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CHAPTER I

INTRODUCTION

In this thesis we study a model that combines two classical models from mathematical

biology, the SIR model of disease and the competing species model. We start by

presenting background on these two models.

1.1 Background on SIR Models

A general class of mathematical models that describe the spread of a disease in a

population is the collection of SI models, or susceptible-infectious models. There

are various special cases of this model, depending on how the disease affects each

individual. The basic idea of this class of models is to divide the population between

susceptible and infectious subpopulations, and the model shows how the individuals

move between each subpopulation. For the case of permanent resistance, or immunity,

in an individual who has recovered from the disease, an SIR model is used. Instead

of having only susceptible and infected subpopulations, an SIR model adds a third

subpopulation for individuals who recover from being infected [1]. Models of this

type assume that those who recover from the disease do not leave the subpopulation

of recovered individuals. If death is incorporated into the model, then those in the

recovered class could drop out [2].
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One standard form of the SIR model has the form

∂S

∂t
= b− βSI, (1.1)

∂I

∂t
= βSI − νI, (1.2)

∂R

∂t
= νI, (1.3)

where S, I, and R represent the susceptible, infectious, and resistant subpopulations,

b is the birth rate, β represents the transmission coefficient, and ν is the recovery rate

coefficient [3, 2]. This system allows for reproduction of healthy individuals, so the

total population is not fixed. If we assume that the number of deaths approximately

equals the number of births, then the Hong Kong Flu is an appropriate example of

a disease that is modeled by the SIR model [4]. In the first equation, the birth rate

is added to show that the susceptible subpopulation is growing but the βSI term is

subtracted because as transmission happens, those who are infected with the disease

move to the infectious subpopulation. This is how the pool of infectious individuals

grows. As infectious individuals recover, they move to the recovered subpopulation

at the rate ν and are subtracted from the infectious subpopulation and added to

the pool of recovered individuals. The process is ongoing, as individuals continue

to become diseased, and recover. At any given point in time, the total number of

individuals in a population is N = S + I +R.

The SIR model is a sub-case of the SIRS model [1]. In the SIRS model,

an individual has resistance to the pathogen for a period of time after having the

disease, but eventually returns to the susceptible subpopulation [1]. Hence these
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models assume that an individual can move from susceptible to infectious to recovered

and then back to the susceptible subpopulation [5]. An example of a disease that can

be modeled by the SIRS model is salmonella diarrhea [6]. One standard form of the

SIRS model is

∂S

∂t
= γR− βSI, (1.4)

∂I

∂t
= βSI − νI, (1.5)

∂R

∂t
= νI − γR, (1.6)

where S, I, and R represent the susceptible, infectious, and removed, or resistant,

subpopulations, β represents the transmission coefficient, ν is the recovery rate co-

efficient, and γ is the loss of immunity rate [3]. As individuals in the susceptible

subpopulation become infectious, they move from the pool of susceptibles to the pool

of infectious in the second equation, as shown in the term βSI that is subtracted from

the first equation and added to the second. As infectious individuals recover, they

move from the infectious subpopulation to the recovered subpopulation in the term

νI that is subtracted from second equation and added to the third. After individuals

are resistant for a time, they move back to the pool of susceptible individuals, which

is described by the term γR. Resistance is not permanent in this model.

Like the SIR model, an SIRS model may incorporate death, in which case the

total population decreases. If an individual goes back into the pool of susceptibles

immediately after recovering from the disease, the model is called an SIS model

[1]. Here, there is no equation that models the recovered, and instead the recovered
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individuals go directly to the group of susceptible ones from the group of infectious

[7]. In any of these cases, the model could assume that individuals die from disease

or natural causes.

There are different methods to model pathogen transmission. Two commonly

mentioned methods are mass-action (density-dependent) and standard (frequency-

dependent) incidence (See Table 1.1) [8]. While both methods deal with transmission

occurring from interaction with other members of the entire population, there is a

clear line dividing the two. Saenz et al. gives a summary of the debate [1]. It is

explained that a standard or frequency-dependent incidence is used when the model

incorporates the number of new infections per unit time, or the frequency of new

infections, in the susceptible population. In the general SIR and SIRS models sum-

marized by equations (1.1)—(1.6), the βSI terms indicate that mass-action incidence

is used.

