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An Investigation of the
Duality Between Art and Math

By Hope Hickman




An Introduction
As a child, the world is full of mystery and allure. The workings of the world have yet to

unveil themselves through science, and imagination seems a stronger force than the scientific
method. Discovery happens daily through the investigation of trial and play. There is no means
to an end when a child sifts through the leaves in his or her backyard, enamored by the
multitude of slugs and bugs and gooey gunk taking up rent in the mass of decay. The innocent
mind wanders aimlessly and what it picks up while on that voyage is often profound.

In the years of one’s youth, there are moments when doors to the adult world hurl
themselves open, possibly during the unveiling of fractions, the discovery of the water cycle, or
learning of hibernation.

Fourth grade was the year of rocks: sedimentary, igneous, metamorphic, tectonic plates,
Pangea. It was very overwhelming as a child to find out that mountains are the result of an ever
changing crust, one that is twisting and turning under the feet of all people and all cities.

The idea of nothingness arises in a child’s mind very early on. “What was when I was not
born yet?”. Spatial identification is complicated, “If I am four feet tall, how tall is a two hundred
foot building and how big is the earth?”. The questions come at such a fast pace and answers are
flung haphazardly into the forefront of young minds. Without much order, the layers of life
unfold.

This beautiful process of learning is a component of human life which propels children
into the adult world, the world of business, science, technology, politics and art. Without the
luster of learning, human development may stand still.

The ability to ask questions, to dig in the metaphorical dirt of man and come to

conclusions without the intention of solving some specific problem is what makes man into



human. When one is a child, one does not differentiate between biology and chemistry. One
looks at the world with large glossy eyes in awe of the subject matter that is existence. One
creates mud castles and doodles and lines up macaroni shells. Love, happiness, and anger
coincide with plant biology, mathematics, and engineering. The two mesh together in an
educational experience. Learning to build a fire does not necessarily include a strong knowledge
of chemistry, physics, or math. However, a good fire depends on the fuel, proper air flow and
geometry. So much is learned through multidisciplinary actions.

The human experience is reliant on our passions and our minds. Human development,
science, technology, mathematics, engineering, what are these things without the human
experience? Although disciplines are a necessary way to categorize information, where is the line
drawn between two things as perpendicular as art and mathematics? Can art, humanities and
social sciences expand and leak into those pure disciplines?

I bring up a child’s mind for comparison because children easily blur these lines. There is
lesser duality in an innovative mind between art and mathematics. When boxes exist that allocate
science, exploration and questioning to a particular discipline, we are limiting our possibilities
for exploration in all realms of humanity.

Mathematics can improve art. Art can improve mathematics. Math and art can combine
to synthesize great frontiers. They are different, and are perceived as divergent but the duality

between the two is not as simple as black and white.



The Presence Math Has Had in Art : Trigonometry to Topology
For thousands of years math has been shaking hands with art, providing both inspiration

and structure. Within some works of art, it is obvious. Intricate geometries, repeating patterns,
and intentional proportions reveal themselves at first glance. For others, the relationship is
initially unrecognizable, whilst the math connection is fiercely sound. In some cases mathematics
is a necessity for construction. In others mathematical concepts simply provide inspiration.
Either way, be it clear or hidden, conceptual or direct, in nearly every branch of fine art, one can
find examples of this interconnection.

Look back to the Medieval era (500 CE- 1500 CE) when architects built skyscrapers of
stone and glass with simple tools such as compasses, right angled square bodies, and brute force.
Here, mathematics was critical to aesthetics. During the construction of these structures laborers
would not refer to proofs or theoretical work. None of the physical work included axioms,
theorems or deductions. However, the main mathematical application of medieval cathedral
construction was still that of practical geometry.

Even though masonry was definitely a craft, and despite the empirical nature of a
stonemason's work, a huge component of the job was based directly in geometry. In fact,
stonemasonry was known at this time as the art of geometry. Look at the following images, that
of the Milan Cathedral in Italy and the Burgos Cathedral. Without the eloquence of mathematics,
these cathedrals would cease to exist as works of art. They would instead be merely thick, brute,

utilitarian walls with roofs.



[Fig 2 ] Milan Cathedral. Digital image. Destination 360. N.p., n.d. Web.
<http://www.destination360.com/europe/italy/milan-cathedral>.

[Fig 3 ] Burgos Cathedral. Digital image. History Hub. N.p., n.d. Web.
<http://www.thehistoryhub.com/wp-content/uploads/2014/08/Burgos-Cathedral-Pictures.jpg>.



The Burgos Cathedral of gothic style may be of particular interest to mathematicians.
Built in Burgos Spain in 1221, the tallest tower of the Burgos Cathedral is an octagonal tower
known as the Cimborio (spanish for dome). In 2011, architect, Dirk Huylebrouk, in collaboration
with mathematicians Antonio Redondo Buitrago and Encarnacion Reyes Iglesias, analyzed the
orthogonal geometry of the Cimborio vault. Their findings clearly show examples of the

cordovan proportion and tesseracts within the Cimborio vault’s roof.
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[Fig 4 ] Burgos cimborio. Digital image. Flickr Hive. N.p., n.d. Web.
<Burgos Cathedral. Digital image. History Hub. N.p., n.d. Web. .>.

For those who are unfamiliar, the Cordovan proportion, C=(2-2)1/2, is the ratio between
the radius R and side length L of a regular octagon. The Cordovan proportion was introduced by
R. de la Hoz in 1973, seven hundred and fifty two years after the vault was made. This Cordovan

proportion lends itself to an entire family of Cordovan polygons.



The tesseract, also a component to the Cimborio, is a 4-D analog to the square. It is
known as the 4-D hypercube. Hidden orthographic projections of the tesseract are embedded
with rosettes into the structure of the Cimborio roof. There is even a fractal pattern to the
combinations of rosettes and tesseracts that Huylebrouk brings to the attention of the reader.’

Aside from the interesting math, the beauty of Huylebrouk’s analysis lies in the fact that
the Cimborio in the Burgos Cathedral is only one example of interesting geometry hidden in
Cathedral art. Notre Dame, Chartres, St. Paul’s, Cologne and many more have similar shapes and
ratios within their walls, within their windows and within their structure. Many, of which, have
yet to be discovered.

