. The smart fan should be able to receive input from two temperature sources and make

adjustments to its functionality accordingly.

3. The smart fan should have standard physical controls.

4. The smart fan should be affordable.

5. The Android application should have a robust, easy-to-use interface.

6. The Android application should allow users to control all fan settings remotely.

7. The Android application should require minimal power and cellular data consumption.

 [PAG]

1.5 Objective Tree

The Priority Objective Tree shown in Figure 1 demonstrates the priority levels for the various

features offered by the smart fan.

Figure 1. Priority Objective Tree.

[JBB, JAC, JDR]

Page 11

2. Design Requirements Specification

Table 1. Smart Fan Design Requirements.

Marketing

Requirements
Engineering Requirements Justification

Supports #1

Opposes #4

1. The motor should have a

minimum speed rating of 3600

rpm.

To compete with current fans, the

smart fan should have a comparable

max speed and wider range of speeds.

Supports #7

Opposes #6

2. The Android application

should use less than 30MB of

cellular data per month.

Most cellular data packages have data

caps and users would not want a single

application to dominate their usage.

Supports #7

Opposes #5, #6

3. The Android application

should use less than 5% of

the smartphone’s battery life

per day.

Smartphones often have batteries that

are drained within less than a day.

Users would not want a single

application to drain their phone

battery.

Supports #2

4. The temperature sensor(s)

should be accurate to within

±1°F.

Minute changes in temperature are

undetectable by an average person, but

accuracy will still be important to

display the correct temperature.

Supports #3

Opposes #6

5. The physical interface of the

fan should update the fan

speed within 2 seconds.

Standard box fans are able to change

speeds within seconds; the smart fan

should be comparable.

Supports #5

Opposes #6, #7

6. The Android application

should update the fan’s

operation parameters within 2

seconds.

The application should have latency

comparable to that of the physical

controls of the smart fan.

Supports #1

7. The pulse width modulation

of the microprocessor should

have a frequency of at least

25kHz.

To avoid the audible range of humans,

the frequency of the PWM must be

greater than 20kHz. 25kHz is chosen

to account for any possible deviation.

Supports #1

8. The noise level should be

within ±5 dB of a standard

box fan for a given RPM.

At comparable RPM the noise level of

the smart fan should be within ±5 dB

of standard box fans.

Supports #1

9. The motor should operate

with at least 25 discrete

speeds.

Standard box fans only offer three

speeds; to simulate a continuous curve

of speed, more steps are required.

Supports #1, #2

Opposes #3

10. The smart fan should offer at

least 4 operation modes.
To offer a substantial improvement

over standard box fans the smart fan

Page 12

will need to nontrivially exceed the

functionality of standard box fans.

Marketing Requirements
1. The smart fan should be comparable or superior to current box fans in terms of

minimum and maximum speed, dimensions, noise level, and energy rating.

2. The smart fan should be able to receive input from two temperature sources and make

adjustments to its functionality accordingly.

3. The smart fan should have standard physical controls.

4. The smart fan should be affordable.

5. The Android application should have a robust, easy-to-use interface.

6. The Android application should allow users to control all fan settings remotely.

7. The Android application should require minimal power and cellular data consumption.

[JBB, JAC, JDR, PAG]

Page 13

3. Accepted Technical Design

3.1 Hardware Theory of Operation

Figure 2. Hardware Block Diagram Level 0.

Table 2. Hardware Block Diagram Level 0: Smart Fan Hardware.

Module Smart Fan Hardware

Inputs ○ Physical Buttons – Physical button interface for manual override.

○ Temperature Sensing – Temperature sensor to read ambient room

temperature.

○ 120VAC Power – Power from the 120V wall outlet.

○ Wireless Communication – Wireless data from the phone application. This

data will contain the user's inputs and selections on the fan’s function.

Outputs ○ LCD Output – Fan module to display basic information to the user like fan

speed, room temperature, and current operation mode.

○ DC Motor Output – The motor of the box fan, selected to rotate in both

directions at speeds of at least 3600 rpm.

○ Wireless Communication – Wireless data from the sensors and

microprocessor to be sent to the phone application and web server.

Functionality This is the main fan module. It will house all of the desired functions, such as

various operation modes, sensor data, PWM signal for motor speed and

direction control.

[PAG]

Page 14

To control the fan and allow the system to run smoothly, there will be four main inputs and three

main outputs, as shown in Figure 2. The four main inputs are described in Table 2. The smart fan

will be fed from a 120V AC wall outlet because it will be stationary during most, if not all, of its

lifetime, and thus it does not need a portable power supply. The main input to the system will be

the Android application, which users will control from a mobile device. This will allow users to

remotely control the fan from anywhere. Users will have the ability to turn the fan on as they

leave work or while on their way home, as well as control the operation mode accordingly. The

fan will also have a physical button interface, located on the top of the unit, that will allow the

user to control the fan without using the phone application. There will be a separate manual

mode for the physical control buttons. The last main input to the system will be the outputs of the

temperature sensors. These sensors will allow the fan to sense the ambient temperature of the

room while in the temperature sensing mode.

One of the main outputs of the system will be displayed in a Liquid Crystal Display (LCD),

giving the users basic information about the fan, including speed settings in manual mode. The

DC motor will receive a PWM signal from the microprocessor that will control both its speed

and direction of rotation. Lastly, the microprocessor will send data to the phone application,

updating the current settings within the application to keep the application and microprocessor

synchronized.

The system will be broken up into six subsystem modules shown in Figure 3. Those will consist

of the power supply, the display, the sensor, the motor control, the physical interface, and the

processor. Each module has their own external input or output. The processor itself has either an

input or an output coming to or from each of the other modules. For inputs, the motor will

receive 120VAC, the sensors will measure the temperature, the buttons on the physical interface

will be pressed, and the processor will receive wireless data from the web server or android

application. For outputs, the display will show information depending on the operation and the

motor driver will cause the motor to run at the set speed. Table 3 through Table 8 explain more

in depth the inputs and outputs of each subsystem.

Page 15

Figure 3. Hardware Block Diagram Level 1.

The power supply will take in 120VAC from a wall outlet and provide power rails to all other

modules of the system. The power supply will feature its own state setting switch that would

power or turn off the system completely, with no other way of turning the system back on other

than having the state of the switch turned back to on.

Table 3. Hardware Block Diagram Level 1: Power Supply.

Module Power Supply

Inputs ○ 120VAC – Power from wall outlet, 120VAC at 60Hz.

Outputs ○ Display Power – Power to LCD display.

○ Microprocessor Power – Power to microprocessor (5V, 2A).

○ Sensor Power – Power to temperature sensors (5V).

○ Motor Power – Power to DC Motor (24V).

Functionality The power supply will be designed by the team. While wall outlets will be

used as the main power source, multiple DC voltage signals to power the

different system components will be needed. The AC voltage signal will be

used to generate the various power levels that will be needed throughout the

system.

Page 16

Table 4. Hardware Block Diagram Level 1: Sensors.

Module Sensors

Inputs ○ Room Temperature – Ambient temperature to be recorded by the

temperature sensor to be used in the temperature operation mode.

○ Sensor Power – Power rail from the power supply.

Outputs ○ Sensor Data – Sensor voltage that is translated to a temperature value by the

microprocessor using a calibration curve.

Functionality ○ The sensors will allow information about the ambient temperature of the

room to be used in the temperature-sensitive operation modes. The data will be

compared with the user settings and the temperature data from a weather API

to determine the fan speed and/or direction.

Table 5. Hardware Block Diagram Level 1: Physical Interface.

Module Physical Interface

Inputs ○ Physical Buttons – Buttons that users can use should their phone be out of

reach or the application be unavailable.

Outputs ○ Button Signals – Electrical signals resulting from pressing the physical

buttons.

Functionality The physical interface will allow for a backup way to operate the fan if the

phone application happens to fail. It will give the user enough information to

manually operate the fan, easily and intuitively.

Page 17

Table 6. Hardware Block Diagram Level 1: Microprocessor.

Module Microprocessor

Inputs ○ Microprocessor Power – Power rail from the power supply.

○ Sensor Data – Data from the temperature sensors.

○ Button Signals – Signals from the physical interface buttons. If activated,

will override the current operation mode and activate the manual operation

mode.

○ Wireless Commands – Updates from the phone application about newly

selected operation mode and modified settings.

Outputs ○ Display Controls – Parallel communication control to the LCD screen.

○ PWM Motor Control – PWM signal to control the speed and direction of the

DC motor.

○ Wireless Application Update Info – Wireless updates to the phone

application with data like current temperature, PWM value, and current

operation mode.

Functionality A Raspberry Pi 3 (RPi) will be the main controller of the hardware. It will take

in all of the data, process it and output signals to control all of the fan’s

operations. It will take data from the phone application, as well as data from

the sensors and fan buttons to decide to what value to set the PWM, what

information to send to the LCD to display, and to control the motor to the

correct speed. It will also store information about the overall state of the

system, including the current temperature and PWM value.

Table 7. Hardware Block Diagram Level 1: Display.

Module Display

Inputs ○ Display Power – Power rail from the power supply.

○ Display Controls – Parallel communication control from the microprocessor.

This will tell the LCD what and when to display.

Outputs ○ LCD Output – Fan module to display basic information to the user like fan

speed, room temperature, and current operation mode.

Functionality The main function of the LCD is to display feedback information which would

allow users to operate the smart fan with the physical interface instead of the

phone application. Feedback will include information such as operation mode

and fan speed.

Page 18

Table 8. Hardware Block Diagram Level 1: Motor Control.

Module Motor Control

Inputs ○ Motor Power – Power rail for the DC motor.

○ PWM Motor Control – PWM signal from the microprocessor to control the

fan speed and direction.