Table 1.1: Two Forms of Disease Incidence

Form Incidence

βSI Mass Action

βSI
S+I

Standard

When density-dependent incidence is used, the transmission is a function of

the density of infected hosts. Typically, density-dependent incidence is incorporated

when the transmission is a result of random contact between species [9]. If the
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transmission is not random, then it falls under the order of frequency-dependence.

This dependence is typically used when transmission is systematic and there is a fixed

number of contacts, which is why it is frequently used to model the spread of Sexually

Transmitted Diseases [9].

1.2 Background on Competing Species Models

Another general class of models in mathematical biology describes when two or more

species compete for the same resources. These models are sometimes called Lotka-

Volterra models. Competition leads to many effects on a population. The long-

term dynamical changes in the size of the population directly stem from the inter-

species and intra-species interactions, i.e., between individuals in difference species

and between individuals in the same species [10]. We consider a version of the Lotka-

Volterra model that features logistic growth for each population in the absence of

competition. Each species grows until it hits the carrying capacity, or the maximum

number of individuals that the environment can carry [11]. Logistic growth can be

modeled as

∂N

∂t
= rN

[
1− N

K

]
, (1.7)

where N is the size of the population at time t, r is the intrinsic growth rate, which is

the difference between the birth and death rates, and K is the carrying capacity. Ex-

panding this to more than one population and incorporating the effect of competition
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between species gives the Lotka-Volterra model

∂N1

∂t
= r1N1

[
1− N1

K1

− α12N2

K1

]
, (1.8)

∂N2

∂t
= r2N2

[
1− N2

K2

− α21N1

K2

]
, (1.9)

where Ni is the size of the population of species i at time t, ri is the intrinsic growth

rate, Ki is the carrying capacity, and αij is the competition coefficient, which de-

scribes the effect on species i of competition with species j [12]. Density-dependent

incidence is used to express transmission in this simple Lotka-Volterra model. In

both equations, the growth of each species is hindered by the intra-species and inter-

species competition. Intra-specific competition, or the crippling done by species i on

itself, is rendered by the 1/Ki factors. Not only does the species affect its own kind,

but the other species competes so that the growth of species i is hindered by species

j, as seen in the third terms in both equations. This widely used model shows the

dynamics between species that compete for the same resource(s) in a region [1].

The long-term result of competition as modeled above has been proven to

be the extinction of one species by the domination of the other, the extinction of

both species, or a coexistence between the two species. In [3], the authors discuss

the biological significance in and difference between each outcome. These outcomes

are represented by different fixed points in the phase plane for (1.8) and (1.9). Using

K1 and K2 as carrying capacity for the first and second species, respectively, two

outcomes, or the fixed points at which the species are in steady state, include (K1, 0)

and (0, K2). In the first, species 2 is driven to be absent in the long-run, while
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the second shows the second species taking over and driving species 1 to be absent.

These two fixed points are always present but their stability depends on the values

of the parameters. In the case where neither species is able to keep their population

alive, the long-run outcome is the point (0, 0), but this fixed point is unstable for

all parameter values. The last outcome is coexistence between the two species. This

fixed point is described as

(α21K1 −K2

α21α12 − 1
,
α12K2 −K1

α21α12 − 1

)
. (1.10)

We only consider this fixed point when it is in the first quadrant, so the numerators

and common denominator in (1.10) must have the same sign. This occurs under the

conditions that (1) α21 >
K2

K1
and α12 >

K1

K2
OR (2) α21 <

K2

K1
and α12 <

K1

K2
. From

(1), it follows that α21α12 > 1, thus, both x- and y-coordinates are positive and the

fixed point is in the first quadrant. Likewise, from (2), it follows that α21α12 < 1, so

the coordinates are both positive and the fixed point is in the first quadrant. There

are no other conditions under which the interior fixed point, (1.10) is in the first

quadrant. We do not consider this fixed point in any other quadrant, because in any

other quadrant it would represent a negative population.

Different relations among parameters in the model lead to sub-cases of each

outcome. These relations are expressed in Table 1.2, which is reproduced from [3].

The stability of each fixed point may change from case to case. In case 1, there is

only one point that is stable. That point is (0, K2). Case 2 yields stability at (K1, 0).

