
The University of Akron
IdeaExchange@UAkron

Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2016

Voice Activated Chess Set
William Weigand
wdw10@zips.uakron.edu

Alysha Jansto
amj61@zips.uakron.edu

Kerim Bojadzija
kb69@zips.uakron.edu

Mitchell Hall
meh56@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of
IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

Recommended Citation
Weigand, William; Jansto, Alysha; Bojadzija, Kerim; and Hall, Mitchell, "Voice Activated Chess Set" (2016).
Honors Research Projects. 308.
http://ideaexchange.uakron.edu/honors_research_projects/308

http://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=http://ideaexchange.uakron.edu/honors_research_projects/308
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects/308?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

1

Voice-Activated Chess Set

Final Design Report

Design Group C

Alysha Jansto

Kerim Bojadzija

Mitchell Hall

William Weigand

Advisor: Dr. Elbuluk

April 20, 2016

2

Table of Contents
Table of Contents ..2

Team Members Contribution ...5

Abstract ...6

1. PROBLEM STATEMENT..7

1.1 Need ..7

1.2 Objective ...7

1.3 Background ...7

1.4 Objective Tree ...8

2. REQUIREMENTS SPECIFICATIONS...10

2.1 Marketing and Engineering Requirements ..10

2.2 Constraints ..11

1. Economic...11

2. Sustainability ...11

3. Operational ...11

4. Social ..11

2.3 Specifications ...12

3. DESIGN ...13

3.1 Overall ..13

3.2 Microcontroller ...16

3.2.1 Microcontroller Software ..17

3.3 Voice-Activation Module ..20

3.3.1 Voice-Activation Module Hardware ..21

3.3.2 Voice-Activation Module Software ..22

3.4 Position System ..23

3.7 Power Supply ..33

3.8 Circuit Schematic ..34

3.9 Chess Set ...37

3.9.1 Overall Chess Set ..37

3.9.2 Layout of Board ...38

3.9.3 Chess Pieces ...38

3.10 Playing the Game ...39

3

4. MAINTENANCE ...40

5. BUDGET ...40

6. CONCLUSION ..41

REFERNCES ..42

APPENDIX ...43

A. Data Sheets ...43

B. Gantt Chart ..44

B.1 Fall Semester Schedule...44

B.2 Spring Semester Schedule ..45

C. Parts List ..46

D. Microcontroller Software Code ..48

4

FIGURE 1: OBJECTIVE TREE ... 9

FIGURE 2: LEVEL 0 BLOCK DIAGRAM .. 14

FIGURE 3: MICROCONTROLLER LEVEL 1 BLOCK DIAGRAM ... 16

FIGURE 4: SOFTWARE FLOW CHART FOR MICROCONTROLLER .. 17

FIGURE 5: POSITIONS OF PIECES AS STORED IN MEMORY ... 19

FIGURE 6: VOICE-ACTIVATION MODULE LEVEL 1 BLOCK DIAGRAM ... 20

FIGURE 7 VOICE ACTIVATION LEVEL 2 BLOCK DIAGRAM ... 22

FIGURE 8: LEVEL ONE BLOCK DIAGRAM FOR POSITION SYSTEM ... 23

FIGURE 9 EXAMPLE OF LINEAR TRACK .. 25

FIGURE 10: X-Y TABLE CONFIGURATION ... 26

FIGURE 11: X-Y TABLE CONFIGURATION ... 26

FIGURE 12 RESISTIVE FEEDBACK STRIPS POSITION ... 27

FIGURE 13 SOFTPOT ACTUATION DIAGRAM ... 28

FIGURE 14 RESISTIVE STRIP ADC VOLTAGES PER SPACE.. 28

FIGURE 15 ELECTROMAGNET... 31

FIGURE 16: SOLENOID ... 32

FIGURE 17 POWER SUPPLY BLOCK DIAGRAM 2 .. 33

FIGURE 18 PROPOSED OVERALL SCHEMATIC.. 35

FIGURE 19 ACHIEVED OVERALL SCHEMATIC ... 36

FIGURE 20 3D DIAGRAM CHESS SET .. 37

FIGURE 21 ACTUAL CHESS SET.. 37

FIGURE 22 TOP LAYOUT OF BOARD ... 38

TABLE 1: OBJECTIVE TREE .. 9

TABLE 2 MARKETING AND ENGINEERING REQUIREMENTS .. 10

TABLE 3 SPECIFICATIONS .. 12

TABLE 4 LEVEL 0 CHART .. 15

TABLE 5 VR BLOCK DIAGRAM CHART... 20

TABLE 6 POSITION SYSTEM BLOCK DIAGRAM CHART .. 24

TABLE 7 POWER SUPPLY BLOCK DIAGRAM CHART .. 33

TABLE 8: INPUT COMMANDS ... 39

TABLE 9 ACTUAL COST ... 40

file:///C:/Users/Alysha/Dropbox/Senior%20Design%20(Chess)/Spring%20Semester/FinalDesignReport_TeamC.docx%23_Toc449040236
file:///C:/Users/Alysha/Dropbox/Senior%20Design%20(Chess)/Spring%20Semester/FinalDesignReport_TeamC.docx%23_Toc449040237

5

Team Members Contribution

Alysha Jansto [AJ]: Electrical Engineering student and the Project Leader for the design group.

My design roles are the voice activation module hardware, microcontroller hardware, power

supply, hardware structure of the chess set, and 3-D models of the chess set. As the project leader

my roles are to organized team meetings, weekly to-do lists, project schedule, parts list, and revise

documents.

Kerim Bojadzija [KB]: Computer engineering student and the software manager for the design

group. Project focus will be writing and debugging the programs for the microcontroller and the

voice recognition device.

Mitchell Hall [MH]: Electrical Engineering student and Archivist for the design group. Design

responsibilities included; schematic layout and feedback system. As group Archivist I turned in

deliverables, backed up group files, kept track of paperwork in a three ring binder and designed the

poster.

William Weigand [WW]: Electrical Engineering student and Hardware Manager for the design

group. Design responsibilities include making the mechanical design of the positioning subsystem,

stepper motors and drivers configurations, and small circuitry.

6

Abstract

Chess is a game enjoyed by people of all ages and physical abilities. The Voice-Activated

Chess Set was designed to allow persons who cannot use their arms, due to either a disability or if

they are preoccupied with something else, to play a game of chess without assistance after initial

setup. The chess game was intended to be solely controlled by voice recognition using set

commands. After much testing of the voice recognition chip, it was established that the

microphone could not stay always on and a dial pad was implemented to control it. A position

system repositions a solenoid which is set underneath of the chessboard. The chess pieces are

made of plastic and have a nail and bolt inside of them to be able to be moved by a normally

closed solenoid with a magnet on the shaft. The position system moves chess pieces according to

the player’s voice command or input into the dial pad, provided that they follow the rules of chess.

With a better microphone or voice recognition chip, this design lets individuals who are

handicapped, in the sense that they cannot use their hands, to enjoy a challenging and fun game.

 [KB, AJ]

7

1. PROBLEM STATEMENT

1.1 Need

 In the U.S. there are about 21.1 million people who are not capable of performing basic

physical activities [1]. Within this number are people who cannot use their arms, but the estimate,

unfortunately, does not include soldiers who lost their limbs, people with terrible arthritis in their

hands, or individuals with hand tremors. There are a large amount of people just in the U.S that

have to depend on others to perform day to day tasks. The Voice-Activated Chess Set will let the

person be able to depend on themselves to play a fun and challenging game of chess.

[AJ]

1.2 Objective

 The objective of the chess board design is to be able to play a fast responding and long

lasting game of chess solely using voice controlled commands. The chess board will be a two

player game that has a microphone for each player. Once the pieces have been set up initially, the

game will be completely hands free. This will allow the players to enjoy a game of chess without

depending on their arms.

[AJ]

1.3 Background

 There are many different chess board designs. There is one design in particular that is

similar to the group’s design which is the Magic Chess Set design. The Magic Chess Set has the

same objective as the group which is a chess set with self-moving and voice activated chess pieces.

The Magic Chess Set design has two modes of operations which is a player against the computer

or player against a second player [2]. The group decided to only have one mode of operation which

is to have the chess set be a two player game. The Magic Chess Set used a chess engine and the

group decided against using a chess engine. Also, the Magic Chess Set board used a microATX

motherboard to control the voice commands and chess engine, which would go over the group’s

budget [2].

 The group wants to use more chess commands than the Magic Chess Set used. The Magic

Chess Set did not incorporate chess movements like castling, pawn promotion, and en passant. The

group would like to keep the chess game as close to the traditional rules, so castling, pawn

promotion, and en passant will be used. The group wants to use voice commands that are more

fluent like “A-3 to A-4”oppose to the Magic Chess board command of “A3A4” The Magic Chess

Set uses a combination of two stepper motors to make an x-y table to relocate the chess pieces. Just

like the Magic Chess Set, the group decided to use a combination of two stepper motors to make

an x-y table. This design of the x-y table is the most efficient way to move chess pieces from

underneath of the chess board [2].

 There is another similar project to the group’s which is an Arduino Powered Chess Playing

Robot. The design uses an Arduino to power the chess playing robot that consists of an x-y table

underneath of the table [3]. The chess playing robot moves in the x-y direction, but the x-direction

has a servo attach to lift the magnet on and off of the board. The group’s design is to have the

electromagnet always be attached to underneath of the board but not supply current to the

8

electromagnet when releasing the piece. The Arduino Powered Chess Playing Robot’s board uses

reed switches to allow the Arduino to know the location of the pieces. In the group’s design the

piece location will primarily be remembered by the program. The Arduino Powered Chess Playing

Robot’s design doesn’t have a location for eliminated pieces and have to be removed by a person

[3]. The group’s design will have an area named the graveyard which will put the eliminated

pieces off to the side of the board in a desired location.

[AJ]

1.4 Objective Tree

 The group went through and evaluated key components of the design in Figure (1). In

Table (1) the value of the row versus column is listed. The grading scale was 1=equal,

3=moderate, 5=strong, 7=very strong, and 9=extreme. Table (1) helped dictate the importance of

each component of the design in Figure (1). When there is a reciprocal value in the cell that means

the row is less than the column by the denominator value.

