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INTELLECTUAL PROPERTY, SURROGATE LICENSING,  

AND PRECISION MEDICINE 

 

Jacob S. Sherkow* & Jorge L. Contreras† 

 

INTRODUCTION 

The fruits of the biotechnology revolution are beginning to be harvested. Recent regulatory 

approvals of a variety of advanced therapies—Keytruda (pembrolizumab), 1  Kymriah 

(tisagenlecleucel),2 and patisiran3—have ushered in an age of “precision medicine” treatments that 

target patients’ specific genetic, physiological, and environmental profiles rather than generalized 

diagnoses of disease. 4  Therapies like these may soon be supplemented by gene editing 

technologies such as CRISPR, which could enable the targeted eradication of deleterious genetic 

variants to improve human health. But the intellectual property (IP) surrounding precision 

therapies and their foundational technology remain controversial.5 Precision therapies ultimately 

rely—and are roughly congruent with—basic scientific information developed in the service of 

academic research.6 Much of precision medicine’s IP, however, is held by academic research 

institutions that employ for-profit surrogate companies, companies responsible both for 

                                                 
* Associate Professor, Innovation Center for Law and Technology, New York Law School; Visiting Scholar, 

Stanford Law School; Visiting Assistant Professor of Health Policy and Management, Columbia University Mailman 

School of Public Health; Permanent Visiting Professor, Center for Advanced Studies in Biomedical Innovation Law, 

University of Copenhagen, Faculty of Law. jacob.sherkow@nyls.edu. 
† Professor, S.J. Quinney College of Law, University of Utah; Adjunct Professor, Department of Human Genetics, 

University of Utah School of Medicine. jorge.contreras@law.utah.edu.  

The authors thank the participants at the 2017 Wiet Life Science Law Scholars Conference at Loyola University 

Chicago School of Law for their valuable feedback and comments on this article. 
1 Letter from Richard Pazdur, Director, Office of Hematology and Oncology Products Center for Drug Evaluation 

and Research, to Melissa Tice, Executive Director, Global Regulatory Affairs, Merck Sharp & Dohme Corp. (Sept. 4, 

2014Sept. 4, 2014) [hereinafter Keytruda Approval Letter], 

https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2014/125514Orig1s000ltr.pdf. 
2 Letter from Wilson W. Bryan, Director, Office of Tissues and Advanced Therapies, Center for Biologics 

Evaluation and Research, to Manisha Patel, Novartis Pharmaceuticals Corp. (Aug. 30, 2017) [hereinafter Kymriah 

Approval Letter], 

https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM5

74106.pdf. 
3 Patisiran has, in fact, not yet been approved but recently completed a successful Phase III clinical trial. Approval 

is likely to be granted in the first quarter of next year. See Adam Feuerstein, Alnylam’s Rare Disease Drug Shines in 

Trial, Paving Way for a Brand-New Class of Medicines, STAT NEWS (Sept. 20, 2017), 

https://www.statnews.com/2017/09/20/alnylam-drug-success/. 
4 See Euan A. Ashley, The Precision Medicine Initiative: A New National Effort, 313 JAMA 2119, 2119 (2015) 

(defining “precision medicine”). 
5 See, e.g., Dan L. Burk, Patents as Data Aggregators in Personalized Medicine, 21 B.U. J. SCI. & TECH. L. 233, 

239–240 (2015); John M. Conley, Robert Cook-Deegan & Gabriel Lázaro-Muñoz, Myriad After Myriad: The 

Proprietary Data Dilemma, 15 N.C. J.L. & TECH. 597, 613–616 (2014); W. Nicholson Price II, Black-Box Medicine, 

28 HARV. J.L. & TECH. 419, 421 (2015).  
6 Jacob S. Sherkow, Cancer’s IP, 96 N.C. L. Rev. 297, 361 (2018) (describing the informational nature of precision 

cancer therapy).  

https://perma.cc/MHU5-PYMU
https://perma.cc/W98C-FHZQ
https://perma.cc/C6BG-JXQX
https://perma.cc/C6BG-JXQX
https://www.ncbi.nlm.nih.gov/pubmed/25928209
https://poseidon01.ssrn.com/delivery.php?ID=174093090115100064019065084091103027052072023065091036126127068087082098005127005086061123008063054013023106082108076098006003041010074040047000102026074112023007112084061005102004098126086126075068113004084077030003087009022026007116007098125021113095&EXT=pdf
https://1.next.westlaw.com/Document/I072dda89195411e498db8b09b4f043e0/View/FullText.html?transitionType=UniqueDocItem&contextData=(sc.UserEnteredCitation)&userEnteredCitation=15+N.C.+J.L.+%26+TECH.+597
https://1.next.westlaw.com/Document/I072dda89195411e498db8b09b4f043e0/View/FullText.html?transitionType=UniqueDocItem&contextData=(sc.UserEnteredCitation)&userEnteredCitation=15+N.C.+J.L.+%26+TECH.+597
https://1.next.westlaw.com/Document/I930ea3151a2511e598db8b09b4f043e0/View/FullText.html?transitionType=UniqueDocItem&contextData=(sc.Default)&userEnteredCitation=28+HARV.+J.L.+%26+TECH.+419
https://1.next.westlaw.com/Document/Ib0355858086311e89bf099c0ee06c731/View/FullText.html?transitionType=UniqueDocItem&contextData=(sc.Search)&userEnteredCitation=96+N.C.+L.+Rev.+297
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commercially developing university research and sublicensing university IP to others. 7  This 

creates an uneasy tension between the public missions of universities and the commercial motives 

of surrogates, particularly universities’ goals of producing and disclosing scientific information, 

and surrogates’ goals of exploiting that information for commercial gain.8 

This essay examines the challenges that surrogate licensing poses for the future of precision 

medicine. It begins by providing a brief summary of precision medicine and its recent 

developments. Next, it provides an overview of university patenting and the shift toward surrogate 

licensing. It then explores some of the difficulties concerning surrogate licensing in the context of 

precision medicine and, later, suggests modified licensing approaches and best practices that may 

better promote scientific discovery, the development of human therapies, and overall social 

welfare. Lastly, the essay discusses some larger doctrinal and theoretical implications arising from 

surrogate licensing in informationally intensive fields, like precision medicine. 

I. PRECISION MEDICINE 

Ironically, “precision medicine” itself is an imprecise term, a flexible phrase used to 

incorporate a host of therapies and diagnostics considered to be the “next generation” of medicine.9 

Nonetheless, the most accurate understanding of precision medicine—and the one used in this 

essay—defines precision medicine as “precisely tailored therapies to subcategories of disease, 

often defined by genomics.”10 The thrust of precision medicine is largely informational: it unites 

basic scientific information, patient-specific data, and algorithms that allow physicians to diagnose 

and treat the root causes of a patient’s condition.11 

Precision medicine treatments thus focus on an individual’s “genetic, biomarker, phenotypic, 

or psychosocial characteristics that distinguish a given patient from other patients with similar 

clinical presentations.” 12  For example, Keytruda’s new indication focuses not on a specific 

diagnosis, but on the existence of and level of expression of a particular protein, PD-L1, in patients’ 

tumors.13 Practically speaking, this means that each patient’s biopsy undergoes diagnostic testing 

to measure levels of PD-L1. 14  Where PD-L1 is present in sufficient quantities, Keytruda is 

indicated for treatment, independent of the broader type of cancer diagnosed or of the original 

location of the tumor.15 This stands in stark contrast to traditional cancer therapy that largely 

focuses on broad categories such as the organ in which cancer was found, e.g., “breast cancer” for 

                                                 
7 Jorge L. Contreras & Jacob S. Sherkow, CRISPR, Surrogate Licensing, and Scientific Discovery, 355 SCIENCE 

698, 698 (2017). 
8 See infra Part III. 
9 Adam A. Friedman, Anthony Letai, David E. Fisher & Keith T. Flaherty, Precision Medicine for Cancer with 

Next-Generation Functional Diagnostics, 15 NATURE REV. CANCER 747, 747 (2015); J. Larry Jameson & Dan L. 

Longo, Precision Medicine—Personalized, Problematic, and Promising, 372 NEW ENG. J. MED. 2229, 2229 (2015) 

(questioning the cost savings of precision medicine). 
10 Ashley, supra note 4, at 2119. 
11 See Price II, supra note 5, at 421 (examining the role of “black box” algorithms in precision medicine); Sherkow, 

supra note 6. 
12 Jameson & Longo, supra note 9, at 2229. 
13 Id. 
14 List of Cleared or Approved Companion Diagnostic Devices (In Vitro and Imaging Tools), FDA, 

https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/ucm301431.htm  (last 

updated Oct. 19, 2017) (noting the approval of PD-L1 IHC 22C3 pharmDx for PD-L1 assessment for Keytruda). 
15 Id. 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2993190
https://www.ncbi.nlm.nih.gov/pubmed/26536825
https://www.ncbi.nlm.nih.gov/pubmed/26536825
https://www.ncbi.nlm.nih.gov/pubmed/26014593
https://perma.cc/U3XE-PQL6
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tumors found in the breast.16 Treating cancer in this fashion—by assessing and targeting particular 

molecular variants in individual patients—stands as the quintessential example of precision 

medicine, medicine using “molecular scalpels” rather than simplistic clinical presentations of 

constellations of symptoms.17 In a similar vein, Alnylam’s patisiran product is claimed to silence 

the expression of a defective copy of a specific gene, TTR, that causes a form of amyloidosis.18 

And, perhaps most impressively, Novartis’s Kymriah consists of a modified form of a patient’s 

own white blood cells, uniquely tailored to that patient’s tumor genetic profile.19 

Techniques such as these come on the heels of an explosion of information on human 

molecular genetics, beginning with the Human Genome Project and continuing today through a 

multitude of decentralized next-generation DNA sequencing efforts.20 As a result, there have been 

numerous initiatives recently establish to bring precision medicine to the fore. Most notably, the 

National Institutes of Health established, in 2015, a Precision Medicine Initiative (the human 

cohort development portion of which is now known as the “All of Us” program), a long-term 

research project aimed at funding research directed to “detecting, measuring, and analyzing a wide 

range of biomedical information—including molecular, genomic, cellular, clinical, behavioral, 

physiological, and environmental parameters.”21 Relatedly, the 21st Century Cures Act (2016) has 

established a Cancer Moonshot, a precision medicine program aimed ambitiously at curing cancer 

within a decade (or, at least, establishing a broad informational knowledge base to help).22 Besides 

these federal efforts, individual states such as California have established their own precision 

medicine initiatives, as have research institutions, like Columbia University and the University of 