Both (K1, 0) and (0, K2) are stable under the conditions in case 3, and in case 4, the
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fourth fixed point, which is interior and given by (1.10), is stable. As noted above,

the fixed point at (0, 0) is never stable, and in fact is always called an unstable node

[3]. The three fixed points that yield stability are shown in Figure 1.1.

Figure 1.1: Fixed Points for Stability

Biologically, the stability of these fixed points shows that in Cases 1 and

2, any combination of initial population sizes will drive the outcome to the stable

node, allowing only one species to thrive. In case 3, the initial population sizes will

determine which species dies out and which one ends up at a density close to its

carrying capacity. In this case, (1.10) is saddle point that has a stable manifold

that divides the first quadrant into two. This distinguishes which initial conditions

push the species to (K1, 0) or (0, K2). If the pair of initial conditions lies above
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this manifold, the outcome will be (0, K2). If the initial conditions fall below this

manifold, the outcome will be (K1, 0). Case 4 gives a coexistence between the two

species no matter what their initial densities are. This coexistence shows that the

size of each population is less than its carrying capacities.

Table 1.2: Cases to determine Stability for Fixed Points

Case Inequality 1 and Inequality 2 Stability of Fixed Point

Case 1 K2

α21
> K1 and K2 >

K1

α12 (0, K2) only stable fixed point

Case 2 K1 >
K2

α21
and K1

α12
> K2 (K1, 0) only stable fixed point

Case 3 K1 >
K2

α21
and K2 >

K1

α12 Both (K1, 0) and (0, K2) stable

Case 4 K2

α21
> K1 and K1

α12
> K2 (1.10) only stable fixed point

1.3 Modeling Spread of Disease Between Competing Species

Recently, a new line of research has been pursued, in which a Lotka-Volterra type

model is combined with an SIR type model to show the effect on populations of the

interaction between the spread of disease and competition [13, 14, 15, 16, 17, 18,

19]. Other recent research endeavors explore models in which an SIR type model

is combined with a predator-prey model [20, 21, 22]. Here, we will discuss only the

combination of competition and disease. An important recent paper in this area is

[10], in which Bowers and Turner reveal how a native species can have an edge when
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they are strong competitors or when their population is healthy. The edge that they

have on another species may diminish when they do not compete very well against

the other species or when their population is infected with a disease. In [10], there are

two species analyzed in a habitat: the native species and the invasive species. The

invasive species has a disease, and upon entering the natives’ habitat, they introduce

both the disease and competition.

Before an invasion, each species will be at an equilibrium at its carrying

capacity. By the time they need to compete with another population, they will have

already established how competitively strong they are against others in their species.

Bowers and Turner introduce the idea of “intra-specific” and “inter-specific forces

of competition.” These forces are interpreted as certain combinations of parameters

describing the carrying capacities and competition. For the natives, the force of

competition within their own species will continue after the invasive species enters

their habitat. The other type of competition force occurs when the two species are

competing for resources against each other, instead of against members of the same

species. Aside from competition, the other main “force” introduced into the situation

is that of infection, or how the infection spreads and affects individuals of both species.

Once an invasion begins, the population sizes may change, depending on the forces

of competition between each species and the forces of infection [10].

Bowers and Turner state their results in terms of the balance among these

forces. In the case of competition only, if the effect of the natives’ force of competi-

tion on the invaders is weaker than the invaders’ already-established competition on
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themselves, the invasion will succeed and the natives will be diminished by the im-

pact of the invaders. This is because the invaders were previously able to withstand a

certain amount of competition, and the competition from the natives was not greater

than the force they felt before. Similarly, if the effect of the invaders’ competition on

the natives is weaker than the effect of the natives’ competition with themselves, the

invasion will fail, and the natives will still dominate their habitat [10]. In the previous

section, the main outcomes included the two metioned here: one where the invasion

succeeded and the fixed point that was approached as time went on was (0, K2), and

one where the invasion failed and the fixed point that was approached as time went

on was (K1, 0).

Special cases of the model in [10] can describe when there is no competition

between the species, but the species can infect each other. Strict infection here follows

a similar pattern to the competition criterion mentioned above. Before an invasion,

each species is stable and able to handle a certain amount of infection present in its

own population. Once the invasion begins, if the intra-species force of infection that

the invaders tolerated before is greater than the force that the natives exert on the

invaders, the invaders will be able to invade the natives [10]. This scenario could be

reversed, and if the invaders pose a greater force of infection on the natives than the

force they already equilibrated with within their population, then the natives may be

in danger of being invaded.