 The first two key components in Figure (1) are the ease of use and portable. The group felt

that the ease of use should be valued higher than the chess set being portable, because no one

would want to play a game if it was difficult to use. Also the chess set doesn’t have to move to be

operating, so the chess set being portable was ranked lower.

 The ease of use was divided into three sections: long operating time, standard chess rules,

and voice controlled. Voice controlled was valued highest because it is one of the main design

requirements. The purpose of this design is to have a chess set that is voice controlled. A sub-

division of voice controlled is hands free piece movement. The design group valued standard chess

rules at second. The design group wants to keep the chess rules as close as possible to the standard

chess rules. Last in the ranking was long operating time.

 Portable had two components of lightweight and small. The group valued the chess set

being lightweight higher than the chess set being small. The group thought that it would be easier

to transport if the chess set weighed less. It was decided against to have a small chess set because it

can be difficult to view as a player. Also a smaller chess set would be hard to implement the design

fully with the hardware chosen.

[AJ]

9

Figure 1: Objective Tree

Table 1: Objective Tree

 Easy to Use Portable Weight
Easy to Use 1 5 0.69

Portable 1/5 1 0.31
 Lightweight Small Weight

Lightweight 1 3 0.75
Small 1/3 1 0.25

Long

Operating

Time

Standard

Chess

Rules

Voice

Controlled
Weight

Long Operating

Time 1 1/5 1/7 0.07
Standard Chess

Rule 7 1 1/3 0.30

Voice Controlled 7 3 1 0.63

10

2. REQUIREMENTS SPECIFICATIONS

2.1 Marketing and Engineering Requirements
Table 2 Marketing and Engineering Requirements

Marketing Requirements Engineering Requirements Rationale

Has to follow the rules

of chess including piece

movement, piece

capturing, castling, en

passant, promotion,

check, and checkmate.

The software should keep tracks of

all the positions and movements of

the pieces and notify when they are

invalid.

It is a chess game.

Has to be completely

hands free except for the

initial setup of the

pieces.

The voice activation module

should accept audio input from

microphones and send commands

to the microcontroller so that it can

move the motors.

This will allow handicapped

individuals who don't have the

use of their arms to play chess.

The board needs to be

capable of being carried

by a single individual.

Make the device out of lightweight

materials where possible.

The dimensions of the entire

system will not exceed

75x46x27cm.

This device is intended to be

played anywhere where a plug

is available. It should not have

to stay in one place.

The chess piece

movement should

respond to voice

commands in a timely

manner.

Microcontroller has a processing

speed of 48MHz. Max motor speed

of 1200rpm will be able to get the

pieces around the board in an

appropriate amount of time.

The game should not take

longer than a normal game of

chess because of piece

movement.

Voice commands should

be accurately interpreted.

The microphones will need a

resistance gain of 680 to be used at

arm’s length and the voice

recognition chip should be

programmed with the necessary

commands.

This is the main way the player

interfaces with the game pieces

and should be reliable.

Long and consistent

operating time.

120V AC wall outlet to DC power

supply to ensure long operation.

Position feedback will correct any

errors caused by motor slippage.

Chess games can easily become

lengthy and this device should

be able to keep up with player’s

demand.

11

2.2 Constraints

1. Economic

 The project should not cost more than $400.

2. Sustainability

The chess set should be able to be moved around easily. The components inside

of the chess set should be stationary, so the chess set can be relocated.

3. Operational

The chess set should be able to complete chess piece movements without error.

4. Social
The project should be able to accurately recognize programmed commands by any

English speaking user.

12

2.3 Specifications

Table 3 Specifications

Proposed Specifications Achieved Specifications Comments

 Microcontroller

o 128KB Flash memory

o 48MHz Operating frequency
o 55 GPIO pins

Achieved

 Voice Activation Module

o Operating Voltage: 5V

o RX pin voltages (Receiving
serial data with highs and lows)

 5V

o TX pin voltages (Transmitting

serial data with highs and lows)
 5V

o GPIO Pins output voltages (Used

for control signal to switch)
 3V

o Serial Interface:

 UART
 Baud Rate: 9600 default

 8 Data Bits

 No parity bit

 1 Stop bit
 No handshaking

Marginally Achieved The GPIO pins were not

used in the final design.

There was communication

difficulties between the

EasyVR chip and micro -

controller.

 Position System

o Maximum radial load for Stepper

Motors 2.7kg
o Max speed for Stepper Motors

1200RPM

o Stepper Motor step angle 1.8°

Achieved

 Electromagnet

o Alloy: Iron 1018

o Relative permeability: 200

o Core diameter: 1.5875 cm

o Core length: 5.08 cm

o Wire: 32 gauge enameled

copper

o Turns: 178

o Current: 20 mA

o Magnetic field intensity:

0.01764 T

o Force: 0.2205 N

Not Achieved The electromagnetic core

dimensions were achieved.

The amount of turns had to

be increased by factor of

30and the current

increased drastically. The

amount of turns and

current had to be increased

in order to attach to the

chess piece. Unfortunately,

the electromagnet didn’t

hold it’s magnetic field for

the required time.
 Power Supply

o 120V AC outlet will be used
Achieved

13

o Output 35V DC, distribute two

voltages of 35 and 5V DC
 5V DC to EasyVR device

 5V DC to microcontroller

 35V DC to stepper drives

 Solenoid

o Current required:
0.73 A

o Maximum voltage:

36 V DC
o Operating voltage:

35V DC

o Internal resistance:

18 Ω

The solenoid was used to

take place of the

electromagnet.

 Servo Motor

o Current required:

20 mA

o Operating voltage:
5 V DC

o Control signal

The servo motor is used to

move the microphone

back and forth to each

player.

3. DESIGN

3.1 Overall

 The level 0 block diagram for the Voice-Activated Chess Set is presented below in Figure

2. The major inputs and outputs of the system are represented as wide arrows and the inputs and

outputs inside of the system are represented as skinny arrows. The main inputs of the system are

pre-trained phrases ("2-1 to 3-1" for example) and are spoken into the voice activation module,

through microphones, which are converted into sequential data. The sequential data is used by the

microcontroller to determine if the player is following correct chess rules and to generate signals

that will be sent to the position system. The position system actuates the movement of the pieces

on the board through the use of the stepper motors and a solenoid, for coupling with pieces,

underneath of the board. Feedback is sent to the microcontroller to determine if the desired

position was achieved, as a second measure.

14

Figure 2: Level 0 Block Diagram

15

Table 4 Level 0 Chart

[KB, MH]

16

3.2 Microcontroller

 The microcontroller is used to run the algorithms that administrate the rules of chess. The

microcontroller receives serial data from the voice activation module (EasyVR) that is used to

control the position system via digital signals to stepper motor drivers. There is a dial pad that can

be used as an alternative input to chess piece movement than using the microphone. The

microcontroller controls three LEDs and a buzzer that give indication to the user of what is

happening. The microcontroller also controls the servo motor to move the microphone to the

player’s direction.

Figure 3: Microcontroller Level 1 Block Diagram

In Figure (3), the pin locations on the Cypress microcontroller can be seen. Pin P4 Vdd is

used to receive 5V from the power supply that first went through the 40V to 5V voltage

regulator. The ground pin is connected to ground on the power supply. The next pins are all pins

that connect to the EasyVR. The pin TX to send to RX from the EasyVR is at 3.1. The pin RX to

receive TX from the EasyVR is at 3.0. Pin 3.4 is used to send 5V to the EasyVR and ground is

shared between the EasyVR and microcontroller.

The stepper drives need three pins each from the microcontroller to control the

movements. For the x direction stepper drive the pins 0.5, 0.4, 0.3 are used. For the y direction

17

stepper drive the pins 0.2, 0.1, 0.0 are used. The three pins control positive steps, positive

direction, and negative direction. To control the servo motor to move the microphone the I/O pin

on the microcontroller is 4.1.

Other I/O pins are used to control the LEDs and buzzer. One LED was used for player 1

to indicate their turn, that pin is 3.6. Another LED was used for player 2 and that pin was 3.5 on

the microcontroller. A third LED is used to indicate to the player that the microphone is listening

for a command and the pin is used 3.7. A buzzer is used to indicate the command is invalid and

the pin used it 1.1.

[AJ]

3.2.1 Microcontroller Software

Figure 4: Software Flow Chart for Microcontroller

To make the Voice-Activated Chess work properly, a program was loaded into the

microcontroller through a USB connector already on the module and is written in C

programming language. Figure 4 above shows the main functions of the program and how it will

18

flow. The most important part of the program is to detect if the movement received from the

voice activation module is valid and to send the correct control signals to the position system so

that the chess piece can be moved. It starts by setting up the board in memory, initializing the

UART and ADC functionality, and constantly sending signals to the EasyVR device using the

TX pin and waiting for serial data to be received on the RX pin with the UART interface. The

voice recognition device chosen works by constantly communicating with the microcontroller, so

the program has to send a predetermined command to the device, making it listen to the

microphone, wait for a success byte, and then ask for the index of the command received. All the

commands have an index associated with them. The program uses many if statements to

determine what to do with each byte received. For example, if 0x00001001 is received, the

program will know that the player wants to access the first row on the board and then if

0x00001001 is received next, it knows that the player wants to look at the 11 position on the

board. It then determines what piece it is and if it belongs to the current player. The program has

fluid code, giving it room for human error so if a player makes a mistake, it won’t move ahead.

 To determine what type of piece is at the source, an 8x14 matrix is implemented in

memory, coded as a global, two-dimensional array of pointers to character arrays, mimicking the

chess board plus the graveyard slots and extra spacers as shown in Figure 5. The extra spacers are

colored black and the squares with the red Xs are the graveyard slots. The first number command

corresponds to the first index of the array, the row index, and the second number command

corresponds to the second index of the array, the column index. So “one” is the zeroth index of

the first array and “three” is the fifth index of the second array. The program then checks what is

stored at this place in the array. The chess pieces are coded as strings as shown in Figure 5. If

there is no chess piece at the source or if it is the wrong player’s, a command is sent to the

buzzer, giving it voltage, and notifying the player. If there is a piece there, the program

determines what piece it is and goes into a series of branches. Here, the validity of the movement

is determined. For example, a bishop can only move to the slots in the matrix diagonal to it. The

program makes sure there are no pieces from the same player in the way of the destination. Many

of this is done by using nested conditional loops and checking conditions for each piece.

