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Assessing the Expression of Astrocytic Markers in Retinal Ganglion Cell Projection of 

LCR/HCR Rats 

 

Abstract 

Metabolic Syndrome is a human condition that presents with various metabolic issues such as 

abnormal distribution of body fat, high blood pressure, and a prothrombotic state, among other 

problems (Alberti,et al, 2005). This syndrome is a risk factor for visual disorders, such as 

glaucoma, and is often associated with increased levels of neuroinflammation. Currently, the 

animal model used to replicate this syndrome is The Low Capacity Runner and High Capacity 

Runner Rat Model. These rats have been bred based on their running capacities for 30+ 

generations to have drastic metabolic differences. We assessed key areas of the retinal ganglion 

cell projection (optic nerve, superior colliculus, and retina) and other important thalamic nuclei 

in Metabolic Syndrome such as the arcuate nuclei and inferior colliculus, in the rats for 

expression of glial fibrillary acidic protein and Aquaporin 4. We expected to find elevated glial 

fibrillary acidic protein and Aquaporin 4 in key visual structures of Low Capacity Runner 

compared to High Capacity Runner rats. We found that in the superior colliculi of the Low 

Capacity Runner rats there was significantly a greater percent area fraction of glial fibrillary 

acidic protein than in the High Capacity Runner rats; as there was little Aquaporin 4 staining in 

many of the regions assessed, that data was inconclusive and it appears Aquaporin 4 plays a 

negligible role in stress-related changes associated with the Metabolic Syndrome phenotype. In 

this research, we provide novel evidence that Low Capacity Runner rats express an elevated 

immune response compared to their High Capacity Runner counterparts and that this response is 

partially specific to visual structures, as the inferior colliculus, an auditory-related thalamic 

nuclei, shoed to astroglial differences between High Capacity Runners and Low Capacity 

Runners. These findings could lead to a better understanding of the metabolic underpinnings of 

optic neuropathies and present new avenues for their treatment. 

1. Introduction 

In the media and modern society, there seems to be a fixation with weight loss and metabolism, 

especially with the advent of greater understanding of Metabolic Syndrome. Metabolic 

Syndrome (MetS) is a condition characterized by abnormal body fat distribution, insulin 

resistance, atherogenic dyslipidemia, elevated blood pressure, proinflammatory state, and 

prothrombotic state (Alberti,et al, 2005). With the growing epidemic in the United States of 

obesity, diabetes and pre-diabetes, there are a variety of comorbidities with these diseases 

including visual disorders such as glaucoma and diabetic retinopathy. While the effects of MetS 

have been quite heavily studied in the context of cardiovascular disease, skeletal muscle, and 

liver injury/steatosis, less work has been done to characterize its effects on the visual projection 

(Morris et al. 2014 and De Marco et al. 2012). 
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To study MetS in the laboratory, we use the LCR/HCR rat model. LCR/HCR rats are bred based 

on phenotypic running capacity to be either low capacity runners (LCR) or high capacity runners 

(HCR) (described by Koch & Britton, 2001; Koch, Britton & Wislof, 2012). HCR rats are 

naturally better runners, with lower resting blood glucose, higher percentage of lean body mass, 

and with higher levels of energy, while LCR rats, in opposition, have features typical of a pre-

diabetic, metabolic syndrome state with elevated fat mass, elevated cholesterol and triglycerides 

as well as dysregulated blood glucose, and lower energy levels. HCR rats are far more active, 

spending more time each day running around their enclosures while the LCR rats limit 

movement and energy expended. LCR/HCR rats have been bred out over 30 generations to have 

this drastic, phenotypic metabolic difference. Even for an HCR rat that is the same weight as an 

LCR rat, the HCR rat would be more ambulatory and more active per minute than the LCR rat 

(Novak et al, 2009). 