Though the natives are unable to repel the invaders by strictly outcompeting

the invaders or by transmitting the disease more quickly than the invaders do, the
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two forces may be able to combine to help the natives overcome the invasion [10].

Table 1.3 relates the invadability criteria found in [10] and relates each outcome to

its respective fixed point mentioned in the previous section.

Table 1.3: Cases to determine Stability for Fixed Points

Case Species 1 Species 2 Outcome
Stability of Fixed

Point

Case 1 Not invadable Invadable
Species 1 survives and Species 2

is eliminated
Stable at (K1, 0)

Case 2 Invadable Not invadable
Species 1 is eliminated and

Species 2 survives
Stable at (0, K2)

Case 3 Not invadable Not invadable

Species 1 survives and Species 2

is eliminated OR Species 1 is

eliminated

and Species 2 survives

Stable at either

(K1, 0) or (0, K2)

Case 4 Invadable Invadable Species 1 and Species 2 coexist
Stable at the fixed

point (1.13)

In Table (1.3), conditions under which species are invadable, or not invadable,

follow from either competition effects in the absence of infection, or infection effects

in the absence of competition. Bowers and Turner further describe outcomes when

forces of competition and infection are combined. If both species realize an outcome

of infection, there are more outcomes for each case. Though both species are infected

and competing with one another, only one survives, despite having the disease. These

outcomes follow from Cases 1–3 in Table (1.3), though now, each species that survives
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will carry the disease. Case 4 differs in that there are two types of coexistence

outcomes: one in an infectious state and one in a healthy state. Since each species

here ends in an infected state, a normal conclusion would be that Case 4 would yield

an infected coexistence. However, if the equilibrium is feasible and stable under strict

competition, and if the linear approximation guarantees stability against pathogen

invasion, Case 4 could yield an uninfected coexistence [10]. If both species do not

realize an outcome of infection, these cases may change, depending on whether they

both end up in a healthy state or if only one species ends up infected.

Garcia-Ramos et al. also present a model in which both the Lotka-Volterra

and SIRS models are combined [23]. Though the forces of infection and competition

are combined to seek outcomes as is done in [10], they include one more feature in the

dynamics between species: disease resistance. The model describes the relationship

between a native species and an invading species that carries a disease. As the

disease is introduced to the native population, the natives start to evolve resistance

to the disease as a response to the threat posed on their existence. Garcia-Ramos

et al. present the dynamics over a one-dimensional spatial domain, so the governing

equations are PDEs instead of simply ODEs.

The level of resistance plays a part in the natives’ birth rate and in the trans-

mission rate of the disease to the natives from their own kind or from the invaders.

The transmission rate encompasses disease transmission, establishment, and develop-

ment. As resistance goes up, the transmission rate goes down. The rate goes down,

but many still could be affected as fewer and fewer individuals become infected over
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time. However, there is a cost associated with a heightened resistance. This cost

is the damaging effect on fecundity, or the ability to produce healthy offspring, of

the native species. As the natives develop a higher resistance, their ability to have

healthy offspring goes down [23].

A significant effect in the model presented in [23] is that becoming infected

and evolving resistance does not happen instantaneously. Being able to evolve resis-

tance to the pathogen helps the natives not only stay alive as a whole, but it also

allows them to recover so they can compete against the invaders. Two concepts that

are introduced include the “disease front” and the “competition front.” Because the

invaders enter the territory of the natives at one edge of the domain, they do not

immediately come into contact with all of the native individuals. Though the in-

vaders may not directly come into contact and transmit the disease to each native

individual, they could infect a native, and that native could move to another place

in its domain and thus infect another native. This could repeat until there are many

natives infected who were not in direct contact with infected invaders. This phe-

nomenon is called the “disease front.” The “competition front” refers to the arrival

of invading species to points in the domain where there are natives who compete for

the same resource. So, if the disease front arrives much faster than the competition

front, there is a better chance that the natives are able to deal with the disease and

evolve a resistance before they have to compete for their lives [23].