The individual sections for each of the pieces are needed because of special

circumstances such as “en passant” for pawns and castling for kings. This part of the code also

makes sure the player’s king is not in check and therefore invalid movements include leaving

him in check. If any movement received is invalid, it sends the command for the buzzer again. If

everything is correct, before sending the control signals to the position system module, it also

checks if there is an opponent piece at the destination by using the matrix.

If there is no opponent piece, it calculates the required number of steps and direction

needed to be sent to the motors to move the solenoid to the source. Initially, the solenoid is in a

set position and every time it moves, feedback is read from two of the input pins and the new

position is stored in memory. This way, the program knows how many steps to calculate for the

stepper motors. Once the movement is calculated, the two enable signals are sent to the motors

and the movement control signals.

19

When feedback is received, the program checks if the position of the solenoid matches

the correct spot in the matrix. This is done by using a switch-case clause where each square of

the board has a set voltage boundary it should be within. If it does not match, the movement

signals for the source are calculated once again, using the new position it was moved to, as

shown in the flow chart above labeled Figure 4. Once it matches, the enable for the solenoid is

sent from an output pin so that the piece is coupled with the magnet, and then the movement

signals for the destination are calculated and sent using the same feedback matching tactic as

before. If the feedback is correct, a signal is sent to the motors and solenoid to be disabled.

 If there is a piece at the destination that is needed to be taken out, this is done first, using

the same tactics above, except the destination being a graveyard slot, and then the source piece

will be moved. Each piece has a designated graveyard slot on the side of the board. This makes it

easier when a pawn reaches the other end and promotion is needed to be done and also, the board

can set itself up to play more games. Initially the program was created so that it checks the board

for checkmate after each movement, but there was not enough ROM on the microcontroller and

this function has to be disposed of. The program instead waits for a command from a player who

cannot make any moves to signify checkmate. It also waits for a specific command to see if the

players want to play again. If this command is received from the voice activation module, the

pieces are moved from the graveyard and board to their initial places by scanning each square on

the board. The board below in Figure 5 will then be set to the beginning values.

Figure 5: Positions of Pieces As Stored In Memory

 [KB]

20

3.3 Voice-Activation Module

In Figure 6, the level 1 block diagram for the Voice-Activation Module can be seen. There

are two inputs, speech from player 1 and speech from player 2. There is only one microphone

that is used. There is two LEDs on top of the board to indicate which player is permitted to use

the microphone. The LEDs are controlled via the microcontroller. The voice recognition chip

will take the audio from the microphone and convert it to serial data to send to the

microcontroller.

Figure 6: Voice-Activation Module Level 1 Block Diagram

Table 5 VR Block Diagram Chart

Module Microphone

Inputs - Speech Player 1 (or 2)

Outputs - Audio signal

Functionality - Capture speech command

Module Voice Recognition Chip

Inputs - Audio signal

- 5V

Outputs - Audio output

Functionality - Convert audio signal to serial data

- Interrupt serial data to create high/low control

signal

 In the original level 1 block diagram the voice recognition block had more inputs and

outputs. There was supposed to be two microphone connections to this block diagram opposed to

only one microphone. Another input that is deleted is serial data coming back to the voice

recognition chip from the microcontroller. There was supposed to be a warning buzzer as an

output to warn the player of invalid chess movement. Now there is only one microphone but the

other functions and connections are on the microcontroller. The complications of the EasyVR

chip will be discussed in Section 3.31. [AJ]

21

3.3.1 Voice-Activation Module Hardware

 A few different voice modules were considered but the EasyVR Speech Recognition

Module 3.0 was chosen. The EasyVR device was the most cost efficient choice. The EasyVR

device can use any host with a UART interface powered at 3.3V-5V. It can have up to 32 user

defined speaker verification commands which is a sufficient amount of commands needed to

move the chess pieces. In Error! Reference source not found. the inputs and outputs of the EasyVR

evice can be seen.

 The EasyVR device was not so easy to use as the name suggests. The first test that was

conducted with the EasyVR was displaying an LED using one of the GPIO pins. The second test

was to connect the 8 ohm speaker to produce a buzzer sound. Both of the tests were achieved.

The third test was to connect the microphone to the EasyVR device. All three components

worked for a few days, but then the EasyVR completely stop functioning. There was a concern

that electrostatic discharge could have possibly damaged the device, but EasyVR device power

indication LED was still on.

 The problem delayed the project for almost two weeks. It was decided to make one final

test and connect the EasyVR to a computer via UART USB cable. The EasyVR was then

connected to the Commander software (software that is used with the EasyVR device) and was

rebooted. The EasyVR device became functional in the sense that the microphone could be used

but when a GPIO pin was connected to an LED would not work. It was then decided by the

design team to only use the EasyVR for player command input. The only reasoning that can be

made from this conflict is that the pins draw too much current. This does not allow the

microphone to have enough current when other connections are made.

 Then few more weeks of working with the EasyVR went by. When the device was

connected to the microcontroller it was not realized that the EasyVR was sending random status

bytes to the microcontroller. This took a few weeks to debug because it was not understood why

the EasyVR would be sending random error, success, or other status bytes. It was also then that it

was decided that a dial pad would have to be used as a second command input. It was realized

that the microphone couldn’t be idling or it would pick up any status. That is why the ‘*’ key on

the dial pad has to be pushed to allow the microphone to listen.

 Since there were a lot of complications with the EasyVR device only the microphone is

connected to the device as well as communication pins to the microcontroller. There is only one

microphone that will be used for both players. The microphone is capable to pick up sound an

arm length away from the player (roughly 0.6-0.8m). The EasyVR has a cable connector (J6)

that directly connects the microphone to the EasyVR. The microphone will rotate by a servo

motor which is controlled via the microcontroller. The servo motor will move the microphone to

the direction of the player that needs to input a command.

 The EasyVR was very difficult to configure. For some reason other pins couldn’t be used

without disturbing the microphone, so the microphone is the only functionality of the EasyVR that

was used. The four pins used were TX and RX to the microcontroller. Also 5V and ground pins

were connected to the microcontroller on the EasyVR, and of course the microphone was

connected but it wasn’t a pin, it was a cable connector (J6). The connections can be seen in Figure

7.

22

Figure 7 Voice Activation Level 2 Block Diagram

 When the player says his or her instruction, the EasyVR device will be looking for

keywords. The keywords are in Table 8. The EasyVR device will convert the sound into electric

pulses and the software will take these as binary bits. The algorithms programmed into the

EasyVR device will analyze these signals and create text with them. The text will then be sent to

the microcontroller where it will need to be analyzed so that it can send the appropriate

commands to the respective module.

 [AJ]

3.3.2 Voice-Activation Module Software

 The commands that acts as inputs to the system are programmed into the EasyVR device

with software that comes with the purchase of it. Each command is stored in either a speaker

independent or speaker dependent group of trained vocal phrases. For this system, speaker

independent is necessary for any person to be able to use it. However, the software for training

custom speaker independent commands is way too expensive for the set budget so no training

was actually done to the EasyVR chip. Although, there are enough speaker independent

commands programmed into the chip already so substitutions such as letters to numbers and

“promotion” to “look” had to be made. To be able to function, the microcontroller needed to talk

the chip via a UART protocol. For C programming, which is what this system is using, the

EasyVR comes with a header file named “Protocol.h” and contains a list of predefined variables

that the MCU can send to the device. The microcontroller program first needs to set up the

EasyVR device software, such as telling it what language the commands are going to be said in

and at what distance the players will be from the microphones so that it can pick up their voices.

Once that is done, each time the VR device receives an audio input, it will try to match it with

23

the list of programmed commands. When a match is made and the microcontroller is asking for

one, the device first sends a success byte, waits for the microcontroller to ask it for the command,

and sends it back the index of the command in the group. Then, after each command sent, it

waits for the microcontroller to send serial data for the next command.

 [KB]

3.4 Position System

 The position system moves the chess pieces without human motion. This system is made

up of two linear motion tracks and a solenoid. The linear motion tracks will move the solenoid

underneath of the chess piece from underneath of the playing board. When the solenoid is placed

it is energized providing magnetic coupling the iron based chess piece. This will allow

movement of the solenoid to translate into movement of the chess piece.

Figure 8: Level One Block Diagram for Position System

24

Table 6 Position System Block Diagram Chart

Module Stepper Motor Drive

Inputs - Number of steps

- Direction of steps

- Enable signal

Outputs - Phase 1 +

- Phase 1 –

- Phase 2 +

- Phase 2 -

Functionality - Control stepper motor

Module High Voltage switch

Inputs - Enable signal

Outputs - Voltage applied to the solenoid

Functionality - Allows the microcontroller to operate the solenoid

Module Stepper Motor X (or Y)

Inputs - Phase 1 +

- Phase 1 –

- Phase 2 +

- Phase 2 -

Outputs - Movement in the X (or Y) direction

- Sensor

Functionality - To relocate solenoid

Module Sensor

Inputs - Movement in the X or Y direction

Outputs - Feedback to microcontroller

Functionality - Locate solenoid in case it is not position correctly

Module Solenoid

Inputs - Current

Outputs - Coupling with chess piece

Functionality - To hold onto chess piece to relocate

 The two linear motion tracks is made using two stepper motor drives. The stepper motor

drive will take three input signals from the microcontroller; a pulse train which will set the time

interval between steps in the motor; a direction signal which is a logic high or low that sets

whether the motor steps clockwise or counterclockwise; and an enable command which will also

be a logic high or low that allow the stepper motor to respond to other commands.

 The linear tracks will have the stepper motor moving a belt and pulley with a support rail.