Astrocytes are pivotal in the maintenance of Central Nervous System homeostasis (Bondan, 

Martins, and Viani, 2013). Glial fibrillary acidic protein (GFAP) is a cytoskeletal marker 

expressed in astrocytes and will provide information on astrocytic number, distribution and 

activation status. Additionally, GFAP is found to be decreased for diabetic rats compared to 

healthy rats in scenarios of brain injury (Bondan, Martins, and Viani, 2013). Given the 

prevalence of visual disorders, like glaucoma, coinciding with metabolic dysfunction we 

hypothesized  that there would be baseline differences between visual structures of HCR and 

LCR rats in absence of other experimental manipulations. Specifically, since elevated immune 

system modulators such as glial and astroglial reactivity is common among compromised and 

diseased visual structures, we hypothesized an increase in GFAP signaling in LCRs compared to 

HCRs. Aquaporin-4 (AQ4) is a water-channel protein that is upregulated in brain injury as well 

as neurodegeneration and downregulated in epilepsy, traumatic brain injury, and models of 

Alzheimer's disease (Ceccariglia et al., 2014, Nagelhus and Ottersen, 2013). Additionally, we 

hypothesized an increase in AQ4 on astrocytes as this water channel is upregulated under injured 

and stressed states. For example, in situations of neuroinflammation, the deletion of the AQ4 

gene in mice causes them to have less of an inflammatory response than wild type mice when 

lipopolysaccharide was injected into the brain. In mice with the AQ4 gene, they also show 

impaired migration of reactive astroglia at sites of injury and impaired glial scar formation   

(Nagelhus and Otterson, 2013). Since glaucomatous neurodegeneration is often associated with 

changes in metabolism, the LCR/HCR rats could provide better insights into early identification 

of pathologies in the eyes or brain due to metabolic differences. These rats could also be used to 

help identify potential metabolic factors that may put some people (especially those who present 

with MetS) at increased risk for developing retinal pathologies.  
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2. Materials and Methods 

2.1. Animals 

The LCR-HCR rat model of metabolic syndrome was funded by the National Center for 

Research Resources grant R24 RR017718 and is available for collaborative study from 

University of Michigan. These rats are bred based on phenotypic running capacity to be either 

low capacity runners or high capacity runners (described by Koch & Britton, 2001; Koch, Britton 

& Wislof, 2012). The HCR rats are naturally better runners, with lower resting blood glucose, 

and higher percentage of lean body mass while LCR rats, in opposition, have features typical of a 

pre-diabetic, metabolic syndrome state with elevated fat mass, elevated cholesterol and 

triglycerides as well as dysregulated blood glucose. These rats have been bred out over 30 

generations to have this drastic metabolic difference. Thirteen, mixed-sex HCR/LCR rats (HCR, 

n=7; LCR, n=6), between 6 to 9 months of age were used for this study. All animals were 

originally obtained from the University of Michigan and were housed in the Comparative 

Medicine Unit at Northeast Ohio Medical University (NEOMED) for the duration of this study. 

Animals were given free access to food and water, maintained on a 12-hour light/dark cycle, and 

all procedures were approved by the NEOMED Institutional Animal Care and Use Committee. 

2.2. Intraocular Pressure (IOP) Measurements 

Rats were anaesthetized using 2.5% isoflurane inhalant. A Tonolab was used to take 15 IOP 

measurements per eye; measurements were averaged together to get the daily IOP reading for 

each eye. IOPs were taken once a week, at the same time of day, for a total of four weeks to get a 

reliable baseline measure. 

2.3. Immunohistochemistry in brain, retinal, and optic nerve sections  

2.3.1. Preparation of Tissue Sections 

Three rats from both the LCR group and the HCR group were anesthetized with a lethal dose of 

barbiturate anesthetic (Beuthanasia D Special, 200 mg/kg body weight, i.p.) and then 

transcardially perfused with phosphate-buffered saline (PBS, in mM: 137 NaCl, 2.7 KCl, 10 

Na2HPO4, 1.8 KH2PO4, pH 7.4 at room temperature) and 4% paraformaldehyde (PFA) in PBS. 

Brains, optic nerves (ONs), and eyes were harvested. Brains and ONs were post-fixed overnight 

in 4% PFA, then transferred to a 20% cryoprotectant sucrose solution prior to slicing. Whole 

retinas were dissected from the eyeballs, were post-fixed for 2 hours, and then placed in PBS. 

The whole brain was sliced coronally at 50µm while ONs were sliced at 20µm, longitudinally, 

on a freezing microtome. Both the ON, brain slices, and whole retina were then placed in plates 

with wells full of PBS. Theses plates were stored under foil at 4oC until use. 