Results of [23] explain the positive outcomes that evolution of resistance has

on the native population and show under which conditions the natives are able to halt

14



the invasion. In a step-by-step analysis, Garcia-Ramos et al. began by modeling the

interaction between the native and invading species with respect to many different

disease-induced mortality rates. The criteria used for the interaction between the

two species was taken from [10]. Their model shows that when the native species is

able to evolve a resistance to the pathogen, there is a better chance that they survive

and do not die out completely. With resistance, there is also a bigger window that

would allow for coexistence of the two species. This means that, even if the mortality

rate of the natives is higher due to disease, their development of resistance will assist

them in becoming stronger more quickly and keep their population in existence.

This coexistence is typically seen when the repulsion force from the invaders onto

the natives is stronger than the force exerted from the natives onto the invaders.

Developing resistance could also lead to an invasion collapse. The conditions for a

collapse include an intermediate disease-mortality rate in the native species and a

repulsive force from the natives onto the invaders that is greater than the force from

the invaders onto the natives. [23].

The simulations shown in [23] illustrate two situations, including a species

replacement, where the competitive effect of the invading species is so great that it

overtakes the natives, and invasion collapse, where the natives are able to evolve a

resistance quickly enough to fight off the invading species and survive in their habitat.

Though resistance helps a population stay alive as a whole, developing resistance does

not ensure that a population will not be overtaken by another, specifically when a

competing population is powerful enough to have a detrimental effect on the other
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[23].

The evolution of resistance described in [23] is based on a model presented

in [24]. In [24], the evolution of a phenotypic trait is described by

∂z

∂t
=
σ2

2

∂2z

∂x2
+ σ2∂ lnn

∂x

∂z

∂x
+ h2β, (1.11)

where z is the trait mean, σ2 is the dispersal variance, h2 is the heritability, x is the

spatial dimension, t is time, n is the density of surviving individuals, and β is the

selection intensity at point x [24]. The terms on the right-hand side of equation (1.11)

describe several different effects. The first term describes regular diffusion, or how

dispersal of individuals changes the trait mean of the local population to be more

like the mean of the surrounding population. The second term describes how the

trait mean is affected if there is a more dense population nearby [24]. We will discuss

the effects of the mean trait of the dense population in our explanation of Equation

(1.12). The last term on the right-hand side of (1.11) describes selection within the

local population [24].

As noted above, equation (1.11) is the basis for the equation describing the

evolution of resistance in [23]. This equation is

∂R

∂t
= h2Vp

{ ∂

∂R

[ 1

S0

∂S0

∂t

]}
+

2D0

H0

∂H0

∂x

∂R

∂x
+D0

∂2R

∂x2
, (1.12)

where R denotes the mean of the trait resistance, h2 is heritability of resistance, Vp

is variance of resistance, S0 respresents the density of the native susceptible sub-

population, H0 represents the density of the entire native population, and D0 is the

diffusion coefficient. The last two terms on the right-hand side of equation (1.12) cor-
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respond to the first two terms on the right-hand side of equation (1.11). Hence, these

terms account for gene flow in the spatial domain and how dispersal of individuals

affects the mean resistance at other places.

The second term on the right-hand side of (1.12) corresponds to the second

term on the right-hand side of Equation (1.11). It describes how the mean value of

resistance at a point x changes based on the mean level of resistance and the size of

the population at nearby points. For example, if there is a higher density group with a

higher resistance level nearby, the smaller group’s mean trait may be pulled up if they

mate with individuals from the bigger group. Likewise, if the more populous group

has a lower resistance level, the resistance level of the smaller group may be pulled

down as they mate. Consider a population that is centered around a specific point

in the domain, where the total number of individuals in the population is increasing

across the domain. This scenario is depicted in Figure 1.2.

The mean trait is increasing over the domain. There is an influx of individuals

to the center of the domain, which means that both individuals with a higher mean

trait and individuals with a lower mean trait are trickling in from the right and left,

respectively. Though the individuals with a lower mean trait are causing the mean

trait at the center to decrease, there are fewer individuals entering from the left than

at the right. This means that the ones coming from the right are affecting the mean

trait at the center of the domain more so than the ones coming from the left, as they

are greater in population [24].

The third term accounts for diffusion. Diffusion shows the scattering of indi-
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Figure 1.2: Mean trait and population size about center of spatial domain

viduals of both species and how resistance is spread throughout the spatial domain

[23]. In this model, it was assumed that all dispersing individuals from one spot in the

spatial domain shared the same resistance, since they were at the average resistance

of individuals in that area before scattering [23].