The stepper motor turning will move a belt. The belt is attached to a linear bearing that is moving

back and forth along a support rail. This rail is used so that the belt will not have to support

weight on its own. A platform is attached to the linear bearing which will move along the rail for

the length of the chess board.

25

There is a lower and upper linear track. The lower linear track is parallel with the chess

pieces rows as the horizontal path. A support rail will be needed on the opposite side of the board

in order to support both ends of the upper linear track and rail. The opposite rail will not have a

pulley system attached to it. The upper linear track will be supported by the linear bearings on

the lower linear track.

Figure 9 Example of Linear Track

 A major advantage of the stepper motors is the ability to be controlled with an open loop.

However, for this project some amount of positioning feedback will be required. At start up the

microcontroller will need to know the position the solenoid is in both directions in order to

provide commands to the stepper motors for their next action. The type of feedback that will be

used is two resistive feedback strips. The microcontroller will have map the chess board and

graveyards grid locations with the amount of steps the stepper motors will be taking. The

microcontroller will compare the current location using the feedback system to the grid map to

make sure the solenoid of the position system is in the right chess board square. This will check

the position system’s movements.

26

Figure 10: X-Y Table Configuration

The last part of the position system is the solenoid, pictured below in Figure 11. When

the solenoid has been moved under the desired chess piece the microcontroller will turn on the

solenoid to magnetically couple it with the position system. The microcontroller will then send

commands to move the solenoid to a new location determined by the player. Once the position

system has reached its destination the solenoid will be disabled to release the chess piece and the

position system will await its next command.

Figure 11: X-Y Table configuration

 The position system went through two designs. The first had the platforms attached to

linear bearings which the belt would move. This design had to be abandoned because of issues

the University had with ordering parts from the vendor that was specified. The vendor used for

the redesign, Open Builds, was suggested by Eric Rinaldo. Their parts had a very modular design

27

to them allowing us to easily stack the linear tracks in order to create the X-Y table. A minor

issue was tensioning that the belts had in this system. The belt that was bought was open ended

and had to be secured to each end of the platform by zip ties, this can be seen in Figure 9. We

did have two occasions where the belt came loose and reattaching and tensioning was

troublesome.

We did intend to have limit switches at the edges of the boards to be in a startup routine

where the system will move the platform to a corner. As the system works currently it assumes

that the position at start up is the square 5-2 regardless of the actual position of the platform. The

reason that the limit switches was twofold, for out testing they were not needed, but they would

be essential for a commercial product.

 [WW]

3.5 Feedback

 The feedback used for this project is a linear position sensor integrated into the position

system. The linear position sensor will monitor the location solenoid on both the x and y axis.

Position dependent resistances are used as part of a voltage divider configuration as seen

schematically below.

 One resistive strip is placed along the x track and the second is placed along the y track.

The strip in the x direction is 400mm long and the y direction strip is 750mm long. The total

resistance of each strip is 20K Ohm with a tolerance of 20%. The resistive strips is place in-

between the wheels of the position systems and the frame as seen in the following Figure 12.

Figure 12 Resistive Feedback Strips Position

 As the wheel presses down on the top layer it forces a silver shunt to make contact with a

carbon resistor. In Figure 13 an actuator pressed down on the silver shunt is shown.

28

Figure 13 SoftPot Actuation Diagram

 The resistance of the potentiometer will change based on where the wheel is pressed down

along the strip. When the wheel is at the far side of the track the strip’s resistance is 0 kΩ and as

the wheel travels along the length of the strip the resistances goes up to 20 kΩ. A 10 kΩ resistor

was chosen as the first resistor in the voltage divider so that when the feedback strip is at 0 kΩ

the feedback system will not act as a short circuit draining excess current from the power supply.

After the feedback system was installed measurement were taken to test for any defects.

In order to obtain to following data set the solenoid was moved manually to the center of each

square and on the line in-between squares for both the rows and columns. Figure 14 was

generated by entering these resistance values into Matlab and applying a voltage divider formula.

It can be seen in Figure 14 that the characteristic curves of the resistance strips have varying

consistency. This is unlikely to cause a problem because the strips still have a unique value at

each position.

Figure 14 Resistive Strip ADC Voltages per Space

29

During the debugging phase it was found that when the solenoid moved the chess piece,

the piece would lag the solenoid. When the solenoid was moved to the center of a square the

chess piece would be approximately 1 cm behind the solenoid. The solution to the problem was

to add more steps to the relocation command making the solenoid overshoot its destination and

leaving the piece in the center of the square. As a result of this the feedback systems correct

position values needed to be recorded to reflect the movement commands of the position system.

The microcontroller would need to be programmed with correct voltage ranges in memory that is

can use to compare with the actual measurements.

 The process to obtain these voltage ranges was to power up the solenoid and the

feedback circuit and manually move the solenoid to move pieces while simultaneously recording

the voltage values of the feedback circuit through the use of a digital mutli-meter. A piece would

be moved one square forward until the piece was centered on the square and the voltage drop

across the potentiometer was recorded. The piece was then moved forward by a small amount so

that the piece was still in the acceptable center of the square and the voltage value was again

recorded. This created an acceptable voltage range that the microcontroller could interpreted as

the solenoid being in the correct position. This process of finding voltage ranges was done for

moving in each direction, +X, -X, +Y, and -Y to account for lag in each direction.

 The feedback system will have a unique voltage reading for each position that the

solenoid can be in. The microcontroller will compare this voltage readings with a set of known

correct voltage ranges. If the voltage readings does not match what the microcontroller was

expecting then the microcontroller will add the necessary number of steps to correct the problem.

This ensures that any stepper motor slippage is accounted for.

It is important that the resistive strips stay consistent after long term use because any

variation in their characteristic resistance curves changes their correct voltage ranges which

could result the position system thinking a piece is in the correct position when it is not. The

following calibration procedure should be followed in order to correct for any variations that

might occur over time.

 Make sure that the playing board is fix in place. Any variation in it position will misalign

the feedback sensors.

 Remove all but one chess piece from the board. This will be the test piece.

 After checking to make sure that the entire device is powered off, disconnect the power

wires from the stepper motor drive.

 Using a digital multi-meter measure the voltage drop across the potentiometer that needs

to be calibrated.

 Turn on power to the device.

 Gathering correct voltage ranges for the rows (Y direction)

o Move the test piece and the magnet to the D1 square manually

o Make sure the magnet is centered under the square

 Record voltage value.

30

 Take your voltage value and add 0.01V to get the upper voltage

limit then take your voltage and subtract 0.01V to obtain the lower

voltage limit. (Vn ± 0.01V)

o Move the solenoid to the D2 square and repeat previous step recording correct

voltage ranges for all rows.

 Gathering correct voltage ranges for the columns (X direction)

o Repeat the steps of gathering correct voltage ranges in the Y direction .

 No values needed when the piece is on a designated spacer square. The

 Once collecting correct voltage ranges is finished count how many ranges have been

collected. There should be 20.

 These voltages should be compared with the values that are currently in the system. If the

values are different they should be updated.

 [MH]

3.6 Electromagnet/Solenoid

The original design called for an electromagnet to couple with the chess pieces. The

electromagnet was designed by using fundamental electromagnetic equations to determine the

current and number of turns needed to generate the appropriate force on the chess pieces. The

electromagnet was desirable because of the easy idea of turning it on/off. To turn it on/off all that

needed to be done was turn on/off current to the windings. The design team thought that the

electromagnet would have the right amount of magnetic force to attach to the pieces, but

unfortunately the magnetic force was not consistent. Since the electromagnet was not consistent, a

solenoid with a magnet on the shaft was used.

The first electromagnet prototype was made of a galvanized steel bolt with magnet wire

wrapped into the threads of the bolts. The first prototype was built to the design specification and

was extremely weak. It was later discovered that galvanized steel has very poor magnetic

properties compared to most iron based materials. The size of the bolt was still too large so it was

assumed that the core was not in the saturation reign, because of this more turns were added to the

core to try to increase the magnetic flux density. This created a new problem because only so many

turns could be added to the core before loops of wire started to fall of the ends. It became apparent

that there needed to be a way of contain the large number of turns around the core that would be

needed in order to achieve the desired field strength. An empty wire spool from the lab was finally

used to hold the magnetic wire turns. This worked out perfectly because it allowed us to test out

different magnetic cores.

The first 3 layers of magnet wire were hand wound to ensure that the crucial inner turns of

the winding were as tightly wound as possible. After the first three layers were wound the spool

was place on an electric drill the large spool containing the magnetic wire was placed on a

31

spinning shaft. The drill was used to wind the remainder of the magnet wire onto the small spool

unto it was full. In the previous prototype more turn needed to be added which lead to a time

wasting process of disconnecting the electromagnet, soldering more magnet wire on, and

rewinding. It is for this reason that the spool was wound to its maximum capacity with the idea

being that if the electromagnet was too strong the current could be reduced. This process took

approximately one and a half hours. The electromagnet can be seen in Figure 15.

Figure 15 Electromagnet

In total 360 meters of 30 gauge magnet wire was used to construct the solenoid of the

electromagnet. The length of magnet wire was found by measuring the internal resistance of the

magnet wire and dividing it by the Ω/m value of 30 gauge wire. The number of turns was roughly

of 5,000. The electromagnet was still too weak to drag chess pieces and low core quality core

material is the suspected cause.

The galvanized steel core of the electromagnet was replaced by 1018 steel which has a

theoretical permeability of around 100.The steel 1018 core also did not fit into the wire spool

correctly. The spool had an inner diameter of 1 inch and the steel core had a diameter of ½ inches

meaning that the air gap in-between the coil and the core likely causes a significant amount of

reluctance that impeded magnetic flux. The electromagnet was eliminated because it was not

reliable to move the pieces around.

32

The next design that was used to attach to the chess pieces magnetically underneath of the

board was a solenoid. The solenoid had a strong 1 inch diameter disk magnet attached to the shaft

of the solenoid. When the solenoid was energized the shaft would lift up making the magnet closer

to the board where the chess pieces were resting. The magnet was not directly touching the

underneath of the board. It was capable of magnetically coupling with the iron nail inside the chess

piece to relocate it. Since the magnet was always going to have a consistent magnetic field, this

design was optimal for the overall design of the project.