2.3.2. Immunohistochemistry: ON and SC 
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For immunostaining, the ON, and Superior Colliculus (SC) slices were blocked between 1.5-2 

hours in 5% normal serum (donkey) plus 1% of Triton X-100 10% stock solution diluted in 

PBS/azide. Then the tissue was incubated with primary antibodies anti-rabbit GFAP (1:500 

dilution, Z0334, DAKO, Santa Clara, California) and anti-mouse AQ4 (1:200 dilution, ,ab951, 

Abcam, Cambridge, UK) at 4oC for two days. After 3, 10-minute washes in PBS, the secondary 

antibodies were added for 2 hours at room temperature. AlexaFluor secondary antibodies were 

used to visualize the markers. GFAP was stained with Donkey α Rabbit 594 (Red, 1:250, 

Jackson Laboratories, 711-586-152, West Grove, PA) and AQ4 was stained with Donkey α 

Mouse 488 (Green, 1:250, 715-546-150, Invitrogen, Grand Island, NY). The tissues were 

washed again 3 times for 10 minutes each wash. Fixed tissue slices of the SC were also treated 

with DAPI (4',6-diamidino-2-phenylindole, basic cell nuclei marker) after mounting; this was 

done to ensure that total cell counts did not differ between areas analyzed between animals and 

groups. The slices of ON and SC and were placed onto glass slides and coverslipped using 

Flouromount-G (Southern Biotech, Birmingham, AL,).  Fluorescently stained sections were 

observed with a Zeiss Axiozoom V16 microscope attached to a CCD camera, with Zen 2011 

software. Exposure times remained consistent for all tissue samples. For GFAP in the 594nm 

channel, the exposure time was 750ms and AQ4 in the 488nm channel the exposure time was 

800ms. The objective used was a NeoFluar 2.3 objective. 

2.3.3. Immunohistochemistry: Retina 

Whole retinas were assayed while free-floating in a well plate. Tissues were blocked with a 5% 

normal donkey serum and 1% Triton-X 100 in PBS for 2 hours. Then tissues were incubated for 

48 hours at 4°C in the following primary antibody cocktail (diluted in 3% serum, 1% Triton in 

PBS): rabbit polyclonal anti-GFAP (1:500 dilution, DAKO, Z0334,  Santa Clara, California) and 

mouse monoclonal anti-AQ4 (1:200 dilution, Abcam, ab9512, Cambridge, UK). Following three 

10 minute washes with PBS, secondary antibody cocktail was added for 2 hours at room 

temperature, which contained) donkey anti-rabbit Alexafluor 594 (1:250, Jackson Laboratories, 

711-586-152; West Grove, PA) and donkey anti-mouse Alexafluor 488 (1:250, Invitrogen, A-

31571; Grand Island, NY). Tissue was then rinsed three times with PBS, mounted and 

coverslipped with Fluoromount-G (Southern Biotech, Birmingham, AL). 

Whole-mount retinas were photographed with a Zeiss Axioimager M2 epifluorescent microscope 

equipped with a digital high-resolution camera (AxioCam MRm Rev.3; Zeiss, Jena Germany) and 

a computer guided motorized X-Ystage. An apotome module (Zeiss Apotome.2) was used to 

collect z-stack of images using structured illumination. Images on the whole retina were focused 

on the ganglion cell layer as illustrated by Brn3a labelling, a retinal ganglion cell body marker. 

Exposure times remained consistent for all retina samples. For GFAP in the 594nm channel, the 

exposure time was 750ms and AQ4 in the 488nm channel the exposure time was 800ms. The 

objective used was a NeoFluar 2.3 objective. 

2.4. Immunofluorescence quantification of brain, optic nerve slice, and retina 
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Quantitative analysis of GFAP intensity as well as percent area fraction (%GFAP staining/total 

area) were measured in the SC, ON, and retina. GFAP intensity corresponds to astrocyte 

reactivity. Percent area fraction was also used for AQ4 as well as a count of AQ4+ astrocytes. 

The intensity was calculated by using ImagePro Software while the percent area fraction was 

calculated with ImageJ Software.  