To explain the first term on the right-hand side of (1.12), note that S0 is the

density of susceptible individuals and hence (1/S0)(∂S0/∂t) is the per-capita growth

rate of native susceptibles. This quantity measures the fitness of the healthy natives.

This fitness is a function of R, denoted F (R). Hence, ignoring migration, (1.12) looks

like

∂R

∂t
∝ ∂F (R)

∂R
. (1.13)

Equation (1.13) explains how effectively the pathogen makes individuals sick [2]. A
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similar proportion is used in [2] to express the fitness of a pathogen strain as its vir-

ulence changes. Virulence measures deadliness of a disease, and the level of virulence

goes up when the mortality rate in the infected species is high or if the time between

infection and disease-induced death is short [25]. In [2], they describe the fitness of

the pathogen. This fitness is determined by the change in size of the infectious pop-

ulation. If the fitness increases as virulence increases, then natural selection should

cause the level of virulence to increase. This means that the growth rate of the in-

fectious population is increasing. Likewise, if fitness decreases as virulence decreases,

the level of virulence will be driven to decrease. Equation (1.13) says that if ∂F (R)
∂R

is positive, which means that fitness as a function of R is increasing, then natural

selection will cause resistance to increase. In a similar manner, if ∂F (R)
∂R

is negative,

which means that fitness decreases as R increases, then natural selection will drive

resistance down with time.

1.4 Summary of Main Results

Evolution of resistance in a native species that undergoes forces of infection and

competition was introduced and discussed by Garcia-Ramos, et al [23]. Our model

differs in that the disease is introduced into the relationship by the native species and

the invading species evolves a resistance to the pathogen to stay alive. The conditions

under which species replacement, invasion failure, and coexistence are discussed.

In this thesis, we adapt the model of Garcia-Ramos et al. In their model, the

invaders entered into the habitat of the natives, bringing a pathogen with them. The
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natives developed resistance to that pathogen. Here, we present a model in which

the natives initially have the disease and the invaders must develop resistance once

they enter the habitat. This model takes the form of five coupled reaction-diffusion

equations. We use our model to perform numerical simulations using MATLAB’s

pdepe solver.

We not only use simulations to explore and illustrate basic outcomes that

are predicted by the model, but also to analyze whether the timing of the invasion

matters. Normally, the invaders enter a habitat in which the natives are equilibrated

with the disease. To answer the question of invasion timing, we simulate results using

initial conditions that place the natives in a transient state, battling the disease.

This thesis is organized as follows. In Chapter II, we present our model.

In Chapter III, initial conditions for native and invasive species are derived and

the outcomes of the model are presented in seven simulations. We conclude with

explaining our results and presenting an adaption of our model for future work.
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CHAPTER II

INVASION MODEL

2.1 Governing Equations

In this chapter we present our model. As noted in the previous chapter, our model

is a variation of the model presented in [23]. Our model takes the form of a system

of five partial differential equations (PDEs). Four of these describe the change over

time of the densities of the sub-populations: native susceptibles (S0), native infectious

(I0), invasive susceptibles (S1), invasive infectious (I1). The fifth PDE describes the

evolution of resistance (R) of the invaders. Each dependent variable is a function of

time (t ≥ 0) over the spatial domain x ∈ [0, L]. Mass-action, or density-dependent,

incidence is used. Variables H0 = S0 + I0 and H1 = S1 + I1 are used to express

the combined sub-populations of susceptible and infectious for each the native and

invasive species.

In this thesis, we study questions similar to those studied in [23]. We analyze

the effect that evolution of resistance has on an invasive species when it competes

for resources. As in [23], the SIS model is combined with Lotka-Volterra competition

to show both the effect of disease and effect of competition. The invading species

develops resistance to the disease that is indigenous to the natives. Instead of the
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invaders bringing the disease with them to help with the invasion, they battle with

the disease upon entering the habitat of the natives. The birth and transmission rates

of the invading species are dependent on the resistance. Because the development of

resistance is tracked and acts on transmission and birth, an SIR model is not used,

i.e., the model does not track a sub-population of recovered or resistant individuals.