Output ○ DC Motor Output – After the PWM signal goes through a motor controller

circuit it will be sent to the DC motor to set the fan speed and direction.

Functionality The purpose of the motor control is to allow a low current PWM signal from

the microprocessor to run and change the DC motor speed, which requires a

higher voltage and current input to operate properly.

[PAG, JDR]

Error! Reference source not found. shows more depth with the system. Each subsystem

module shows the general purpose and the blocks that will be designed. The power supply

includes the switch, some reverse current protection, and a transformer with regulators to obtain

the rail voltages. The sensors will take in their sampling data which is sent to the microprocessor.

The LCD will take in information to display and will be powered by a voltage rail going through

a resistor network. The interface will consist of a power switch, a switch for direction of airflow,

and a rotary encoder to adjust the speed. The motor control will consist of protection from high

switching current that will be resulting from the H-bridge circuit designed to control the input to

the DC motor. The wireless communication will send and receive data to and from the android

application and web server. The wireless communication will also collect data from a weather

API to be used alongside the two-source temperature control operation. These blocks and their

respective sub-blocks are described in more detail in Table 9 through Table 14. Each table details

one of the larger blocks and describes each of its sub-blocks to consolidate the related sub-blocks

into one table.

Page 19

Figure 4. Hardware Block Diagram Level 2.

Page 20

Table 9. Hardware Block Diagram Level 2: Power Supply.

Module Power Supply

Inputs ○ Reverse Current Protection Circuit

 ▫ 120VAC power source from wall outlet.

 ▫ ON/OFF Switch.

○ Step Down Transformer

 ▫ Protected AC voltage signal.

○ Voltage Regulator Circuits

 ▫ Stepped down DC voltage from the transformer.

Outputs ○ Reverse Current Protection Circuit

 ▫ Protected AC Voltage Signal.

○ Step Down Transformer

 ▫ Stepped down 24V DC voltage line for the motor.

○ Voltage Regulator Circuits

 ▫ Regulated voltage lines supplied for the various components.

Functionality ○ Reverse Current Protection Circuit

 ▫ Protects the power supply and the entire system from reversing the input

power or from inputting a higher voltage than expected.

○ Step Down Transformer

 ▫ Takes in the protected AC voltage signal from the wall outlet, it steps it

down to 24V using a transformer and then rectifies the stepped down AC

signal to a DC signal to power the motor.

○ Voltage Regulator Circuits

 ▫ To provide sufficient power to the subsystem modules. Two of these will

be needed for different voltage lines.

Page 21

Table 10. Hardware Block Diagram Level 2: LCD Interface.

Module LCD Interface

Inputs ○ Resistor Load Network

 ▫ Regulated Voltage 1.

○ LCD Controls

 ▫ Values to set the proper display state of the LCD.

Outputs ○ Resistor Load Network

 ▫ Divided voltage and current that will meet the LCD specifications.

○ LCD Output

 ▫ Physical display that provides basic information to the user like fan speed,

room temperature, and current operation mode.

Functionality ○ Resistor Load Network

 ▫ Needed to properly load the LCD screen and control the current going into

the LCD.

○ LCD

 ▫ Provides the user the necessary information to operate the fan in manual

mode.

Page 22

Table 11. Hardware Block Diagram Level 2: Motor Control.

Module Motor Control

Inputs ○ Direction Switching Circuit Protection

 ▫ Forward PWM signal from the processor.

 ▫ Reverse PWM signal from the processor

○ H-Bridge Motor Control Circuit

 ▫ Protected forward signal.

 ▫ Protected reverse signal.

○ DC Motor Output

 ▫ 24V from the power supply.

 ▫ Speed control signal.

Outputs ○ Direction Switching Circuit Protection

 ▫ Forward protected output.

 ▫ Reverse protected output.

○ H-Bridge Motor Control Circuit

 ▫ Speed control signal.

○ DC Motor Output

 ▫ Mechanical motion for the fan blades.

Functionality ○ Direction Switching Circuit Protection

 ▫ Provides hardware protection in addition to the software protection against

switching the direction of the blades and causing dangerous high currents

in the motor.

○ H-Bridge Motor Control Circuit

 ▫ Controls the motor by giving the proper signal to control the speed based

on the PWM signal given by the processor, also easily allows the direction

of the motor to be changed.

○ DC Motor Output

 ▫ Allows more fluidity in speed selection as compared to an AC induction

motor.

Page 23

Table 12. Hardware Block Diagram Level 2: Sensors.

Module Sensors

Inputs ○ Temperature Sensor

 ▫ Regulated voltage from the power supply.

 ▫ Temperature measurement samples.

○ Humidity Sensor

 ▫ Regulated voltage from the power supply.

 ▫ Humidity measurement samples.

Outputs ○ Temperature Sensor

 ▫ Analog voltage fed to the processor.

○ Humidity Sensor

 ▫ Analog voltage fed to the processor.

Functionality ○ Temperature Sensor

 ▫ Providing temperature information to the processor to facilitate the

operation of the temperature sensing mode and to display to the user.

○ Humidity Sensor

 ▫ Providing humidity information to the processor to display to the user.

Page 24

Table 13. Hardware Block Diagram Level 2: Fan User Interface.

Module Fan User Interface

Inputs ○ Blade Direction Switch

 ▫ Regulated voltage from the power supply.

 ▫ User input to toggle the switch.

○ Rotary Encoder for Speed Control

 ▫ Regulated voltage from the power supply.

 ▫ User input to rotate the encoder.

Outputs ○ ON/OFF Switch

 ▫ Toggle switch to activate power supply and power the system.

○ Blade Direction Switch

 ▫ Toggle switch to the processor to change the direction of the blade

movement.

○ Rotary Encoder for Speed Control

 ▫ Output to the processor to adjust the fan speed.

Functionality ○ ON/OFF Switch

 ▫ Allows the user to power the system on or off without using the Android

application.

○ Blade Direction Switch

 ▫ Allows the user to change the direction of the fan blades while the system

is in manual mode,

○ Rotary Encoder for Speed Control

 ▫ Allows the user to adjust the speed of the fan while the system is in manual

mode.

Page 25

Table 14. Hardware Block Diagram Level 2: Wireless Communication.

Module Wireless Communication

Inputs ○ Weather API Data

 ▫ Weather information.

○ Wireless Android Commands

 ▫ Android application user commands.

○ Wireless Update Data

 ▫ Information from processor about the state of the system.

Outputs ○ Weather API Data

 ▫ Weather data – outside temperature and humidity.

○ Wireless Android Commands

 ▫ Commands to change the operation mode of the fan.

○ Wireless Update Data

 ▫ Update information to the Android application.

Functionality ○ Weather API Data

 ▫ Tells the processor what the outside temperature and humidity are to make

decisions while in temperature sensing mode.

○ Wireless Android Commands

 ▫ Based on the user’s input in the application, the command will alter the

settings that determine the operation of the system.

○ Wireless Update Data

 ▫ Updates the application on the current operation mode, PWM signal and

other relevant system information.

[JDR, PAG]

Page 26

3.2 Motor Control

Figure 5. Schematic for H-bridge motor control circuit.

[JDR]

3.2.1 Theory of Operation

The circuit above in Figure 5 will control and drive the DC motor. The two halves of the circuit

are identical and consist first of a PWM signal that will come from one of the General Purpose

Input Output (GPIO) pins on the RPi. The PWM signal will control the speed of the motor using

a hardware PWM signal. The hardware PWM can switch at much higher frequencies and thus

was chosen over the software PWM. A separate GPIO pin on the RPi will control the direction of

the motor’s rotation through a relay. When the GPIO pin is set to a high voltage, current will run

through the coil of the relay. This current will switch the relay on, and change which circuit the

PWM signal is connected to. The relay will default to one of the sides so when the GPIO pin is

set to a low voltage, the motor will run in the forward direction. When the GPIO pin is set to a

high voltage the motor will run in the reverse direction.

The PWM voltage source–the leftmost portion–it is set to have a period of 25μs and a duty cycle

of 60%. These values fully demonstrate the functionality of the circuit; the PWM signal from the

RPi has been set at 40kHz for this project. This frequency is above the 20kHz threshold of the

human hearing range and is slow enough to obtain a useful period of 25μs. This is explained

further in Section 3.14 Software Calculations. This signal goes through a Schottky diode to a

transistor in order to protect the system against reverse currents. The RPi can only output a signal

with a 3.3V peak voltage, so two transistors are used to switch to a higher voltage rail to direct

Page 27

more current through the load. The new, higher-voltage signal is directed into the base of

transistor Q5 in Figure 5, putting the transistor into saturation mode. In saturation mode the

transistor will function as a switch. Once Q5 is turned on, current is allowed to enter the base of

transistors Q2 and Q3. When these two transistors are turned on current will flow through the

motor, represented as the resistor Load in the center of the H-bridge configuration in Figure 5,

and the motor will rotate forward. The described circuit is mirrored over the H-bridge in Figure

5. This mirrored section is connected to the other circuit of the relay and will drive the motor in

reverse.

Figure 6 shows a simulation of the PWM signal and the load’s reaction to the PWM. The signal

is at the bottom and the load reaction is at the top. The signal is set to have a period of 25μs and a

duty cycle of 60%. This simulation shows how well the load reacts to the signal when the right

transistors are chosen.

[JDR]

Figure 6. Simulation showing current through H-bridge load.

Figure 7 and Figure 8 show the current into the base of the four transistors in the H-bridge

circuit. In Figure 7, transistors Q2 and Q3 are “on” and reacting to the PWM signal just like how

the load reacted in Figure 6 which means that the motor will be running in the forward direction

and transistors Q1 and Q4 are “off” which is why they are seeing no current except for a few

small spikes. In Figure 8, the motor is running in reverse which is why Q2 and Q3 are now “off”,

seeing the same small spikes as Q1 and Q4 in the previous figure and Q1 and Q4 are “on” and

reacting now reacting to the PWM signal.