2.5. Statistical Analysis 

The statistical comparisons between the LCR rat and HCR rat tissue for Area, Intensity Mean 

Red (luminescence), Intensity Uncalibrated (luminescence), Max Intensity (luminescence), Mean 

Intensity (luminescence) and Intensity Standard Deviation (luminescence) from the intensity 

measurements were performed by using the unpaired student’s t-test. Statistical Analyses were 

performed using Microsoft Excel software. Differences were deemed to be significant with p 

value < 0.05. 

The statistical differences between the average percent-area fractions of GFAP in the LCR rats 

was compared to the HCR rats by using the unpaired student’s t-test. The statistical analyses 

were performed using Microsoft Excel Software. Differences were deemed to be significant with 

p value < 0.05. 

3. Results 

3.1 No IOP differences between strain and gender 

Baseline IOPs did not differ between animals based on strain or gender (Figure 1). 
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Figure 1: Baseline IOP based on strain and gender. No IOP 

differences between strain or gender, indicating that 

metabolic differences due to MetS status does not affect IOP. 

3.2. GFAP is elevated in distal portions of LCR retinal projections compared to HCR projections 

The astrocytic marker, GFAP, was quantified throughout the RGC projection of LCR/HCR rats, 

with the most striking differences being found within the SC. Overall, the data suggests more 

astrocytic staining within the SC of LCR compared to HCR rats, with differences in ON and 

retina not reaching stastically significant levels. Thus, the following findings point to early distal 

changes in inflammatory state within a metabolically-challenged RGC projection even prior to 

elevation in IOPs or similar changes within proximal portions of the projection (Figure 1). 
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Figure 2: Percent-Area Fraction of GFAP. The percent-area GFAP in the Superior Colliculus is 

significantly greater in LCR compared to HCR rats. Error bars are standard error of the mean. 

P<0.05. 
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Figure 3: A. LCR rat Superior Colliculus Images at 32x, 63x, and 80x using an AzioZoom 

macroscope. Take note of the increased staining of GFAP and AQ4.  B. HCR Superior Colliculus 
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Images at 32x, 63x, and 80x using an AzioZoom macroscope. Take note of the decreased staining of 

GFAP and AQ4. 

3.2.1. Differences in Retinal GFAP of LCR/HCR Rats 

To examine the levels of reactive astrocytes, GFAP percent-area fraction measurements were 

used.  The HCR rats had a mean percent-area fraction of 0.655 and the LCR rats had a mean 

percent-area fraction of 0.577, which did not suggest elevated GFAP in the retina of LCR rats 

compared to HCR rats, but did not reach statistical significance (Figure 4A & B).  

Intensity values measured by Image Pro also indicated no significant differences between 

groups. 

 

Figure 4: A. There was no significant difference in the staining of GFAP or AQ4 staining in the 

whole retina, due to the small sample size. Error bars are standard error of the mean. P<0.05. B. 

HCR and LCR Retina imaged on an M2 Axioplan II microscope at 80x magnification. These 

images are focused on the ganglion cell layer of the retina. 
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3.2.2 Differences in Optic Nerve GFAP of LCR/HCR Rats 

To examine levels of reactive astrocytes, GFAP and AQ4 intensity measurements were used in 

the ON. These measurements within the ON suggest elevated GFAP in the ON of LCR rats 

(mean intensity = 21.43) compared to HCR rats (mean intensity = 19.82) (p = 0.06), but this did 

not reach statistical significance (Table 1 in Appendix A). 

 

Figure 5: A. ON sections were displaying a trend toward increased GFAP intensity in LCR ON. ON 

sections were not analyzed using percent-area fraction. B. HCR and LCR ON imaged on an M2 

Axioplan II microscope at 160x magnification.  
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3.2.3 Differences in Superior Colliculus GFAP of LCR/HCR Rats 

Percent-area fraction measurements showed that LCR rats had significantly higher GFAP 

staining in the SC compared to LCR rats: LCR (Figures 2 & 3). Interestingly, intensity 

measurements showed the opposite effect, with GFAP intensity of HCR SC being significantly 

higher. However, this may be explained assay-specific differences. 