Utah.23 But at their core, all of these research programs are similar: public-private molecular 

biology research imbued with the hope of translating genetic knowledge into clinical, commercial 

therapies.24 

II. UNIVERSITY PATENTING AND SURROGATE LICENSING 

The enactment of the Bayh-Dole Act in 1980 and the subsequent rise of the biotechnology 

industry have made academic research institutions the gatekeepers for many foundational 

biotechnology discoveries and their accompanying patents. 25  Today, the paths of major 

“breakthroughs” in biotechnology routinely run through academic research institutions and their 

                                                 
16 D. Heim, J. Budczies, A. Stenzinger, D. Treue, P. Hufnagl, C. Denkert, M. Dietel & F. Klauschen, Cancer 

Beyond Organ and Tissue Specificity: Next-Generation-Sequencing Gene Mutation Data Reveal Complex Genetic 

Similarities Across Major Cancers, 135 INT’L J. CANCER 2362, 2362 (2014). 
17 PETER W. HUBER, THE CURE IN THE CODE 85 (2013). 
18 See Feuerstein, supra note 3. 
19  Highlights of Prescribing Information (Aug. 30, 2017) [hereinafter Kymriah label], 

https://www.fda.gov/downloads/BiologicsBloodVaccines/%20CellularGeneTherapyProducts/ApprovedProducts/UC

M573941.pdf. 
20 See Jorge L. Contreras, Constructing the Genome Commons in GOVERNING KNOWLEDGE COMMONS 99 (Brett 

M. Frischmann, Michael J. Madison & Katherine J. Strandburg eds., 2014) (discussing the Human Genome Project); 

Sherkow, supra note 6, at 17 (discussing recent efforts). 
21 Francis S. Collins & Harold Varmus, A New Initiative on Precision Medicine, 372 NEW ENG. J. MED. 793, 794 

(2015). 
22 Sherkow, supra note 6, at 2–3 (explaining the Cancer Moonshot program). 
23 California Initiative to Advance Precision Medicine, http://www.ciapm.org; Precision Medicine at Columbia 

University, https://precisionmedicine.columbia.edu; CCTS Precision Medicine, 

http://medicine.utah.edu/ccts/precision-medicine/ . 
24 Collins & Varmus, supra note 211, at 794 (noting the goal of creating “new therapies”). 
25 Daniel J. Hemel & Lisa Larrimore Ouellette, Bayh–Dole Beyond Borders, 4 J.L. BIOSCIENCES 282 (2017). 

https://www.ncbi.nlm.nih.gov/pubmed/24706491
https://www.ncbi.nlm.nih.gov/pubmed/24706491
https://www.ncbi.nlm.nih.gov/pubmed/24706491
https://perma.cc/E866-453H
https://www.amazon.com/Governing-Knowledge-Commons-Brett-Frischmann/dp/0190225823
https://www.ncbi.nlm.nih.gov/pubmed/25635347
https://perma.cc/3LGA-ABRS
http://www.ciapm.org/
https://perma.cc/7LYV-JRCY
https://perma.cc/7LYV-JRCY
https://precisionmedicine.columbia.edu/
https://perma.cc/3AB8-8YXC
http://medicine.utah.edu/ccts/precision-medicine/
https://academic.oup.com/jlb/article/4/2/282/3778309
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patent estates.26 As in other areas of academic research, research regarding precision medicine has 

led to significant patent holdings by universities and other research institutions.27  

The promises and perils of university patenting have been well-documented.28 On the positive 

side of the ledger, university patenting encourages academic scientists to study “translational” 

technologies—technologies with immediate or near-term practical impact.29 University patenting 

also provides academic institutions with an additional revenue stream that, ideally, can be 

redeployed to serve education and fund further research.30 On the negative side of the ledger, some 

argue that university patenting “force[s] US taxpayers to ‘pay twice’ for patented products: once 

when they fund the initial grant, and again when they pay supra-competitive prices for the patented 

product.”31 University patents may also threaten cross-institutional collaboration; skew internal 

funding, advancement, and promotion decisions; and ultimately stymie follow-on research if 

enforced against other academic institutions.32 Whatever the policy considerations, since Bayh-

Dole, universities and other research institutions have been obtaining patents in significant 

numbers, particularly in the biotechnology area.33 

Biotechnology’s marriage of academic and commercial interests has led universities and 

research institutions to employ a range of methods for commercializing the technologies that they 

patent. Some university research may be sponsored directly by industrial collaborators, which 

obtain preferential rights in any technology resulting from that research. 34  Other university 

research may be licensed directly by the university, commonly through a technology licensing or 

technology transfer office, to companies granted rights to exploit the technology, usually in 

                                                 
26 See Rebecca S. Eisenberg, Public Research and Private Development: Patents and Technology Transfer in 

Government-Sponsored Research, 82 VA. L. REV. 1663, 1666 (1996) (describing this phenomenon). 
27 See Rebecca S. Eisenberg, Diagnostics Need Not Apply, 21 B.U. J. SCI. & TECH. L. 256, 258–259 (2015) 

(discussing historical trends with respect to diagnostic patents); Dianne Nicol, Tania Bubela, Don Chambers,  Jan 

Charbonneau,  Christine Critchley, Joanne Dickinson, Jennifer Fleming, Alex W. Hewitt, Jane Kaye, Jonathon 

Liddicoat Rebekah McWhirter, Margaret Otlowski, Nola M. Ries, Loane Skene, Cameron Stewart, Jennifer Wagner 

& Nik Zeps, Precision Medicine: Drowning in a Regulatory Soup?, 3 J. L. BIOSCI. 281, 298 (2016) (noting patents in 

this area); Arti K. Rai, Risk Regulation and Innovation: The Case of Rights-Encumbered Biomedical Data Silos, 92 

Notre Dame L. Rev. 1641, 1646 (2016) (describing the fragmentation of such rights in this area). But see W. Nicholson 

Price II, Big Data, Patents, and the Future of Medicine, 37 CARDOZO L. REV. 1401, 1401–1405 (2016) (discussing 

the impotence of patents to incentivize precision medicine research); Rachel E. Sachs, Innovation Law and Policy: 

Preserving the Future of Personalized Medicine, 49 U.C. DAVIS L. REV. 1881, 1906–1922 (2016) (describing the 

difficulty of getting patents in this area). 
28 See generally Hemel & Ouellette, supra note 25, at 1–3 (listing praises and criticisms); Wendy H. Schacht, 

CONG. RESEARCH. SERV., RL32076, The Bayh-Dole Act: Selected Issues in Patent Policy and the Commercialization 

of Technology (2012). 
29 Vicki Loise & Ashley J. Stevens, The Bayh-Dole Act Turns 30, 2 SCI. TRANSLATIONAL MED. 52cm27 (2010) 

(describing this policy objective). But see Jerry G. Thursby & Marie C. Thursby, Has the Bayh-Dole Act Compromised 

Basic Research?, 40 RES. POL’Y 1077, 1077 (2011) (empirically refuting this claim). 
30 Rosa Grimaldi, Martin Kenney, Donald S. Siegel & Mike Wright, 30 Years After Bayh–Dole: Reassessing 

Academic Entrepreneurship, 40 RES. POL’Y 1045, 1045 (2011) (“[T]here is the potential for promoting technology 

commercialization and generating revenue for the university, which is typically re-invested in academic research”). 
31 Hemel & Ouellette, supra note 25, at 283; see also Schacht, supra note 28, at 14–15. 
32 Jacob S. Sherkow, CRISPR: Pursuit of Profit Poisons Collaboration, 532 NATURE 172, 172–173 (2016). 
33 See, e.g., Brady Huggett & Kathryn Paisner, University Biotech Patenting 2013, 32 NATURE BIOTECH. 512 

(2014). 
34 See Yong S. Lee, The Sustainability of University-Industry Research Collaboration: An Empirical Assessment, 

25 J. TECH. TRANSFER 111, 122–123 (2000) (assessing these relationships). 

https://1.next.westlaw.com/Document/I86b4c7e0597211dbbe1cf2d29fe2afe6/View/FullText.html?navigationPath=Search%2Fv3%2Fsearch%2Fresults%2Fnavigation%2Fi0ad7403500000161789f83ecef2bb4ba%3FNav=ANALYTICAL%26fragmentIdentifier=I86b4c7e0597211dbbe1cf2d29fe2afe6%26startIndex=1%26contextData=%2528sc.Search%2529%26transitionType=SearchItem&listSource=Search&listPageSource=976ad0e2ca8d4254fabc8842338ff2b7&list=ANALYTICAL&rank=1&sessionScopeId=a1a490b0ff06c604b0b631de04379df1ab7d1613af4ef4ca24ee5a509a5f55be&originationContext=Smart%20Answer&transitionType=SearchItem&contextData=%28sc.Search%29
https://1.next.westlaw.com/Document/I86b4c7e0597211dbbe1cf2d29fe2afe6/View/FullText.html?navigationPath=Search%2Fv3%2Fsearch%2Fresults%2Fnavigation%2Fi0ad7403500000161789f83ecef2bb4ba%3FNav=ANALYTICAL%26fragmentIdentifier=I86b4c7e0597211dbbe1cf2d29fe2afe6%26startIndex=1%26contextData=%2528sc.Search%2529%26transitionType=SearchItem&listSource=Search&listPageSource=976ad0e2ca8d4254fabc8842338ff2b7&list=ANALYTICAL&rank=1&sessionScopeId=a1a490b0ff06c604b0b631de04379df1ab7d1613af4ef4ca24ee5a509a5f55be&originationContext=Smart%20Answer&transitionType=SearchItem&contextData=%28sc.Search%29
https://1.next.westlaw.com/Document/I561ff674ca5e11e598dc8b09b4f043e0/View/FullText.html?originationContext=typeAhead&transitionType=Default&contextData=(sc.Default)
https://doi.org/10.1093/jlb/lsw018
https://1.next.westlaw.com/Document/Ieca9ebaf501a11e798dc8b09b4f043e0/View/FullText.html?transitionType=UniqueDocItem&contextData=(sc.Search)&userEnteredCitation=92+Notre+Dame+L.+Rev.+1641
https://1.next.westlaw.com/Document/Ic1f9727910ee11e698dc8b09b4f043e0/View/FullText.html?transitionType=UniqueDocItem&contextData=(sc.Default)&userEnteredCitation=37+CARDOZO+L.+REV.+1401
https://1.next.westlaw.com/Document/I96d6497f3d0711e698dc8b09b4f043e0/View/FullText.html?transitionType=UniqueDocItem&contextData=(sc.Default)&userEnteredCitation=49+U.C.+DAVIS+L.+REV.+1881%2c
https://1.next.westlaw.com/Document/I96d6497f3d0711e698dc8b09b4f043e0/View/FullText.html?transitionType=UniqueDocItem&contextData=(sc.Default)&userEnteredCitation=49+U.C.+DAVIS+L.+REV.+1881%2c
https://fas.org/sgp/crs/misc/RL32076.pdf
https://fas.org/sgp/crs/misc/RL32076.pdf
http://stm.sciencemag.org/content/2/52/52cm27.full
https://www.sciencedirect.com/science/article/pii/S0048733311000904
https://www.sciencedirect.com/science/article/pii/S0048733311000904
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1821239
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1821239
https://www.nature.com/news/crispr-pursuit-of-profit-poisons-collaboration-1.19717
https://www.nature.com/articles/nbt.2918
https://link.springer.com/article/10.1023%2FA%3A1007895322042