Within cathedrals, it is fairly evident that some sort of mathematical game is being
played. I say this because of the symmetry, the structure, and the functionality of the buildings.
However, the mathematics that are intertwined with art are often times much more subtle. For
example, the use of the golden ratio within two dimensional composition.

Composition is often times one of the most challenging and most important components
of a piece of art. Many painters are taught to follow either the rule of thirds, or the golden ratio to
achieve a pleasing composition within their work.

Neither is very difficult to understand. Both the law of thirds and the golden ratio
determine the placement of the piece’s focal points. When an artist wants to follow the law of
thirds, he or she must take the space that the piece will be occupying and divide it by thirds both

horizontally and vertically. Then he or she places the focal points along the dividing lines.

' Huylebrouck, Dirk, Antonia Redondo Buitrago, and Encarnacién Reyes Iglesias. "Octagonal Geometry of
the Cimborio in Burgos Cathedral." Octagonal Geometry of the Cimborio in Burgos Cathedral. Paperity,
Feb. 2011. Web. 25 Feb. 2016.
<http://paperity.org/p/8949024/octagonal-geometry-of-the-cimborio-in-burgos-cathedral>.



[Fig 5 ] Slazinik, Courtney. Rule of thirds. Digital image. Click It Up A Notch. N.p., n.d. Web.
<http://clickitupanotch.com/2010/09/rule-of-thirds/>.

Notice that each dividing line, by itself, divides the piece into two parts. The area of these
two can then be related in a 2:1 ratio. On one side there are two thirds and on the other side, there
is one third.

Following the golden ratio is similar except the golden ratio is not as simple as a 2:1
ratio. Instead of dividing the space by thirds. The artist uses a ratio of approximately 1.618034 :1
to determine the most compositionally pleasing dividing lines.

In the Renaissance period (1300 CE-1700 CE) the golden ratio was known as the “divine
proportion”. Leonardo, Botticelli, Michelangelo, Raphael, and many more used the golden ratio

in their pieces. However, the golden ratio dates back even further than Leonardo Da Vinci.



Around 500 BCE, Phidias, a greek sculptor and mathematician, is known to have used the golden

ratio in the design of sculptures for the Parthenon, a famous former temple in Greece.

[Fig 6]Meisner, Gary. The Last Supper. Digital image. Goldennumber.net. N.p., n.d. Web.
<http://www.goldennumber.net/art-composition-design/>.

It was not until 1200 CE that Leonardo Fibonacci discovered the mathematical sequence
that converges to the golden ratio, and not until the 1500’s did it pick up the name divine
proportion. The common mathematical name phi was given in the 1900’s. Since then The
Golden Ratio has continued to appear in both science and math.

It contributed to Roger Penrose’s discovery in the 1970’s of Penrose tilings, which is a

non-periodic tiling generated by an aperiodic set of prototiles. Penrose tiles were the first to



allow fivefold rotational symmetry. Phi also held a large role in the discovery of quasicrystals,
structures that are ordered but non periodic and found in nature. Quasicrystals were discovered in
the 1980’s, and unlocked a whole new world. The previously accepted tenet of solid state

physics was blown away upon discovering quasicrystal atomic structures in matter.

[Fig 7 ] Quasicrystals in art. Digital image. Crystallography. N.p., n.d. Web.
http://www.iycr2014.org/events/lectures/chai-and-why-science-cafe-quasicrystals-from-impossibility-to-nobel-prize>.

Interestingly enough, quasicrystals seem to have been found in even older art than some
cathedrals. Islamic art, which is considered to have been produced from the 7th century onwards,
almost always exhibits geometric patterns. Figurative imagery is not often included due to
religious beliefs. The Hadith and many Islamic authorities discourage depictions of both humans
and animals. Because of this, Islamic geometric patterns have evolved into quite spectacular and

intricate formulations.
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These patterns are often created using combinations of repeating circles and squares as a
foundation. However, they often branch off so severely, that the above statement may be too
terse. These simple geometries interlace and overlap and often create bundles of intricate patterns

and shapes with complex rotational symmetries.

[Fig 8 ] Islamic Woodworking. Digital image. The Masterpiece Minibar. N.p., n.d. Web.
<http://islamic-arts.org/2012/the-masterpiece-minbar/>.
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They occur in a variety of forms in Islamic art including carpets, tilework, Persian girih,
vaulting, stone screens, ceramics, leather, stained glass, woodwork and metalwork. With each
craft and each generation, Islamic geometric patterning evolved.

By the 1600’s the techniques used in Islamic art were sophisticated enough to make
somewhat quasi-periodic patterns similar to the penrose tilings. The prime example being that of

a girih design on the Darb-i-Imam shrine in Isfahan, Iran. The shrine was made in 1453.
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[Fig 9 ] Dar-I Iman Shrine. Digital image. John Baez's Stuff. N.p., n.d. Web. <http://math.ucr.edu/home/bacz/week247.html>.
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[Fig 10 ] Shah Mosque. Digital image. The Wonders of Islamic Architecture. N.p., n.d. Web.
<http://tribune.com.pk/story/871868/the-wonders-of-islamic-architecture/>.

One artist particularly interested in quasicrystals as a source of inspiration is Tony
Robbin. Born in Washington in 1943, Robbin works with computer visualizations, painting and
sculpture. He is particularly fascinated with the idea of the fourth dimension and has developed
his own method of sculpture that mimics quasicrystal structures. He currently holds a patent for
his method.

Robbin’s “quasi-crystal” sculptures are based on the idea of quasicrystal geometry; they
display non-repeating geometric patterns though they are made up of identical, repeating
elements. Below is a picture of his work at COAST (Center for Art, Science, and Technology) at

the Danish Technical University.
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[Fig 11 ] Tony Robbin's Sculpture at COAST. Digital image. Ar¢. N.p., n.d. Web. <http://www.domica.ch/art.html>.

