
The University of Akron
IdeaExchange@UAkron

Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors
College

Summer 2016

srcMX: A GUI Application for srcML
Brian Kovacs
The University of Akron, bck25@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects

Part of the Graphics and Human Computer Interfaces Commons, Programming Languages and
Compilers Commons, and the Software Engineering Commons

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of
IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

Recommended Citation
Kovacs, Brian, "srcMX: A GUI Application for srcML" (2016). Honors Research Projects. 395.
http://ideaexchange.uakron.edu/honors_research_projects/395

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Akron

https://core.ac.uk/display/232679511?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=http://ideaexchange.uakron.edu/honors_research_projects/395
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects/395?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

srcMX: A GUI Application for srcML

Brian Kovacs

Department of Computer Science

Honors Research Project

Submitted to

The Honors College

!

 Approved: Accepted:

 __________________ Date _________
 Honors Project Sponsor (signed) Department Head (signed)

 Honors Project Sponsor (printed) Department Head (printed)

 ______________________ Date _______
 Reader (signed) Honors Faculty Advisor (signed)

 Reader (printed) Honors Faculty Advisor (printed)

 ______________________ Date _______ __________________ Date _________
 Reader (signed) Dean, Honors College

 Reader (printed)

______________________ Date _______

__________________ Date _________

!1

Introduction:

For my Honors Research Project, I developed a GUI application in C++ using the

Qt and Qt Quick frameworks. My application is called srcMX, and it utilizes the srcML

command-line tool to convert and display source code using the srcML format. My goal

is for srcMX to promote the manipulation and exploration of source code using srcML. I

also hope that the user-friendly nature inherent to GUI applications allows srcMX to

introduce a larger audience to the many features offered by srcML.

The srcML format is a representation for source code where elements of the

abstract syntax for the language are identified by XML markup tags. The srcML

command-line tool efficiently converts source code files to and from the srcML format

with a lossless approach that preserves all the original code, formatting, and comments.

Source code files can be parsed and translated at speeds of approximately twenty-five

thousand lines per second. Languages currently supported by the parser include C, C++,

C#, and Java [1].

The development of the srcML technology is led by Principal Investigators Dr.

Michael L. Collard and Dr. Jonathan I. Maletic. In addition, the project is partially

supported by a grant from the National Science Foundation (CNS 1305217) [2].

Additional information regarding srcML is available at the official website,

www.srcml.org. An example of a simple C++ program converted to the srcML format is

illustrated in figures 1.1 and 1.2.

!2

Figure 1.1 Simple C++ program, rotate.cpp [3]  

!

Figure 1.2 Corresponding srcML file, rotate.xml [3]  

!

#include "rotate.h"

// rotate three values
void rotate(int& n1, int& n2, int& n3)
{
 // copy original values
 int tn1 = n1, tn2 = n2, tn3 = n3;

 // move
 n1 = tn3;
 n2 = tn1;
 n3 = tn2;
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<unit xmlns="http://www.srcML.org/srcML/src" xmlns:cpp="http://
www.srcML.org/srcML/cpp" revision="0.9.5" language="C++"
filename="rotate.cpp">
 <cpp:include>#<cpp:directive>include</cpp:directive>
<cpp:file>"rotate.h"</cpp:file></cpp:include>

 <comment type="line">// rotate three values</comment>
 <function><type><name>void</name></type> <name>rotate</
name><parameter_list>(<parameter><decl><type><name>int</
name><modifier>&</modifier></type> <name>n1</name></decl></
parameter>, <parameter><decl><type><name>int</name><modifier>&</
modifier></type> <name>n2</name></decl></parameter>,
<parameter>><decl><type><name>int</name><modifier>&</modifier></type>
<name>n3</name></decl></parameter>)</parameter_list>
 <block>{
 <comment type="line">// copy original values</comment>
 <decl_stmt><decl><type><name>int</name></type> <name>tn1</
name> <init>= <expr><name>n1</name></expr></init></decl>, <decl><type
ref="prev"/><name>tn2</name> <init>= <expr><name>n2</name></expr></
init></decl>, <decl><type ref="prev"/><name>tn3</name> <init>=
<expr><name>n3</name></expr></init></decl>;</decl_stmt>