 

 5 

exchange for a royalty based on sales.35 But a third, and increasingly popular, mode of university 

technology commercialization is the creation of a new company (a “spinoff” or “spinout”) 

specifically designed for the purpose of commercializing a particular portfolio of the university’s 

technologies and IP. Both the university and the researchers responsible for the relevant 

technologies often retain an equity ownership stake in the spinout company, which then obtains a 

license of the relevant IP from the university.36 

University spinouts are not new; they have been formed to commercialize academic research 

for more than a century, and have grown substantially in popularity in the wake of the Bayh-Dole 

Act. 37  According to the Association of University Technology Managers (AUTM), U.S. and 

Canadian universities formed more than 11,000 start-up companies between 1994 and 2015, 

contributing to economic growth, job creation, and technology dissemination.38 Yet, commercial 

product development and IP licensing are not traditionally part of universities’ larger translational 

research efforts. Ideally then, spinouts enable universities to allocate the responsibility for 

technology commercialization to external professionals, freeing university researchers to perform 

basic research.39 In that vein, spinouts appear to provide an efficient vehicle for raising external 

capital to fund the translation of scientific discoveries in university laboratories into marketable 

products.40 Notable university spinouts over the years have included Google (Stanford University), 

Bose (MIT), and Myriad Genetics (University of Utah).41 

Many spinouts leave the university free to license IP to other companies, for other applications, 

as the university and its researchers see fit.42 But one variant of this spinout approach uses the 

spinout as a “surrogate” for the university’s broader licensing authority.43 In a typical transaction 

of this nature, the surrogate takes an exclusive license to the university’s technology, with the 

charge simultaneously to move the technology toward commercial development, through its own 

efforts but also through sublicensing the IP to others.44 In prior work, we termed this licensing 

approach “surrogate licensing”: the spinout company acts as a surrogate for the university, 

standing in the university’s shoes for purposes of commercializing and sublicensing university 

IP.45 A significant, recent example of surrogate licensing exists with respect to the IP covering 

CRISPR-Cas9 gene-editing technology. Separately, the University of California (UC) and the 

Broad Institute (a joint effort of Harvard, MIT, and Harvard-affiliated research hospitals) have 

                                                 
35 See generally Jennifer Carter-Johnson, Jeffrey S. Carter-Johnson & Jorge L. Contreras, University Research and 

Licensing, in BIOINFORMATICS LAW: LEGAL ISSUES FOR COMPUTATIONAL BIOLOGY IN THE POST-GENOME ERA 98–

99 (Jorge L. Contreras & A. James Cuticchia eds., 2013). 
36 See id. at 99–100; see also Pinaki Nandan Pattnaik & Satyendra C. Pandey, University Spinoffs: What, Why, and 

How?, 4 TECH. INNOVATION MGMT. REV. 44, 44 (2014). 
37 See Jorge Contreras, Kate Eavis, & Susan Newell, The Dizzying Rise of University Spinouts, TORNADO INSIDER, 

Oct. 2002, at 25 (noting the establishment of Cambridge Scientific Instrument Company by Charles Darwin’s son in 

1881 as a spinout from Cambridge University). 
38 ASS’N U. TECH. MANAGERS, AUTM U.S. LICENSING ACTIVITY SURVEY FY2015 2 (2016). 
39 See Lee, supra note 34, at 121–122 (discussing the benefits of spinouts to universities). 
40 See id. 
41  From the Garage to the Googleplex, GOOGLE, https://perma.cc/P7NJ-RZFT; Myriad Genetics, TVC, 

https://perma.cc/PW9A-ERZN. 
42 See Jon C. Sandelin, Dealing with Spinout Companies, in INTELLECTUAL PROPERTY MANAGEMENT IN HEALTH 

AND AGRICULTURAL INNOVATION: A HANDBOOK OF BEST PRACTICES 1271, 1275 (Anatole Krattiger et al. eds., 2007) 

(describing university practice in sublicensing when granting spinouts nonexclusive licenses). 
43 See, e.g., Contreras & Sherkow, supra note 7, at 698 (coining the term “surrogate licensing” and noting its 

appearance in the CRISPR context). 
44 See id. 
45 See id. 

https://shop.americanbar.org/eBus/Store/ProductDetails.aspx?productId=215449
http://www.timreview.ca/sites/default/files/article_PDF/PattnaikPandey_TIMReview_December2014.pdf
http://www.timreview.ca/sites/default/files/article_PDF/PattnaikPandey_TIMReview_December2014.pdf
https://www.autm.net/fy2015-survey/
https://www.google.com/intl/en/about/our-story/
http://www.tvc.utah.edu/successes/myriad.php
http://www.iphandbook.org/handbook/chPDFs/ch13/ipHandbook-Ch%2013%2002%20Sandelin%20Creating%20Spinouts.pdf
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exclusively licensed each of their foundational CRISPR patent estates to surrogates: UC to Caribou 

Biosciences and the Broad Institute to Editas Medicine.46 

What differentiates surrogates from ordinary spinouts is the breadth of the university’s 

delegation of its IP. In some cases, the field of research ceded by the university to its surrogate is 

practically universal. In 2007, for example, Harvard University formed Nano Terra, Inc. for the 

purpose of overseeing the commercialization and sublicensing of more than fifty foundational 

nanotechnology patents developed by pre-eminent Harvard chemist George Whitesides.47 The 

patents covered a variety of nanotechnology innovations with applications in industries ranging 

from advanced materials to avionics to chemicals to consumer products—broad enough to conjure 

the “specter . . . [of a] patent thicket . . . in the minds of innovators in this industry.”48 

In the case of CRISPR-Cas9, the field ceded to the research institutions’ surrogates 

encompasses every conceivable application—in the case of UC’s license to Caribou—or, as with 

Editas, every CRISPR-based human therapy directed to any of the 19,000-plus human genes.49 In 

either instance, the CRISPR-Cas9 surrogate licenses are so vast as to allow single, for-profit 

entities to lay claim to a broad universe of the technology’s applications in treating human 

disease.50 In addition, commercial applications for CRISPR extend beyond human therapies and 

into the realms of diagnostics, gene screening platforms, and agricultural applications.51 To the 

extent that universities abdicate their educational and public missions to for-profit surrogate 

companies, surrogate licensing casts in stark relief the distinction between universities’  core 

missions as educational institutions and research enterprises and their commercial aspirations. 

III. CONCERNS SURROUNDING SURROGATE LICENSING AND PRECISION MEDICINE 

Given that precision medicine is likely to advance through information sharing and openness, 

designating for-profit surrogate companies as gatekeepers for university IP presents several policy 

challenges. These include tensions between disclosure and secrecy, the “bottlenecking” of 

commercial research, contributing to the link between IP and rising health care costs, and the 

erosion of universities’ missions as disseminators of information. We discuss each these concerns 

in turn. 

A. Disclosure versus Secrecy 

Precision medicine and academic research are largely aligned when it comes to information 

policy: both thrive on the liberal, broad, and open disclosure of information. Universities, of 

course, implicitly—and, in some cases, explicitly—inure themselves with the duty to develop and 

                                                 
46 See id. Editas’s license is limited to the field of human therapeutics; Caribou’s license has no field restriction. 

But Caribou has, in turn, exclusively sublicensed human therapeutic applications to Intellia Therapeutics, a publicly-

traded corporation that was also formed by University of California to exploit CRISPR technologies. 
47 See Barnaby J. Feder, Harvard Is Licensing More than 50 Patents to a Nanotechnology Start-Up, N.Y. TIMES 

(Jun. 4, 2007), http://www.nytimes.com/2007/06/04/technology/04nano.html. Scientists, including former scientists 

turned lawyers, may be familiar with Whitesides from his seminal primer on how to write a good scientific paper. 

George M. Whitesides, Whitesides’ Group: Writing a Paper, 16 ADVANCED MATERIALS 1375 (2004). Note: JLC 

served as outside legal counsel to Nano Terra.  
48 Mark A. Lemley, Patenting Nanotechnology, 58 STAN. L. REV. 601, 621 (2005). 
49 Contreras & Sherkow, supra note 7, at 698. 
50 Id. 
51 See Jennifer A. Doudna & Emmanuelle Charpentier, The New Frontier of Genome Engineering with CRISPR-

Cas9, 346 SCIENCE 1258096-1, 1258096-7 (2014). 

http://www.nytimes.com/2007/06/04/technology/04nano.html
http://onlinelibrary.wiley.com/doi/10.1002/adma.200400767/epdf
https://1.next.westlaw.com/Document/I5b3519b136ec11db8382aef8d8e33c97/View/FullText.html?transitionType=UniqueDocItem&contextData=(sc.Search)&userEnteredCitation=58+STAN.+L.+REV.+601
http://science.sciencemag.org/content/sci/346/6213/1258096.full.pdf?sid=f3d11b68-0c8e-41f0-b529-802900d7a4e9
http://science.sciencemag.org/content/sci/346/6213/1258096.full.pdf?sid=f3d11b68-0c8e-41f0-b529-802900d7a4e9
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disseminate information to the public.52 Precision medicine operates in a similar vein. The raw 

materials required to bring precision medicine from the laboratory to the clinic are genetic and 

other health-related data—data often developed through academic research.53 The disclosure of 

that data—publicly, through government-funded resources such as GenBank, dbSNP, dbGaP and 