Another rather famous artist, known for his mathematically inspired sculptural work is
George W. Hart. Hart was born in 1955. He is an American geometer, sculptor, mathematician
and computer scientist. He received a B.S. in Mathematics from MIT, an M.A. in linguistics
from Indiana University , and a Ph.D. in Electrical Engineering and Computer Science from
MIT.

Hart’s art is known for its mathematical depth. His pieces often center around novel
polyhedron structures and the algorithms which produce them. Hart has discovered multiple
algorithms which produce new classes of polyhedra. He then uses sculpture to present them to

the world. Hart often implements them with the aid of a 3-D printer.
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Below are two of Hart’s sculptures. The first is made out of wood and can geometrically
be understood as a subset of the first stellation of the rhombic triacontahedron. It is composed of
thirty parts which lie on the face planes of a rhombic triacontahedron. The second was created

using a 3-D printer.

[Fig 12 a] Hart, George W. Rhombic Triacontahedron. Digital image. Knot Structured. N.p., n.d. Web.
<http://georgehart.com/sculpture/knot-structured.html>.

[Fig 12 b] Hart, George W. Rhombic Triacontahedron. Digital image. Knot Structured. N.p., n.d. Web.
<http://georgehart.com/sculpture/knot-structured.html>.
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Similar to Hart’s work is some of Morton C. Bradley’s. Bradley was born in 1912 and
died in 2004. Most of Bradley’s geometric sculptures involved polyhedra based constructions.
He had an affinity for color and would paint his pieces in as organized a manner as the
mathematics which governed his creations. Bradley graduated from Harvard in 1933 with a
degree in the arts.

Below are two of Bradley’s sculptures. The geometric forms are each based on twelve
copies of a Kepler-Poinsot polyhedron, with twelve great dodecahedra on the left and twelve

small stellated dodecahedra on the right.They are made of painted, 2-ply Strathmore paper.

[Fig 14] Bradley, Morton. Kepler-Poinsot Polyhedron. Digital image. MoMath. N.p., n.d. Web.
<http://momath.org/home/math-monday-02-01-10/>.

The list of sculptural works relating to mathematics goes on and on. The following are
topologically inspired sculptures, paintings, fiber arts, computer generated images, buildings and

more.

16



Above is one of Eva Hild’s many topologically inspired pieces. Her ceramic pieces are

made of stoneware and are handbuilt using thin slabs of clay. The pieces investigate and

challenge the perception of inner and outer spaces.
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[Fig 16 ] Untitled. Digital image. John Mason | Ceramics. N.p., n.d. Web.
<https://taylordantuma.wordpress.com/2014/09/04/john-masons/>.

Above is a ceramic structure built by the American artist John Mason. John Mason is
well known for investigating simple mathematical concepts. He often includes rotation,

symmetry and repeating units. His art is viewed as algorithmic.
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[Fig 17 ] Séquin, Carlos H. TorusKnot5.3. Digital image. Art Geometry and Abstract Sculpture. N.p., n.d. Web.
<http://www.eecs.berkeley.edu/~sequin/ART/Science Sculpture/TorusKnot5 3.JPG>.

Above is a bronze sculpture by Carlo H. Séquin. Séquin is a graduate professor in
computer science at University of California Berkley. He is constantly producing topologically

interesting sculptures. Many are 3-D printed before cast in bronze. Above is a torus knot.
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[Fig 18 ] Collins, Brent. 6-Storey Scherk Minimal Surface. Digital image. Collins Sculptures. N.p., n.d. Web.
<http://www.cs.berkeley.edu/~sequin/SCULPTS/collins.htmI>.

This can be understood as a 6-storey Scherk Minimal Surface, wound into a toroidal loop.

It is a wooden sculpture by the artist Brent Collins. Collins has taken a liking to saddle surfaces

20



and has been highly inspired by mathematics. The inspiration for his pieces is read quite clearly

throughout his work.

[Fig 19 ] 6-Storey Scherk Minimal Surface. Digital image. Bradford Hansen-Smith. N.p., n.d. Web.
<http://www.bridgesmathart.org/art-exhibits/bridges2005/BradfordHansenSmith.htmI>.

This is the work of Bradford Hansen-Smith, a sculptor who has invested much time and
effort investigating circles and simple geometries. He has been able to create wonderfully

intricate sculptures from folding and intertwining paper circles.
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[Fig 20 ] Johnson, Crockett. Point Collineation on the Triangle. Digital image. Mathematical Paintings of Crockett Johnson.
N.p., n.d. Web. <http://www.bridgesmathart.org/art-exhibits/bridges2005/BradfordHansenSmith.htmI>.

This is one of Crockett Johnson’s many mathematical paintings. The painting is
titled “Point Collineation in the Triangle” and is inspired by the famous mathematician Euler.

The piece refers to projective geometry.

[Fig 21] Grey, Alex. Theologue. Digital image. N.p., n.d. Web. <http://www.newmanayurveda.com/>.

The above painting is one of Alex Grey’s many works. Grey is fascinated by sacred

geometry, an idea that ascribes spiritual meaning to certain geometries.
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[Fig 22] Friedman, Tom. Theologue. Digital image. SAATCHI Gallery. N.p., n.d. Web.
<http://www.saatchigallery.com/aipe/tom_friedman.htm>.

This is the work of Tom Friedman who is more whimsical in his sculpture. He is merely
inspired by mathematics. Although his work doesn’t permeate into high level mathematics some

of his work is fairly algorithmic.
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[Fig 23 ] Caltrava, Santiago. City of Arts and Sciences. Digital image. Best Interior Designers. N.p., n.d. Web.
<http://www .bestinteriordesigners.eu/top-interior-designers-santiago-calatrava/>.

Santiago Calatrava is an architect, engineer, and sculptor. He is well known across the
globe for pushing architectural boundaries. His work is both topologically inspired,
geometrically inspired and organically inspired. The connection between his work and
mathematics is evident through both the outstanding structural engineering and artistic flow of

his buildings.

[Fig 24 ] Mixed Media Chairs. Digital image. Unbranded Designs. N.p., n.d. Web.
<http://www.unbrandeddesigns.com/blog/category/furniture-in-the-wild/>.
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Here is the work of Joris Laarman. Laarman experiments with a broad pool of 3-D
printers and materials. The patterns are synthesized using computer software programs. Much of

his work is a combination of digital fabrication and craftsmanship.