 <comment type="line">// move</comment>
 <expr_stmt><expr><name>n1</name> <operator>=</operator>
<name>tn3</name></expr>;</expr_stmt>
 <expr_stmt><expr><name>n2</name> <operator>=</operator>
<name>tn1</name></expr>;</expr_stmt>
 <expr_stmt><expr><name>n3</name> <operator>=</operator>
<name>tn2</name></expr>;</expr_stmt>
 }</block></function>
</unit>

!3

A code base consisting of many source code files can be parsed and translated into

a srcML archive. A srcML archive is a single XML file where the srcML for individual

source code files is delineated by opening and closing unit tags. These unit tags

encapsulate the srcML of every source code file, and they contain the file’s name and

language as shown in the example above. As a result, individual files within the srcML

archive can be accessed sequentially by the file’s unit number [1].

Once a source code file is converted to the srcML format, the XML structure of

srcML can be utilized to perform different visualizations and transformations of the

source code. A multitude of technologies such as XPath, XQuery, RelaxNG, XSchema,

XSLT, DOM, and SAX can perform such activities as fact extraction, validation, and

transformation [1]. While the srcML command-line tool is exceedingly efficient at

translating source code files to and from the srcML format, users may need to utilize

external tools and applications to explore and manipulate the results. In response, the

srcMX application is the first that enables users to convert source code into the srcML

format while also providing an interactive method for dynamically visualizing the results.

In addition, my application also provides users with the ability to construct and perform

queries on source code in the srcML format. These query results can be visualized in

srcMX using both the srcML format and native source code.

srcMX Application:

The srcMX application presents the user with an interface that consists of several

modular views. These views support a range of functionality, including such things as

!4

project management and configuration, query configuration and visualization, and

source-code visualization. In addition, the application also provides the user with

information regarding the parsing and translation of files with srcml. Figure 2.1 provides

an overview of the srcMX application after having parsed and translated the entire linux

kernel.

Figure 2.1 The Linux kernel open in the srcMX application  

!

At the top of the application, the main toolbar contains a variety of controls. Here,

the user can add files to the project, toggle the visibility of application views, and browse

through the history of viewed files. To the right, a slider controls the visibility of srcML

!5

tags in the code viewport. As shown in figure 2.2, the main toolbar also contains a large

status bar that displays information about the project.

Figure 2.2 The main toolbar displays project information  

!

During parsing, the status bar updates to display the name, lines of code, language,

and hash of the most recently parsed file. The user can also stop the import process by

clicking the corresponding button to the right of the bar. After file parsing has completed,

the status bar displays the number of files translated, the number of files skipped, the

number of errors encountered, and the total number of files parsed. As the user browses

files within the project, the status bar displays the name of the currently selected file.

Users can add new files to a project by expanding the drop-down button in the

main tool bar. This opens a window that allows the user to specify the type of file he or

she wishes to add. Like the srcML command line tool, srcMX can accept individual files,

directories containing multiple files, compressed archives of multiple files, and can even

load files from a URL. Users can also add raw text to a project within the new file

window.

!6

Figure 2.3 Adding source code files to the srcMX application  

!

To the left of the application, a collapsable side bar is divided into three sections.

Here, the user can view the list of input sources, queries, and transformations within the

current project.

The srcMX application supports up to seven simultaneous queries within a project,

each having a unique color tag and label for identification. Unlabeled queries take the

name of their color tag. Queries can also be reordered via a click and drag mechanism.

Reordering a query also assigns it a new color tag. Hovering over a query with the mouse

pointer reveals a clickable gear icon that opens a configuration window for the selected

query. Here, the user can construct the query and assign it a unique title for better

identification. This process is illustrated in figure 2.4.