Figure 7. The current into the base of the H-bridge transistors for forward rotation.

Page 28

Figure 8. The current into the base of the H-bridge transistors for reverse rotation.

Figure 9 shows the function of the relay to control the direction of the motor. The GPIO pin for

direction control is the signal on top, the PWM signal from the RPi is in the middle and the

current through the load is on the bottom. This shows how the motor is not affected until the

GPIO pin switches the direction.

Figure 9. Simulation showing the PWM being activated by the direction GPIO pin and relay.
[JDR]

3.2.2 Component Selection

Each component was chosen to fit the needs of the circuit and specifications for the motor

controller. The first components to be selected were the NPN transistors. These transistors need

to switch quickly enough to accurately react to the PWM signal with a period of 25μs. An issue

arose in that the components have an internal capacitance between the junctions. So even though

most transistor switching times were in the nanosecond range, having a low internal capacitance

was a high priority to account for this additional capacitance. In the simulation output shown in

Figure 6, the input PWM signal is shown at the bottom and the current through the Load is at the

Page 29

top. The Load has a time constant associated with it that causes the motor to be off for some of

the time when the PWM voltage is high. The PNP transistors were chosen with the same priority

in mind except that the PNP transistors consume significantly more power than the NPN

transistors.

The diodes used in the H-bridge circuit protect against reverse current and against current spikes

that can occur when either the power supply or the motor is suddenly turned off or when the

motor direction is changed too quickly. Standard diodes were chosen as they will not see much

current or power. The Schottky diodes mentioned previously are needed to minimize the voltage

drops on the PWM signal. The high voltage of the PWM signal is only 3.3V, so standard drops

could nontrivially affect the signal. A diode is needed in series with the GPIO pin signal to

protect against reverse current but the typical 0.7V voltage drop from a standard diode would

impact the PWM signal too greatly. Schottky diodes have a smaller forward voltage drop,

typically in the range of 0.15V to 0.4V. This allows for a protection diode that does not

significantly reduce the PWM signal voltage.

The relay allows for the use of only one PWM signal because the relay can use a standard GPIO

pin to switch direction instead of needing two PWM pins, one for each direction of rotation. The

relay is a small 4.5V relay that will work well with the 3.3V output from the RPi. The relay was

also chosen because a very small amount of current is needed through the coil to activate the

internal switch of the relay. This benefits the system because each GPIO pin of the RPi can only

output 16mA of current.

The resistor values were chosen to maximize the current through the Load and minimize the

current and power consumed by the transistors in the H-bridge circuit. The 1kΩ resistors do not

have a significant current draw as they do not need to handle much power. The 100Ω resistors

are connected in parallel to achieve a smaller equivalent resistance and thus increase the current

through the Load. These resistors will have a significant amount of current passed through them

and as such were chosen to be higher-power through-hole resistors.

[JDR]

3.2.3 Motor Selection

The chosen motor is a brushed DC motor with a nominal voltage of 24V. This means that the

motor will run at full power when given 24V. The speed of the motor will be regulated using the

PWM signal from the RPi. Driving the motor with a PWM signal with a 50% duty cycle will

cause the motor to run as if it were receiving 12V; that is, the motor will run at half speed. One

of the main factors for choosing this motor is the relatively high stall torque. A high stall torque

ensures that the motor will be able to start and run smoothly with the load of the fan blades

attached to the drive shaft. Another major factor was the no-load RPM of 5600 RPM. Although it

is common for brushed DC motors to have RPM ratings in this range, the specification still

needed to be met. The size of the motor was another consideration. The motor is relatively small

at 3.1 inches in diameter and 4.0 inches in length. The final consideration was the current the

motor would draw, with a no-load current rated at 2.1 amps. This current draw is low compared

to other motors with similar characteristics that were considered.

Page 30

A tachometer was used to measure the speed of the motor at the three speeds. These

measurements are shown in Table 15, in the Hardware Calculations section. Torque calculations

were performed early in the design process but were disregarded later after they were found to be

inaccurate as a result of limited knowledge of motor speed at each speed setting.

[JDR]

3.2.4 Feedback

In order to accurately control the motor speed there will need to be some sort of feedback in the

system. Without feedback, the RPi will set the speed of the motor with no information regarding

the actual speed of the motor. In the event that the motor runs faster or slower than directed, the

RPi should be notified so that the control signal can be adjusted accordingly. To account for this,

a feedback signal from the motor will pass to the RPi the actual speed of the motor. The actual

speed will be subtracted from the desired speed to obtain the speed error in the system. A transfer

function will be designed and used in a controller to compensate for the error. An accurate

control system cannot be designed until a physical motor and system are implemented. The

operation of the system will be measured to obtain an open loop plant transfer function. The

general model for the control system is described in Figure 10. The respective transfer function

blocks will be replaced with functions that are found through experimentation.

[JDR]

Figure 10. Unity feedback control model for motor control system.

[JDR]

Page 31

3.3 Power Supply

Figure 11. The 120V/24V,5V AC/DC power supply.

[PAG]

The circuit shown in Figure 11 is the power supply that will provide power to the modules of the

system. The power supply will take as inputs the sinusoidal voltage and current provided by a

wall outlet. The system will be powered by 120VAC because the system will remain stationary

near a power outlet. This eliminates the need for a battery supply and other issues associated

with the use of batteries. The voltage is provided in AC and as such needs to be stepped down,

rectified, smoothed out, and cleared of noise. The modified input voltage is then regulated to the

desired DC values needed to power the various modules of the system.

Figure 12. The 120VAC primary voltage and the transformed 24VAC secondary voltage in which the capacitor

smooths the voltage after the voltage is rectified.

[PAG]

Page 32

Figure 13. Voltage and Current output from the LT3791 providing 24V 5A.

[PAG]

Figure 14. Voltage output from the LT1085 providing 5V.

[PAG]

The supply will provide two power rails, one at 24VDC and one at 5VDC. Starting with

120VAC at 60Hz, a transformer is used to obtain a secondary voltage of 24VAC. The 24V is

full-wave rectified using a diode bridge. A 2200μF capacitor is used in parallel with a 2μF

capacitor to smooth the full wave to 24VDC. This process is seen in the simulation on Figure 12.

The LT3791 is a buck-boost voltage regulator that will take in the 24VDC. The LT3791 will use

the configuration shown in Figure 11 to provide a 24V 5A output that was simulated in Figure

13. This new voltage will be used to provide power to the DC motor. This rail will also be

connected to a LT1085 regulator that will drop the voltage down to 5V as shown in Figure 14.

The parts were selected to fit the voltage and current needs of the system. The LT3791 is a

regulator that drives an H-bridge based on the input and the desired output. The regulator

provides both constant voltage and current at up to 98.5% efficiency. This regulator is an ideal

DC/DC voltage regulator that uses both step-up and step-down conversion as needed to obtain a

constant voltage. The LT3791 has a wide range of input voltages and can be used to supply the

great amount of power that the motor may require. The LT1085 regulator provides 5V 3A and

uses the 24V from the LT3791 as an input. This 5V rail will power the RPi, the sensors, the

LCD, and the push buttons.

[PAG]

Page 33

3.4 Physical Interface

Figure 15. Schematic for physical interface.

[JDR]

The schematic shown in Figure 15 illustrates the physical button interface that will allow the user

to interact with and operate the smart fan without the Android application. The interface contains

three buttons and a rotary encoder. The first button is a power button that will simply turn the fan

on or off. The second and third buttons will dictate the direction of airflow; one will be labeled

for forward airflow and the other will be labeled for reverse airflow. Each button will be

connected to a GPIO pin on the RPi through a 470Ω resistor. Each button will also have a

capacitor connected to ground that will debounce the buttons and reduce noise on the inputs.

The rotary encoder will have three terminals: a common and two output pins that will be

connected to two GPIO pins on the RPi. Within the encoder the outputs are connected to

switches that open and close relative to the direction in which the encoder dial is turned. This

allows the fan speed to be changed according to the number of increments and direction in which

the encoder dial is turned. The encoder also has an optional push button. This is not needed for

the current application of the rotary encoder, however it will be connected as shown in Figure 15

in the case that a need is found.

[JDR]

Page 34

3.5 Sensor

Figure 16. Temperature sensor configuration for the RPi.

[PAG]

The temperature sensor design is a simple configuration, as shown in Figure 16. The analog

sensor has three pins: ground, input, and output. The power supply will provide 5V to the input

pin. The output will be connected to the ADC, which will subsequently be connected to the RPi.

The sensor can measure temperatures in the range of -10°C to 125°C, with an accuracy of +/-

1°C. The sensor exceeds the project requirements and, as such, is a simple fit in the design. This

sensor information will be useful in the temperature control operation of the system.

[PAG]

3.6 Hardware Calculations

Table 15. Power Calculations for AC Box Fan.

Fan Setting Voltage (V) Current (A) Power (W) Speed (RPM)

0 122.22 0.0 0.0 0

1 121.72 0.503 61.2 730

2 121.52 0.565 68.4 950

3 121.52 0.632 75.1 1100

[JDR]

The power measurements shown in Table 15 were taken from a standard box fan that uses an AC

induction motor. These measurements and calculations allow the understanding of the power

consumption and current drawn by the motor. These measurements will be used in the smart fan

design. The design calls for a DC motor whose specifications meet or exceed those found in the

AC motor measurements. Torque calculations were also done using the power and the speed of

Page 35

the motor at each fan setting. The maximum torque calculated will be used to choose a DC motor

that is rated to exceed the torque output performance of current fan models.