[Fig 25 | Computational Oragami. Digital image. Inhabitat. N.p., n.d. Web.
<http://inhabitat.com/computational-origami-is-paper-art-that-folds-itself/origami-erik-demaine2/>

The sculptures here are made of folded paper, created by sculptor/ mathematician Erik
Demaine. Demaine is a professor of computer science at MIT. As a child prodigy, Demaine
began college at the age of 12. His PhD dissertation documented much in the field of
computational origami, the mathematical study of paper folding. The above images are a

byproduct of his studies.
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[Fig 26 ] Ernest, John. Maquette For Relief Mural at International Union of Architects. Digital image. Wikipedia. N.p., n.d. Web.
<https://en.wikipedia.org/wiki/John Ernest#/media/File:John Ernest maquette for mural 1961.JPG>.

This is one of John Ernest’s works. Ernest is an abstract painter transfixed with
mathematics. His particular interests lay in graph theory. Alongside artist Anthony Hill, Ernest

made contributions studying crossing numbers of complete graphs.

[Fig 27] Dietz, Ada. Polynomial Expansions in Textiles. Digital image. Fiber Arts. N.p., n.d. Web.
<http://fiberarts.org/design/articles/algebra.html>.

In 1946 Ada Dietz, an American weaver, developed a threading pattern based on a cubic
binomial expansion. Dietz is most known for her detailed written study, Algebraic Expressions
in Handwoven Textiles, written in 1949. It includes multiple weaving schemes all based on the

expansion of multivariate polynomials. Above are a few examples. On the far right is an
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example of (a+ b)3 . In the middle is an example of (a +b+c+d+e+f+g+ h)2 . On the left is an

example of (a+b+c+d+e+f)2.

[Fig 28 ] Meyer, Gabriele. Crochet Hyperbolic Surface. Digital image. Mathematical Art Galleries. N.p., n.d. Web.
<http://gallery.bridgesmathart.org/exhibitions/2014-joint-mathematics-meetings/gabriele_meyer>.

This is the work of Gabriele Mayer inspired by the work of Dr. Diana Tamina. It is a

crocheted hyperbolic plane. Essentially the piece is one continuous spiral that interacts with itself
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organically. It is not surprising to find that crocheting, along with all fiber arts, is intrinsically
mathematical. The structure, pattern and number system associated with stitching all provide

strong evidence to support the fact.

Dr. Daina Taimina is a professor of mathematics at Cornell. In 1997 she discovered that

through traditional crochet, one could model hyperbolic space. Before Taimina, many believed
that materially addressing this aberrant geometry was not possible. In fact, before the century,
many mathematicians had tried to prove this type of geometry impossible.

This style, which is now called hyperbolic crocheting, has been revealing quite
interesting results both scientifically and artistically since it developed. Below is work done by
the Institute of Figuring. It is part of the Crochet Coral Reef project, a project that intersects

mathematics, art, and biology to respond to the oceanic crisis worldwide.

-
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This image is a prime example of a popular new computer generated form of artwork,

often referred to as algorithmic art. Algorithmic art is also known as “computer generated art”.
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This was created by Matt Pearson. It is a part of his Death Pop series which explores the sound

and form of vinyl.

donrelyea. com

[Fig 31 ] Hillbert Space Filling Curve Abstract Geometric Art. Digital image. Don Rylea. N.p., n.d. Web.
<http://www.donrelyea.com/hilbert algorithmic art menu.htm>.

This piece by Don Relyea is also algorithmic art. The algorithm here is generated from a

manipulation of the Hilbert space filling curve.
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[Fig 32 ] Ceric, Vlatko. Algorithmic Art. Digital image. Croatia World Network. N.p., n.d. Web.
<http://www.croatia.org/crown/articles/9293/1/Profdr-Vlatko-Eeriae-and-his-algorithmic-art-in-New-Y ork-on-Nov-1st-2007.htm
I>.

This is a piece that I am particularly drawn to. It was made by Dr. Vlatko Ceric, in the
beginning of his artistic career. Ceric worked in computer modeling and simulation. He began

producing images in the 1970°s. He was a bit of a pioneer for algorithmic art.
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[Fig 33] Mandelbulb. Digital image. Above Top Secret. N.p., n.d. Web.
<http://www.abovetopsecret.com/forum/thread542140/pg1>.

This image is one of many images from newly discovered algorithms by Daniel White
and Paul Nylander. In 2009, the two managed to create the Mandelbulb, a 3-D version of the
Mandelbrot set. Words can not describe the art that results from this purely mathematical

process. Below are renderings of the Mandelbulb surface. What I find particularly interesting is
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that neither Daniel White nor Paul Nylander were seeking out art in their venture. Both the

Mandelbrot and the Mandelbulb are, however, works of art.
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The Beauty of Mathematics
Beauty is defined as a combination of qualities such as shape, color, or form, that pleases

the aesthetic senses. Based on the shape, color and form of the previously listed artworks, it is

safe to say that mathematics is capable of generating beauty. Here I will argue that mathematical

results can themselves be beautiful.

The process of investigating mathematics is a highly creative act. It is not merely

number crunching. It is a colorful discipline that spans many, very large areas, all of which

interact. When one sits down to delve into higher level math the mind lights on fire with neural

activity. When studying algebra and geometry the mind grasps around metaphors and real life

examples to grapple with the density of fundamental theorems. When studying statistics and

numerics, the brain allocates buckets and bins and filing cabinets to hold compounding

information. To imagine probabilities and limits it creates branches and fractals.The mind twists

around concepts looking at every angle until a three dimensional object of understanding starts to

form.

