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Introduction: 

For my Honors Research Project, I developed a GUI application in C++ using the 

Qt and Qt Quick frameworks. My application is called srcMX, and it utilizes the srcML 

command-line tool to convert and display source code using the srcML format. My goal 

is for srcMX to promote the manipulation and exploration of source code using srcML. I 

also hope that the user-friendly nature inherent to GUI applications allows srcMX to 

introduce a larger audience to the many features offered by srcML. 

The srcML format is a representation for source code where elements of the 

abstract syntax for the language are identified by XML markup tags. The srcML 

command-line tool efficiently converts source code files to and from the srcML format 

with a lossless approach that preserves all the original code, formatting, and comments. 

Source code files can be parsed and translated at speeds of approximately twenty-five 

thousand lines per second. Languages currently supported by the parser include C, C++, 

C#, and Java [1].  

The development of the srcML technology is led by Principal Investigators Dr. 

Michael L. Collard and Dr. Jonathan I. Maletic. In addition, the project is partially 

supported by a grant from the National Science Foundation (CNS 1305217) [2]. 

Additional information regarding srcML is available at the official website, 

www.srcml.org. An example of a simple C++ program converted to the srcML format is 

illustrated in figures 1.1 and 1.2. 
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Figure 1.1 Simple C++ program, rotate.cpp [3]  

!  

Figure 1.2 Corresponding srcML file, rotate.xml [3]  

!  

#include "rotate.h" 

// rotate three values 
void rotate(int& n1, int& n2, int& n3) 
{ 
    // copy original values 
    int tn1 = n1, tn2 = n2, tn3 = n3; 

    // move 
    n1 = tn3; 
    n2 = tn1; 
    n3 = tn2; 
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<unit xmlns="http://www.srcML.org/srcML/src" xmlns:cpp="http://
www.srcML.org/srcML/cpp" revision="0.9.5" language="C++" 
filename="rotate.cpp"> 
    <cpp:include>#<cpp:directive>include</cpp:directive> 
<cpp:file>"rotate.h"</cpp:file></cpp:include> 

    <comment type="line">// rotate three values</comment> 
    <function><type><name>void</name></type> <name>rotate</
name><parameter_list>(<parameter><decl><type><name>int</
name><modifier>&</modifier></type> <name>n1</name></decl></
parameter>, <parameter><decl><type><name>int</name><modifier>&</
modifier></type> <name>n2</name></decl></parameter>, 
<parameter>><decl><type><name>int</name><modifier>&</modifier></type> 
<name>n3</name></decl></parameter>)</parameter_list> 
    <block>{ 
        <comment type="line">// copy original values</comment> 
        <decl_stmt><decl><type><name>int</name></type> <name>tn1</
name> <init>= <expr><name>n1</name></expr></init></decl>, <decl><type 
ref="prev"/><name>tn2</name> <init>= <expr><name>n2</name></expr></
init></decl>, <decl><type ref="prev"/><name>tn3</name> <init>= 
<expr><name>n3</name></expr></init></decl>;</decl_stmt> 

        <comment type="line">// move</comment> 
        <expr_stmt><expr><name>n1</name> <operator>=</operator> 
<name>tn3</name></expr>;</expr_stmt> 
        <expr_stmt><expr><name>n2</name> <operator>=</operator> 
<name>tn1</name></expr>;</expr_stmt> 
        <expr_stmt><expr><name>n3</name> <operator>=</operator> 
<name>tn2</name></expr>;</expr_stmt> 
    }</block></function> 
</unit>
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A code base consisting of many source code files can be parsed and translated into 

a srcML archive. A srcML archive is a single XML file where the srcML for individual 

source code files is delineated by opening and closing unit tags. These unit tags 

encapsulate the srcML of every source code file, and they contain the file’s name and 

language as shown in the example above. As a result, individual files within the srcML 

archive can be accessed sequentially by the file’s unit number [1].  

Once a source code file is converted to the srcML format, the XML structure of 

srcML can be utilized to perform different visualizations and transformations of the 

source code. A multitude of technologies such as XPath, XQuery, RelaxNG, XSchema, 

XSLT, DOM, and SAX can perform such activities as fact extraction, validation, and 

transformation [1]. While the srcML command-line tool is exceedingly efficient at 

translating source code files to and from the srcML format, users may need to utilize 

external tools and applications to explore and manipulate the results. In response, the 

srcMX application is the first that enables users to convert source code into the srcML 

format while also providing an interactive method for dynamically visualizing the results. 