 The solenoid was controlled by a low side transistor switch connected to the 35 volt rail of

the power supply. The microcontroller turned the transistor on and off to raise and lower the

solenoid respectively. The microcontroller would send a high signal to activate the switch to

supply current to the solenoid to raise the shaft up. The solenoid would stay energized until the

chess piece relocation was finished. The solenoid with the magnet attached can be seen in Figure

16.

Figure 16: Solenoid

[MH, AJ]

33

3.7 Power Supply

The power supply needs to be long lasting in case there is a long and competitive game of

chess. To ensure that the game can be played for a long time, the power supply is plugged into a

standard wall outlet of 120V AC 60 Hz. The power supply chosen for the project is Stepping

System Power Supply, model STP-PWR-3024, from Automation Direct. Automation Direct is

donating this power supply that goes along with the stepper motors that they are also donating to

the project.

The power supply will output 35V DC at 4A. There is an additional output of 5V DC at

1A. The additional output of 5V DC at 1A will supply the Voice Activation Module. There is a

need of 5V DC to the microcontroller, so a DC to DC converter will be added to the output 35V

DC at 4 A. The DC to DC converter will convert 35V DC to 5V DC at maximum of 2A. Lastly,

35V DC will supply the stepper drives.

Figure 17 Power Supply Block Diagram 2

Table 7 Power Supply Block Diagram Chart

Module STP-PWR-3504

Inputs - 120V AC

Outputs - Linear Voltage Regulator

- 35V DC

- 5V DC

Functionality - Convert 120V AC to 35V and 5V DC.

 [AJ]

Module Linear Voltage Regulator

Inputs - 35V DC

Outputs - 5V DC with up to 2A

Functionality - Convert the voltage from 35V DC to 5V DC.

34

3.8 Circuit Schematic

 The schematic version of the overall design can be seen on the next page. This schematic is

grouped into 3 section; position system, microcontroller, and voice activation module. The position

system is outlined in yellow, the microcontroller in blue, and the voice activation module is

outlined in purple.

 The position system consists of four different components; the stepper motor drives,

stepper motors, feedback potentiometers, and solenoid. The stepper motor drives actuate the

stepper motors and the stepper motors will move the solenoid into position. The solenoid will

couple with the ferromagnetic material in the chess pieces which will relocate the chess piece. The

potentiometer feedback will communicate to the microcontroller the positions system’s exact

location.

 The next main outlined section is the microcontroller. The microcontroller will receive

sequential data from the voice activation module regarding current piece location and desired piece

location. If the algorithm determines that the piece movement is valid it will send digital control

signal to the stepper motor drive. The microcontroller also lights up the 3 LEDs. Two of the LEDs

are player indication turn and the third LED indicates that the microphone is listening for a

command.

 The third outlined component is the voice activation module. This module takes in a voice

input via the microphone. It then converts the data to serial data to communicate to the

microcontroller. The voice recognition chip is powered by 5 VDC by the power supply.

The following changes have been made since the end of the design stage;

 Two 10 k Ω resistors where added to the feedback system.

 Servo was added to the Voice Activation module.

 Keypad added to Microcontroller module.

 Fly back diode and 150 k Ω resistor added to position system.

 Solenoid replaced the electromagnet.

 Fast acting fuses removed from position system.

 Switching circuit removed from Voice activation module.

 LED display matrix removed.

 Buzzer relocated to microcontroller module.

 LEDs relocated to microcontroller module.

 Two voltage regulators added.

 470 Ω resistors for LEDs replaced with 150 Ω resistors.

 Low side switch for solenoid added to microcontroller module.

 Two 15 Ω 10 W wire wound power resistors added to solenoid circuit.

The differences can be seen in Figure 18 and Figure 19.

[MH]

35

Figure 18 Proposed Overall Schematic

36

Figure 19 Achieved Overall Schematic

37

3.9 Chess Set

3.9.1 Overall Chess Set

 The overall chess set was not supposed to exceed the dimensions of 75 x 46 x 27 cm but

unfortunately it did. The dimensions of the chess set are 101.6 x 50.8 x 25.4 cm. The tracks of

the position system were larger than expected. Since the electromagnet was replaced by a

solenoid the height of the board also increased. The top of the board is made of Plexiglas and

wood. The playing board is made out of Plexiglas that is held in by a sheet wood. Inside of the

chess set the location of the power supply, microcontroller, voice activation module, speaker,

and circuits can be found. The ideal chess set construction can be seen in Figure 20 and the actual

chess set can be seen in Figure 21.

Figure 20 3D Diagram Chess Set

Figure 21 Actual Chess Set

[AJ]

38

3.9.2 Layout of Board

 The area where the chess game is played on what is called the playing board. The playing

board is an 8 by 8 grid with 5 cm x 5 cm squares (total area of 40 cm x 40 cm). The chess pieces

are organized in a 2 x 8 matrix by chess piece type. The left and right sides of the playing board

have areas known as the graveyard. The graveyard is used to place the eliminated pieces off of

the playing board. The graveyard is a 2 by 8 grid with squares of 5 cm x 5 cm. The spacing in

between the playing board and graveyards is a 5 cm space. There is a 5 cm space form the edge

of the board to the edge of the playing board. The overall board was made out of Plexiglas and

wood, so there is no magnetic interference. The overall top of the board can be seen in Figure 22.

Figure 22 Top Layout of Board

[AJ]

3.9.3 Chess Pieces

 The chess pieces are hollow plastic with a base of 1.5 cm diameter. The diameter of the

pieces are much smaller than the squares on the playing board (5 cm x 5 cm). In each piece there

is an iron nail in the center of a galvanized nut. The iron nail is for the magnet to couple with and

the galvanized nut is to add weight which makes the pieces more stable as they move. The size

of the pieces makes sure that the magnet on the solenoid won’t interfere with other pieces when

one piece is attached while being relocated. For example when a knight jumps over a row of

pawns, the board and pieces are sized such that the knight is able to slide in between the pawns

to the desired location. The first initial set up of the board, the pieces will need to be physically

placed on the board. After the first initial set up the pieces will not need physical assistance again

as the position system will reposition the pieces for a rematch. A game that would be replayed is

hands free because the position system is capable of moving the pieces from the sides of the

board, the graveyard slots, to the starting positions.

 [AJ]

39

3.10 Playing the Game
 Table 8: Input Commands

Command Speech Dial-pad

1 1 1

2 2 2
3 3 3

4 4 4

5 5 5

6 6 6

7 7 7
8 8 8

Restart 0 0

Castle 9 9

With rook in column 1 1 1

With rook in column 2 8 8
Promotion look #

Rook 1 1

Knight 2 2

Bishop 3 3
Queen 4 4

Notify checkmate 10 #

 Controlling the mechanism is done by giving it a series of commands either by voice or

by dial pad. To do a voice command, the player must press down on the * button on the keypad.

This tells the voice recognition chip to listen for a command. To move a chess piece, the player

needs to input a source square and a destination square. The commands are just the numbers of

the squares on the grid, done by row first and then column. For example, two commands inputted

as “1” and “1” would make the white rook next to the graveyard the source piece. Once four

numbers are inputted, the position system will move the solenoid underneath the source square,

if there is a piece there, and move it to the destination square, considering it is a legal chess

move. This is how the game is played even when capturing. For example, a player may input the

destination square for a pawn to be diagonal if there is a piece there. Even “en passant” works

this way. Of course, there are other commands programmed in to be used.

 For a player to do a castle, they need to either tap “9” on the keypad or say it to the

microphone. This puts the player in a castle waiting position and the program waits for input to

know what rook to castle with. The rooks are just inputted using the number of the column they

are on, either “1” or “8.” When a player reaches the other side with one of their pawns, they are

put into a promotion waiting position. Here, the player needs to first say “look” or simple tap “#”

on the keypad. This puts the mechanism into yet another waiting the position and the player

needs to tell the program what piece to look for in the graveyard. As shown in Table 8 above, the

numbers 1 through 4 correspond to different pieces. Lastly, once the player cannot do any moves

because they are all leaving the king in check, they may signify checkmate by saying “10” to the

microphone or by pressing down the # button on the keypad. If the players would like to play

40

another game, they may press “0” on the keypad or say it to the microphone. This will move all

the pieces back to their initial positions and readjust the solenoid.

 [KB]

4. MAINTENANCE

There is not as much maintenance that needs to be kept up with the chess board. Simple

checks need to be performed of as checking for loose wires or overheated components. All of the

wiring is either solder or held in with a bolt and housing combination. The stepper motors can

become hot with constant use of relocating pieces. There are heat sinks on the stepper motors but

overheating is something to be aware of. The bearings and tracks of the position system may need

lubrication to keep the position system operating smoothly. It is imported to check from time to

time that the mounting screws on the platform of the position system do not shake loose as the

actuation of the solenoid can cause a jarring motion that can loosen screws.

[AJ, MH]

5. BUDGET

 One of the requirements of the design was to stay inside our $400.00 budget. It can be seen

in Table 9 that the budget went over $270.00. The prices are rounded up to the nearest dollar but

this wouldn’t have improved the fact that the design went over budget. The components that are

listed in Table 9 are the components that were actually used in the achieved design. There have

been additional components that were ordered and not used. Unfortunately the design group used

all $400.00 that the school provided to us.

 Our design group was very fortunate to have many people and companies donated to us.

We had Automated Direct donate the stepper motors and drives to us. The microcontroller and

stepper drives were donated to us by our group member, William’s father. The EasyVR device was

donated from Mitchell’s intern company. The rest of the donations came from the University or

other group member’s family members.

Table 9 Actual Cost

Purchased Components Donated Components Price

Position System 210.00

Feedback 40.00

Servo 15.00

LEDs 8.00

Buzzer 6.00

Plexiglass 43.00

Chess Pieces 5.00

 Stepper Motors 36.00

 Stepper Drives 140.00

 Power Supply 40.00

 Small Electronics 15.00

 Wood 10.00

41

 Mechanical Hardware 25.00

 Dail Pad 13.00

 Selenoid 14.00

 Microcontroller 10.00

 EasyVR 40.00

Total 670.00

 The budget could have been improved in a few ways. One way would have been not

purchasing excess Plexiglass. Another would have been having the capability to purchase the

position system from Amazon than from Open Build. Amazon would have cut the cost in half. A

third way would have been to create a circuit to convert audio signal from the microphone to serial

data for the microcontroller to read.