[JDR]

The temperature range of the average household is kept between 60 degrees and 80 degrees

Fahrenheit. The human body is not sensitive enough to the point where a one degree difference

from the desired temperature would be noticeable. This allows a window of tolerance in terms of

the accuracy of the temperature which the fan needs to maintain when in the temperature control

mode. The temperature sensor will be chosen to exceed the range necessary to cover any extreme

circumstances.

[PAG]

3.7 Software Theory of Operation

Figure 17. Software Block Diagram Level 0.

[JAC]

The Level 0 Software Block Diagram shown in Figure 17 displays the most basic form of the

system, split between the Physical Device and the Android Application. This demonstrates the

core inputs and outputs of the system. The inputs are user controls and choices as well as

communication between the components. The outputs are the resulting driving signal and the

feedback to the user. Each side functions relatively independent of the other, sending updates to

keep the other informed of its operations. The inputs and outputs of the Level 0 Diagram are

explained in Table 16 and Table 17.

Page 36

Table 16. Software Block Diagram Level 0: Physical Device.

Module Physical Device

Inputs ○ Button Input – Physical button inputs to the module.

○ Sensor Input – Physical sensors measure ambient temperature.

○ Wireless Communication – User preferences and instructions received from

the Android application.

Outputs ○ PWM Output – Driving signal sent to the motor circuitry.

○ Wireless Communication – Operation information such as temperature data

passed to the Android application to be displayed to the user.

Functionality Instructions from the Android application are interpreted here and used to

control the operation of the smart fan.

Table 17. Software Block Diagram Level 0: Android Application.

Module Android Application

Inputs ○ User Input – Inputs and adjustments made by the user.

○ Wireless Communication – Operation information such as temperature data

passed from the physical device.

Outputs ○ Smartphone Display – Output display to interface with the user.

○ Wireless Communication – User preferences and instructions sent to the

physical device.

Functionality The Android Application will allow the user to change any settings and control

their fan module from anywhere. They can use the application to set timers and

program the fan to start or stop to allow them to have a room cooled by the

time the user gets home.

[JBB, JAC]

The Level 1 Software Block Diagram shown in Figure 18 depicts a more in-depth view of the

system. While the inputs and outputs are the same as those of the Level 0 Diagram, this diagram

more clearly illustrates how each block functions. The two blocks are further broken down into

their subsystems and display the distribution of work within each block. The workings of the

system are explained in more detail in Table 18 through Table 21.

Page 37

Figure 18. Software Block Diagram Level 1.

[JAC]
Table 18. Software Block Diagram Level 1: Microprocessor.

Module Microprocessor

Inputs ○ Button Input – Physical button inputs to the module.

○ Sensor Input – Physical sensors measure ambient temperature.

○ Commands – Instructions given from the web server that direct the PWM.

Outputs ○ PWM Output – Driving signal sent to the motor circuitry.

○ Temperature – Interpreted sensor readings passed to the web server.

Functionality This block handles the hardware-software interpretation.

Table 19. Software Block Diagram Level 1: Web Server.

Module Web Server

Inputs ○ Temperature – Interpreted sensor readings passed from the microprocessor.

○ Wireless Communication – User preferences and instructions received from

the Android application.

Outputs ○ Commands – Instructions given to the microprocessor that direct the PWM.

○ Wireless Communication – Operation information such as temperature data

passed to the Android application to be displayed to the user.

Functionality Hosts stored operation parameters and bears the bulk of the computational

effort done by software.

Page 38

Table 20. Software Block Diagram Level 1: Code-behind.

Module Code-behind

Inputs ○ Wireless Communication – Operation information such as temperature data

passed from the web server to be interpreted and passed to the GUI code.

○ GUI Control – Parameters passed in from the GUI code when calling code-

behind functions.

Outputs ○ GUI Control – Results from operations performed in the code-behind to

display information to the user.

○ Wireless Communication – User preferences and instructions sent to the web

server.

Functionality The code-behind handles the computational effort of the Android application.

Any and all functions being run at the Android application are done in code-

behind.

Table 21. Software Block Diagram Level 1: GUI code.

Module GUI code

Inputs ○ User Input – Inputs and adjustments made by the user.

○ GUI Control – Results from operations performed in the code-behind to

display information to the user.

Outputs ○ GUI Control – Parameters passed to the code-behind when calling functions.

○ Smartphone Display – Output display to interface with the user.

Functionality The GUI code programmatically determines the display.

[JBB, JAC]

The Software Level 2 Block Diagram shown in Figure 19 further expands the system and

conveys more about the languages and protocols being used in the system. This strays slightly

from the previous diagram as the system approaches a more realistic layout and more accurately

displays the final design. The components of the system are detailed in Table 22 through Table

29.

Page 39

Figure 19. Software Block Diagram Level 2.

[JBB]

The RPi was chosen as the microprocessor. This choice directly affected the decisions made

regarding other components. The RPi was chosen for several reasons: direct PWM output,

integrated Bluetooth and wireless local area network (WLAN) modules, support for the Inter-

Integrated Circuit (I2C) protocol, numerous and easily accessible general-purpose input/output

(GPIO) pins, and overall flexibility and potential for developing and running code.

Support for a direct PWM output is key to the success of this project. The PWM output will be

used to drive the motor of the fan, and so direct support was considered essential when deciding

on a microprocessor; all other potential benefits of microprocessors were secondary to the PWM.

The Bluetooth and WLAN modules are a core requirement for the success of this project. These

modules grant the physical device access to the networks through which communication with the

Android application can be attained. The modules could have been acquired and implemented

separately from the microprocessor, but would have required extraneous effort to incorporate

them into the system.

To communicate with the temperature and humidity sensors, two protocols were considered: the

I2C bus and the Serial Peripheral Interface (SPI) bus. I2C and SPI are comparable in complexity

and effectivity regarding implementation, however I2C was chosen not arbitrarily but rather

because it would reduce development time and costs due to previously obtained experience and

hardware.

Page 40

The number and ease of use of GPIO pins was a lower priority than some other considerations

made when selecting the RPi but still warranted attention. The microprocessor must have a

sufficient number of GPIO pins such that the physical interface and the driver circuit can be

controlled. The RPi has forty pins that are allotted to various purposes. Some of these pins are

multipurpose with the ability to function as a GPIO pin, support a serial communication, or

fulfill one of several other applications. Twenty-six of the forty pins on the RPi can be used as a

GPIO, which is more than enough to implement the necessary functionality.

The final considerations and biggest benefits offered by the RPi are the flexibility and potential

regarding the development and execution of software. The RPi has an enormous amount of

computational power compared to other microprocessors and can be used to handle multiple

tasks at once. Boasting a 1.2GHz 64-bit quad-core processor with a gigabyte of memory, the RPi

can host both the web server and the database, run the scripts that will operate the hardware

components, and sustain all computational effort involved in the project.

The computational power offered by the RPi allows for the potential to satisfy up to four of the

engineering requirements listed in Table 1. The RPi will be able to handle all of the

computational effort needed by the project. This allows Engineering Requirements #2 and #3 to

be satisfied by reducing the necessary communication with and computation at the Android

application. The RPi also has the power to perform operations quickly. This allows Engineering

Requirements #5 and #6 to be satisfied by reducing the delay between receiving and realizing a

command.

[JBB, JAC]

Table 22. Software Block Diagram Level 2: Physical Interface.

Module Physical Interface

Inputs None

Outputs ○ GPIO – The signals from the buttons and switches are sent to the RPi over the

GPIO pins so the RPi can update the runtime parameters of the smart fan

accordingly.

Functionality The physical interface will consist of user controls and display that present the

user with the ability to make updates to the fan’s operation without needing to

use their smartphone. All components will communicate with the software

through the GPIO pins of the RPi.

Page 41

Table 23. Software Block Diagram Level 2: Temperature Sensor.

Module Temperature Sensor

Inputs None

Outputs ○ I2C – The data obtained by the sensors is sent to the RPi through the RPi’s

physical pins using the I2C protocol.

Functionality The ambient temperature sensor will allow users to set the fan to run based on

the temperature in the room. The data retrieved by the sensor will be sent to the

RPi using the I2C protocol.

Table 24. Software Block Diagram Level 2: Humidity Sensor.

Module Humidity Sensor

Inputs None

Outputs ○ I2C – The data obtained by the sensors is sent to the RPi through the RPi’s

physical pins using the I2C protocol.

Functionality The ambient humidity sensor will allow users to remotely view the humidity in

the surrounding area. The data retrieved by the sensor will be sent to the RPi

using the I2C protocol.

Table 25. Software Block Diagram Level 2: Python.

Module Python

Inputs ○ I2C – The data obtained by the sensors is sent to the RPi through the RPi’s

physical pins using the I2C protocol.

○ GPIO – The signals from the buttons and switches are sent to the RPi over the

GPIO pins so the RPi can update the runtime parameters of the smart fan

accordingly.

○ HTTP Request – These are the web server’s responses to GET and POST

requests generated by the Python scripts to deliver new information or to

acknowledge a successful POST.

Outputs ○ HTTP Request – These are GET and POST requests generated by the Python

scripts to get or post new information.

○ PWM Output – This is the driving signal generated by the RPi to operate the

DC motor in accordance with the parameters specified by the user.

Functionality The Python scripts running on the RPi will handle the low-level operations of the

system, such as setting the PWM value and facilitating communication with the

hardware components.

Page 42

HTTP requests were chosen to facilitate communication between the Android application and the

web server because the data being transmitted should be minimal and infrequent. HTTP requests

are asynchronous and as such can greatly reduce the amount of data being transferred between

the two systems. This reduction promotes satisfaction of Engineering Requirement #2 as listed in

Table 1.

Table 26. Software Block Diagram Level 2: JavaScript.

Module JavaScript

Inputs ○ SQL Query – Data retrieved from a select query.