!7

Figure 2.4 Query configuration window  

!

The srcMX application accepts XPath queries, and it supports an autocomplete

feature for srcML tag names. As the user types, the candidates are displayed in a

dropdown menu. Selecting a tag name with the return key inserts the name. Utilizing this

autocomplete feature guarantees that the XPath query is constructed with valid tag

names. Consequently, the autocomplete also triggers the query to be executed as each tag

name is entered. This allows the user to view a progression of the results as the query is

constructed.

The central view in the application contains the file list, which displays all of the

files that were parsed and translated from the input source. This list is populated in real

time as each source code file is translated to the srcML format by the srcML command-

line tool. Here, the user can see the unit number, name, path, language, and lines of code,

and parsing time for each file. The user can also select files from this list to display in the

code view.

!8

The code view is the most predominant window of the srcMX application. It is

also the only window that the user can float and dock using the toolbar buttons. Here, the

application dynamically displays source code files in both native and srcML formats.

Additionally, the slider in the toolbar above can be used to progressively enable or

disable the visibility of srcML tags without reparsing or reloading the current file. The

text displayed in the window can also be zoomed in and out using the Command–

Plus sign (+) and Command–Minus sign (-) keyboard shortcuts.

The code view also displays query results for the currently selected file. These

results are represented by colored background boxes that encapsulate the relevant source

code. The code view also displays nested and overlapping query results. An example of a

file containing query results is depicted in figure 2.5.

Figure 2.5 Code view with query result  

!

!9

Implementation:

The srcMX application is largely written in C++ using Qt Creator, the official IDE

(integrated development environment) for Qt applications. It utilizes the Qt and Qt Quick

frameworks. Other technologies that I utilize include HTML, CSS, and JavaScript.

While both Qt and Qt Quick provide support for developing GUI applications,

srcMX relies on Qt Quick for most of its graphical elements. The remaining application

logic uses Qt-extended C++. This allows the GUI and the logic that defines its dynamic

elements to be segregated from the main application logic. However, srcMX was not

originally implemented in this way. Rather, the structure of the application went through

several revisions before arriving at its current state. Initially, I utilized Qt for all parts of

the application.

Qt is an application development framework that facilitates the development of

cross-platform applications with native GUIs (graphical user interfaces). This framework

extends standard C++ with additional features. Before compilation, the MOC (Meta-

Object Compiler) preprocessor parses the Qt-extended C++ source files. It then generates

standard compliant C++ sources that can be compiled by any standard compliant C++

compiler [5].

GUI applications written with Qt contain graphical control elements known as

widgets. These widgets are provided by Qt’s QWidget module, which supports rendering

to the screen and accepting user input events. With this module, the application’s GUI can

be defined programmatically. This enables developers to write entire applications directly

in C++. Alternatively, developers can define the application’s GUI visually by using Qt

Designer, Qt Creator’s integrated GUI layout and forms designer. With this method,

!10

widgets can be dragged and dropped into a WYSIWYG (what you see is what you get)

editor that generates XML layout forms. During compilation, the UIC (User Interface

Compiler) converts these XML layout forms into the appropriate C++ code for the GUI.

The Qt signals and slots mechanism facilitates communication between objects.

This mechanism provides similar functionality to callbacks. In addition, it includes the

added safety of ensuring the type-correctness of arguments. Signals are emitted when

events such as user input occur; however, signals can also be emitted programmatically.

Connections define which slots are called when the signal is emitted. Then, the

appropriate slot function is called according to the connections defined between the

objects. Figure 3.2 illustrates this relationship between connected objects in srcMX.

During compilation, The remaining C++ source necessary to facilitate these connections

is generated by the MOC.

Figure 3.2 Connections of Signals and Slots between objects in srcMX  

!