 [AJ]

6. CONCLUSION

 A lot of time and effort was used to create the design of the chess board in the fall

semester. Spring semester was the design teams chance to implement the design that was so

thought carefully about. We had three major components of our design altered. The altercations

didn’t cause our design to dramatically change but it did push back our schedule.

 The first component of the overall design that was changed was replacing the

electromagnet with a solenoid with a magnet attached to the shaft. The electromagnet was not

strong enough to move the largest chess pieces (the queen) and it also would lose its magnetic field

after 20 minutes of being energized. This was not going to be suitable to play a game of hands free

chess. An immediate solution needed to be put to place and the solenoid was a great replacement.

 The second component that changed the design work that was done in the fall semester was

the EasyVR device. If a LED, 8 ohm speaker, a second microphone would be attached to the other

pins of the device the primary microphone would not function. The additional pins on the device

would draw too much current to them and not supply enough current to the clip location of the

primary microphone. The 8 ohm speaker had to be replaced with a buzzer that was an output of the

microcontroller. The indication LEDs were moved from the EasyVR device to the microcontroller.

Also the design had to be altered to have one microphone instead of two microphones. An

additional problem with the EasyVR device is when the microphone would idle random status

bytes would be sent to the microcontroller. To avoid this dail pad had to be incorporated in the

design. The dail pad was used as a secondary input and a way to turn on/off the microphone.

 The third altercation to the design was the overall chess set structure. The position system

covered a larger area than proposed and it also added height clearance. The solenoid also forced

the top layout of the board to be raised. Another component that was not thought about was the

weight of the power supply. It was a lot heavier then imagined. The original design requirement

was to have the chest set be capable for one person to carry. Since there was a lot of mechanical

components that was not thought about, the chess set have to be carried by two people.

 [AJ]

42

REFERNCES

[1] Disability Status: 2000, "Census 2000 brief", United States department of commerce, Available:

https://www.census.gov/prod/2003pubs/c2kbr-17.pdf

[2] H. Amason, J. Burbridge, B. Nottingham, T. Tran, “Magic Chess,” University of Central

Florida. (Spring 2014) Available:

http://eecs.ucf.edu/seniordesign/fa2012sp2013/g03/documents/SDCP2.pdf

[3] “How to Build an Arduino Powered Chess Playing Robot,” Instructables.

Available:http://www.instructables.com/id/How-to-Build-an-Arduino-Powered-Chess-

Playing-Robot

[4] “EasyVR Speech Recognition Module 3.0,” Robotshop, Available:

http://www.robotshop.com/en/easyvr-speech-recognition-module-30.html

[5] R. Clarke, "Magnetism: quantities, units and relationships", University of Surrey, Available:

http://info.ee.surrey.ac.uk/Workshop/advice/coils/terms.html#eflen

[6] "Friction Formula", Tutorvista, Available: http://formulas.tutorvista.com/physics/friction-

formula.html

[7] "Friction and Coefficients of Friction", The Engineering Toolbox, Available:

http://www.engineeringtoolbox.com/friction-coefficients-d_778.html

[8] S. Norr, "Magnetic Circuits", University of Minnesota Duluth, Available:

http://www.d.umn.edu/~snorr/ece4501s4/MAGCKTS.PDF

[9] "What is Hopkinson's Law?", Electrotecknik, Available:

http://www.electrotechnik.net/2014/06/what-is-hopkinsons-law.html

[10] "Solenoid Properties", CalcTool, Available:

http://www.calctool.org/CALC/phys/electromagnetism/solenoid

43

APPENDIX

A. Data Sheets

A.1. Microcontroller-http://www.cypress.com/file/139956/download

A.2. SoftPot (1) https://www.sparkfun.com/datasheets/Sensors/Flex/SoftPot.pdf

A.3. SoftPot (2) - https://www.sparkfun.com/datasheets/Sensors/Flex/SoftPot-Specs.pdf

A.6. Voice Recognition Chip - http://www.robotshop.com/media/files/pdf/manual-easyvr3.pdf

A.7. Stepper Motor Drivers-

https://www.automationdirect.com/static/manuals/surestepmanual/surestepdrive3_datasheet.

pdf

A.8. Stepper Motor - http://cdn.sparkfun.com/datasheets/Robotics/42BYGHM809.PDF

A.9. Inverter - http://www.jameco.com/Jameco/Products/ProdDS/893179.pdf

A.10. N-Channel MOSFET-

http://cdn.sparkfun.com/datasheets/Components/General/FQP30N06L.pdf

http://www.cypress.com/file/139956/download
https://www.sparkfun.com/datasheets/Sensors/Flex/SoftPot.pdf
https://www.sparkfun.com/datasheets/Sensors/Flex/SoftPot-Specs.pdf
http://www.robotshop.com/media/files/pdf/manual-easyvr3.pdf
https://www.automationdirect.com/static/manuals/surestepmanual/surestepdrive3_datasheet.pdf
https://www.automationdirect.com/static/manuals/surestepmanual/surestepdrive3_datasheet.pdf
http://cdn.sparkfun.com/datasheets/Robotics/42BYGHM809.PDF
http://www.jameco.com/Jameco/Products/ProdDS/893179.pdf
http://cdn.sparkfun.com/datasheets/Components/General/FQP30N06L.pdf

44

B. Gantt Chart

B.1 Fall Semester Schedule

Fall Semester

Red Overall Task Length (Paperwork)

Blue Paper Rough Draft

Green Diamond Paper Review with Advisor

Pink Final Paper Edits

45

B.2 Spring Semester Schedule

Spring Semester

Orange Overall Task Length (Assembly)

Blue Assembly Task

Yellow Debugging

Purple Update Final Report

Red Diamond Finish Report Due Date

46

C. Parts List

Position

System
Part Number Description Quantity

Price per

Unit
Price

Total
Vendor

Website

feedback
744-SP-L-0400-

2033ST
400mm 1 $11.71 $11.71 Mouser

http://www.mouser.com/ProductDetail/Spectra-Symbol/SP-L-0400-203-3-
ST/?qs=sGAEpiMZZMvWgbUE6GM3Oc6i9sqQyBsU5xk5VVnNQlQ%3d

feedback
744-SP-L-0750-

2033ST
750 mm Linear

pressure sensor
1 $27.88 $27.88 Mouser

http://www.mouser.com/ProductDetail/Spectra-Symbol/SP-L-0750-203-3-
ST/?qs=sGAEpiMZZMvWgbUE6GM3Oc6i9sqQyBsUI0fLnd5p%2fsI%3d

 kit1005
30in shaft 12mm

diameter shaft
1 $22.37 $22.37 Amazon

http://www.amazon.com/12mm-Shaft-Hardened-Linear-
Motion/dp/B00FM3X9A8/ref=sr_1_3?s=industrial&ie=UTF8&qid=1448125359&sr=1-3&keywords=linear+motion+12mm+shaft

 SF80450
45cm 8mm

diameter shaft
1 $30.24 $30.24 Amazon

http://www.amazon.com/FBT-Diameter-8-Hardened-Linear-
Motion/dp/B00WJFRAHU/ref=sr_1_fkmr0_1?s=industrial&ie=UTF8&qid=1448125905&sr=1-1-
fkmr0&keywords=linear+motion+12mm+shaft+450mm

 SK8 8mm shaft supports 1 $8.92 $8.92 Amazon
http://www.amazon.com/FBT-support-SK8-Linear-Support/dp/B00X75S9SA/ref=sr_1_1?m=A1VPX6Z58UA6YU&s=merchant-
items&ie=UTF8&qid=1448127278&sr=1-1&keywords=8mm+shaft+support

 SK10
12mm shaft

supports
1 $9.04 $9.04 Amazon

http://www.amazon.com/FBT-support-SK10-Linear-Support/dp/B00X75SGOW/ref=sr_1_22?m=A1VPX6Z58UA6YU&s=merchant-
items&ie=UTF8&qid=1448126427&sr=1-22&keywords=12mm+bearing#biss-product-description-and-details

 LM12UU 12mm bearing 1 $4.01 $4.01 Amazon
http://www.amazon.com/SODIAL-SCS12UU-LM12UU-Bearing-
Bushing/dp/B00U8MPSE8/ref=sr_1_1?s=hi&ie=UTF8&qid=1448117668&sr=1-1&keywords=Linear+Motion+Bearing+1%2F2in

 kit991 8mm bearing 2 $10.27 $20.54 Amazon
http://www.amazon.com/Linear-Motion-Bearing-Closed-
Metric/dp/B002BBH5Z4/ref=sr_1_8?s=industrial&ie=UTF8&qid=1448127984&sr=1-8&keywords=8mm+linear+bearing

 1254N17 Belt pulley 2 $6.30 $12.60 McMaster http://www.mcmaster.com/#1254n17/=zwq5bs

 7887K74 1/4in belt 5ft6in 1 $4.00 $4.00 McMaster http://www.mcmaster.com/#timing-belts/=zydl6u

 7887K221 1/4in belt 3ft 2in 1 $2.71 $2.71 McMaster http://www.mcmaster.com/#timing-belts/=zydl6u

 550 idler pulley 2 $5.45 $10.90 McMaster http://openbuildspartstore.com/smooth-idler-pulley-wheel-kit/

 Total $164.92

Power

Supply

 102-2306-ND
DC-DC converter-

out 5V 2A max
1 $17.53 $17.53 Digikey http://www.digikey.com/product-detail/en/VYB10W-Q48-S5-T/102-2313-ND/2690090