○ HTTP Request – These are GET and POST requests generated by the Android

application to get or post new information.

○ HTTP Request – These are GET and POST requests generated by the Python

scripts to get or post new information.

Outputs ○ SQL Query – Query to store or select data to or from the MySQL database.

○ HTTP Request – These are the web server’s responses to GET and POST

requests generated by the Android application to deliver new information or to

acknowledge the successful POST.

○ HTTP Request – These are the web server’s responses to GET and POST

requests generated by the Python scripts to deliver new information or to

acknowledge the successful POST.

Functionality The JavaScript running on the RPi will manage the software operations of the

system, such as HTTP requests and database queries. This will be handled in the

form of a web server implemented in the Node.js engine.

The JavaScript module is a web server built using Node.js, a JavaScript framework designed to

support highly customizable web servers. Node.js makes it possible to design a web server that

only requires the most essential communication. For this project, the communications will be

asynchronous and contain very minimal data so Node.js was determined to be the best solution

available.

Table 27. Software Block Diagram Level 2: MySQL Database.

Module MySQL Database

Inputs ○ SQL Query – Query to store or select data to or from the MySQL database.

Outputs ○ SQL Query – Data retrieved from a select query.

Functionality The MySQL database will store information about the fan’s operation. The

majority of the software will run using locally stored variables, but all settings

will be backed up to the MySQL database after completion to preserve them

during loss of power or software crashes.

All variations of Structured Query Language (SQL) are comparable and can accomplish the

same results. MySQL was chosen because it is a commonly-used and open-source version that

has a large number of resources available for use.

Page 43

Table 28. Software Block Diagram Level 2: Java.

Module Java

Inputs ○ HTTP Request – These are the web server’s response to GET and POST

requests generated by the Android application to get or post new information.

○ User Inputs – User interactions with XML-defined items that trigger events.

Outputs ○ HTTP Request – These are GET and POST requests generated by the Android

application to get or post new information.

○ GUI Control – Any updates to visual components from the Java.

Functionality The Java code implements the actions performed by the application. The system

is event-driven, meaning that event listeners are created to call functions after an

associated event occurs. These events can range from a button being pressed to

receiving an HTTP request.

Table 29. Software Block Diagram Level 2: XML.

Module XML

Inputs ○ GUI Control – Any updates to visual components from the Java.

Outputs ○ User Inputs – User interactions with XML-defined items that trigger events.

Functionality XML in Android defines the look and feel of the application. Included are styles,

objects such as buttons and text fields, and other visual components. All related

functionality is implemented in the Java; XML simply dictates what the user

sees.

Java and Extensible Markup Language (XML) are the two standard languages used in Android

application development. There are other alternatives but a greater number of resources and tools

are available for development in Java and XML. Google, the proprietor of Android, has released

a free integrated development environment (IDE) called Android Studio that allows for quick

and intuitive development of Android applications. The smartphone application for this project

will be fully developed using this IDE.

[JAC]

Page 44

3.8 Microprocessor Flowchart

Figure 20. Flowchart for the Microprocessor Software.

[JBB]

The order of the code operation for the microprocessor is shown in Figure 20. Upon being

powered up the microprocessor will check for a previously stored operation mode. If one exists

the mode of operation is determined, otherwise the default mode is used. The process will then

enter an endless loop that, after a period of time, checks the operation mode again and runs a

function corresponding to which operation mode is currently running. The current PWM

frequency is passed to the selected function, using the reserved value of -1 to denote a disabled

PWM. The four possible functions (manual, scheduled, one-source temperature-sensing, and

two-source temperature-sensing) will retrieve relevant data by querying the database and then

decide if the PWM value should be updated or should be maintained. When any of these

functions finish, the current PWM value is passed to the main loop and the loop begins again.

Handling these computations on the microprocessor instead of the Android application supports

Engineering Requirement #3 shown in Table 1, because the computational intensity performed

by the smartphone will be greatly reduced. The functions required for the operation of the main

flowchart is shown in Table 30 through Table 32.

[JBB]

Page 45

3.9 Microprocessor Application Functions

Table 30. Function table for the MainLoop function of the Microprocessor Software.

Function MainLoop

Parameters None

Returns None

Description MainLoop retrieves the previously used operation mode from the web server. If

one is unavailable a default operation mode will be used. After obtaining the

operation mode, the function will attempt to retrieve all necessary settings from

the web server. MainLoop will call the corresponding function based on the

operation mode and pass in the settings and the current PWM value. If the PWM

value is not set, the passed value will be -1.

Called by Automatically called when the RPi is started.

The FanData class shown below will be used to hold and transfer all settings required for

operating the fan. Below is a snippet of the class framework. Additional variables will be

necessary in the final implementation.

class FanData(object):

def __init__(self,fanSpeed,roomTemp):

self.fanSpeed = fanSpeed

 self.roomTemp = roomTemp

Table 31. Function table for the GetCurrentFanData function of the Microprocessor Software.

Function GetCurrentFanData

Parameters None

Returns Current Settings JSON object

Description GetCurrentFanData retrieves the current settings from the web server. The settings

are returned as a JSON object that is interpreted and stored into a python FanClass

object.

Called by MainLoop

def GetCurrentFanData():

 r = requests.get(url + '/CurrentFanData')

 json_test = json.loads(r.text)

fanData = FanClass.FanData(int(json_test['Class']['Fan_Speed'])

,int(json_test['Class']['Room_Temp']))

 return fanData

Page 46

Table 32. Function table for the PostUpdateFanData function of the Microprocessor Software.

Function PostUpdateFanData

Parameters Current Settings

Returns None

Description PostUpdateFanData accepts the current settings as a python FanClass object and

converts them to a JSON object that is sent to the web server.

Called by ManualMode, ScheduleMode, One- & TwoSourceTemperatureMode

def PostUpdateFanData(fanData):

 data = {}

 data["Room_Temp"] = fanData.roomTemp

 data["Fan_Speed"] = fanData.fanSpeed

 json_data = json.dumps(data)

 r = requests.post(url + '/UpdateFanData', data)

 print r.text

Figure 21. Flowchart for the Manual Operation Mode.

[JBB]

The manual operation mode is shown in Figure 21. This mode will check the desired value of the

PWM provided by the user and compare that against the current PWM value. If these two values

are different then the PWM value will be updated. The functions required for the operation of the

manual operation flowchart is shown in Table 33 through Table 36.

Page 47

Table 33. Function table for the ManualMode function of the Microprocessor Software.

Function ManualMode

Parameters Current Settings, Current PWM Value

Returns New PWM Value

Description ManualMode determines the appropriate value to set the PWM, based on the given

settings. ManualMode will only take into account the desired speed value

provided by the user and the current PWM value. If the PWM value is the same as

the current value, nothing will be changed to facilitate a continuous operation of

the motor. All of the functions will handle PWM change in this way. If the PWM

value is not the same ManualMode will adjust the PWM value towards the desired

value. ManualMode will only adjust the PWM by a set amount in order to protect

the motor. If this step does not reach the final value, ManualMode will run again

in the next iteration of MainLoop.

Called by MainLoop

Using the specified PWM declaration shown in Table 34 supports Engineering Requirement #7

shown in Table 1. The hardware PWM of the RPi has a frequency range of 1Hz to 19MHz while

the software PWM of the RPi has a frequency of only 100Hz. Therefore, in order to satisfy this

engineering requirement it was necessary to choose the hardware PWM rather than the software

PWM. The functions shown below display the utilization of the required PWM.

Table 34. Function table for the SetupPWM function of the Microprocessor Software.

Function SetupPWM

Parameters None

Returns None

Description SetupPWM configures the naming convention for the RPi pins and specifies the

type of PWM output (either hardware or software).

Called by MainLoop

def setuppwm():

wiringpi.wiringPiSetup()

Page 48

Table 35. Function table for the SetPWM function of the Microprocessor Software.

Function SetPWM

Parameters PWM Value

Returns Success – boolean value

Description SetPWM sets the PWM pin of the RPi to the desired value. If this operation

succeeds SetPWM returns true, otherwise SetPWM returns false.

Called by ManualMode, ScheduleMode, One- & TwoSourceTemperatureMode

def setpwm(pwm):

 OUTPUT = 2

 TURN_OFF = 0

 PIN_TO_PWM = 1 # GPIO 18 on the RPI

 if pwm == -1:

 wiringpi.pinMode(PIN_TO_PWM, TURN_OFF)

 result = True

 elif pwm >= 0 and pwm <= 47:

 wiringpi.pinMode(PIN_TO_PWM, OUTPUT)

 configurepwm()

 wiringpi.pwmWrite(PIN_TO_PWM, pwm)

 result = True

 else:

 result = False

 return result

Table 36. Function table for the ConfigurePWM function of the Microprocessor Software.

Function ConfigurePWM

Parameters None

Returns None

Description ConfigurePWM sets the required settings for the PWM pin to have a frequency of

40kHz and to have 48 discrete steps.

Called by ManualMode, ScheduleMode, One- & TwoSourceTemperatureMode

Page 49

def configurepwm():

wiringpi.pwmSetMode(wiringpi.PWM_MODE_MS)

 wiringpi.pwmSetClock(10)

 wiringpi.pwmSetRange(48)

Figure 22. Flowchart for the Schedule Operation Mode.

[JBB]

The schedule operation mode is shown in Figure 22. This mode will check if the current time is

within the desired operation time periods. If it is then the PWM value will be updated to the

desired PWM value if it is different than the current PWM value. The functions required for the

operation of the schedule operation flowchart is shown in Table 37.

Table 37. Function table for the ScheduleMode function of the Microprocessor Software.

Function ScheduleMode

Parameters Current Settings, Current PWM Value

Returns New PWM Value

Description ScheduleMode behaves similarly to ManualMode in function, however,

ScheduleMode allows the user to also provide time ranges to which speed values

can be mapped.