In addition, my application also provides users with the ability to construct and perform 

queries on source code in the srcML format. These query results can be visualized in 

srcMX using both the srcML format and native source code. 

srcMX Application: 

The srcMX application presents the user with an interface that consists of several 

modular views. These views support a range of functionality, including such things as 
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project management and configuration, query configuration and visualization, and 

source-code visualization. In addition, the application also provides the user with 

information regarding the parsing and translation of files with srcml. Figure 2.1 provides 

an overview of the srcMX application after having parsed and translated the entire linux 

kernel. 

Figure 2.1 The Linux kernel open in the srcMX application  

!  

At the top of the application, the main toolbar contains a variety of controls. Here, 

the user can add files to the project, toggle the visibility of application views, and browse 

through the history of viewed files. To the right, a slider controls the visibility of srcML 
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tags in the code viewport. As shown in figure 2.2, the main toolbar also contains a large 

status bar that displays information about the project. 

Figure 2.2 The main toolbar displays project information  

!   

During parsing, the status bar updates to display the name, lines of code, language, 

and hash of the most recently parsed file. The user can also stop the import process by 

clicking the corresponding button to the right of the bar. After file parsing has completed, 

the status bar displays the number of files translated, the number of files skipped, the 

number of errors encountered, and the total number of files parsed. As the user browses 

files within the project, the status bar displays the name of the currently selected file.  

Users can add new files to a project by expanding the drop-down button in the 

main tool bar. This opens a window that allows the user to specify the type of file he or 

she wishes to add. Like the srcML command line tool, srcMX can accept individual files, 

directories containing multiple files, compressed archives of multiple files, and can even 

load files from a URL. Users can also add raw text to a project within the new file 

window. 
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Figure 2.3 Adding source code files to the srcMX application  

!  

To the left of the application, a collapsable side bar is divided into three sections. 

Here, the user can view the list of input sources, queries, and transformations within the 

current project.  

The srcMX application supports up to seven simultaneous queries within a project, 

each having a unique color tag and label for identification. Unlabeled queries take the 

name of their color tag. Queries can also be reordered via a click and drag mechanism. 

Reordering a query also assigns it a new color tag. Hovering over a query with the mouse 

pointer reveals a clickable gear icon that opens a configuration window for the selected 

query. Here, the user can construct the query and assign it a unique title for better 

identification. This process is illustrated in figure 2.4. 
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Figure 2.4 Query configuration window  

!  

The srcMX application accepts XPath queries, and it supports an autocomplete 

feature for srcML tag names. As the user types, the candidates are displayed in a 

dropdown menu. Selecting a tag name with the return key inserts the name. Utilizing this 

autocomplete feature guarantees that the XPath query is constructed with valid tag 

names. Consequently, the autocomplete also triggers the query to be executed as each tag 

name is entered. This allows the user to view a progression of the results as the query is 

constructed.  

The central view in the application contains the file list, which displays all of the 

files that were parsed and translated from the input source. This list is populated in real 

time as each source code file is translated to the srcML format by the srcML command-

line tool. Here, the user can see the unit number, name, path, language, and lines of code, 

and parsing time for each file. The user can also select files from this list to display in the 

code view.  
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The code view is the most predominant window of the srcMX application. It is 

also the only window that the user can float and dock using the toolbar buttons. Here, the 

application dynamically displays source code files in both native and srcML formats. 

Additionally, the slider in the toolbar above can be used to progressively enable or 

disable the visibility of srcML tags without reparsing or reloading the current file. The 

text displayed in the window can also be zoomed in and out using the Command–

Plus sign (+) and Command–Minus sign (-) keyboard shortcuts. 

The code view also displays query results for the currently selected file. These 

results are represented by colored background boxes that encapsulate the relevant source 

code. The code view also displays nested and overlapping query results. An example of a 

file containing query results is depicted in figure 2.5. 

Figure 2.5 Code view with query result  

!  
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Implementation: 

The srcMX application is largely written in C++ using Qt Creator, the official IDE 

(integrated development environment) for Qt applications. It utilizes the Qt and Qt Quick 

frameworks. Other technologies that I utilize include HTML, CSS, and JavaScript. 