ClinSeq, or even privately, through proprietary databases such as canCORS—drives the 

discoveries that, when applied to patients, constitute the best form of precision medicine.54 By 

contrast, precision medicine crafted under the cloak of secrecy or through impenetrable “black 

box” algorithms raise a multitude of concerns: scientific irreproducibility, a lack of patient 

autonomy, and even negative public health consequences.55 

Openness and access, however, are not primary goals for surrogate companies. Surrogates—

running in competitive races to develop therapeutic products—may conclude that secrecy is more 

valuable than disclosure. For example, Myriad Genetics, the exclusive licensee of breast-cancer 

risk diagnostic patents from the University of Utah and others, offers a recent example. During the 

course of its diagnostic work, Myriad developed a database of rare variants of the breast and 

ovarian cancer risk genes, BRCA1 and BRCA2, with unknown clinical significance—“variants of 

unknown significance” or VUSs.56 Concluding that such a database was far more valuable as a 

trade secret than an open platform, Myriad limited access to it beginning in 2004, leading to public 

criticism, including a brief, statement of concern from the European Society for Human Genetics.57 

Relatedly, even where surrogates have committed to data sharing—either at the behest of their 

parent institutions or of their own accord—they have little incentive to standardize their datasets 

for sharing and cross-licensing purposes.58 Difficulties in establishing Hetionet—a cross-platform 

dataset of cancer genomics information—provide an elucidating example. There, Hetionet’s lead 

researcher, Daniel Himmelstein, faced competing difficulties: making twenty-eight datasets 

technically interoperable with one another and obtaining sublicenses from each dataset’s owner to 

use one in connection with others.59 These problems led to at least one dataset being left out of 

Hetionet’s larger platform, with three still floating in legal limbo.60  

This tension between disclosure and secrecy as profit-maximizing strategies raises what 

Jonathan M. Barnett calls the “host’s dilemma”: whether to deploy the “strategic forfeiture” of 

informational goods when faced with the uncertainty of a technology’s future scale and adoption.61 

One traditional hedge against the dilemma—and the one largely employed by surrogates, today—

has been the protection of information using a slate of IP protections: copyrights, trade secrets, and 

                                                 
52 John C. Scott, The Mission of the University: Medieval to Postmodern Transformations, 77 J. HIGHER EDUC. 1, 

30–33 (2006). 
53  NAT’N RES. COUNCIL OF THE NAT’N ACAD., TOWARDS PRECISION MEDICINE: BUILDING A KNOWLEDGE 

NETWORK FOR BIOMEDICAL RESEARCH AND A NEW TAXONOMY OF DISEASE 34–36 (2011). 
54 Samuel J. Aronson & Heidi L. Rehm, Building the Foundation for Genomics in Precision Medicine, 526 

NATURE 336, 337 (2015). 
55 See Conley et al., supra note 5, at 613–616; Price, supra note 5, at 421. 
56 Conley et al., supra note 5, at 600, 612–616. 
57 Id. at 614; Privately Owned Genetic Databases May Hinder Diagnosis and Bar the Way to the Arrival of 

Personalised Medicine, EUR. SOC’Y HUM. GENETICS (Oct. 31, 2012), https://www.eshg.org/477.0.html.   
58 Jorge L. Contreras & Jerome H. Reichman, Sharing by Design: Data and Decentralized Commons, 350 SCIENCE 

1312 (2015); see also Christi J. Guerrini, Amy L. McGuire, & Mary A. Majumder, Myriad Take Two: Can Genomic 

Databases Remain Secret?, 356 SCIENCE 586, 586 (2017),. 
59 Simon Oxenham, Legal Maze Threatens to Slow Data Science, 536 NATURE 16, 16 (2016). 
60 Id. 
61 Jonathan M. Barnett, The Host’s Dilemma: Strategic Forfeiture in Platform Markets for Informational Goods, 

124 HARV. L. REV. 1861, 1865 (2011).  

https://www.jstor.org/stable/pdf/3838730.pdf?refreqid=excelsior%3Adebfc385c8a47d42c0f03d5f6b7119c7
https://www.ncbi.nlm.nih.gov/books/NBK91503/pdf/Bookshelf_NBK91503.pdf
https://www.ncbi.nlm.nih.gov/books/NBK91503/pdf/Bookshelf_NBK91503.pdf
https://www.nature.com/articles/nature15816.pdf
https://www.eshg.org/477.0.html
https://www.eshg.org/477.0.html
https://www.eshg.org/477.0.html
http://science.sciencemag.org/content/sci/350/6266/1312.full.pdf
http://science.sciencemag.org/content/sci/356/6338/586.full.pdf
http://science.sciencemag.org/content/sci/356/6338/586.full.pdf
https://www.nature.com/polopoly_fs/1.20359!/menu/main/topColumns/topLeftColumn/pdf/536016a.pdf
https://1.next.westlaw.com/Document/Ic9a6c3cca94d11e08b05fdf15589d8e8/View/FullText.html?transitionType=UniqueDocItem&contextData=(sc.Default)&userEnteredCitation=124+HARV.+L.+REV.+1861
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data protection rules.62 This allows surrogates to selectively parcel off information, lot by lot, if 

needed, but also to freely give it away in other cases.63  

This hedge may run counter to universities’ larger commitments to the field of precision 

medicine if placed in the hands of surrogate licensees. If later developments in a surrogate’s field 

mark open-data models as the path to riches, then this tension is largely loosened; the surrogate’s 

interests may very well be aligned with its parent university’s values. But if that does not come to 

pass—if profit-maximization is achieved through secrecy and exclusivity—surrogates have 

incentives, if not legal duties, to restrict access to their information from downstream competitors. 

This is all the more complicated—and difficult to square with universities’ broader commitments 

to spreading knowledge—if the surrogate hedges by parceling off some information as public 

while restricting other information as proprietary. The initial broad assignment of IP rights to the 

surrogate raises a host’s dilemma in ways that would not exist if these rights were retained by the 

university. Using surrogate licensors to further precision medicine research is, in some senses, an 

act of irony: the establishment of for-profit licensing structures may ultimately restrict information 

in an effort to commercially develop it. 

B. Commercial Research Bottlenecks 

It is not uncommon in the precision medicine context for patent holders—both commercial 

developers and universities—to license their patents on exclusive terms, granting, for example, an 

exclusive license to a downstream company to develop a particular therapeutic product based on 

a particular genetic target.64 This is not altogether unreasonable; precision medicine is fraught with 

uncertainty and failure.65 Translating what works on LocusZoom—a popular statistical genetics 

program—into what works in the clinic requires clinical validation and testing, often at an expense 

of hundreds of millions of dollars.66 Downstream developers typically balk at conducting such 

work without some form of exclusive licensing to allow them to recoup these significant up-front 

costs.67 

The potential problem with this arrangement—both in the precision medicine context and 

others—lies in how much exclusivity is granted. Exclusive rights beyond those necessary to 

develop a particular product are a deadweight loss: society will pay a higher price for the end 

therapeutic product beyond that necessary to bring it to market.68 If a nonexclusive license would 

have sufficed, by contrast, this means that other developers did not have the opportunity to enter—

                                                 
62 See id. at 1910–1913 (discussing the dilemma in relation to IBM’s gargantuan patent estate). 
63 See id. Perhaps ironically, this is notable in the CRISPR context: both UC and the Broad Institute are depositors 

with AddGene, a non-profit repository of CRISPR constructs, made cheaply available to academic researchers, and 

licensed to them nonexclusively using a standard license, the Uniform Biologic Materials Transfer Agreement. See 

Sherkow, supra note 32, at 173. 
64 Carter-Johnson et al., supra note 35, at 102–103. 
65 See Cassandra Willyard, Auctioning the Cure, 17 NATURE MED. 528, 529 (2011) (discussing the commonness 

of exclusive licenses in precision medicine). 
66 Nicholas J. Schork, Time for One-Person Trials, 520 NATURE 609, 611 (2015) (“[C]onventional phase III 

[clinical] trials . . . can cost between $100 million and $700 million per drug.”). 
67 See Willyard, supra note 65, at 529 (interviewing patent licensors for such a perspective). 
68 Ian Ayres & Lisa Larrimore Ouellette, A Market Test for Bayh–Dole Patents, 102 CORNELL L. REV. 271, 284 

(2016),;  Jerome H. Reichman, Comment, Compulsory Licensing of Patented Pharmaceutical Inventions: Evaluating 

the Options, 37 J.L. MED. & ETHICS 247, 252 (2009) (“[A]s James Love famously observed, deadweight loss tends 

over time to become dead bodies.”). 

https://www.nature.com/articles/nm0511-528.pdf
https://www.nature.com/polopoly_fs/1.17411!/menu/main/topColumns/topLeftColumn/pdf/520609a.pdf
https://1.next.westlaw.com/Document/I1a43886fed7811e698dc8b09b4f043e0/View/FullText.html?transitionType=UniqueDocItem&contextData=(sc.Default)&userEnteredCitation=102+CORNELL+L.+REV.+271
https://1.next.westlaw.com/Document/I1da71bc0e3b511de9b8c850332338889/View/FullText.html?transitionType=UniqueDocItem&contextData=(sc.UserEnteredCitation)&userEnteredCitation=37+J.L.+MED.+%26+ETHICS+247
https://1.next.westlaw.com/Document/I1da71bc0e3b511de9b8c850332338889/View/FullText.html?transitionType=UniqueDocItem&contextData=(sc.UserEnteredCitation)&userEnteredCitation=37+J.L.+MED.+%26+ETHICS+247
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or at least attempt to enter—the product market.69 By the same token, exclusivity also deprives the 

public of the benefit of having multiple firms “race” to develop and test new products, the diversity 

of pharmaceutical compositions or dosing regimens for the same product, and the differences in 

approved indications or treatment subclasses. 70  Broad exclusive licenses can thus bottleneck 

commercial research.71 

Exclusive surrogate licenses pose particular problems in the precision medicine context. 