During mathematical research, there is rarely a formula for success and, arguably, never a

step by step guide. In order to find appropriate steps, creativity is necessary. Often times, the

process takes years of research. Sometimes it opens up more questions than answers, pushing the

investigation back to the drawing board, where a new approach has to be synthesized.
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Many mathematicians consider their work an art form, and since it is undoubtedly a craft
that requires great discipline and creativity, this is hard to argue. The British philosopher and

mathematician Bertrand Russell expressed this idea through these words:

“Mathematics, rightly viewed, possesses not only truth, but supreme beauty — a beauty
cold and austere, like that of sculpture, without appeal to any part of our weaker nature,
without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a
stern perfection such as only the greatest art can show. The true spirit of delight, the
exaltation, the sense of being more than Man, which is the touchstone of the highest

excellence, is to be found in mathematics as surely as poetry.™

Russell highlights a very interesting component to mathematical beauty, its stern
perfection. In painting and music, creativity and intuition are seen aesthetically in the finalized
product, that which is presented to the audience. The creativity and intuition that results in
mathematical beauty is relatively behind the scenes. It is within the pursuit of mathematics that
the mathematician must rely on intuition and creativity. For the finalized product, it is reasonable

to say that the results will be conclusive. The results will be certain, proven, perfect. The

2 “Quote By Bertrand Russell (Earl Russell).” Quotery. n.d. Thu. 24 Mar. 2016.

<http://www.quotery.com/quotes/mathematics-rightly-viewed-possesses-not-only-truth-but-supreme-beauty/
>,
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discrepancy between where and when creativity and intuition is employed should not play a
part, however, in determining the beauty of the final product.

A prime example of this is with photography. Photography is identified as a fine art. A
photographer is an artist. However, a photographer is merely uncovering something that already
exists. Yes, many photographers heavily alter their images, and many stage their photographs,
but not all. Those who do not are not seen as lesser artists. The images that exist in this world are
not the photographer’s images. The photographer did not create man nor matter nor cameras but
through their intuition and creativity they are able to capture the beauty of their surroundings.
The final product is a product of art yet often times is only a discovery of something in existence.

The aesthetic quality of a photograph can be assessed. The lighting, the composition, the
emotion and material all play key roles in determining the “beauty” of a photograph. In
mathematics, the beauty of results lies in the succinctness, unexpectedness and application to
multiple problems across multiple fields of study. The original insight that developed the results,
the number of assumptions that have been made, and the connection results have towards the real
world all play a part in their elegancy and beauty.

Mathematical proofs can exhibit beauty through their form, their length and their
organization. Often times there are different ways to express the same theorem or postulate,

some methods being derived in surprising ways. For example, the Pythagorean theorem, which
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relates the three sides of a right triangle, has over three hundred different published proofs to its
name.

It states that the square of the hypotenuse is equal to the sum of the squares of the other
two sides. In relationship to the image below, the pythagorean theorem states that a+ b =2,

Below are two well known proofs of the Pythagorean theorem.

Proof by Euclid

This is one of the Pythagorean theorems most famous proofs. It was
discovered by Euclid (323-283 BCE), who is often referred to as the “father of
geometry”. The configuration, used below to describe his logic, is known as the

Bride’s Chair.
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This proof implements the Side Angle Side postulate which states that if
two sides and the included angle of one triangle are congruent to two sides and
the included angle of another triangle, then these two triangles are congruent.

The reader also needs to be familiar with the term “altitude” of a triangle.
In geometry, an altitude of a triangle is a line segment through a vertex and
perpendicular to (i.e. forming a right angle with) a line containing the base (the
opposite side of the triangle). The reader also should know that the length of the
base of a triangle multiplied by its altitude is equal to twice that of the area of the

triangle.
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The proof goes as follows.

Notice that
AE=AB
AF=AC
£LBAF = LBAC + LCAF = LCAB + £LBAE = ZCAE

By the Side Angle Side postulate, it follows that the triangle ABF is congruent to
the triangle AEC: AABF = AAEC.

AABF has base AF and the altitude from B is equal to AC. Its area therefore
equals half that of the square on the side AC.

Also, AAEC has base AE and the altitude from C is equal to AM, where M is the
point of intersection of AB with the line CL parallel to AE. Thus the area of
AAEC equals half that of the rectangle AELM. So, the area AC? of the square on
side AC equals the area of the rectangle AELM.

Similarly, the area BC? of the square on side BC equals that of rectangle BMLD.
Finally, the two rectangles AELM and BMLD make up the square on the
hypotenuse AB.

Proof using altitude alone

We start with the original right triangle, now denoted ABC, and need only one
additional construct - the altitude AD.

B
D

A C

The triangles ABC, DBA, and DAC are similar which leads to two ratios:
AB/BC =BD/AB and AC/BC = DC/AC.
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Written another way these become
AB-AB =BD-BC and AC-AC = DC-BC

Summing up we get
AB-AB + AC-AC = BD-BC + DC-BC
AB-AB + AC-AC = (BD + DC)-BC
AB*+AC* = BC?

Though both proofs lead to the same conclusion, they tell much different stories. In
Euclid’s proof, the beauty lies in the spatial association and extended meaning of the
Pythagorean theorem. It illustrates a deep geometric relationship between the three sides of a
triangle. The proof is creative and literally reaches outside of the box. The second proof which
relies on the altitude of a right triangle is also beautiful. It is highly algebraic compared to the
former. The second proof is more digestible but it is less graphic. The beauty here lies in
concision.

Many theorems have been proved repeatedly. The existence of infinitely many prime
numbers, the evaluation of zeta(2), Euler’s polyhedra formula, the fundamental theorem of
algebra, and quadratic reciprocity, to name a few. All the different approaches to these proofs
illustrate the vast creativity that exists in mathematics, as well as the pursuit to better understand
an idea. Within each proof, one can find a moment of beauty, clarity, concision, and often times
surprise. For the reader’s enjoyment, below is a very small handful of beautiful proofs. The first

being a well known proof by contradiction, proving the irrationality of the square root of two.

Irrationality of 2

Before beginning the proof, the reader should be aware of a preliminary

statement that will be used. Coming directly from the theorem which states that
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the parity of an integer equals the parity of its square, it is known that if an
integer(x ) is even, its square root(\x), is also even, so long as Vx is an integer.

The proof goes as follows:

Assume that V2 is, to the contrary, rational.