Called by MainLoop

Page 50

Figure 23. Flowchart for the One Source Temperature Mode.

[JBB]

The one source temperature operation mode is shown in Figure 23. This mode will check the

ambient temperature by accessing the temperature sensor. Based on the ambient temperature

value and settings set by the user the microprocessor will calculate the desired PWM value. If the

desired PWM value is different than the current PWM value the PWM will be updated. The

functions required for the operation of the schedule operation flowchart is shown in Error!

Reference source not found. through Error! Reference source not found..

Table 38. Function table for the OneSourceTemperatureMode function of the Microprocessor Software.

Function OneSourceTemperatureMode

Parameters Current Settings, Current PWM Value

Returns New PWM Value

Description OneSourceTemperatureMode adjusts the speed of the fan based on the

temperature value of the temperature sensor and the given settings. The user will

set a low and a high temperature threshold. With these thresholds the user will also

provide a desired fan speed at the given threshold. The speed of the fan will then

be adjusted to a curve between these two values as the temperature fluctuates

between the two given temperatures.

Called by MainLoop

Page 51

Table 39. Function table for the ReadTemp function of the Microprocessor Software.

Function ReadTemp

Parameters None

Returns Temperature Value

Description ReadTemp accesses channel 0 of the ADC--the channel connected to the

temperature sensor--to retrieve the current temperature. This temperature value is

transmitted to the RPi using I2C.

Called by OneSourceTemperatureMode, TwoSourceTemperatureMode

def readTemp()

 adc = Adafruit_ADS1x15.ADS1015()

 GAIN = 1

value = adc.read_adc(0, gain=GAIN)

 # Apply corrective function to attain temp value

 return temp

Table 40. Function table for the ReadHumidity function of the Microprocessor Software.

Function ReadHumidity

Parameters None

Returns Humidity Value

Description ReadHumidity accesses channel 1 of the ADC, the channel connected to the

humidity sensor, to retrieve the current humidity. This humidity value is

transmitted to the RPi using I2C.

Called by OneSourceTemperatureMode, TwoSourceTemperatureMode

def readHumidity()

 adc = Adafruit_ADS1x15.ADS1015()

 GAIN = 1

 value = adc.read_adc(1, gain=GAIN)

 # Apply corrective function to attain humidity value

 return humidity

Page 52

Figure 24. Flowchart for the Two Source Temperature Operation Mode.

[JBB]

The two source temperature operation mode is shown in Figure 24. This mode will check the

ambient temperature by accessing the temperature sensor and will check the local temperature by

accessing a weather API. Based on the differential of the ambient temperature and local

temperature and settings set by the user the microprocessor will calculate the desired PWM

value. If the desired PWM value is different than the current PWM value the PWM will be

updated. The functions required for the operation of the schedule operation flowchart is shown in

Table 41 through Table 44.

Page 53

Table 41. Function table for the TwoSourceTemperatureMode function of the Microprocessor Software.

Function TwoSourceTemperatureMode

Parameters Current Settings, Current PWM Value

Returns New PWM Value

Description TwoSourceTemperatureMode will behave similarly to how

OneSourceTemperatureMode behaves, except with an additional temperature

input from a weather API. This operation mode is intended for operation in a

window. To facilitate this the weather API will provide the outside temperature

based on location data and the temperature sensor will provide the inside

temperature. The speed and direction of the fan will be decided based on the

temperature difference between the two sources.

Called by MainLoop

Table 42. Function table for the WeatherCurrentAddress function of the Microprocessor Software.

Function WeatherCurrentAddress

Parameters Address

Returns Weather Information

Description WeatherCurrentAddress passes an address to LatitudeLongitude and uses the

resultant data to call a weather API to retrieve the local weather information.

Called by TwoSourceTemperatureMode

def CurrentAddress(address):

 location = LocationRequest.LatLng(address)

 weather = Current(location.lat, location.lng)

 return weather

Table 43. Function table for the WeatherCurrent function of the Microprocessor Software.

Function WeatherCurrent

Parameters Latitude and Longitude Coordinates

Returns Weather Information

Description WeatherCurrent uses latitude and longitude coordinates to access a weather API.

The API returns the weather information as a JSON object.

Called by WeatherCurrentAddress

Page 54

def Current(lat = 41.07472, lng = -81.52201):

 query_url = api_url % (api_key, int(float(lat)), int(float(lng)))

 r = requests.get(query_url)

 if r.status_code != 200:

 print "Error:", r.status_code

 else:

 json_weather = r.json()

 return json_weather

Table 44. Function table for the LatitudeLongitude function of the Microprocessor Software.

Function LatitudeLongitude

Parameters Address

Returns Latitude and Longitude Coordinates

Description LatitudeLongitude uses an address to access a Google API that returns the

corresponding latitude and longitude for the address.

Called by WeatherCurrentAddress

def LatLng(address):

 address = address.replace(" ","+")

 query_url = api_url + address + api_key

 r = requests.get(query_url)

 if r.status_code != 200:

 print "Error:", r.status_code

 else:

 json_weather = r.json()

 lat = json_weather['results'][0]['geometry']['bounds']['northeast']['lat']

 lng = json_weather['results'][0]['geometry']['bounds']['northeast']['lng']

 return ReturnValue(lat, lng)

 [JBB]

Page 55

3.10 Web Server Flowchart

Figure 25. Flowchart for the Web Server Software.

[JBB]

The establishment of the web server and the continued operation to facilitate the remote access

of the web server is shown in Figure 25. Upon startup the web server attempts to retrieve past

settings from the database. The web server will then listen for HTTP requests on a previously

specified port. Using HTTP requests supports Engineering Requirement #2 shown in Table 1,

because HTTP requests can be handled asynchronously and conservatively. By reducing the total

number of HTTP requests required in a given day the amount of data usage can be limited to

under 30MB a month. These HTTP requests are handled based on their type. If a GET request is

received the web server will return the current fan data and if a POST request is received the web

server will set the current fan data to the newly received data and update the database. The

functions required for the operation of the main flowchart is shown in Table 45 through Table

47.

[JBB]

Page 56

3.11 Web Server Application Functions

Table 45. Function table for the Port_Listen function of the Web Server Software.

Function Port_Listen

Parameters None

Returns None

Description Port_Listen sets the web server to listen for HTTP Requests on a specific port

number.

Called by Automatically called when the Web Server is started

App.listen(port, function(err) {

 if (err) {

 return console.log(‘something bad happened’, err)

 }

 console.log(‘Listening on port: ‘ + port)

})

Table 46. Function table for the Get_CurrentFanData function of the Web Server Software.

Function Get_CurrentFanData

Parameters None

Returns Current Settings

Description Get_CurrentFanData returns the current settings for the fan when a request is

received.

Called by HTTP Request

app.get(‘/CurrentFanData’, function(request, response) {

 response.writeHead(200, {“Content-Type”: “application/json”});

 var json = JSON.stringify({

 Class:data

 });

 response.end(json);

})

Page 57

Table 47. Function table for the Post_UpdateFanData function of the Web Server Software.

Function Post_UpdateFanData

Parameters Settings Update

Returns None

Description Post_UpdateFanData accepts a JSON object containing updated settings

information and it interprets it. The new settings then replace the old as the current

settings.

Called by HTTP Request

app.post(‘/UpdateFanData’, function(request, response) {

 var Room_Temp = request.body.Room_Temp;

 var Fan_Speed = request.body.Fan_Speed;

 data = new fanData(Room_Temp, Fan_Speed);

 response.send(‘Success’);

});

[JBB]

Page 58

3.12 Android Application Flowchart

Figure 26. Flowchart for the Android Application.

[JAC]

The Flowchart for the Android Application in Figure 26 shows the order of code operation of the

Android application. Upon being brought to focus the application will load the information

necessary to communicate with the web server hosted at the RPi. The application will then

attempt to query the web server using these settings. If the connection is unsuccessful, the

application will alert the user and prompt them to retry the connection. On a successful

connection the application will attempt to parse the response from the web server. If no settings

are found the application will load the last known settings from the latest instance of the

application. These settings are stored locally at the Android device. After loading all relevant

information and displaying them on the GUI, the application will enter an idle state where it will

wait for user input provided through the GUI or for an update from the server. If the user

provides a GUI input to make changes the application will send any updated values to the server.

Upon receiving a server update the application will revise its local settings with the new

information.

[JAC]

Page 59

3.13 Android Application Functions

Table 48. Function table for the LoadWebServerInformation function of the Android application software.

Function LoadWebServerInformation

Parameters None

Returns None

Description LoadWebServerInformation pulls locally stored data necessary for communication

with the web server hosted at the RPi. The data it retrieves will include the IP

address and any parameters necessary to generate an HTTP GET request to query

the RPi. This data is used by the Query Web Server function which makes the

actual call.

Called by Automatically called when the application is started or brought to focus

LoadWebServerInformation in Table 48 also hosts the initial operations of the application, which

includes calling other functions to populate fields and instantiate the GUI.

Table 49. Function table for the QueryWebServer function of the Android application software.

Function QueryWebServer

Parameters Web Server Information

Returns JSON Object

Description QueryWebServer handles the acquisition of data from the web server when

requested by the Android application. It uses the connection information passed as

parameters to generate an HTTP GET request. This request is sent to the RPi in an

attempt to contact the server and receive a response. If the operation is

unsuccessful a custom, reserved JSON object will be returned to signify the

failure. Otherwise, the received JSON object is returned.

Called by LoadWebServerInformation

QueryWebServer is used as specified in Table 49 in the initial startup of the application to

establish contact with the web server.

Page 60

Table 50. Function table for the AlertUser function of the Android application software.