Precision medicine therapy often operates on few genes—if not individual gene variants—as 

evidenced by Keytruda, Kymriah, and patisiran. Keytruda works by targeting a single protein, PD-

L1, expressed on tumor surfaces.72 Patisiran consists of an RNA molecule that binds, specifically, 

to a single variant of the TTR gene.73 And Kymriah is truly specific—a cell therapy designed for 

each separate instance of treatment to recognize a single variant of CD-19, and unique to each 

individual patient.74 Surrogate licenses, however, have been drawn to human therapeutics writ 

large—to all 19,000-plus known human genes and their attendant medical conditions both known 

and unknown.75 Even with the responsibility to sublicense the technology to other competitors, 

this exclusive grant is far beyond what any surrogate requires to be “induced” to engage in the 

commercial development of a precision therapy.76 Competitive, commercial research in related 

genetic areas—therapies directed to different alleles of the same gene or targets directed to 

differing points in a protein’s cellular pathway—stand to suffer.77 

The common rejoinder to this criticism is that surrogate companies are expected (and have 

incentives) to sublicense their rights to others in areas not currently being pursued by the 

surrogate.78 This responsibility—at its best—should therefore leave the field open to the rest of 

the industry, negating the impact of the interposition of the surrogate between the university and 

                                                 
69 Ayre & Ouellette, supra note 68, at 284. This assumes, of course, that other products cannot be substitutes, an 

assumption that—frankly—may not be an accurate description of reality. In truth, this is an immensely complex 

question that turns, in part, on a product’s indication, physician off-label prescription, and second-order pricing 

controls, like rebates and insurance coverage—to name just a few of the inputs that go into the question of whether 

two therapeutic products are really “substitutable” in any economic sense. For purposes of this paper, and for 

simplicity, we rest on the classical notion that the only true substitutes for a product are generic versions of the same 

product. 
70 See Emily Marden, Open Source Drug Development: A Path to More Accessible Drugs and Diagnostics?, 11 

MINN. J.L. SCI. & TECH. 217, 251–252 (2010) (comparing this “race” model in open source development to drug 

development, and noting that its advantages include “multiple decentralized nodes, minimizing space and equipment 

costs . . . [where] progress is made via the cumulative, potentially more creative, efforts of the participants”). 
71 Contreras & Sherkow, supra note 7, at 698. 
72 Keytruda Approval Letter, supra note 1. 
73 See David Adams, Ole B. Suhr, Peter J. Dyck, William J. Litchy, Raina G. Leahy, Jihong Chen, Jared Gollob & 

Teresa Coelho, Trial Design and Rationale for APOLLO, a Phase 3, Placebo-Controlled Study of Patisiran in Patients 

with Hereditary ATTR Amyloidosis with Polyneuropathy, 17 BMC NEUROLOGY 181, 181 (2017). 
74 Kymriah Approval Letter, supra note 2. 
75 See, e.g., Contreras & Sherkow, supra note 7, at 698 (documenting this in the CRISPR context). 
76 See Michael Abramowicz & John F. Duffy, The Inducement Standard of Patentability, 120 YALE L.J. 1590, 

1597–98 (2011) (tying the inducement of a patent to deadweight loss in its absence). 
77 See Contreras & Sherkow, supra note 7, at 699 (describing these difficulties in the CRISPR CAR-T space); 

Charlie Schmidt, Negotiating the RNAi Patent Thicket, 25 NATURE BIOTECH. 273, 273 (2007) (describing Alnylam’s 

licensing position for RNAi). 
78 Contreras & Sherkow, supra note 7, at 699; see also Information About Licensing CRISPR Genome Editing 

Systems, BROAD INSTITUTE,  https://www.broadinstitute.org/partnerships/office-strategic-alliances-and-

partnering/information-about-licensing-crispr-genome-edi [hereinafter Broad Institute Licensing Statement]. 

https://1.next.westlaw.com/Document/Icc77ed20396711df9b8c850332338889/View/FullText.html?transitionType=UniqueDocItem&contextData=(sc.UserEnteredCitation)&userEnteredCitation=11+MINN.+J.L.+SCI.+%26+TECH.+217
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5594468/pdf/12883_2017_Article_948.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5594468/pdf/12883_2017_Article_948.pdf
https://1.next.westlaw.com/Document/Ie8236247804011e08b05fdf15589d8e8/View/FullText.html?transitionType=UniqueDocItem&contextData=(sc.Search)&userEnteredCitation=120+YALE+L.J.+1590
https://www.broadinstitute.org/partnerships/office-strategic-alliances-and-partnering/information-about-licensing-crispr-genome-edi
https://www.broadinstitute.org/partnerships/office-strategic-alliances-and-partnering/information-about-licensing-crispr-genome-edi
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the rest of the industry.79 But this does not hold in practice. The surrogate arrangement—by 

design—makes surrogates competitors with the same companies to which they are expected to 

offer sublicenses.80 This creates some obvious conflicts between surrogates and their potential 

sublicensees that counsel against favorable licensing: restrictions on entry, patent litigation, and 

former employee non-compete agreements are but a few examples.81  

These conflicts are particularly problematic in the context of precision medicine, where 

multiple companies often pursue different strategies to tackle the same genetic problem. Juno 

Pharmaceuticals, for example—a sublicensee of the Broad Institute’s surrogate Editas—has been 

engaged in patent litigation with Kite Pharmaceuticals concerning one particular aspect of 

chimeric antigen receptor T-cell therapy, or CAR-T, the underlying technology behind Kymriah.82 

And BioMarin Pharmaceutical and Sarepta Therapeutics—two companies exploring differing 

approaches to modifying DMD, a gene, certain variants of which give rise to forms of muscular 

dystrophy—have fought fiercely over patent claims to broaden implementations of their respective 

therapies. 83  These cases suggest that surrogates, far from treating competitors as friendly 

occupants of unrelated therapeutic niches, view their rivals as challengers to their territories. In the 

extreme, surrogates’ quashing of competition runs the risk of reducing overall welfare.84 

To their credit, some research institutions have attempted to guard against such behavior. The 

Broad Institute, for example, has reserved for itself an “escape hatch” of sorts in its license to 

Editas.85 Were a competitor of Editas to petition the Broad Institute to license aspects of the 

CRISPR patents developed by Editas, Editas could not prevent the transaction unless it 

demonstrated it was actively developing a therapy concerning the same target or had plans to do 

                                                 
79 See Broad Institute Licensing Statement, supra note 78 (“The goal of our inclusive innovation model is to enable 

Editas to devote sufficient investment to develop CRISPR-based genome editing technology to treat human diseases, 

while supporting broad development of medicines to reach many patients.”).  

To offer a broader, numerical example: Suppose that there are 100 realistic drug targets contained within the field 

and twenty companies that could feasibly develop them. If the university were to grant licenses directly to qualified 

developers and assuming a superhuman technology licensing office, it could conceivably license all 100 targets to the 

twenty industry participants. This will result in R&D programs for each of the 100 targets. Now, however, suppose 

that the university licenses all 100 targets to one surrogate company. The surrogate believes that it can successfully 

develop five targets. It is thus in the surrogate’s interest to sublicense the remaining ninety-five targets to other industry 

participants, each of which is also equipped to develop five targets. The net result is that all 100 targets are licensed, 

and overall welfare remains the same. 
80 Contreras & Sherkow, supra note 7, at 699. 
81 Id. To further our numerical example, let us suppose these conflicts would potentially reduce the overall pool of 

licensees from twenty to, say, fifteen (a reduction of 25%). As a result, the surrogate might not be able to license all 

ninety-five remaining targets for development.  Reducing the licensable targets proportionally, let us assume that only 

seventy-one targets (75% of the ninety-five remaining targets) are licensed. While the competitive advantage to the 

surrogate may be increased, overall social welfare is reduced because twenty-four targets are no longer being 

developed. 
82 See Complaint, Juno Therapeutics, Inc. v. Kite Pharma, Inc., No. 2:17-cv-6496 (C.D. Cal. Sept. 1, 2017). 

Interestingly, Juno’s license from Editas actually operates as a cross-license to Juno’s CAR-T technology, raising 

additional potential conflicts concerning the breadth of its license. 
83 See Complaint, Univ. of W. Austr. v. Academisch Ziekenhuis Leiden, No. 1:16-cv-109 (D. Del. Feb. 25, 2016) 

(listing Sarepta and Biomarin as co-plaintiffs and co-defendants, respectively). 
84 Continuing our numerical example: Assume that instead of reserving for itself the five targets that it can feasibly 

develop, the surrogate decides to reserve for itself ten targets, even though development programs for the last five 

cannot possibly be commenced for at least several years. This brings the total number of targets available to the field 

down from ninety-five to ninety, at best delaying the development of five potentially valuable therapies. 
85 See Broad Institute Licensing Statement, supra note 78. 

https://1.next.westlaw.com/Link/Document/Blob/I58fecab08f7811e78490ac5d1219b83c.pdf?targetType=dct-docket-pdf&originationContext=document&transitionType=DocumentImage&uniqueId=669d9fd7-a4b8-44ee-81a9-ec899231f446&contextData=(sc.Search)
https://1.next.westlaw.com/Link/Document/Blob/Ia54616e0dc9511e59025aed8f9c4bf1e.pdf?targetType=dct-docket-pdf&originationContext=document&transitionType=DocumentImage&uniqueId=9f658248-1781-465c-8bf9-deb7a4113787&contextData=(sc.Search)
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so.86 But “active development,” not to mention plans to develop, are boundless concepts subject 

to the vagaries of science, funding, and the manner in which investigators view their research at 

the time. Furthermore, the license is unclear as to how disputes concerning the interpretation of 

“active development” are to be resolved.87 The Broad Institute’s “clawback” model appears, on its 

face, to be a good faith attempt to check the indulgences of its surrogate licensee, but it is 

incomplete and leaves significant discretion to the surrogate itself. 