Then, V2 = 4 ,wherep and ¢ are integers whose greatest common denominator
q
is 1.
=_ D P
Squaring both sides of the equation 2 = (—] yields 2 = ?

Which means that 2 divides p?and from the preliminary statement, we know that
p is an even integer. So, by definition of even integer, we can write p = 2k for
some integer k.

Notice also that 22 = p? = (2k)* = 4k* . So, ¢*> = 2k* .

Which means that, similarly to p, 2 divides ¢ and from the preliminary
statement, we know that ¢ is an even integer. So, by definition of even integer,

we can write: ¢ = 2¢ for some integer ¢.

To restate, if V2 is rational and equal tol(—; , both ¢ =2¢, and p = 2k for some

integers ,k.
Notice that this is a contradiction to the original statement V2 is rational and equal

to% . If bothg = 2¢, and p = 2k than the greatest common denominator of p and

q is 2,not 1.
Therefor, V2 must be irrational.

Proofs by contradiction are often times fun and tricky. They wrap around a false idea,
under the logical pretense that the idea is true. Then, once the path takes the reader to a
falsehood, the foundation of that false idea crumbles and the reader discovers that it was never
true to begin with. Proofs by contradiction are quite dramatic in this regard.

The above proof has a very beautiful structure to it. The first time one reads through the

statements, it is often tricky to follow. The proof seems circular in logic. In a way, it is.
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However, the circle that is being drawn will never be complete. You can never get back to the
original statement, so long as you follow that specific logical path. In other words, the imaginary

circle is broken by reality, which is quite a beautiful idea in and of itself.

Adding odd numbers, the proof that

Y (2k—1)=n?
=1

The above equation is equivalent to the summation of nodd terms starting at 1
and increasing by 2 with each term.

1+3+5+7+9+11+13+....+(2n—1) = n?
The summation can be proved easily through induction, but the picture proof

uncovers a completely new way of looking at the equation and unveils why the
summation is true in a very simple and beautiful way.

n

Each term in the sum ) (2k—1) adds one odd number to the existing
k=1

summation. If we represent theses odd numbers as the area of an L shaped piece,
each piece extends the square above by one unit on each side. Adding an n
-number of terms, means adding an »n-number of L shaped pieces, making an »
by n square whose area is n2.
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The Binomial Theorem and Pascal’s Triangle
The binomial theorem describes the expansion of powers of any binomial.

Below are a few examples.

(a+b) =a?+2ab+ b
(a+b) =a®+3a2b+3ab”+ b’
(a+b)' = a*+4a3b + 6a2b* + 4ab’ + b*

The formulaic expression that dictates the binomial theorem is as follows:

n e [ B ok
s = o
(a+b) =3 L b
=0

Note that the binomial coefficient, often referred to as “n choose k™, is:
% 7l

)= s
These coefficients for varying n and k can be arranged quite nicely to form
Pascal’s Triangle, as seen below. The row number represents the n value of the
polynomial (whatever power the binomial is being raised to) and the elements
within the row correspond directly to the coefficients of the polynomial.

In relationship to the formulaic expression above, from left to right, the

elements correspond to increasing k values. The first element being k& =0, where

k increments by one, each element.
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Pascal’s triangle is quite beautiful as a mathematical construct not merely
due to its application to polynomials. Within Pascal’s triangle there are interesting
patterns and sequences. Notice that each element, aside from the top tier element
(1), can be synthesized by summing the two elements uppermost left and right of

it, such as 1+3 = 4, highlighted in green below.
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"1"s
] Counting Numbers

1 f Triangular Numbers

[Fig 38b] Pascal’s Triangle Info. Digital image. Math Is Fun. N.p., n.d.
Web. <http://www.mathsisfun.com/pascals-triangle.html>.

Notice also the diagonal sequences within the triangle. The first diagonal
is obviously composed of all 1°s. The second is composed of the counting
numbers and the third the triangular numbers.

Triangular numbers are a sequence of numbers relating to the units used to

create two dimensional pyramids. They can be depicted easily as dots.

] [ L ] o *
1dot 3dots 6 dots 10 dots 15 dots

[Fig 38 c] Pascal’s Triangle Info. Digital image. Math Is Fun. N.p., n.d.
Web. <http://www.mathsisfun.com/pascals-triangle.html>.

The fourth diagonal, similarly can be depicted as a sequence of tetrahedral
numbers. Tetrahedral numbers are a bit more difficult to understand. If you were
to sum the triangle numbers together as you increased their size you would

generate the tetrahedral numbers. Imagine stacking the dot triangle images on top
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of each other, creating three dimensional pyramids. The number of dots needed to
create that configuration as it increases in size generates the tetrahedral number

sequence. Below is a visual aid.

A
LN
.-'!.\ rrr * ‘ :
| gl L
] @ &9 L ] L
® e o &=F o o
. [ S ™9 i S
1 4 10 20

If you were to color the odd units on Pascal’s triangle black and the even
white, you would end up with the Sierpinski Triangle, created using an ever
repeating pattern of triangles. Refer to the images below, the pattern continues

forever to generate the Sierpinski Triangle, in blue.

L A0 £ £
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Notice also, if you were to sum each row of Pascal’s Triangle, the
resulting set is composed of all powers of 2:

(2°2'222° 2% 1 =11,2,4,8,16,..}

[iTeTe [+ i) —
|1|5‘10‘10‘5‘1|"—32
|16 |15[20[15/ 6 [ 1] =4
|1]7]213s[3s5]21] 7| 1| =— 128

[Fig 38 e] Pascal’s Triangle Info. Digital image. Math Is Fun. N.p., n.d
. Web. <http://www.mathsisfun.com/pascals-triangle.html>.

:
1| 1
Tl Tl 260
1 B 3 | 1

14 8N4 |1

1 5 1

1/615|20(15(6 | 1 |

[Fig 38 f] Pascal’s Triangle Info. Digital image. Math Is Fun. N.p., n.d.
Web. <http://www.mathsisfun.com/pascals-triangle.html>.