While both Qt and Qt Quick provide support for developing GUI applications, 

srcMX relies on Qt Quick for most of its graphical elements. The remaining application 

logic uses Qt-extended C++. This allows the GUI and the logic that defines its dynamic 

elements to be segregated from the main application logic. However, srcMX was not 

originally implemented in this way. Rather, the structure of the application went through 

several revisions before arriving at its current state. Initially, I utilized Qt for all parts of 

the application. 

Qt is an application development framework that facilitates the development of 

cross-platform applications with native GUIs (graphical user interfaces). This framework 

extends standard C++ with additional features. Before compilation, the MOC (Meta-

Object Compiler) preprocessor parses the Qt-extended C++ source files. It then generates 

standard compliant C++ sources that can be compiled by any standard compliant C++ 

compiler [5]. 

GUI applications written with Qt contain graphical control elements known as 

widgets. These widgets are provided by Qt’s QWidget module, which supports rendering 

to the screen and accepting user input events. With this module, the application’s GUI can 

be defined programmatically. This enables developers to write entire applications directly 

in C++. Alternatively, developers can define the application’s GUI visually by using Qt 

Designer, Qt Creator’s integrated GUI layout and forms designer. With this method, 
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widgets can be dragged and dropped into a WYSIWYG (what you see is what you get) 

editor that generates XML layout forms. During compilation, the UIC (User Interface 

Compiler) converts these XML layout forms into the appropriate C++ code for the GUI. 

The Qt signals and slots mechanism facilitates communication between objects. 

This mechanism provides similar functionality to callbacks. In addition, it includes the 

added safety of ensuring the type-correctness of arguments. Signals are emitted when 

events such as user input occur; however, signals can also be emitted programmatically. 

Connections define which slots are called when the signal is emitted. Then, the 

appropriate slot function is called according to the connections defined between the 

objects. Figure 3.2 illustrates this relationship between connected objects in srcMX. 

During compilation, The remaining C++ source necessary to facilitate these connections 

is generated by the MOC. 

Figure 3.2 Connections of Signals and Slots between objects in srcMX  

!  

Qt’s widgets come with many predefined signals and slots. These widgets can also 

be subclassed if custom signals and slots are needed. Functions defined as slots can also 

QProcess runXPath  
signals: 

  finished

QProcess toSrcml  
signals: 

  readyReadStandardError
Parser p 

signals: 
     html 
     statusText 
slots: 
     formatOutput() 
     setXpathResults()

MainWindow w  
slots: 
      setHtml() 
      setStatusText()

connect(toSrcml, readyReadStandardError, p, formatOutput) 
connect(runXPath, finished, p, setXpathResults) 
connect(p, html, w, setHtml) 
connect(p, statusText, w, setStatusText)
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be called like regular functions. However, if a connection is formed with a class’s private 

slot function, the function can be triggered by a signal from an unrelated object regardless 

of the function’s access specifier. Figure 3.3 depicts the Parser class, which utilizes 

signals and slots in srcMX. 

Figure 3.3 The Parser class declaration utilizing the Signals and Slot mechanism  

!  

#include <QObject> 
#include <QProcess> 

class Parser : public QObject 
{ 
    Q_OBJECT 
public: 
    explicit Parser(QObject *parent = 0); 

signals: 
    void stdText(const QStringList &text); 
    void html(const QString &str1, const QString &str2); 
    void statusText(const QString &text); 

public slots: 
    void src2srcml(const QString &str); 
    void text2srcml(const QString &file, const QString &text); 
    void setFile(int unit, int loc, const QString &file = ""); 
    void stopImport(); 
    void executeXPath(int i, const QString, const QString &xPath); 
    void executeQueries(const QString &queries); 

private slots: 
    void formatOutput(); 
    void formatTextOutput(); 
    void formatXPathResults(); 
    void setXPathResults(); 

private: 
    static QString program; 
    static QProcess *toSrcml; 
    static QProcess *toSource; 
    static QProcess *runXPath; 
    int m_unit; 
    int m_loc; 
    QString m_xml; 
    QString m_html; 
    bool displayQueries; 
};
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The Parser class is where the srcMX application runs and communicates with the 

srcML command-line tool in an external program. In this class, the srcml program name 

and arguments are sent to a QProcess object. The command line tool is started in up to 

three different processes: toSrcml, toSrc, and runXPath. These three processes allow the 

srcMX application to utilize several functions of the srcML command-line tool 

simultaneously. For example, the process toSource can be used to extract a source code 

file from a srcML archive that the process toSrcml is still in the process of constructing.  