 Total $17.53

http://www.mouser.com/ProductDetail/Spectra-Symbol/SP-L-0750-203-3-ST/?qs=sGAEpiMZZMvWgbUE6GM3Oc6i9sqQyBsUI0fLnd5p%2fsI%3d
http://www.mouser.com/ProductDetail/Spectra-Symbol/SP-L-0750-203-3-ST/?qs=sGAEpiMZZMvWgbUE6GM3Oc6i9sqQyBsUI0fLnd5p%2fsI%3d
http://www.amazon.com/12mm-Shaft-Hardened-Linear-Motion/dp/B00FM3X9A8/ref=sr_1_3?s=industrial&ie=UTF8&qid=1448125359&sr=1-3&keywords=linear+motion+12mm+shaft
http://www.amazon.com/12mm-Shaft-Hardened-Linear-Motion/dp/B00FM3X9A8/ref=sr_1_3?s=industrial&ie=UTF8&qid=1448125359&sr=1-3&keywords=linear+motion+12mm+shaft
http://www.amazon.com/FBT-Diameter-8-Hardened-Linear-Motion/dp/B00WJFRAHU/ref=sr_1_fkmr0_1?s=industrial&ie=UTF8&qid=1448125905&sr=1-1-fkmr0&keywords=linear+motion+12mm+shaft+450mm
http://www.amazon.com/FBT-Diameter-8-Hardened-Linear-Motion/dp/B00WJFRAHU/ref=sr_1_fkmr0_1?s=industrial&ie=UTF8&qid=1448125905&sr=1-1-fkmr0&keywords=linear+motion+12mm+shaft+450mm
http://www.amazon.com/FBT-Diameter-8-Hardened-Linear-Motion/dp/B00WJFRAHU/ref=sr_1_fkmr0_1?s=industrial&ie=UTF8&qid=1448125905&sr=1-1-fkmr0&keywords=linear+motion+12mm+shaft+450mm
http://www.amazon.com/FBT-support-SK8-Linear-Support/dp/B00X75S9SA/ref=sr_1_1?m=A1VPX6Z58UA6YU&s=merchant-items&ie=UTF8&qid=1448127278&sr=1-1&keywords=8mm+shaft+support
http://www.amazon.com/FBT-support-SK8-Linear-Support/dp/B00X75S9SA/ref=sr_1_1?m=A1VPX6Z58UA6YU&s=merchant-items&ie=UTF8&qid=1448127278&sr=1-1&keywords=8mm+shaft+support
http://www.amazon.com/FBT-support-SK10-Linear-Support/dp/B00X75SGOW/ref=sr_1_22?m=A1VPX6Z58UA6YU&s=merchant-items&ie=UTF8&qid=1448126427&sr=1-22&keywords=12mm+bearing#biss-product-description-and-details
http://www.amazon.com/FBT-support-SK10-Linear-Support/dp/B00X75SGOW/ref=sr_1_22?m=A1VPX6Z58UA6YU&s=merchant-items&ie=UTF8&qid=1448126427&sr=1-22&keywords=12mm+bearing#biss-product-description-and-details
http://www.amazon.com/SODIAL-SCS12UU-LM12UU-Bearing-Bushing/dp/B00U8MPSE8/ref=sr_1_1?s=hi&ie=UTF8&qid=1448117668&sr=1-1&keywords=Linear+Motion+Bearing+1%2F2in
http://www.amazon.com/SODIAL-SCS12UU-LM12UU-Bearing-Bushing/dp/B00U8MPSE8/ref=sr_1_1?s=hi&ie=UTF8&qid=1448117668&sr=1-1&keywords=Linear+Motion+Bearing+1%2F2in
http://www.amazon.com/Linear-Motion-Bearing-Closed-Metric/dp/B002BBH5Z4/ref=sr_1_8?s=industrial&ie=UTF8&qid=1448127984&sr=1-8&keywords=8mm+linear+bearing
http://www.amazon.com/Linear-Motion-Bearing-Closed-Metric/dp/B002BBH5Z4/ref=sr_1_8?s=industrial&ie=UTF8&qid=1448127984&sr=1-8&keywords=8mm+linear+bearing
http://www.mcmaster.com/#1254n17/=zwq5bs
http://www.mcmaster.com/#timing-belts/=zydl6u
http://www.mcmaster.com/#timing-belts/=zydl6u
http://openbuildspartstore.com/smooth-idler-pulley-wheel-kit/
http://www.digikey.com/product-detail/en/VYB10W-Q48-S5-T/102-2313-ND/2690090

47

Voice

Activated

Module

 RB-Spa-1160 speaker 1 $0.95 $0.95 Robotshop http://www.robotshop.com/en/025w-thin-speaker.html

Microphone RB-Spa-304 Microphone board 2 7.95 $15.90 Robotshop http://www.robotshop.com/en/sfe-breakout-board-electret-microphone.html

 RB-Spa-200 Microphone 2 0.95 $1.90 Robotshop http://www.robotshop.com/en/sfe-electret-microphone.html

276001

000002003
Metal gooseneck

arm tubing 13''
2 $7.95 $15.90 Musiciansfreind

http://www.musiciansfriend.com/accessories/musicians-gear-goose-
neck/276001000002003?cntry=us&source=3WWRWXGP&gclid=COG65vLttskCFRCGaQodl6wAOQ&kwid=productads-
plaid^142912834101-sku^276001000002003@ADL4MF-adType^PLA-device^c-adid^82795616067

 CD40106BE inverter 1 $0.39 $0.39 jameco
http://www.jameco.com/webapp/wcs/stores/servlet/ProductDisplay?langId=-
1&storeId=10001&productId=893179&catalogId=10001&CID=GOOG&gclid=CLK5wPOvpckCFQseHwod5fQAHg

 FQP30N06L nmos 2 $0.95 $1.90 sparkfun https://www.sparkfun.com/products/10213

 Total $36.94

Misc.

.25 thk, 36x20

inches, clear

plexiglass,f/m
1 $40.37 $40.37 professionalplastics http://www.professionalplastics.com/PLEXIGLASS-ACRYLICSHEET-EXTRUDED

.098 thk, 36x20

inches, clear

plexiglass, f/m
1 $21.93 $21.93 professionalplastics http://www.professionalplastics.com/PLEXIGLASS-ACRYLICSHEET-EXTRUDED

 Total $62.30

 Complete Total $281.69

http://www.robotshop.com/en/sfe-breakout-board-electret-microphone.html
http://www.robotshop.com/en/sfe-electret-microphone.html
http://www.musiciansfriend.com/accessories/musicians-gear-goose-neck/276001000002003?cntry=us&source=3WWRWXGP&gclid=COG65vLttskCFRCGaQodl6wAOQ&kwid=productads-plaid%5e142912834101-sku%5e276001000002003@ADL4MF-adType%5ePLA-device%5ec-adid%5e82795616067
http://www.musiciansfriend.com/accessories/musicians-gear-goose-neck/276001000002003?cntry=us&source=3WWRWXGP&gclid=COG65vLttskCFRCGaQodl6wAOQ&kwid=productads-plaid%5e142912834101-sku%5e276001000002003@ADL4MF-adType%5ePLA-device%5ec-adid%5e82795616067
http://www.musiciansfriend.com/accessories/musicians-gear-goose-neck/276001000002003?cntry=us&source=3WWRWXGP&gclid=COG65vLttskCFRCGaQodl6wAOQ&kwid=productads-plaid%5e142912834101-sku%5e276001000002003@ADL4MF-adType%5ePLA-device%5ec-adid%5e82795616067
http://www.jameco.com/webapp/wcs/stores/servlet/ProductDisplay?langId=-1&storeId=10001&productId=893179&catalogId=10001&CID=GOOG&gclid=CLK5wPOvpckCFQseHwod5fQAHg
http://www.jameco.com/webapp/wcs/stores/servlet/ProductDisplay?langId=-1&storeId=10001&productId=893179&catalogId=10001&CID=GOOG&gclid=CLK5wPOvpckCFQseHwod5fQAHg
https://www.sparkfun.com/products/10213
http://www.professionalplastics.com/PLEXIGLASS-ACRYLICSHEET-EXTRUDED

48

D. Microcontroller Software Code

/* ==

 *

 * Copyright YOUR COMPANY, THE YEAR

 * All Rights Reserved

 * UNPUBLISHED, LICENSED SOFTWARE.

 *

 * CONFIDENTIAL AND PROPRIETARY INFORMATION

 * WHICH IS THE PROPERTY OF your company.

 *

 * ==

*/

#include <project.h>

#include <stdlib.h>

#include "EasyVR.h"

char *cBoard[8][14]; //the board

int kingAR, kingAC, kingBR, kingBC = 0; //keep track of king

locations

int sR, sC, dR, dC; //keep track of

given commands

int currentC = 4, currentR = 4; //keep track of current

location

char player = 'A'; //keep track of

the player

int pieceMoved[6]; //keep track of

rook and king movement for castling

int stepsPerSq = 172; //amount of steps to

move 1 square

int width = 7u;

void playSX(){

 Buzz_Write(1u);

 CyDelay(1000u);

 Buzz_Write(0u);

}

void moveBackMore(int r, int c){

 int k;

 CyDelay(300u);

 if(sR!=r){

 for(k=0;k<30;k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 }

 if(sC!=c){

 for(k=0;k<30;k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

49

 }

 CyDelay(20u);

 Couple_Write(0u);

 CyDelay(20u);

 if(Motor1Pos_Read()==1u){

 Motor1Pos_Write(0u);

 Motor1Neg_Write(1u);

 }

 else{

 Motor1Pos_Write(1u);

 Motor1Neg_Write(0u);

 }

 if(Motor2Pos_Read()==1){

 Motor2Pos_Write(0u);

 Motor2Neg_Write(1u);

 }

 else{

 Motor2Pos_Write(1u);

 Motor2Neg_Write(0u);

 }

 if(sR!=r){

 for(k=0;k<35;k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 }

 if(sC!=c){

 for(k=0;k<35;k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 }

 if(Motor1Pos_Read()==1u){

 Motor1Pos_Write(0u);

 Motor1Neg_Write(1u);

 }

 else{

 Motor1Pos_Write(1u);

 Motor1Neg_Write(0u);

 }

 if(Motor2Pos_Read()==1){

 Motor2Pos_Write(0u);