And the square of each number in the second diagonal is equal to the sum of that
to the right and that to the bottom-right.
This is only the beginning. Pascal’s triangle has a clear line of symmetry,

can generate the Fibonacci Sequence, can model the probability of flipping a coin,
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and much more. For being such a simply constructed device, the complexity and
interesting structure hidden within are phenomenally beautiful. Again, there is a
delicate balance of creativity and complexity paired with simplicity and concision
creating a wonderfully entertaining and artistic product.

Geometric series

A geometric series is a series with a constant ratio between successive
terms. Put in layman's terms, an added list of numbers, continually multiplied by

the same number. An example would be the following.

1,141 1 _ 1
§+Z+§+R+ ...... _Z(_

You can think of this sum as the halving of a carrot. You begin with one
carrot and cut it in half. You push one half off to your left. You take the other half
of the carrot and repeat the exact same process. As you continue to cut, the pile to
your left will grow but will never be greater than one carrot. And with
imaginatively precise cutlery, you will be able to continue to cut the carrot
forever, always adding smaller and smaller halves of the carrot pieces to the pile
at your left.

Through this analogy it is easy to conceptualize that the geometric series

shown is equivalent to one unit. Notated mathematically:

Notice, all geometric series can be written in a summation notation as follows:

48



o0
Z ar’ where a and r are simply constants.
n=0

As it turns out, any geometric series, whose ratio between successive terms 7 is

somewhere between -1 and 1, has a convergent sum equivalent to:

I-r
For further investigation, let us take a look at the expansion of the finite

geometric series, S .

k
S=> ar"= atartar*+ar’+...ar*
n=0

Notice what happens to the finite geometric series S when it is multiplied by the
constant r.
rS=ar+ar’+ar’+art+...+ar®D
If »Sis then subtracted from S, an exact value for Sis deduced.
S—rS= a—ar®h

S(1—7r)= a(1 —rkD)

a(1=r**0)

S ()

However, this only provides an exact value for finite geometric series. For infinite
geometric series, the & value is approaching infinity. Therefore, we take the limit
of § as kapproaches infinity.

k
n— a(l—r(l‘ﬂ))
ngo “ (=)
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k

lim ¥ = lim <220

(1=

kHOO}FO k—o0
o0
i 0=
ar*= lim &=
P L

Notice that if » was equal to or greater than 1 then this series would continue to
grow. However, for the range of converging rvalues, this is not the case.
for -1 <r<1

lim /¥ = 0

k—o0

So,

M 8

arn:]L

-r

n=0

The explanation above hinges on the fact that we know the geometric series

converges and S can be thought of as a constant value. The process used here is not
necessarily typical. There are many different convergent series whose values require
significantly more work to find. The explanation is concise and very direct. Something
incredibly abstract as an infinite sum is unearthed in an organized, easy to follow way.

For that reason, this explanation is very aesthetically pleasing.

Euler’s identity

Arguably the most beautiful equation in existence, Euler’s identity combines five

of the most interesting constants into a single statement.
er+1=0

What makes Euler’s identity so phenomenal is that it’s components are

mathematically dense and somewhat abstract numbers that, when arranged in the
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specific combination, create an equivalence statement. Based only on the
constants themselves, this relationship is not at all intuitive.

e can be explained as the base rate of growth shared by all continually
growing processes. It shows up whenever systems grow exponentially and
continuously, such as population, radioactive decay, and interest calculations.
Mathematically speaking, e is equivalent to the limit below:

e= ,}l_r)l;lo (1+1y"
i is equivalent to the square root of negative one. Put into symbols,
i=\=T.
7 can be explained as the number equal to the circumference of a circle divided

by it’s diameter. = %

1 is the multiplicative identity within the real and complex numbers, meaning any
number multiplied by 1 is itself. And, 0 is the additive identity in the real and

complex numbers, meaning any number plus O is itself.
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1,0,i,e,t are some of the most important mathematical numbers in
existence. They are seemingly unrelated, and yet, when you combine the five

constants, ¢ +1=0. You acquire a statement in perfect harmony.

Within the mathematical world, there exists stern perfection, concision, deep networks of
interrelations and profound structure. Mathematics not only prescribes to our aesthetic senses by
engaging our eyes and ears in interesting analysis. It also reaches deep into our thought processes
and synthesizes beautiful structures of understanding. Due to the nature of mathematical
investigation and what it produces, it is evident that mathematical results can, themselves, be

beautiful.
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Conclusion
Mathematics and art have multiple overlapping qualities. Those of which include

creation, intuition, discipline, interest, innovation and beauty. Yet most see the two as
diametrically opposed. From the surface, this is easy to understand. In grade school students’
math classes contain set rules with difficult concepts. As they age, the information compounds
and they are expected to recall previous material. There are homeworks and exams and if a
student fails, they are considered unintelligent. Art classes, on the other hand, have fewer rules
and less boundaries with simpler concepts. The student does not have to memorize past material.
Instead, he or she creates art using their intuition. As long as the student participates, he/she is
rewarded with good grades and even if their work is subpar, the student is not labelled
incompetent.

In the adult world, artists are viewed romantically, often times as enigmatic, with a
greater understanding of human nature and emotion. By contrast, mathematicians are depicted as
brainiacs, incredibly intelligent and logical. Mathematics is often paired with unemotional logic
while art is paired with emotions and romanticism. Mathematics is paired with rules and set
answers whereas art is paired with boundless creativity. Given that these quick overview terms
are divergent, it seems appropriate to label art and mathematics as opposites.

However, it is not as simple as one might think. The subjects have a relationship, in fact
they have many. As shown earlier in the text, mathematics generates art through patterns, forms,
and concepts and can produce art through algorithmic computer processes.

Likewise, art can illuminate mathematics, such as the images of the Mandelbulb space(pg
32), the Hilbert space filling curve(pg 30) and the Sierpinski triangle(pg 46). When either an

artist or a mathematician pushes the limits of a mere diagram, deeper understanding and or new
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frontiers for investigation may be uncovered. An artistic representation of some mathematical
process, be it sculptural or two dimensional, can provide a visual that brings to life complicated
ideas that feel weighed down by lengthy proofs and complex notation. The works of Crockett
Johnson (pg.22 ) and Dr. Diana Tamina (pg. 27) are prime examples.