The PDEs for the population densities and resistance are

∂S0

∂t
=

[
a0 − (

a0 − b0
K0

)(H0 + c01H1)

]
(S0 + f0I0)− b0S0 (2.1)

−β00S0I0 − β01S0I1 + γ0I0 +D0
∂2S0

∂x2

∂I0
∂t

= β00S0I0 + β01S0I1 − b0I0 − α0I0 − γ0I0 +D0
∂2I0
∂x2

(2.2)

∂S1

∂t
=

[
a1(R)− (

a1(R)− b1
K1

)(H1 + c10H0)

]
(S1 + f1I1)− b1S1 (2.3)

−β11(R)S1I1 − β10(R)S1I0 + γ1I1 +D1
∂2S1

∂x2

∂I1
∂t

= β11(R)S1I1 + β10(R)S1I0 − b1I1 − α1I1 − γ1I1 +D1
∂2I1
∂x2

, (2.4)

∂R

∂t
=

h2Vp
S1

{
− kaa1(R)

(
1− H1 + c10H0

K0

)
× {S1 + f1I1} (2.5)

+kb [β10(R)I1 + β11(R)I0]S1

}
+

2D1

H1

∂H1

∂x

∂R

∂x
+D1

∂2R

∂x2
.

The five equations above are based on the model presented in [23]. The

first term on the right-hand side of the first equation is a product of two expressions,[
a0 − (a0−b0

K0
)(H0 + c01H1)

]
and (S0+f0I0). The quantity describes the logistic growth

of and competition in the native susceptible population. These terms include the birth

rate a0, death rate b0, and the effect of competition on the net growth, c01. They also

include the carrying capacity, or point of highest saturation, of native individuals in

the habitat K0, and the total densities of both the native and invasive subpopulations,
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H0 and H1. The first quantity describes the net growth as new individuals in the

subpopulation are born (a0) and as they die (b0). The difference between these two

rates is divided by the carrying capacity K0. That factor is multiplied by the factor

that sums to the total population density with the competition affecting the invading

population. This product is subtracted from a0 to show that the growth is hindered

by death and competition. The sum of infected and susceptible individuals (S0+f0I0)

is multiplied and shows that growth of the susceptible population is contingent upon

the birth of new individuals, whether the births occur in susceptible, or healthy

populations, with regular fecundity, or in infected populations with reduced fecundity,

where f0 is a parameter that describes this reduction.

The next term on the right-hand side of (2.1), b0S0, accounts for disease-free

death, or death from natural causes. Transmission rates β00 and β11 relate how the

disease spreads within each species, while β01 and β10 describe transmission from

one species to another. Native individuals become infected from being exposed to

infectious natives or infectious invaders. The next two terms involving the rates β00

and β01 are subtracted to show that there are individuals becoming ill and leaving

the subpopulation of the susceptible, or healthy, individuals. Equations (2.1)—(2.4)

each represent a subpopulation. As native individuals become infected, they move to

the subpopulation that is diseased. Here, this movement takes them from the sus-

ceptible subpopulation, represented by Equation (2.1) to the infected subpopulation,

represented by Equation (2.2). After these terms, there is a term which represents

recovered individuals that return to the pool of susceptibles, which recover at the
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rate γ0. The last term represents the diffusion of individuals in this subpopulation.

The second equation, (2.2) for the native infectious, contains terms which

represent growth in the infectious subpopulation as the disease spreads. The first

two terms, β00S0I0 and β01S0I1, were originally seen in the first equation, where they

were subtracted to show that there were some individuals becoming ill and leaving

the healthy subpopulation. Here, they are added to show that, as the individuals be-

come ill, they are classified as infectious. The next two negative terms, b0I0 and α0I0,

account for the rate at which disease-free and disease-induced death affect infectious

individuals. These terms describe individuals who die and are completely removed

from the native population. The second to last term, γ0I0, describes the recovered

individuals leaving the infectious population, and who reenter the susceptible popu-

lation as a positive number to show an increase in that population. The last term,

again, accounts for diffusion.

Equations three and four, (2.3) and (2.4) for the invading species, have right-

hand sides with terms similar to the terms on the right-hand sides of the first two

equations. However, the growth and transmission rates now depend on resistance

R, so that these rates will change as the invaders evolve resistance to the disease.