Qt’s widgets come with many predefined signals and slots. These widgets can also

be subclassed if custom signals and slots are needed. Functions defined as slots can also

QProcess runXPath
signals:

 finished

QProcess toSrcml
signals:

 readyReadStandardError
Parser p

signals:
 html
 statusText
slots:
 formatOutput()
 setXpathResults()

MainWindow w
slots:
 setHtml()
 setStatusText()

connect(toSrcml, readyReadStandardError, p, formatOutput)
connect(runXPath, finished, p, setXpathResults)
connect(p, html, w, setHtml)
connect(p, statusText, w, setStatusText)

!11

be called like regular functions. However, if a connection is formed with a class’s private

slot function, the function can be triggered by a signal from an unrelated object regardless

of the function’s access specifier. Figure 3.3 depicts the Parser class, which utilizes

signals and slots in srcMX.

Figure 3.3 The Parser class declaration utilizing the Signals and Slot mechanism  

!

#include <QObject>
#include <QProcess>

class Parser : public QObject
{
 Q_OBJECT
public:
 explicit Parser(QObject *parent = 0);

signals:
 void stdText(const QStringList &text);
 void html(const QString &str1, const QString &str2);
 void statusText(const QString &text);

public slots:
 void src2srcml(const QString &str);
 void text2srcml(const QString &file, const QString &text);
 void setFile(int unit, int loc, const QString &file = "");
 void stopImport();
 void executeXPath(int i, const QString, const QString &xPath);
 void executeQueries(const QString &queries);

private slots:
 void formatOutput();
 void formatTextOutput();
 void formatXPathResults();
 void setXPathResults();

private:
 static QString program;
 static QProcess *toSrcml;
 static QProcess *toSource;
 static QProcess *runXPath;
 int m_unit;
 int m_loc;
 QString m_xml;
 QString m_html;
 bool displayQueries;
};

!12

The Parser class is where the srcMX application runs and communicates with the

srcML command-line tool in an external program. In this class, the srcml program name

and arguments are sent to a QProcess object. The command line tool is started in up to

three different processes: toSrcml, toSrc, and runXPath. These three processes allow the

srcMX application to utilize several functions of the srcML command-line tool

simultaneously. For example, the process toSource can be used to extract a source code

file from a srcML archive that the process toSrcml is still in the process of constructing.

As the process toSrcml translates an input file, it prints text to standard error using

the verbose argument. The QProcess object emits signals as this text is written. These

signals are connected to a slot in the parser object that formats the standard error text for

use in srcMX. This text contains information about each source code file, and is used to

populate the file list.

When a file is selected in the file view, its srcML is accessed from the srcML

archive by the Parser class and displayed in the code view window. To create this

window, I subclassed and modified Qt’s QWebView widget. However, QWebView’s

default behavior prevents the XML tags of srcML files from displaying properly. To

overcome this, the srcML is parsed, and its tags are wrapped in span elements. Additional

HTML is also prepended to the file before being sent to the code view. This allows the

application to utilize CSS to manipulate the text in the code view for features like syntax

highlighting and marking up query results.

Most of the CSS used in the code view is applied to a user-defined style sheet.

This means that the CSS does not need to be reloaded every time a file is loaded, which

speeds up browsing time between files. This also allows the visibility of srcML tags to be

!13

enabled or disabled without refreshing the HTML in the web view. This is an important

feature, as it prevents the scroll position in the file from being reset when the CSS is

updated.

Initially, I experienced difficulty keeping the GUI responsive during parsing.

While small files provided little trouble, Importing large archives of source code files

would cause the GUI to freeze. This behavior continued even after utilizing external

worker threads to format the data provided by the srcml processes. Soon, I realized that

the process of updating the file list was causing the application to become unresponsive.

The GUI was unable to refresh quickly enough as new entries were appended. in

response, I began to investigate other methods of implementing the GUI for the file list.

This is when I was introduced to Qt Quick.