Lastly, surrogate licensing, even if well-intentioned and narrowly tailored today, may become 

overly broad tomorrow as the science of precision medicine develops. Novartis’s approval of 

Kymriah, for example, comes on the heels of failures by Juno, including the unexpected death of 

a number of subjects in clinical trials.88 As CAR-T develops, researchers are beginning to learn 

the complexities of genetically optimizing the technology, put on kaleidoscopic display by the 

Adaptive Immune Receptor Repertoire (AIRR), a robust database of such variation.89 An exclusive 

license to a single developer to use CAR-T against, say, the CD28 protein—while seemingly 

narrow several years ago—may now seem like a massive fiefdom. It may therefore be unclear how 

scientifically narrow a particular precision medicine product must be to develop future therapies, 

and broad, exclusive surrogate licenses do this little favor. Surrogates are simply ill-equipped—

and poorly incentivized—to assess the appropriate level of exclusivity for tomorrow’s downstream 

applications.90 

C.  Institutional Mission Erosion 

If the development of precision medicine is the ideal union between universities’ educational 

and research missions, surrogate licensing seems to erode them both. Most research universities 

and institutions operate under charters that embody a variety of missions directed to the public 

good: the education of students, the expansion of knowledge through research, the alleviation of 

human suffering, the fostering of economic growth, or other means for improving overall social 

welfare. 91  These public-spirited goals affect many aspects of institutional governance and 

                                                 
86 See id. 
87 Contreras & Sherkow, supra note 7, at 700. 
88  Alex Lash, After Trial Deaths, Juno Pivots and Scraps Lead CAR-T Therapy, EXOME, (Mar. 1, 2017) 

https://www.xconomy.com/seattle/2017/03/01/after-trial-deaths-juno-pivots-and-scraps-lead-car-t-therapy/. 
89 Felix Breden, Eline T. Luning Prak, Bjoern Peters, Florian Rubelt, Chaim A. Schramm, Christian E. Busse, 

Jason A. Vander Heiden, Scott Christley, Syed Ahmad Chan Bukhari, Adrian Thorogood, Frederick A. Matsen IV, 

Yariv Wine, Uri Laserson, David Klatzmann, Daniel C. Douek, Marie-Paule Lefranc, Andrew M. Collins, Tania 

Bubela, Steven H. Kleinstein, Corey T. Watson, Lindsay G. Cowell, Jamie K. Scott & Thomas B. Kepler, 

Reproducibility and Reuse of Adaptive Immune Receptor Repertoire Data, 8 FRONTIERS IMMUNOLOGY art. 1418, at 1 

(2017). 
90 Contreras & Sherkow, supra note 7, at 700. Beyond the CRISPR setting, another telling example concerns the 

licensing of DNA diagnostic patents. The University of Michigan, which isolated and patented the CFSR gene 

responsible for cystic fibrosis, broadly licensed its CFSR patent at minimal cost. The University of Utah, which 

obtained patent rights covering the BRCA1/2 genes indicating breast and ovarian cancer, exclusively licensed its 

patents covering these genes to Myriad Genetics, which monopolized the market for BRCA diagnostic testing for 

fifteen years (until the patents were invalidated by the Supreme Court). See Ass’n for Molecular Pathology v. Myriad 

Genetics, Inc., 133 S. Ct. 2107 (2013); DEP’T OF HEALTH & HUMAN SERVS., THE INTEGRATION OF GENETIC 

TECHNOLOGIES INTO HEALTH CARE AND PUBLIC HEALTH A PROGRESS REPORT AND FUTURE DIRECTIONS OF THE 

SECRETARY’S ADVISORY COMMITTEE ON GENETICS, HEALTH, AND SOCIETY (Jan. 2009), 

https://osp.od.nih.gov/wp-content/uploads/2013/11/SACGHS%20Progress%20and%20Priorities%20Report%20to%

20HHS%20Secretary%20Jan%202009.pdf. 
91 See Scott, supra note 52, at 30–33. 
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operation, including the development and exploitation of IP. 92  As observed by the National 

Academies of Science, 

 
Universities have a lengthy track record of providing dynamic environments for generating 

new ideas and spurring innovation, and for moving advances in knowledge and technology 

into the commercial stream where they can be put to work for the public good . . . .93 

 

Along these lines, in 2007 a group of prominent research universities, including Harvard, MIT and 

UC Berkeley, developed a set of guidelines to reconcile university IP licensing practices with their 

public missions.94 The resulting document, In the Public Interest: Nine Points to Consider in 

Licensing University Technology, addresses a broad range of university IP management and 

licensing issues, such as the preservation of academic research rights, meeting the medical needs 

of neglected populations, and promoting fair licensing principles to encourage their technologies’ 

broadest dissemination.95 The Nine Points document has now been signed by more than 100 

universities and research institutions around the world.96 

But Nine Points is an ideal, not a command, and universities have concurrently aspired to and 

violated its principles.97 What’s more, the Nine Points in no way bind university surrogates in letter 

or spirit. 98  It is expected, in some instances, for university licensees to develop university 

technology with an eye toward profit, indifferent to any social consequences. 99  Commercial 

licensees have, indeed, used university technology to develop tobacco products, surveillance 

dragnets, and instruments of war.100 Universities may wish to use the Nine Points principles to 

impose their values on licensees. But that—as with many university IP practices—depends on the 

desires of the licensees themselves. 

In that vein, surrogate companies in the precision medicine space are not constrained by these 

public missions. Surrogates’ decisions concerning which research to prioritize, how to protect their 

innovations, and to whom they should award sublicenses may not be not aligned with universities’ 

broader commitments to the public. Sublicenses to develop a precision therapy targeting a gene 

variant prevalent in affluent countries may not, in fact, best serve universities’ commitments to 

treat neglected populations of disease sufferers. But they may be profitable.101 Similarly, expensive 

                                                 
92 See In the Public Interest: Nine Points to Consider in Licensing University Technology, ASSOCIATION OF 

UNIVERSITY TECHNOLOGY MANAGERS (AUTM) (Mar. 6, 2007) 

http://www.autm.net/AUTMMain/media/Advocacy/Documents/ 

Points_to_Consider.pdf [hereinafter Nine Points]. 
93 NATIONAL RESEARCH COUNCIL, MANAGING UNIVERSITY INTELLECTUAL PROPERTY IN THE PUBLIC INTEREST 14 

(Stephen A. Merrill & Anne-Marie Mazza eds., 2011). 
94 Nine Points, supra note 92. 
95 Id. 
96 Signatories, AUTM, https://www.autm.net/advocacy-topics/government-issues/principles-and-guidelines/nine- 

points-to-consider-when-licensing-university/ [https://perma.cc/RF5F-A7BE]. 
97 See Mark A. Lemley, Are Universities Patent Trolls?, 18 FORD. INTELL. PROP. MEDIA & ENT. L.J. 611, 611 

(2007) (noting that universities may be bad actors in the patent system despite their ideals). 
98 That is, the Nine Points apply only to universities—not their licensees. 
99 See Lemley, supra note 97, at 611.  
100 See, e.g., U.S. Patent No. 9,560,830 (claiming hybrid tobacco plants and assigned to North Carolina State 

University); U.S. Patent No. 7,095,027 (claiming an infrared remote sensing system for military applications, and 

assigned to the University of Central Florida Research Foundation, Inc.); U.S. Patent No. 7,609,743 (claiming a robust 

laser for military purposes, and assigned to the University of Central Florida Research Foundation, Inc.). 
101  See Jacob S. Sherkow, CRISPR, Patents, and the Public Health, 90 YALE J. BIOL. & MED. 607 (2017) 

(discussing this problem in the CRISPR context). 
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http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=3&f=G&l=50&co1=AND&d=PTXT&s1=7,609,743&OS=7,609,743&RS=7,609,743
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3093610
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patent litigation and prosecution practice may run counter to universities’ desires to engage in 

precision medicine’s ideal of data-sharing. But paying for lawyers does preserve marketable 

value.102 Universities’ initial decisions to grant broad, exclusive licenses to surrogates is a first 

step—a significant one—in universities’ abdication of their responsibilities under the Nine Points 

for precision therapies. 

More granularly, the relationship between universities’ missions and surrogates’ development 

of precision therapies for low-income populations is particularly fraught. The Nine Points require 

that “[u]niversities should strive to construct licensing arrangements in ways that ensure that . . . 

underprivileged populations have low- or no-cost access to adequate quantities of . . . medical 

innovations.”103 This commitment—which arose after some public ire against universities that 

failed to constrain their profit-seeking licensees—now characterizes many university licensing 

deals in the pharmaceutical sector. 104 But these development and cost decisions for precision 

therapies lay at the feet of the surrogates, not their parent universities. Surrogates are entrusted to 

make decisions concerning whether development targets will focus on underprivileged populations 

or typically privileged ones. And surrogates ultimately decide whether and to what extent they will 

mediate cost arrangements of developed therapies for the poor.105 Surrogates may well act in the 

public interest in these regards. But they are obligated, as matter of first principles, to generate 

profits for their shareholders rather than hew to the public missions supported by documents like 

the Nine Points.106 

Granting surrogate licenses for the development of precision therapies may also erode 

universities’ broader educational missions. Universities often couch these aspirations in terms of 

the free and open dissemination of knowledge to the world.107 Columbia University’s Mission 

Statement, for example, states that it “expects all areas of the university to advance knowledge and 

learning at the highest level and to convey the products of its efforts to the world.”108 But surrogate 

licenses in the precision medicine context traditionally restrict this free and open exchange of 

information, especially for broader platform technologies. 109  In some cases surrogates vie to 

protect their valuable data as trade secrets. 110  And in others, surrogates impose significant 

restrictions on what data outside researchers can access and how the data can be used in further 

                                                 
102  See Sharon Begley, CRISPR Patent Fight: The Legal Bills Are Soaring, STAT NEWS (Aug. 16, 2016), 

https://www.statnews.com/2016/08/16/crispr-patent-fight-legal-bills-soaring/ [https://perma.cc/SGY3-RVG7] 

(quoting a representative from Editas as saying “Investing in intellectual property is one component how we are 

building the company to be a leader in genomic medicine.”). 
103 Nine Points, supra note 92, at 8 (Point 9). 
104 In 2001, Yale University came under intense pressure by its students, alumni and the public after licensing its 

patents covering the antiretroviral AIDS drug stavudine to Bristol-Myers Squibb, which refused to make the drug 

available to thousands of patients in Africa. See Donald G. McNeil, Jr., Yale Pressed to Help Cut Drug Costs in Africa, 

N.Y. TIMES (Mar. 12, 2001). 
105 See Sherkow, supra note 101. 
106 Risa L. Lieberwitz, The Marketing of Higher Education: The Price of the University’s Soul, 89 CORNELL L. 

REV. 763, 790 (2004) (“By adopting for-profit corporate structures, universities choose a corporate structure explicitly 

intended for the private financial interests of shareholders, whether the shareholders are venture capitalists or the 

university itself. Further, for-profit corporate partners and shareholders in university spinoff corporations become 

participants in the core university function of education.”). 
107 Scott, supra note 52, at 30–33. 
108  University Mission Statement, COLUMBIA UNIVERSITY, https://www.columbia.edu/content/about-columbia 

[https://perma.cc/QHA3-JY6N]. 
109  Breden, et al., supra note 89, at 1 (cautioning against this problem); cf. Lemley, supra note 48, at 621 

(discussing this problem for platform nanotechnology). 
110 Guerrini, McGuire, & Majumder, supra note 58, at 586. 
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studies.111 As with Hetionet, these restrictions can detrimentally affect scientific education. 112 

Surrogates also have no obligation to engage in the most basic process of public education: 

publication in peer-reviewed scientific journals.113 Outside researchers are therefore deprived of 

the best opportunities to learn, test, and critique surrogates’ research. 114  Broad licenses to 

surrogates ultimately cast a pall over the bright lights of universities’ scientific and educational 

missions. 