As the process toSrcml translates an input file, it prints text to standard error using 

the verbose argument. The QProcess object emits signals as this text is written. These 

signals are connected to a slot in the parser object that formats the standard error text for 

use in srcMX. This text contains information about each source code file, and is used to 

populate the file list. 

When a file is selected in the file view, its srcML is accessed from the srcML 

archive by the Parser class and displayed in the code view window. To create this 

window, I subclassed and modified Qt’s QWebView widget. However, QWebView’s 

default behavior prevents the XML tags of srcML files from displaying properly. To 

overcome this, the srcML is parsed, and its tags are wrapped in span elements. Additional 

HTML is also prepended to the file before being sent to the code view. This allows the 

application to utilize CSS to manipulate the text in the code view for features like syntax 

highlighting and marking up query results. 

Most of the CSS used in the code view is applied to a user-defined style sheet. 

This means that the CSS does not need to be reloaded every time a file is loaded, which 

speeds up browsing time between files. This also allows the visibility of srcML tags to be 
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enabled or disabled without refreshing the HTML in the web view. This is an important 

feature, as it prevents the scroll position in the file from being reset when the CSS is 

updated. 

Initially, I experienced difficulty keeping the GUI responsive during parsing. 

While small files provided little trouble, Importing large archives of source code files 

would cause the GUI to freeze. This behavior continued even after utilizing external 

worker threads to format the data provided by the srcml processes.  Soon, I realized that 

the process of updating the file list was causing the application to become unresponsive. 

The GUI was unable to refresh quickly enough as new entries were appended. in 

response, I began to investigate other methods of implementing the GUI for the file list. 

This is when I was introduced to Qt Quick. 

The Qt Quick framework is a newer Qt technology that provides an alternative to 

the Qt widget method of designing GUI applications. It introduces the QtDeclarative 

module, which provides developers with a new declarative programming approach with 

QML (Qt Meta-Object Language). QML is a JSON-like language that uses inline 

javascript expressions for imperative aspects. It not only describes how the user interface 

of a program looks, but also how it behaves when the user interacts with it. Visual 

elements known as Quick views are the counterparts to Qt widgets. In addition, Qt Quick 

provides better support for developing custom user view elements with fluid transitions 

and effects [5]. Such features are in high demand on the mobile application front. This is 

accomplished by utilizing hardware acceleration. This made Qt Quick particularly 

attractive to me, as I was beginning to experience issues with poor responsiveness 

regarding Qt widgets. 
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Many of Qt Quick’s benefits were immediately evident upon switching to the 

framework. Overall, the application became much more light weight, requiring 

approximately 18% of the code that had previously been necessary for GUI 

implementation. In addition, I discovered that QML provided much more fine-grain 

control regarding the styling and placement of GUI widgets. Most importantly, the 

srcMX application remained completely responsive during file parsing. 

Unfortunately, switching to Qt Quick also introduced several problems regarding 

the code view. The Qt Quick view equivalent of Qt’s QWebView widget did not support 

the features necessary to display srcML. I could no longer apply user-defined style sheets 

to modify the display of srcML. In addition, it appeared that the QML version was 

optimized for mobile devices, which caused it to behave improperly in desktop 

applications. In order to circumvent these issues with Qt Quick without sacrificing the 

functionality of Qt’s QWebView widget, I needed a way to integrate both technologies 

together. 

Being a more recent technology, there was not much documentation that explained 

how to integrate QML in a Qt widget application. One method that I discovered described 

how to imbed various QML elements within a Qt widget using declarative display views. 

However, doing so sacrificed the hardware acceleration capabilities of the application. It 

also introduced undesirable display artifacts. As a result, I was beginning to explore 

alternate methods for implementing the code view. Luckily, a better solution was made 

available when a new version of Qt was released. This introduced a widget specifically 

designed to integrate Qt Quick views inside Qt widget applications. This allowed me to 

utilize the best features from both previous iterations of my application.  
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Evaluation:  

One primary intent for srcMX was to enable the exploration of source code by 

performing syntactic and hierarchical searches using XPath queries. This feature can be 

evaluated by examining the following use cases that a user may encounter in the 

application. This use case is adapted from an example provided by the official srcML 

website [6].  