The Qt Quick framework is a newer Qt technology that provides an alternative to

the Qt widget method of designing GUI applications. It introduces the QtDeclarative

module, which provides developers with a new declarative programming approach with

QML (Qt Meta-Object Language). QML is a JSON-like language that uses inline

javascript expressions for imperative aspects. It not only describes how the user interface

of a program looks, but also how it behaves when the user interacts with it. Visual

elements known as Quick views are the counterparts to Qt widgets. In addition, Qt Quick

provides better support for developing custom user view elements with fluid transitions

and effects [5]. Such features are in high demand on the mobile application front. This is

accomplished by utilizing hardware acceleration. This made Qt Quick particularly

attractive to me, as I was beginning to experience issues with poor responsiveness

regarding Qt widgets.

!14

Many of Qt Quick’s benefits were immediately evident upon switching to the

framework. Overall, the application became much more light weight, requiring

approximately 18% of the code that had previously been necessary for GUI

implementation. In addition, I discovered that QML provided much more fine-grain

control regarding the styling and placement of GUI widgets. Most importantly, the

srcMX application remained completely responsive during file parsing.

Unfortunately, switching to Qt Quick also introduced several problems regarding

the code view. The Qt Quick view equivalent of Qt’s QWebView widget did not support

the features necessary to display srcML. I could no longer apply user-defined style sheets

to modify the display of srcML. In addition, it appeared that the QML version was

optimized for mobile devices, which caused it to behave improperly in desktop

applications. In order to circumvent these issues with Qt Quick without sacrificing the

functionality of Qt’s QWebView widget, I needed a way to integrate both technologies

together.

Being a more recent technology, there was not much documentation that explained

how to integrate QML in a Qt widget application. One method that I discovered described

how to imbed various QML elements within a Qt widget using declarative display views.

However, doing so sacrificed the hardware acceleration capabilities of the application. It

also introduced undesirable display artifacts. As a result, I was beginning to explore

alternate methods for implementing the code view. Luckily, a better solution was made

available when a new version of Qt was released. This introduced a widget specifically

designed to integrate Qt Quick views inside Qt widget applications. This allowed me to

utilize the best features from both previous iterations of my application.

!15

Evaluation:

One primary intent for srcMX was to enable the exploration of source code by

performing syntactic and hierarchical searches using XPath queries. This feature can be

evaluated by examining the following use cases that a user may encounter in the

application. This use case is adapted from an example provided by the official srcML

website [6].

Suppose an application developer is using srcMX to assess the documentation of a

codebase. The developer would begin by importing the codebase into a blank project

within srcMX. After the application has finished parsing and translating the files, the

developer can use the query configuration window to begin constructing an XPath query

that shows which function declarations that have not been annotated with Doxygen.

Using the autocomplete feature, the developer may construct the query in the following

manner:

Figure 4.1 Constructing XPath query for functions without Doxygen annotation 

!

At each stage, srcMX can display the results of the XPath query in the

application’s code view window. This iterative approach allows the developer to refine

the query while receiving visual feedback of the results. First, all function declarations

//src:function_decl

//src:function_decl/src:name

//src:function_decl[preceding-sibling::src:*[1]/@format=“doxygen"]/src:name

//src:function_decl[not(preceding-sibling::src:*[1]/@format="doxygen")]/src:name

!16

are highlighted. Next, the results are narrowed to names of the function declarations.

Then, XPath's preceding-sibling is used to select sibling nodes of the src:function_decl

element. This further narrows results to functions who’s first preceding sibling node has

the string “doxygen" in the format attribute. Lastly, the previous results are inverted,

which returns all functions that are missing Doxygen. Figure 4.2 illustrates this process

using multiple nested queries.

Figure 4.1 Constructing XPath query for functions without Doxygen annotation 

!