In both the construction and finalized product of an artwork, mathematical questions may
arise. In many instances the artist may not be able to answer these questions, nor realize the
significance of their work. A good example of this would be the quasicrystal structures found in
Islamic tiling (pg12). In such instances, an interdisciplinary relationship is highly beneficial to
the progress of the piece and scientific investigation. In some cases, the work may need the
attention of trained mathematicians, engineers, or software designers to provide interesting
practical problems to solve.

Another similarity between the two disciplines, art and math, is their omnipresence. Both
the common phrase ,“art is everywhere” and the common phrase, “math is everything” hold a
powerful truth about the world around us. It is true that both art and beauty exist in the natural
world. The human mind translates much of what our aesthetic senses pick up as “art”; early
mornings in August, the way water beads on the roof of your car, birds aligning on telephone
poles. Art is seen from the natural world around us and drawn from the natural world.

Likewise, mathematics is seen in the real world through symmetries, fractals, spacial
relations and such. Mathematics is drawn from the real world and mathematics is applied to the
real world. Notice that this is slightly different from other fields of study such as chemistry,
biology, physics and history. Those of which study the world around us. Biology does not create

new biology, nor does physics create new physics. In these fields, scientists analyze their
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surroundings and attempt to make sense of it. In mathematics and art, the world is a medium for
play. New mathematical concepts are created and works of art are created for reasons that extend
beyond analysis and explanation. Mathematics and art can both be used to reflect on and describe
the world around us, but they also posses a life of their own. They may create worlds unfamiliar
to us.

For that reason, mathematics and art are both highly explorative. The mathematician and
the artist both create and the true difference between art and mathematics is not that one is
logical while the other beautiful. In fact a recent study (2014) from University College London®
showed that the same areas in our brain that recognizes beautiful art, lights up with neural
activity when an individual is shown equations like Euler’s Formula and the Pythagorean
theorem.

Mathematics is equally as creative and beautiful as art, and many pieces of art are as
complicated, logical and as developed as a complex mathematical proof. The real difference
between art and math lies subtly in the foundation of both disciplines. Art is based more strongly
on intuition. Although an artist may heavily base his or her work on some specific topic, the
resulting product travels through the artist’s hands and the editing process is driven by intuition.
The artist inputs his or her style into the work. They may deviate far from a specific path and his
or her pieces may develop by branching along the individual’s interests and intrinsic drive.

Mathematics, does often require intuition and stylization in notative capacities. However,
the intuitive component is eclipsed by the mathematical investigation. Here, the process of

creation relies heavily on logical construction and the mathematician does not branch off based

3 Zeki S, Romaya JP, Benincasa DMT and Atiyah MF (2014) The experience of mathematical beauty and its
neural correlates. Front. Hum. Neurosci. 8:68. doi: 10.3389/fnhum.2014.00068
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on his or her own intuition. Rather, they are then led by the math down an unknown road. Each
step requires questioning and creative insight.

Despite this singular fundamental difference, the two fields are still not opposites. More
importantly, this singular opposite helps create a relationship that is capable of fostering
academic progress. The links that exist between art and math accompanied with the difference in
production yields an intense potential to expose findings to all fields of the academic world.

Through art, intuition can lead to new creation. Through math, analysis can lead through
explanation, new creation and understanding. Together, the intuition of the artist and the analysis
of the mathematician can be combined. Topics of interest such as spacial relations, symmetry,
patterns, measurements, geometry, topology, combinatorics, converging and complex series all
have very visual counterparts. Thus, given the visual aspect of art, an artistic investigation is
capable of intuitively delving into these subjects to help explain, create and expand these
mathematical concepts, pulling from all facets of some synthesized world to create a
well-rounded understanding of the subspace, opening doors to the new and unknown.

Only a very slim subset of the population is capable of reading through complex
mathematics. For that reason, much of pure math has very little exposure to the academic
community outside of the mathematicians therein. Likewise, art is a bit of a black sheep. It is far
separated from the hard sciences of the academic world despite being present as a field of study
at most public universities. All-in-all, there are walls put up around both disciplines that shield
other fields from easily accessing the pivotal research, techniques and findings within the two
highly creative topics. But as explained above, if the two were to combine, these walls have the

potential to really break down.
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Imagine a university that allows collaborative research between artists and
mathematicians. Imagine math graduate students working in collaboration with graduate students
in studio art to present their thesis work in a visually stimulating way, possibly an entire gallery
of scientific and mathematical findings put to sculpture, video, drawing, prints or painting. The
painstaking and tedious role of reading through extensive mathematical findings dissolves into
an entertaining trip through a world that so few people truly understand. Such a scenario would
allow stepping stones between the world of mathematics and those analyzing the human world.
Researchers from all fields could find relations with the artworks presented.

The study of art and the phenomenal skill of translation and visual communication that
educated artists possess is so fundamental to spreading knowledge. The fact that this process and
artists across the world are not being heavily utilised to convey information in an academic
setting is baffling.

It is critical that academics continue to integrate disciplines that are not diametrically
opposed, specifically math and art. No matter how illusive the compatibility between these
subjects may seem at first, the real relationship is binding and beneficial. Both mathematics and
art are beautiful and both are excellent propellants in research and discovery.

All-in-all, as humankind develops, it is critical to begin looking at the world in an
innovative fashion that includes not only pure science but human intuition and craft. As the child
learns through multi-disciplinary investigation, so should the scientist, the engineer, the artist and
the mathematician. Though specialization within all fields is critically important to discovery and
thought provoking analysis, a holistic approach to learning and investigation will inevitably

unveil new frontiers. Humankind has so much still to learn and so much yet to discover that it
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would be foolish to begin putting boxes around disciplines. Particularly, art and mathematics
need no line dividing the two.

To sever the two disciplines from one another would be limiting the possibilities of
discovery. To support and emphasize this investigation would mean potentially unearthing a
new basin of knowledge. Few would disagree that mathematics holds the answers to the world
around us. But even fewer realize that it takes art and human intuition to let mathematics

relinquish that grasp.
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