3.3 Differences in AQ4 between HCR and LCR Rats. 

3.3.1 Differences in AQ4 Intensity for the ON of LCR/HCR Rats 

In the ON of the LCR/HCR rats, the LCR rats had significantly greater values for Intensity 

Uncalibrated (luminescence) and Mean Intensity (luminescence) than the HCR rats (Figure 5A 

and B). 

3.3.2 Differences in AQ4 Intensity for the SC of LCR/HCR Rats 

There was a significant difference in AQ4 found between the HCR/LCR rats, with LCRs having 

significantly more AQ4 expressed in their SC. Specifically, an elevation within HCRs was 

elucidated in measures of Area, Intensity Mean Green (luminescence), Intensity Uncalibrated 

(luminescence), Mean Intensity (luminescence) (Table 2 in Appendix A).  

3.3.3. Differences in AQ4 Intensity for the Retina of LCR/HCR Rats 

Although statistical analysis could not be run, as there was little to no AQ4 staining within the 

retina of either strain. Figure 4 suggests that it may be qualitatively elevated in LCR retina. 

3.4 No differences in GFAP or AQ4 observed in cerebellar control tissue 

As expected, no significant differences were observed in mean intensity measures or percent-

area fraction of GFAP or AQ4 in non-visual system tissue, indicating that aforementioned 

observations are at least partially specific to the retinal projection. 

Please see appendix for more information on group averages and statistics for GFAP and AQ4 

intensities and percent-area fractions. 

4. Discussion and Conclusions 

In this study, we were evaluating the differences in the regulation of GFAP and AQ4 in key areas 

of the retinal ganglion cell (RGC) projections (ON, SC, and retina) and other important thalamic 

nuclei in MetS rats for expression of GFAP and AQ4 of LCR/HCR rats. Neuroinflammation is a 

common factor in many pathological states, especially in the case of brain trauma or disease. 

LCR rats have a MetS phenotype and it has been reported that they have dysfunctional 

inflammation-resolving pathways (Su et al., 2012). However, little work has been done to 

characterize inflammatory markers within the central nervous system, and even less has been 
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done regarding visual system structures despite the fact that MetS comorbidities often include 

visual system dysfunction. Data from this study is important because it illustrates that there are 

not only astroglial differences within the central nervous system – and specifically, differences 

within important visual system structures. This research on the differences in the visual 

projections between the LCR and HCR groups could provide valuable insights to the progression 

of glaucoma pathology and its relationship to metabolism which could have a large impact for 

many humans suffering from Metabolic Syndrome. 

We chose to be more confident in the findings from the Image J percent area fraction analysis vs. 

the intensity analysis done by ImagePro because in the other studies that have used GFAP 

intensity, the intensity analysis often times excluded differences in the number of GFAP-positive 

cells, which a percent area fraction measure can largely circumvent. Additionally, the results that 

were found with the ImageJ analysis were more consistent with the current literature available 

regarding the HCR/LCR rat model. 

In this study, the intensity and percent area fraction results were very different (the HCR rats had 

significantly greater intensities of GFAP, but significantly lower percent area fractions of GFAP 

than the LCR rats did). This discrepancy could have been due to similar activation of astrocytes 

between groups as well as generally low numbers of astrocytes overall in tissue. This could have 

led to a greater emphasis on differences in background staining between animals, which would 

have also affected intensity measures as well as percent area fraction. We took this to mean that 

the LCR rats had a greater amount of astrocytes present that may have had lower intensity due to 

interference with the background. 

It is also worthy to note that there was no significant differences in the retina of the LCR and 

HCR groups. This is probably due to either the size of the sample—we would need to run 

analysis with a larger amount of retina—or due to the fact that the pathology of glaucoma usually 

first manifests distally (in the SC) before appearing in the proximal ON or retina. Additionally, 

retinas already contain a higher amount of glia and astroglia under normal conditions, so 

detecting a difference may be more difficult. For example, Müller glia – which stain positive for 

GFAP – ensheath all retinal ganglion cell bodies within the retina (Bringmann et al., 2006). 

To summarize, this study demonstrates that differences in metabolism, such as the case of the 

LCR/HCR rats, can lead to differences in the regulation of GFAP and AQ4, especially in the SC. 