D. Health Care Costs 

Universities may also be victims of their surrogates’ successes: by furthering the marketability 

of profitable precision therapies, surrogates’ development work may well contribute to increased 

health care costs. These increases are linked to a series of more complex issues governing drug 

pricing, therapeutic value, and insurance coverage.115 But surrogates—as opposed to restrictive 

university licensing—can exacerbate the rush to develop high-cost precision therapies.116 

It is important to understand, first, that while precision medicine seeks to improve clinical 

outcomes, such improvements do not necessarily bring cost savings.117 Patients that once had 

meager options to manage their illnesses may now have the opportunity to pay—in some instances, 

dearly—for treatment.118 In other cases, illnesses that were previously treated with inexpensive 

palliative care may now have expensive therapies that can manage or even cure their underlying 

etiologies.119 A telling example concerns fetal fibronectin: Prior to the development of a test for 

fetal fibronectin—a protein of some value in assessing the chances of preterm birth—expectant 

mothers were subject to a cheap, albeit inaccurate, vaginal exam, including a transvaginal cervical 

                                                 
111 Sherkow, supra note 6, at 356–57 (discussing canCORS). 
112 Oxenham, supra note 59, at 16. 
113 By way of example, a recent search on PubMed, the NIH’s scientific paper database, showed that Intellia 

Therapeutics—the exclusive sublicensee of Caribou Biosciences, UC Berkeley’s surrogate for CRISPR applications 

in humans—has only two scientific papers to its credit, neither about CRISPR. See Thomas J. Povsic, Timothey D. 

Henry, Jay H. Traverse, F. David Fortuin, Gary L. Schaer, Dean J. Kereiakes, Richard A Schatz, Andreas M. Zeiher, 

Christopher J. White, Duncan J. Stewart, E. Marc Jolicoeur, Theodore Bass, David A. Henderson, Patricia Dignacco, 

Ziangoiong Gu, Hussein R. Al-Khalidi, Candice Junge, Adel Nada & Douglas W. Losordo, The RENEW Trial: 

Efficacy and Safety of Intramyocardial Autologous CD34+ Cell Administration in Patients With Refractory Angina, 9 

JACC: CARDIOVASCULAR INTERVENTIONS 1576 (2016); see also Zhiji Ren, Isana Veksler-Lublinsky, David 

Morrissey, Victor Adams, Staufen Negatively Modulates MicroRNA Activity in Caenorhabditis elegans, 6 G3 1227 

(2016). 
114 See Spencer Phillips Hey & Aaron S. Kesselheim, Countering Imprecision in Precision Medicine, 353 SCIENCE 

448, 448  (2016) (arguing that precision medicine is only advanced through disclosure and validation). 
115 See Rachel Sachs, Nicholas Bagley & Darius N. Lakdawalla, Value-Based Pricing For Pharmaceuticals In The 

Trump Administration, HEALTH AFFAIRS BLOG, (Apr. 27, 2017) 

https://www.healthaffairs.org/do/10.1377/hblog20170427.059813/full/ [https://perma.cc/4H4Q-J39J]  (discussing 

some of the many drug pricing levers). 
116 Sherkow, supra note 101101, at 4. 
117 See Joanna C.D. Willis & Graham M. Lord, Immune Biomarkers: The Promises and Pitfalls of Personalized 

Medicine, 15 NATURE REV. IMMUNOLOGY 323, 327 (2015) (“[N]ot all potential immune biomarkers will satisfy health 

economists in terms of attractive cost- benefit ratios.”). 
118 Id. (“[N]ovel therapeutic agents for which biomarkers are being developed are extremely expensive; a single 

course of ipilimumab for the treatment of melanoma costs approximately US $120,000.”). The current sticker price 

for Kymriah is $475,000. Sy Mukherjee, Is $475,000 Too High a Price for Novartis’s “Historic” Cancer Gene 

Therapy?, FORTUNE (Aug 31, 2017) http://fortune.com/2017/08/31/novartis-kymriah-car-t-cms-price/ 

[http://perma.cc/T9J8-XGTL] . 
119 See Jameson & Longo, supra note 9, at 2229 (discussing precision medicine’s cost increases). 
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measurement.120 This standard intervention cost pennies per patient; the fetal fibronectin test, by 

contrast, cost one hospital system $225 per patient.121 To be clear, the value of precision medicine 

is a human one—improving health and saving lives—but its cost may be also be high. 

Developing precision medicine through surrogate companies—rather than direct university 

licensing—may exacerbate these cost increases. Surrogates, like other for-profit therapeutic 

developers, are strongly encouraged to develop revenue-maximizing therapeutic products—

therapies that afflict large numbers of patients who can afford treatment.122 Because surrogate 

licenses from universities do not, typically, include pricing controls, surrogates may chase 

therapies on which they can pin high price tags. 123  Two of the CRISPR surrogates—Editas 

Medicine and Intellia Therapeutics—provide illuminating examples. Editas’s primary research 

platform concerns Leber Congenital Amaurosis, a congenital form of blindness that affects 

between 3,000 and 6,000 Americans.124 At a cost of $100,000 per course of treatment, the therapy 

has a potential market of $3 billion. Other precision medicine ocular treatments—such as Spark 

Therapeutics’ soon-to-be-approved $1 million treatment for inherited retinal disease—could result 

in markets in the tens of billions.125 Intellia, meanwhile, has focused on curing sickle-cell anemia, 

an illness that afflicts roughly 100,000 Americans,126 and for which the few treatment options—

such as hydroxyurea—cost around $1.50 per 500 mg dose,127 which could yield large profits 

through its broad reach. 

Beyond this intersection, between clinical utility and commercial profitability, surrogates’ 

sublicensing agreements are also expected to be profit maximizing. In the precision medicine 

context, this may result in layers of sublicenses—each predicated, perhaps, on different genes or 

disease indications—and all of which are designed to return the maximum possible revenues upon 

product approval.128 Payers, therefore, would be paying drug prices set to maximize royalties on 

at least two fronts: the sublicense to the surrogate, and the surrogate’s license to the university.129 

As explored in a loosely analogous context, a series of profit-maximizing sublicenses can create 

systems of “royalty stacking,” ultimately creating end products far more expensive than their cost 

                                                 
120 See, e.g., A. Sullivan, N.A. Hueppchen & A.J. Satin, Cost Effectiveness of Bedside Fetal Fibronectin Testing 

Varies According to Treatment Algorithm, 10 J. MATERNAL FETAL MED. 380, 380 (2001). 
121 Id. 
122 See Contreras & Sherkow, supra note 7, at 700. 
123 Id. 
124 See Eye Diseases, EDITAS MEDICINE, http://www.editasmedicine.com/areas-of-research/eye-diseases 

[https://perma.cc/33SY-ZB9Y]; see also Rando Allikmets, Leber Congenital Amaurosis: A Genetic Paradigm, 25 

OPTHALMIC GENETICS 67, 67 (2004). 
125  See Emma Court, Spark Therapeutics’ Promising Gene Therapy for Vision Loss Could Cost $1 Million, 

MARKETWATCH, (Oct. 16, 2017 8:35 AM ET), https://www.marketwatch.com/story/spark-therapeutics-promising-

gene-therapy-for-vision-loss-could-cost-1-million-2017-10-13 [https://perma.cc/XKK8-DUF7].  
126  Emily Mullin, Sickle-Cell Patients See Hope in CRISPR, MIT TECH. REV., Aug. 23, 2017, 

https://www.technologyreview.com/s/608641/sickle-cell-patients-see-hope-in-crispr/ [https://perma.cc/Q6QY-

Z62S].  
127 Richard D. Moore, Samuel Charache, Michael L. Terrin, Franca B Barton & Samir K Ballas,  Cost-Effectiveness 

of Hydroxyurea in Sickle Cell Anemia, 64 AM. J. HEMATOLOGY 26, 28 (2000). 
128 Cf. Mark A. Lemley & Carl Shapiro, Patent Holdup and Royalty Stacking, 85 TEX. L. REV. 1991, 1992–1993 

(2007) (noting this phenomenon—royalty stacking—in the wireless communications and other technology markets). 
129 This assumes, of course, that the ultimate retail or sticker price paid by payers is a function of these inputs—

not simply a single profit maximizing price independent of input. We recognize this is a hotly contested issue in the 
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of development or production would suggest.130 Surrogates’ profit motivation in sublicensing, 

therefore, also has the potential to contribute to rising health care costs.131 

IV. RECOMMENDATIONS FOR PATENT LICENSING IN PRECISION MEDICINE 

The issues raised by surrogate licensing for precision medicine should give research 

institutions cause to rethink such licenses. Given the potential value of precision therapies and 

universities’ broad patent estates in the field, we make several recommendations to better align 

university patenting licensing with the realities of commercially developing precision therapies: 

restrictions on exclusive licenses or “claw back” clauses; fair pricing requirements on end products 

developed from university patent grants; and commitments to data sharing. 

A. Exclusivity Restrictions and Claw Back Provisions 

When licensing precision medicine IP to for-profit companies, universities and other non-profit 

research institutions should ensure that they retain rights to make such technology available, in a 

manner necessary to fulfill their public missions. We believe this can be accomplished in two non-

mutually exclusive ways. The first concerns the restriction of exclusive licenses in the first 

instance. While surrogate licensing presents some potential efficiencies for university management 

of IP, as discussed above, these exclusive licenses can be overly broad—beyond any 

commensurate level of efficiency or inducement to develop a specific precision therapy.132 Solving 

this problem lies in constructively abandoning the surrogate model—granting companies only the 

exclusivity they need to develop a particular therapy. As a further inducement, such limitations 

could be coupled with rights of first refusal on other licenses for specific therapies, assuming the 

licensee can demonstrate that it is actually furthering development. In other instances, where it 

does appear that a licensee could effectively develop a technology with a nonexclusive license, 

universities should readily use such licenses, as Stanford and UCSF famously did for recombinant 

DNA technology patents in the 1980s.133 In the precision medicine field, nonexclusivity has the 

benefit of allowing other nonexclusive licenses elsewhere to ameliorate scientific or regulatory 

deficiencies in a single company’s approach to a specific genetic target or disease indication.134 

Parceling off licenses—exclusive or otherwise—at the university, rather than the surrogate level, 

better enables universities to fulfill their own public missions. 