Specifically, the birth rate will decrease according to

a1(R) = A1e
−kaR, (2.6)
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and the transmission rates will decrease according to

β11(R) = B11e
−kbR, (2.7)

β10(R) = B10e
−kbR. (2.8)

These are the same rates presented in [23].

Equation (2.5) describes how the development of resistance gives a mean

value of resistance. The interpretation of (2.5) is similar to the interpretation of

equation (1.11) presented in Chapter I. The first term on the right-hand side of (2.5)

is h2Vp times ∂
∂R

(1/S0)
(∂S0/∂t)

. Here, (1/S0)(∂S0/∂t) measures the fitness of the invasive

susceptible population. The fitness of the healthy invasive susceptible population

changes with respect to change in resistance. Hence, if ∂F (R)
∂R

is positive, fitness as a

function of R is increasing, and resistance will increase. Likewise, if ∂F (R)
∂R

is negative,

resistance will decrease. The product of the phenotypic variance Vp and heritability

h2 of resistance is multiplied by the rate at which resistance changes. These two

parameters are multiplied in this term to put bounds on how much resistance can

change within the species.

Clearly, if transmission goes down, there are fewer becoming infected, how-

ever, developing such a resistance does not come for free. The resistance is changing

for the better as long as the low transmission is greater than the reduced reproduc-

tion. Heritability is multiplied by the phenotypic variance of the resistance, and this

quantity if proportional to the rate of per-capita rate of change of native susceptibles

changes with resistance at a fixed location [23]. This represents how effectively the

25



invaders evolve their resistance to the pathogen that was originally carried by the

natives. If resistance goes up, fewer individuals become infectious and the pool of

susceptibles increases in number.

The last two terms on the right-hand side of (2.5) account for gene flow in

the spatial domain and diffusion of the invasive species. They correspond to the first

two terms in (1.11) and the last two terms in (1.12), found in Chapter I.

The parameters in the model are listed in Table 2.1 [23].
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Table 2.1: Parameter Values

Parameter Definition Magnitude and Unit

a0 Birth rate (native susceptible) 0.5 time−1

A1 Birth rate (invasive susceptible) where R = 0 0.5 time−1

b0 Disease-free death rate (native) 0.1 time−1

b1 Disease-free death rate (invasive) 0.1 time−1

α0 Disease-induced death rate (native) 0.1 time−1

α1 Disease-induced death rate (invasive) 0.1 time−1

c01 Competitive effect of invaders on natives 1, dimensionless

c10 Competitive effect of natives on invaders 1, dimensionless

c00 Competitive effect of natives on natives 1, dimensionless

c11 Competitive effect of invaders on invaders 1, dimensionless

f0 Fecundity reduction from disease (native) 0.9, dimensionless

f1 Fecundity reduction from disease (invasive) 0.9, dimensionless

K0 Carrying capacity (native) 180, individual ∗ length−1

K1 Carrying capacity (invasive) 175, individual ∗ length−1

β00 Intraspecific transmission rate 0.06, length ∗ individual−1time−1

β01 Interspecific transmission rate 0.06, length ∗ individual−1time−1

B11 Intraspecific transmission rate (invasive) where R = 0 0.06, length ∗ individual−1time−1

B10 Interspecific transmission rate (native to invasive) where R = 0 0.06, length ∗ individual−1time−1

ka Fecundity reduction parameter 0.015 resistance−1

kb Disease transmission reduction parameter 0.25 resistance−1

γ0 Recovery rate (native) 0.3 time−1

γ1 Recovery rate (invasive) 0.3 time−1

D0 Diffusion coefficient (native) 1.2 distance2time−1

D1 Diffusion coefficient (invasive) 1.2 distance2time−1

h2 Heritability of resistance 0.08, dimensionless

Vp Phenotypic variance of resistance 1 resistance2
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CHAPTER III

CONCLUSION

We have presented a model in which an invasive species enters the diseased habitat of

a native species. Our model, an adaption of the model presented in [23], incorporates

models that describe interaction of species through disease and competition. The

invasive species evolves resistance to the disease. Because of this added edge, the

invasive species has a chance to become healthy in order to compete well with the

natives.

We will run simulations with different parameter values to see the simple

outcomes of the invasion. We will also explore invasion timing by using different

initial conditions for the native species.
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