Function AlertUser

Parameters Error Information

Returns Retry – boolean value

Description AlertUser is called when an attempt to contact the web server fails. A pop-up alert

is generated and displayed to the user. This message informs them that the

operation was unsuccessful, gives them information about the error, and gives

them the option to either close the alert or retry the connection. Choosing to retry

returns true and closing the alert returns false.

Called by LoadWebServerInformation, UserInput

AlertUser is used to display information to the user. Its functionality is detailed in Table 50.

Table 51. Function table for the ParseJSON function of the Android application software.

Function ParseJSON

Parameters JSON object

Returns Raw parameters – list of pairs

Description ParseJSON is passed a JSON object containing information received in a message

from the web server. The JSON will contain a set of associated keys and values.

These keys and values are separated out into individual pairs and returned as a list

of pair objects.

Called by LoadWebServerInformation, ReceiveUpdate

ParseJSON obtains the information contained in messages from the web server as described in

Table 51. Its complement, BuildJSON, packages information into a JSON string to send to the

web server, as shown in Table 58.

Table 52. Function table for the LoadLastKnownSettings function of the Android application software.

Function LoadLastKnownSettings

Parameters None

Returns Raw parameters – list of pairs

Description LoadLastKnownSettings obtains from local storage the last known settings saved

during the most recent update. These values will be stored as a set of pair objects

containing keys and values for various parameters and settings determined by the

user. These objects are collected and returned as a list of pairs.

Called by LoadWebServerInformation, ReceiveUpdate

Page 61

LoadLastKnownSettings in Table 52 is called when the application is unable to retrieve a valid

response from the web server, either because the returned information is invalid or because the

connection attempt was unsuccessful and the user selected to not retry. In the case of an

unsuccessful connection, this function serves to load the GUI with information so the user does

not see empty fields. It does not resolve the connection issues and does not prevent the user from

interacting with the application. Each attempt to access the web server is independent and the

application can still be used offline.

Table 53. Function table for the DisplaySettingsToUser function of the Android application software.

Function DisplaySettingsToUser

Parameters Raw parameters – list of pairs

Returns None

Description DisplaySettingsToUser uses the key and value stored in each pair to populate a

field on the GUI.

Called by LoadWebServerInformation, ReceiveUpdate

DisplaySettingsToUser in Table 53 takes the information from an update and loads it into the

GUI.

Table 54. Function table for the ReceiveUpdate function of the Android application software.

Function ReceiveUpdate

Parameters JSON Object

Returns None

Description ReceiveUpdate is called when the application receives an HTTP POST request

from the web server at the RPi. This will occur when changes are made using the

physical interface and the Android application is active. These updates allow the

application to stay synchronized with the web server.

Called by Automatically called when an update from the web server is received

ReceiveUpdate is a shell for the operations being handled after receiving an update and only

facilitates the use of other functions as detailed in Table 54.

Page 62

Table 55. Function table for the UserInput function of the Android application software.

Function UserInput

Parameters None

Returns None

Description UserInput handles the user’s attempt to effect their changes by pressing the Send

button.

Called by Send button

UserInput is a shell for the operations being handled after the user attempts to save a settings

update and only facilitates the use of other functions as detailed in Table 55.

Table 56. Function table for the ValidateInputs function of the Android application software.

Function ValidateInputs

Parameters None

Returns Valid – boolean value

(Optional) Invalid Fields – list of GUI objects

Description ValidateInputs checks whether or not the values entered by the user are valid.

Invalid inputs include empty fields, characters that are not alphanumeric, and

values that are outside the acceptable ranges for inputs.

If the entries are invalid, the erroneous fields are highlighted and the function

returns false. Otherwise the function returns true.

The Invalid Fields object is only returned when one or more inputs have been

evaluated to be invalid and contains a list of the offending fields to be highlighted.

Called by UserInput

As shown in

Table 56, ValidateInputs ensures that the user enters only information that can be used properly.

ValidateInputs is used in tandem with HighlightFields to inform the users of errors, as shown in

Table 57.

Page 63

Table 57. Function table for the HighlightFields function of the Android application software.

Function HighlightFields

Parameters Invalid Fields

Returns None

Description HighlightFields iterates through the list of invalid fields passed in and highlights

each item in red. The function may also alert the user with a banner or by updating

a text field.

Called by UserInput

Table 58. Function table for the BuildJSON function of the Android application software.

Function BuildJSON

Parameters None

Returns JSON Object

Description BuildJSON pulls values out of the fields on the GUI. These values are associated

with corresponding keys and used to build a list of pair objects. These pair objects

are used to generate a JSON object, which is subsequently returned.

Called by UserInput

Table 59. Function table for the SendToServer function of the Android application software.

Function SendToServer

Parameters JSON Object

Returns Success – boolean value

Description SendToServer builds an HTTP POST request to send the passed in JSON object to

the web server at the RPi. The function will use the response code generated by

the web server to decide if the operation was successful. On a success, the

function returns true. Otherwise the function returns false.

Called by UserInput

 [JAC]

As shown in Table 59, SendToServer sends updates to the web server to be stored and

incorporated into the operation.

3.14 Software Calculations

The spectrum of human hearing ranges from 20Hz to 20kHz. In order to avoid audible vibrations

from the motor the PWM frequency must be kept outside of this range. A frequency below 20Hz

would be far too slow to drive a motor effectively, so the frequency must instead exceed 20kHz.

To account for possible fluctuations, the frequency should remain around 25kHz. This

requirement is listed as Engineering Requirement #7 in Table 1.

Page 64

In order to meet this engineering requirement, the function ConfigurePWM, shown in Table 36,

function is used to set the PWM frequency. The ConfigurePWM function sets the PWM

frequency to 40kHz by adjusting the clock frequency and setting the range of the PWM. As

shown above in the ConfigurePWM code snippet, the clock divisor is set to ten and the range is

set to forty-eight. Setting the clock divisor to ten divides the RPi clock of 19.2MHz down to

1.92MHz and setting the range to forty-eight divides the 1.92MHz into forty-eight discrete steps

leaving a PWM frequency of 40kHz. Having a frequency of 40kHz for the PWM exceeds the

required minimum frequency of 25kHz for the engineering requirement. Figure 27 shows an

example PWM output from the RPi.

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝐻𝑧) =
19.2𝑀𝐻𝑧

𝐶𝑙𝑜𝑐𝑘 𝐷𝑖𝑣𝑖𝑠𝑜𝑟 ∗ 𝑅𝑎𝑛𝑔𝑒

 =
19.2𝑀𝐻𝑧

10 ∗ 48

 = 40𝑘𝐻𝑧

Figure 27. Output Waveform of RPi PWM.

Page 65

It is important to take into consideration the amount of data consumed by the Android

application in its communication with the web server. With the prevalence of data caps for

cellular data plans, excessive usage from unnecessary communication could deter possible users.

The application should use no more than 1 MB of data per day yielding a worst case of only 30

MB of data consumption over a month.

[JBB]

Page 66

4. Parts

4.1 Parts List

Table 60. Smart Fan Parts List.

Qty. Refdes Part Num. Description

1 181 Standard LCD 16x2 + extras -

white on blue

1 U1 3055 Raspberry Pi 3 vB

1 1988 GPIO Ribbon Cable for Raspberry

Pi Model A+/B+/Pi 2/Pi 3 - (40

pins)

1 2029 Assembled Pi Cobbler Plus -

Breakout Cable - for Pi B+/A+/Pi

2/Pi 3

1 2258 Adafruit Raspberry Pi B+ / Pi 2 /

Pi 3 Case - Smoke Base - w/ Clear

Top

1 1995 5V 2.4A Switching Power Supply

w/ 20AWG 6' MicroUSB Cable

1 3082 Aluminum Heat Sink for

Raspberry Pi 3 - 15 x 15 x 15mm

1 3259 8GB MicroSD Card with NOOBS

1.9

1 U2 1083 ADS1015 12-Bit ADC - 4 Channel

with Programmable Gain

Amplifier

1 571 Adafruit Perma-Proto Half-sized

Breadboard PCB - 3 Pack!

8 Q1, Q2, Q5, Q6,

Q7, Q8, Q9, Q10

2SD2444KT146R NPN Transistor

2 Q3, Q4 BCP69-16,115 PNP Transistor

4 D1, D2, D3, D4 ES2A Standard Diode

2 D5, D6 CUS520,H3F Schottky Diode

4 R1, R2, R3, R4 FMP300FTF73-100R 100 Ohm Resistor

4 R5, R6, R7, R8 LR1F1K0 1k Ohm Resistor

1 M1 E30-150 DC Motor

4 R9, R10, R11, R12 CRG1206F470R 470 Ohm Resistor

6 C1, C2, C3, C4, C5,

C6

CC0805KRX7R9BB103 0.01μF Capacitor

1 SW4 377 Rotary Encoder + Extras

1 SW1 3105 Power Button

2 SW2, SW3 1445 Forward and Reverse Switches

1 T1 FS24-100-C2-B 120/24V transformer

1 BR1 DF04M diode bridge

Page 67

1 U1 LT3791EFE-1#PBF 24V voltage regulator

1 U2 LT1085CT-5#PBF 5V voltage regulator

1 U3 MCP9700A-E/TO-ND temperature sensor

4 Q11, Q12, Q13,

Q14

RJK0651DPB-00#J5 NMOS

2 D7, D8 BAT46WH,115 Schottky Diode

1 L1 39S103C Inductor

2 C7, C8 UVR1V222MHD 2200uF Capacitor

2 C9, C10 8.60021E+11 1uF Capacitor

3 C11, C12, C22 400PX4R7MEFCTA8X11.5 4.7uF Capacitor

1 C13 EEU-FC1H470 47uF Capacitor

1 C14 C322C474M5U5TA 470nF Capacitor

1 C15 K333K15X7RF5TH5 33nF Capacitor

1 C16 C315C103K5R5TA7303 10nF Capacitor

3 C17, C18, C19 K104K10X7RF5UH5 0.1uF Capacitor

1 C20 UVY1E221MED1TD 220uF Capacitor

1 C21 FK16X7R1E106K 10uF Capacitor

2 R13, R14 CF14JT100K 100k Ohm Resistor

1 R15 CF14JT200K 200k Ohm Resistor

2 R16, R17 MFR-25FBF52-499K 499k Ohm Resistor

1 R18 RNF14FTD27K4 27.4k Ohm Resistor

1 R19 MFR-25FBF52-56K2 56.2k Ohm Resistor

1 R20 CS5DR003E 3m Ohm Resistor

1 R21 CF14JT51R0 51 Ohm Resistor

1 R22 HVR2500001473FR500 147k Ohm Resistor

1 R23 BR3FB15L0 15m Ohm Resistor

1 R24 14AFR004E 4m Ohm Resistor

1 R25 MFR-25FBF52-73K2 73.2k Ohm Resistor

1 R26 MFR-25FBF52-3K83 3.83k Ohm Resistor

1 K1 HY1-4.5V 3.3V Relay

1 R27 RNMF14FTC120R 120 Ohm Resistor

[PAG, JDR]

4.2 Budget

Table 61. Smart Fan Budget.