Suppose an application developer is using srcMX to assess the documentation of a 

codebase. The developer would begin by importing the codebase into a blank project 

within srcMX. After the application has finished parsing and translating the files, the 

developer can use the query configuration window to begin constructing an XPath query 

that shows which function declarations that have not been annotated with Doxygen. 

Using the autocomplete feature, the developer may construct the query in the following 

manner: 

Figure 4.1 Constructing XPath query for functions without Doxygen annotation 

!  

At each stage, srcMX can display the results of the XPath query in the 

application’s code view window. This iterative approach allows the developer to refine 

the query while receiving visual feedback of the results. First, all function declarations 

//src:function_decl 

//src:function_decl/src:name 

//src:function_decl[preceding-sibling::src:*[1]/@format=“doxygen"]/src:name 

//src:function_decl[not(preceding-sibling::src:*[1]/@format="doxygen")]/src:name
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are highlighted. Next, the results are narrowed to names of the function declarations. 

Then, XPath's preceding-sibling is used to select sibling nodes of the src:function_decl 

element. This further narrows results to functions who’s first preceding sibling node has 

the string “doxygen" in the format attribute. Lastly, the previous results are inverted, 

which returns all functions that are missing Doxygen. Figure 4.2 illustrates this process 

using multiple nested queries. 

Figure 4.1 Constructing XPath query for functions without Doxygen annotation 

!  

I also developed srcMX so that it would encourage users to become more familiar 

with srcML and its many features. My hope is that the user-friendly GUI lowers the 

barrier to entry for users that are unfamiliar with the features supported by the srcML 

command-line tool. Instead of offering a help file listing argument and commands, the 

visual design of the application should communicate its functionality. To achieve this, I 

ensure that every feature offered by srcMX is represented by at least one visual control.  

No feature is hidden away as a menu item. Instead, I dynamically show or hide views 
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depending on the control’s context and task the user is carrying out. For example, the file 

import dialog contains a tab view that lists each supported file type and shows its related 

controls. This also explicitly communicates to the user what files can be imported. In a 

similar manner, the control for canceling the import process is also only visible during 

parsing. The query configuration dialog also exists as a pop-up that is only visible when 

the user is interacting with it. By showing and hiding these views based on context, I am 

able to avoid overcrowding the user interface. 

Future Work: 

Like all software, there will always be a potential for future improvements. 

Whether it be feature additions, code optimizations, or maintenance, the development 

process can never be truly complete. However, indefinite development is not sustainable, 

and there will come time when feature development must end. For srcMX, future work 

consists of several features that I would still like to implement. For some of these 

features, groundwork has already been laid for their addition.  

Most notably, I wanted to see transformations implemented in srcMX. This was 

part of my original goal for the application. In fact, I have made progress towards this 

goal in past iterations. Even the current version has GUI controls dedicated for this 

purpose. However, the difficulties that I encountered with the core functionality of the 

application prevented transformations from being fully implemented. 

During previous iterations, I had also experimented with an alternate method of 

accessing files from srcML archives. Currently, files are accessed sequentially by unit 

number. This poses little trouble when working with several hundred files. However, 
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there are noticeable delays with large srcML archives like the 38,000 file Linux kernel. 

Using an experimental build of srcML, I was able to store files in a git archive. This 

allowed files to be randomly accessed by their hash value. If this feature becomes fully 

supported by srcML, I believe it would be an excellent addition to srcMX. 

Conclusion: 

I was able to successfully meet many of my goals for srcMX, and I believe that it 

has grown into a meaningful addition to the srcML technologies. My application provides 

developers with a new avenue for exploring and manipulating source code using srcML. 

In addition, srcMX brings the powerful and robust features offered by srcML to a GUI 

application for the first time. As a result, a much larger audience can benefit from these 

features. 

Reflecting back on my experiences, I realize just how much I’ve learned during 

the development process for srcMX. As my application grew with each iteration, so did 

my skills as a developer. Despite the difficulties that I encountered during development, I 

was able to overcome these setbacks using an iterative process that incorporated new 

technologies. I am proud of what I have accomplished with srcMX. However, the 

knowledge that I have gained is my true reward. I look forward to exercising this 

knowledge to continue advancing srcMX with new features in the future. 
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