But even with a surrogate licensing model, universities should structure their licenses to enable 

them to “claw back” disease indications or genes that are being insufficiently developed by the 

surrogate. In the CRISPR context, this is akin to the Broad Institute’s rights of “relicensing” with 
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(discussing the relationship between exclusive patent licenses and drug pricing). 
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133  Sally Smith Hughes, Making Dollars out of DNA: The First Major Patent in Biotechnology and the 
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134 Cf. Marden, supra note 70, at 271–272; Ayres & Ouellette, supra note 68 (proposing a “market test” to 

determine whether federally-funded discoveries should be licensed exclusively or non-exclusively);  Ana Santos 
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Editas, its surrogate.135 At the same time, such claw back provisions—for what we think are 

obvious reasons—should not rest entirely on the surrogate’s discretion, nor be based solely on the 

surrogate’s own descriptions of the state of its work, or the promises of its success. Retaining an 

automatic right to reenter areas of the licensed field that the surrogate is not currently working 

could ensure that universities take seriously the stewardship of their IP, in a manner that is 

consistent with their public missions. 

B. Fair Pricing Requirements 

Particularly with respect to precision medicine, universities and other non-profit research 

institutions should ensure that their IP licensees are bound to price resulting products and 

treatments in a manner that reasonably affords access to patients. The current pricing system of 

precision therapies is profit-maximizing; untethered to real costs of the development of any given 

therapy.136 For non-essential goods, like video games and sports drinks, this has little effect on 

universities’ greater missions to the public.137 But for essential goods, like life-saving medical 

treatments, this brings universities’ greater ethical commitments to bear. Importantly, such ethical 

restrictions have been important features of university licensing in other areas. 138 The Broad 

Institute’s license of its CRISPR patents to Monsanto, for example, prohibits Monsanto from 

enforcing the use of its covered technology against individual farmers.139 Other university licenses, 

in line with the Nine Points (Point 9), require that pharmaceuticals be made available for 

compassionate use, or in developing countries. 140  In a similar vein, universities could—and 

should—require licensees of their precision medicine IP to ultimately sell their products at “fair” 

prices, however defined. 

Beyond individual cost concerns, there exist serious healthcare reimbursement and coverage 

concerns that restrictive price licensing could ameliorate. Glybera—a now-discontinued gene 

therapy that retailed for $1 million per patient while on the market—exemplifies these 

difficulties.141 This principle is especially important given that many precision therapies, such as 

Kymriah, now sell for upwards of $400,000 a year.142 These, frankly, are unsustainable prices for 

                                                 
135 Broad Institute Licensing Statement, supra note 78. At the same time, the terms of the clawback are imprecisely 

defined and likely easily worked around. Contreras & Sherkow, supra note 7, at 699. 
136 See supra note 129 and accompanying text.  
137 Interestingly, it is in fields such as these that market forces discipline the prices of university-licensed goods 

through competition. In areas such as pharmaceuticals, where patents grant real exclusivity over substantial fields of 

activity, the market cannot impose such pricing discipline. See also supra note 69 and accompanying text (concerning 

this article’s interpretation of economic substitutes). 
138 See Christi J. Guerrini, Margaret A Curnutte, Jacob S Sherkow & Christopher T Scott, The Rise of the Ethical 

License, 35 NATURE BIOTECH. 22, 23 (2017) (discussing these restrictions regarding the Broad Institute’s agricultural 

licenses with Monsanto). 
139 Id. Note, however, that this restriction mirrors an earlier pledge made by Monsanto itself with respect to its 

assertion of patents covering genetically-modified seeds against farmers who inadvertently infringed those patents. 

See Monsanto, Monsanto’s Commitment: Farmers and Patents, (2017), 

https://monsanto.com/app/uploads/2017/05/monsantocommitmentfarmsersandpatents.pdf [https://perma.cc/QC29-

N3AK]; see also Jorge L. Contreras, Patent Pledges, 47 ARIZ. ST. L.J. 543, 545–46 (2015) (discussing Monsanto’s 

pledge). 
140 See Nine Points, supra note 92. 
141 See Antonio Regalado, The World’s Most Expensive Medicine Is a Bust, MIT TECH. REV. (May 4, 2016) 

https://www.technologyreview.com/s/601165/the-worlds-most-expensive-medicine-is-a-bust/ 

[https://perma.cc/K65X-G7W7]. 
142 See Mukherjee, supra note 117. 

http://www.nyls.edu/faculty/wp-content/uploads/sites/148/2017/01/Guerrini_et_al_Rise_of_Ethical_License.pdf
http://www.nyls.edu/faculty/wp-content/uploads/sites/148/2017/01/Guerrini_et_al_Rise_of_Ethical_License.pdf
https://monsanto.com/app/uploads/2017/05/monsantocommitmentfarmsersandpatents.pdf
https://1.next.westlaw.com/Document/I30bc8929caf811e598dc8b09b4f043e0/View/FullText.html?navigationPath=Search%2Fv3%2Fsearch%2Fresults%2Fnavigation%2Fi0ad6ad3f000001617fd788b10b5053a5%3FNav%3DANALYTICAL%26fragmentIdentifier%3DI30bc8929caf811e598dc8b09b4f043e0%26startIndex%3D1%26contextData%3D%2528sc.Search%2529%26transitionType%3DSearchItem&listSource=Search&listPageSource=5ea4ba038e9347c149b71f9506a875c3&list=ANALYTICAL&rank=3&sessionScopeId=a450ddaa6ff87d76be82db30b1259a10b2c25442dac5baf4b9756afa7867bf32&originationContext=Search%20Result&transitionType=SearchItem&contextData=%28sc.Search%29
https://www.technologyreview.com/s/601165/the-worlds-most-expensive-medicine-is-a-bust/
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long-term public-payer funding, even if they are currently what the market will bear.143 In their 

missions to the broader public, universities should ensure that products developed from their IP 

can be afforded by the public health system, writ large.144 Given that much precision medicine 

technology is developed through academic institutions, those institutions’ duty to better the public 

weal would be well-served by such restrictions.  

C. Data-Sharing Commitments 

When licensing precision medicine IP, universities and other non-profit research institutions 

should require that their licensees share any underlying research data with the scientific 

community. This first and foremost requires licensees to be involved in the scientific enterprise of 

publishing their results and broadly releasing underlying data for use by other researchers—

without significant restrictions.145 Some university licensees have indeed engaged in this practice, 

becoming significant contributors to the scientific literature. 146  At the same time, while we 

recognize that universities have both ethical and legal imperatives to maintain data integrity in 

ways that protect patient privacy, these concerns should not be a subtext for restricting the use of 

licensees’ data in subsequent research. Deidentifying data is, indeed, difficult but several excellent 

models of the practice, including the Vanderbilt Genome-Electronic Record project, exist and are 

ripe for adoption by licensees.147 Likewise, licensees should not—in an effort solely to preserve 

market value—restrict access to data more than their parent universities would. Given that many 

universities’ principal goals center on the dissemination of basic information, such data sharing 

practices best align universities’ virtues with their licensees’ behavior. 

CONCLUSION 

Precision medicine—the translation of patient-specific information into patient-specific 

therapy—presents numerous challenges to both clinical practice and intellectual property 

management. Universities, as the gatekeepers to much of the foundational IP in this area, have a 

special responsibility to ensure that precision therapies are developed broadly, and on reasonable 

terms, for the public. By abdicating that responsibility to surrogate companies, universities threaten 

                                                 
143See Nicholas Bagley, Medicaid Programs Can’t Withhold a Hep C Cure., INCIDENTAL ECONOMIST, (June 1, 

2016, 9:41 AM) https://theincidentaleconomist.com/wordpress/medicaid-programs-cant-withhold-a-hep-c-cure/ 

[https://perma.cc/P8ZQ-TJ6J] (describing this problem for Solvadi); see also Sean M. Flynn, Aidan Hollis & Mike 

Palmedo, An Economic Justification for Open Access to Essential Medicine Patents in Developing Countries, 37 J.L. 

MED. & ETHICS 184, 184 (2009) (elucidating, and criticizing, economic model for drug pricing that yields highest 

profits when drugs are priced at such a level that they are affordable only to a small fraction of the population). 
144 Commitments to fair and reasonable drug pricing are already being made by pharmaceutical companies in the 

wake of recent public outcry and political saber-rattling. See, e.g., Brett Saunders, Our Social Contract with Patients, 

ALLERGAN CEO BLOG (Sep. 6, 2016) https://www.allergan.com/news/ceo-blog/september-2016/our-social-contract-

with-patients [https://perma.cc/HN5A-QRX9] (“We commit to making . . . branded therapeutic treatments accessible 

and affordable to patients.”).  
145 Victoria Stodden, The Legal Framework for Reproducible Scientific Research: Licensing and Copyright, 11 

COMPUTING SCI. ENG’R 35, 36 (2009). 
146 Genentech, for example—one of Stanford and UCSF’s licensees—is proud of its scientific publishing, listing 

more than 10,000 scientific articles published by its researchers. Publications, GENENTECH, 

https://www.gene.com/scientists/publications [https://perma.cc/U5F2-A46D]. 

147 Grigorios Loukides, Aris Gkoulalas-Divanis & Bradley Malin, Anonymization of Electronic Medical Records 

for Validating Genome-Wide Association Studies, 107 PROC. NAT’L ACAD. SCI. USA 7898, 7898 (2010). 

https://theincidentaleconomist.com/wordpress/medicaid-programs-cant-withhold-a-hep-c-cure/
https://1.next.westlaw.com/Document/I1da71bb8e3b511de9b8c850332338889/View/FullText.html?navigationPath=Search%2Fv3%2Fsearch%2Fresults%2Fnavigation%2Fi0ad6ad3f00000161827ed16f0b51626f%3FNav%3DANALYTICAL%26fragmentIdentifier%3DI1da71bb8e3b511de9b8c850332338889%26startIndex%3D1%26contextData%3D%2528sc.Search%2529%26transitionType%3DSearchItem&listSource=Search&listPageSource=afcb3d4c15b1ae8cbd1851fcf27882cc&list=ANALYTICAL&rank=1&sessionScopeId=f4407555a64edd2e34e517aa52987701819620a0253b93a691366301541a00b4&originationContext=Smart%20Answer&transitionType=SearchItem&contextData=%28sc.Search%29
https://www.allergan.com/news/ceo-blog/september-2016/our-social-contract-with-patients
http://www.cacr.caltech.edu/projects/danse/doc/stodden.pdf
https://www.gene.com/scientists/publications
http://www.pnas.org/content/pnas/107/17/7898.full.pdf
http://www.pnas.org/content/pnas/107/17/7898.full.pdf
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to limit the very public missions they strive to achieve. Developing precision medicine upon the 

foundation of university IP will likely require restrictions on the breadth and exclusivity of 

surrogate licenses and a commitment to making the knowledge generated by the licensees available 

to all. 
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