Unit Total

Qty. Part Num. Description Cost Cost

1 181 Standard LCD 16x2 + extras - white

on blue

9.95 9.95

1 3055 Raspberry Pi 3 vB 39.95 39.95

1 1988 GPIO Ribbon Cable for Raspberry Pi

Model A+/B+/Pi 2/Pi 3 - (40 pins)

2.95 2.95

Page 68

1 2029 Assembled Pi Cobbler Plus -

Breakout Cable - for Pi B+/A+/Pi 2/Pi

3

6.95 6.95

1 2258 Adafruit Raspberry Pi B+ / Pi 2 / Pi 3

Case - Smoke Base - w/ Clear Top

7.95 7.95

1 1995 5V 2.4A Switching Power Supply w/

20AWG 6' MicroUSB Cable

7.95 7.95

1 3082 Aluminum Heat Sink for Raspberry Pi

3 - 15 x 15 x 15mm

1.95 1.95

1 3259 8GB MicroSD Card with NOOBS 1.9 9.95 9.95

1 1083 ADS1015 12-Bit ADC - 4 Channel

with Programmable Gain Amplifier

9.95 9.95

1 571 Adafruit Perma-Proto Half-sized

Breadboard PCB - 3 Pack!

12.50 12.50

8 2SD2444KT146R NPN Transistor 0.47 3.76

2 BCP69-16,115 PNP Transistor 0.40 0.80

4 ES2A Standard Diode 0.49 1.96

2 CUS520,H3F Schottky Diode 0.21 0.42

4 FMP300FTF73-100R 100 Ohm Resistor 0.39 1.56

4 LR1F1K0 1k Ohm Resistor 0.13 0.52

1 E30-150 DC Motor 79.00 79.00

4 CRG1206F470R 470 Ohm Resistor 0.10 0.40

6 CC0805KRX7R9BB103 0.01μF Capacitor 0.10 0.60

1 377 Rotary Encoder + Extras 4.50 4.50

1 3105 Power Button 1.95 1.95

2 1445 Forward and Reverse Switches 0.95 1.90

1 FS24-100-C2-B 120/24V transformer 5.27 5.27

1 DF04M diode bridge 0.41 0.41

1 LT3791EFE-1#PBF 24V voltage regulator 10.15 10.15

1 LT1085CT-5#PBF 5V voltage regulator 6.78 6.78

1 MCP9700A-E/TO-ND temperature sensor 0.31 0.31

4 RJK0651DPB-00#J5 NMOS 1.37 5.48

2 BAT46WH,115 Schottky Diode 0.38 0.76

1 39S103C Inductor 1.50 1.50

2 UVR1V222MHD 2200uF Capacitor 0.98 1.96

2 8.60021E+11 1uF Capacitor 0.11 0.22

3 400PX4R7MEFCTA8X11.5 4.7uF Capacitor 0.46 1.38

1 EEU-FC1H470 47uF Capacitor 0.34 0.34

1 C322C474M5U5TA 470nF Capacitor 0.49 0.49

1 K333K15X7RF5TH5 33nF Capacitor 0.22 0.22

1 C315C103K5R5TA7303 10nF Capacitor 0.25 0.25

3 K104K10X7RF5UH5 0.1uF Capacitor 0.18 0.54

1 UVY1E221MED1TD 220uF Capacitor 0.30 0.30

Page 69

1 FK16X7R1E106K 10uF Capacitor 0.63 0.63

2 CF14JT100K 100k Ohm Resistor 0.10 0.20

1 CF14JT200K 200k Ohm Resistor 0.10 0.10

2 MFR-25FBF52-499K 499k Ohm Resistor 0.10 0.20

1 RNF14FTD27K4 27.4k Ohm Resistor 0.10 0.10

1 MFR-25FBF52-56K2 56.2k Ohm Resistor 0.10 0.10

1 CS5DR003E 3m Ohm Resistor 10.42 10.42

1 CF14JT51R0 51 Ohm Resistor 0.10 0.10

1 HVR2500001473FR500 147k Ohm Resistor 0.47 0.47

1 BR3FB15L0 15m Ohm Resistor 0.78 0.78

1 14AFR004E 4m Ohm Resistor 1.77 1.77

1 MFR-25FBF52-73K2 73.2k Ohm Resistor 0.10 0.10

1 MFR-25FBF52-3K83 3.83k Ohm Resistor 0.10 0.10

1 HY1-4.5V 3.3V Relay 3.74 3.74

1 RNMF14FTC120R 120 Ohm Resistor 0.10 0.10
Total $262.69

[PAG, JDR]

Page 70

5. Project Schedule

Figure 28. Final Design Gantt chart.

[JBB]

Page 71

Figure 29. Proposed Implementation Gantt chart.

[JBB]

Page 72

6. Design Team Information

Joshua Blanchard (CpE), Project Lead

Jacob Carroll (CpE), Software Lead

Peter Gross (EE), Archivist

Josh Riegel (EE), Hardware Lead

7. Conclusions and Recommendations

This Smart Fan will allow users to run it when they want, how they want. The device expands

upon an antiquated technology by introducing Internet-connectivity and programmability. The

stages through which this project was developed allowed for a step-by-step approach during

which feedback could be obtained. Block diagrams, schematics, and function tables offer a

multi-leveled view of the system and how it will be implemented. During the design process

many requirements from an engineering point-of-view were considered, but it was also important

to keep in mind the perspective and interests of a common user.

Recommendations for the future would include a more proactive schedule in which simulations

and experimentation are performed earlier in the process. Without implementing or simulating

anything with actual components the design process was more difficult due to incorrect

assumptions and misconceptions.

[JAC]

Page 73

8. References

1. Bell, “Self-programmable temperature control system for a heating and cooling system,”

U.S. Patent 5 088 645, Feb 18, 1992.

2. Y. Tsuchiyama, “Low power electrical fan motor and heater thermal protection circuit for air

conditioner,” U.S. Patent 5 131 455, July 21, 1992.

3. R. M. Nair, “Intelligent internal fan controller,” U.S. Patent 6 318 965, Nov 20, 2001.

4. P. Simard, “Electric timer for controlling power to a fan,” U.S. Patent 8 441 155, May 14,

2013.

5. R. X. Cui, H. L Zhao, G. Chen and C. G. Guo, “Smart fan design based on PSoC,” in Applied

Mechanics and Materials, vol. 347-350, pp. 252-256, 2013.

doi: 10.4028/www.scientific.net/AMM.347-350.252

6. C.-H. Pang, J.-V. Lee, Y.-D. Chuah, Y.-C. Tan and N. Debnach, “Design of a

microcontroller based fan motor controller for smart home environment,” in International

Journal of Smart Home, vol. 7, iss. 4, pp. 233-246, 2013.

7. L. Guillot, P. Dupuy, M. Plachy, A. El-Habibi and E. Serre, "Automotive Fan Control with

Smart Power Switch [From Mind to Market]," in IEEE Industrial Electronics Magazine, vol.

2, no. 1, pp. 4-54, March 2008. doi: 10.1109/MIE.2008.917148

[JDR]

Page 74

9. Appendices

9.1 Appendix A: Datasheets

9.1.1 Raspberry Pi 3 Model B Datasheet

Page 75

Page 76

9.1.2 Triad Magnetics FS24-100-C2 Datasheet

Page 77

9.1.3 Linear Technology LT1085 Datasheet

Page 78

Page 79

Page 80

9.1.4 Fairchild Semiconductor DF04M Datasheet

Page 81

Page 82

Page 83

9.1.5 Linear Technology LT3791 Datasheet

Page 84

Page 85

Page 86

Page 87

Page 88

Page 89

Page 90

9.1.6 Bourns PEC11 Datasheet

Page 91

Page 92

9.1.7 ROHM Semiconductor 2SD2444K Datasheet

Page 93

Page 94

9.1.8 NXP Semiconductors BCP69 Datasheet

Page 95

9.1.9 AmpFlow E30-150 Schematic

Page 96

9.1.10 AmpFlow E30-150 Characteristics

Page 97

9.1.11 TINSHARP TC1602A-09T Datasheet

Page 98

Page 99

9.1.12 Panasonic HY1-4.5V Datasheet

Page 100

	The University of Akron
	IdeaExchange@UAkron
	Spring 2017

	Smart Fan
	Jacob A. Carroll
	Joshua B. Blanchard
	Peter A. Gross
	Joshua D. Riegel
	Recommended Citation

	tmp.1493219391.pdf.c__0K