These findings suggest that the metabolic differences between the two groups of rats led to the 

LCR rats having heightened levels GFAP and AQ4 within their visual structures, suggesting 

innate immune differences between the rat groups. Given what we know regarding glial 

reactivity and the role of glia in glaucoma and other visual system disorders, it would not be 

surprising to find functional vision differences between these strains or at least an increased 

susceptibility towards developing diseases such as glaucoma in the LCR animals. Furthermore, 

the observation of differences in the SC, more than other visual structures (i.e., retina and optic 

nerve), provides evidence that pathology can begin distally and therefore be asymptomatic until 
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damage has progressed and diagnosable signs of glaucoma and/or retinopathy become apparent 

in an eye exam – and at that point, damage is likely irreversible. Others have found that 

glaucomatous neurodegeneration, for example, is asymptomatic at first and that damage to 

retinal ganglion cell axons begins distally (near SC) (Crish et al., 2010).  

For future study, it would be interesting to see if glaucoma-like pathology were to be induced 

with the microbead occlusion model (MOM) in the HCR/LCR rats if the HCR rats would be 

more resistant to the elevated intraocular pressure (IOP) than the LCR rats. In the HCR and LCR 

rats, the IOPs of these groups were not significantly different. In a paper by Baltan and 

colleagues in 2010, it was noted that age can determine a rat’s susceptibility to axonal damage in 

the induced cases of IOP. If a rat was older, it would have more damage overall and more 

permeant damage to the visual pathway due to a lack of a compensatory mechanism (Baltan et 

al, 2010). From this research combined with the research of this paper, it would seem that the 

LCR rats lack a compensatory mechanism that HCR rats may have, because with the same levels 

of IOPs, the LCR rats are presenting with more inflammatory indicators. 

Again, once we know if astrocyte status—associated with neuronal stress and inflammation—is 

different within the visual system based solely on metabolic differences between subjects, then 

we can conduct more specific research aimed at finding a target molecule or pathway that can be 

manipulated. This could potentially provide an avenue towards a future therapy against 

glaucoma or other optic neuropathies—including diabetic retinopathy, as well as some other 

obscure diseases such as Leber’s hereditary optic neuropathy. Until this study, the LCR/HCR 

rats have not yet been used for eye research, when they could in fact provide a new and exciting 

model that may be more applicable to the human condition or provide important links between 

visual neurodegenerations and metabolism that are currently missing. 
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6. Appendix A: Supplementary Tables 

 

GFAP-Superior 

Colliculus 

Mean intensity 

(Red) 

Intensity Max 

(lum) 

Mean Intensity Std Dev 

HCR (SC)  28.55 85.97 9.73 8.45 

LCR (SC) 21.13 86.86 7.20 5.65 

p-value 0.04201 0.3217 0.0426 0.0454 

Table 1: GFAP Intensity in SC for HCR and LCR Rats 

 

AQ4-Superior 

Colliculus 

Mean intensity 

(Green) 

Intensity Max 

(lum) 

Mean Intensity Std Dev 

HCR (SC)  21.15 47.24 8.15 4.87 

LCR (SC) 10.34 41.29 3.91 0.66 

p-value 0.02968 0.3236 0.0361 0.040 

Table 2: AQ4 Intensity in SC for HCR and LCR Rats 

 

GFAP-Optic 

Nerve 

Mean intensity 

(Red) 

Intensity Max 

(lum) 

Mean Intensity Std Dev 

HCR (ON)  58.82 63.48 19.82 4.53 

LCR (ON) 63.53 62.22 21.43 4.15 

p-value 0.06733 0.4057 0.06400 0.121 

Table 3: GFAP Intensity in ON for HCR and LCR Rats 
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AQ4-Optic 

Nerve 

Mean intensity 

(Green) 

Intensity Max 

(lum) 

Mean Intensity Std Dev 

HCR (ON)  61.01 84.77 23.60 5.75 

LCR (ON) 64.80 83.18 25.99 5.27 

p-value 0.1244 0.3886 0.03944 0.133 

Table 4: AQ4 Intensity in ON for HCR and LCR Rats 

 

7. Appendix B: Poster Presented at the Northeast Ohio Society for Neuroscience 

Conference 

 

 

 

Figure 6: This poster was presented on October 14, 2015 at Northeast Ohio Medical University at the 

Northeast Ohio Society for Neuroscience Conference. 
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