I also developed srcMX so that it would encourage users to become more familiar

with srcML and its many features. My hope is that the user-friendly GUI lowers the

barrier to entry for users that are unfamiliar with the features supported by the srcML

command-line tool. Instead of offering a help file listing argument and commands, the

visual design of the application should communicate its functionality. To achieve this, I

ensure that every feature offered by srcMX is represented by at least one visual control.

No feature is hidden away as a menu item. Instead, I dynamically show or hide views

!17

depending on the control’s context and task the user is carrying out. For example, the file

import dialog contains a tab view that lists each supported file type and shows its related

controls. This also explicitly communicates to the user what files can be imported. In a

similar manner, the control for canceling the import process is also only visible during

parsing. The query configuration dialog also exists as a pop-up that is only visible when

the user is interacting with it. By showing and hiding these views based on context, I am

able to avoid overcrowding the user interface.

Future Work:

Like all software, there will always be a potential for future improvements.

Whether it be feature additions, code optimizations, or maintenance, the development

process can never be truly complete. However, indefinite development is not sustainable,

and there will come time when feature development must end. For srcMX, future work

consists of several features that I would still like to implement. For some of these

features, groundwork has already been laid for their addition.

Most notably, I wanted to see transformations implemented in srcMX. This was

part of my original goal for the application. In fact, I have made progress towards this

goal in past iterations. Even the current version has GUI controls dedicated for this

purpose. However, the difficulties that I encountered with the core functionality of the

application prevented transformations from being fully implemented.

During previous iterations, I had also experimented with an alternate method of

accessing files from srcML archives. Currently, files are accessed sequentially by unit

number. This poses little trouble when working with several hundred files. However,

!18

there are noticeable delays with large srcML archives like the 38,000 file Linux kernel.

Using an experimental build of srcML, I was able to store files in a git archive. This

allowed files to be randomly accessed by their hash value. If this feature becomes fully

supported by srcML, I believe it would be an excellent addition to srcMX.

Conclusion:

I was able to successfully meet many of my goals for srcMX, and I believe that it

has grown into a meaningful addition to the srcML technologies. My application provides

developers with a new avenue for exploring and manipulating source code using srcML.

In addition, srcMX brings the powerful and robust features offered by srcML to a GUI

application for the first time. As a result, a much larger audience can benefit from these

features.

Reflecting back on my experiences, I realize just how much I’ve learned during

the development process for srcMX. As my application grew with each iteration, so did

my skills as a developer. Despite the difficulties that I encountered during development, I

was able to overcome these setbacks using an iterative process that incorporated new

technologies. I am proud of what I have accomplished with srcMX. However, the

knowledge that I have gained is my true reward. I look forward to exercising this

knowledge to continue advancing srcMX with new features in the future.

!19

References:

[1] Collard, Michael L., Michael J. Decker, and Jonathan I. Maletic. "Lightweight

Transformation And Fact Extraction With The srcML Toolkit". 2011 IEEE 11th

International Working Conference on Source Code Analysis and Manipulation

(2011): 173-184. Accessed 8 Aug. 2016.

[2] “Collaborative Research” NSF, National Science Foundation, 10 May 2016,

www.nsf.gov/awardsearch/showAward?AWD_ID=1305217. Accessed 8 Aug.

2016.

[3] “About: What is srcML?” srcML, 25 July 2016, ww.srcml.org/index.html.

Accessed 29 July 2016.

[4] “Tutorials: Creating srcML.” srcML, 25 July 2016, www.srcml.org/tutorials/

creating-srcml.html. Accessed 29 July 2016.

[5] Qt Documentation, The Qt Company, 2016, doc.qt.io. Accessed 17 July 2016.

[6] “Tutorials: Queries.” srcML, 25 July 2016, www.srcml.org/tutorials/xpath-

query.html. Accessed 29 July 2016.

!20

	The University of Akron
	IdeaExchange@UAkron
	Summer 2016

	srcMX: A GUI Application for srcML
	Brian Kovacs
	Recommended Citation

	Honors Research Project - Brian Kovacs.pages