 Motor2Neg_Write(1u);

 }

 else{

 Motor2Pos_Write(1u);

 Motor2Neg_Write(0u);

 }

50

}

//check to see if the move about to be done won't leave/make the king in

check

int verifyNotCheck(){

 int kingR, kingC;

 int k, j;

 char *tempBoard[8][14];

 int firstPiece;

 for(k=0;k<8;k++){

 for(j=0;j<14;j++){

 tempBoard[k][j] = cBoard[k][j];

 }

 }

 tempBoard[dR][dC] = tempBoard[sR][sC];

 tempBoard[sR][sC] = 0;

 if(player == 'A'){

 if(strcmp(cBoard[sR][sC],"A-Ki")==0){

 kingR = dR;

 kingC = dC;

 }else{

 kingR = kingAR;

 kingC = kingAC;

 }

 //check forward and backwards for danger

 if(kingR>0){

 k = kingR-1;

 j = kingC;

 if(strcmp(tempBoard[k][j],"B-Ki")==0){

 return 0;

 }

 firstPiece = 0;

 while((k>=0)&&(firstPiece==0)){

 if(tempBoard[k][j][0]!='\0'){

 if(strcmp(tempBoard[k][j],"B-

R1")==0||strcmp(tempBoard[k][j],"B-R2")==0||strcmp(tempBoard[k][j],"B-

Q")==0){

 return 0;

 }

 firstPiece = 1;

 }

 k--;

 }

 }

 if(kingR<7){

 k = kingR+1;

 j = kingC;

 if(strcmp(tempBoard[k][j],"B-Ki")==0){

 return 0;

 }

 firstPiece = 0;

 while((k<=7)&&(firstPiece==0)){

 if(tempBoard[k][j][0]!='\0'){

51

 if(strcmp(tempBoard[k][j],"B-

R1")==0||strcmp(tempBoard[k][j],"B-R2")==0||strcmp(tempBoard[k][j],"B-

Q")==0){

 return 0;

 }

 firstPiece = 1;

 }

 k++;

 }

 }

 //check sideways in each direction for danger

 k = kingR;

 j = kingC-1;

 if(strcmp(tempBoard[k][j],"B-Ki")==0){

 return 0;

 }

 firstPiece = 0;

 while((j>=3)&&(firstPiece==0)){

 if(tempBoard[k][j][0]!='\0'){

 if(strcmp(tempBoard[k][j],"B-

R1")==0||strcmp(tempBoard[k][j],"B-R2")==0||strcmp(tempBoard[k][j],"B-

Q")==0){

 return 0;

 }

 firstPiece = 1;

 }

 j--;

 }

 k = kingR;

 j = kingC+1;

 if(strcmp(tempBoard[k][j],"B-Ki")==0){

 return 0;

 }

 firstPiece = 0;

 while((j<=10)&&(firstPiece==0)){

 if(tempBoard[k][j][0]!='\0'){

 if(strcmp(tempBoard[k][j],"B-

R1")==0||strcmp(tempBoard[k][j],"B-R2")==0||strcmp(tempBoard[k][j],"B-

Q")==0){

 return 0;

 }

 firstPiece = 1;

 }

 j++;

 }

 //check diagonally in each direction for danger

 if(kingR>0){

 k = kingR-1;

 j = kingC-1;

 if(strcmp(tempBoard[k][j],"B-Ki")==0){

 return 0;

 }

 firstPiece = 0;

 while((k>=0)&&(j>=3)&&(firstPiece==0)){

52

 if(tempBoard[k][j][0]!='\0'){

 if(strcmp(tempBoard[k][j],"B-

B")==0||strcmp(tempBoard[k][j],"B-Q")==0){

 return 0;

 }

 firstPiece = 1;

 }

 k--;

 j--;

 }

 k = kingR-1;

 j = kingC+1;

 if(strcmp(tempBoard[k][j],"B-Ki")==0){

 return 0;

 }

 firstPiece = 0;

 while((j<=10)&&(k>=0)&&(firstPiece==0)){

 if(tempBoard[k][j][0]!='\0'){

 if(strcmp(tempBoard[k][j],"B-

B")==0||strcmp(tempBoard[k][j],"B-Q")==0){

 return 0;

 }

 firstPiece = 1;

 }

 k--;

 j++;

 }

 }

 if(kingR<7){

 k = kingR+1;

 j = kingC-1;

 if(strcmp(tempBoard[k][j],"B-Ki")==0||strcmp(tempBoard[k][j],"B-

P")==0){

 return 0;

 }

 firstPiece = 0;

 while((j>=3)&&(k<=7)&&(firstPiece==0)){

 if(tempBoard[k][j][0]!='\0'){

 if(strcmp(tempBoard[k][j],"B-

B")==0||strcmp(tempBoard[k][j],"B-Q")==0){

 return 0;

 }

 firstPiece = 1;

 }

 k++;

 j--;

 }

 k = kingR+1;

 j = kingC+1;

 if(strcmp(tempBoard[k][j],"B-Ki")==0||strcmp(tempBoard[k][j],"B-

P")==0){

 return 0;

 }

 firstPiece = 0;

53

 while((j<=10)&&(k<=7)&&(firstPiece==0)){

 if(tempBoard[k][j][0]!='\0'){

 if(strcmp(tempBoard[k][j],"B-

B")==0||strcmp(tempBoard[k][j],"B-Q")==0){

 return 0;

 }

 firstPiece = 1;

 }

 k++;

 j++;

 }

 }

 //check for knights

 if(kingR<7){

 if(kingC<9){

 if(strcmp(tempBoard[kingR+1][kingC+2],"B-K")==0)

 return 0;

 }

 if(kingC>5){

 if(strcmp(tempBoard[kingR+1][kingC-2],"B-K")==0)

 return 0;

 }

 }

 if(kingR<6){

 if(strcmp(tempBoard[kingR+2][kingC+1],"B-K")==0)

 return 0;

 if(strcmp(tempBoard[kingR+2][kingC-1],"B-K")==0)

 return 0;

 }

 if(kingR>0){

 if(kingC<9){

 if(strcmp(tempBoard[kingR-1][kingC+2],"B-K")==0)

 return 0;

 }

 if(kingC>5){

 if(strcmp(tempBoard[kingR-1][kingC-2],"B-K")==0)

 return 0;

 }

 }

 if(kingR>1){

 if(strcmp(tempBoard[kingR-2][kingC+1],"B-K")==0)

 return 0;

 if(strcmp(tempBoard[kingR-2][kingC-1],"B-K")==0)

 return 0;

 }

 }

 else if(player == 'B'){

 if(strcmp(cBoard[sR][sC],"B-Ki")==0){

 kingR = dR;

 kingC = dC;

 }else{

 kingR = kingBR;

 kingC = kingBC;

 }

 //check forward and backwards for danger

54

 if(kingR>0){

 k = kingR-1;

 j = kingC;

 if(strcmp(tempBoard[k][j],"A-Ki")==0){

 return 0;

 }

 firstPiece = 0;

 while((k>=0)&&(firstPiece==0)){

 if(tempBoard[k][j][0]!='\0'){

 if(strcmp(tempBoard[k][j],"A-

R1")==0||strcmp(tempBoard[k][j],"A-R2")==0||strcmp(tempBoard[k][j],"A-

Q")==0){

 return 0;

 }

 firstPiece = 1;

 }

 k--;

 }

 }

 if(kingR<7){

 k = kingR+1;

 j = kingC;

 if(strcmp(tempBoard[k][j],"A-Ki")==0){

 return 0;

 }

 firstPiece = 0;

 while((k<=7)&&(firstPiece==0)){

 if(tempBoard[k][j][0]!='\0'){

 if(strcmp(tempBoard[k][j],"A-

R1")==0||strcmp(tempBoard[k][j],"A-R2")==0||strcmp(tempBoard[k][j],"A-

Q")==0){

 return 0;

 }

 firstPiece = 1;

 }

 k++;

 }

 }

 //check sideways in each direction for danger

 k = kingR;

 j = kingC-1;

 if(strcmp(tempBoard[k][j],"A-Ki")==0){

 return 0;

 }

 firstPiece = 0;

 while((j>=3)&&(firstPiece==0)){

 if(tempBoard[k][j][0]!='\0'){

 if(strcmp(tempBoard[k][j],"A-

R1")==0||strcmp(tempBoard[k][j],"A-R2")==0||strcmp(tempBoard[k][j],"A-

Q")==0){

 return 0;

 }

 firstPiece = 1;

 }

 j--;

55

 }

 k = kingR;

 j = kingC+1;

 if(strcmp(tempBoard[k][j],"A-Ki")==0){

 return 0;

 }

 firstPiece = 0;

 while((j<=10)&&(firstPiece==0)){

 if(tempBoard[k][j][0]!='\0'){

 if(strcmp(tempBoard[k][j],"A-

R1")==0||strcmp(tempBoard[k][j],"A-R2")==0||strcmp(tempBoard[k][j],"A-

Q")==0){

 return 0;

 }

 firstPiece = 1;

 }

 j++;

 }

 //check diagonally in each direction for danger

 if(kingR>0){

 k = kingR-1;

 j = kingC-1;

 if(strcmp(tempBoard[k][j],"A-Ki")==0||strcmp(tempBoard[k][j],"A-

P")==0){

 return 0;

 }

 firstPiece = 0;

 while((k>=0)&&(j>=3)&&(firstPiece==0)){

 if(tempBoard[k][j][0]!='\0'){

 if(strcmp(tempBoard[k][j],"A-

B")==0||strcmp(tempBoard[k][j],"A-Q")==0){

 return 0;

 }

 firstPiece = 1;

 }

 k--;

 j--;

 }

 k = kingR-1;

 j = kingC+1;

 if(strcmp(tempBoard[k][j],"A-Ki")==0||strcmp(tempBoard[k][j],"A-

P")==0){

 return 0;

 }

 firstPiece = 0;

 while((j<=10)&&(k>=0)&&(firstPiece==0)){

 if(tempBoard[k][j][0]!='\0'){

 if(strcmp(tempBoard[k][j],"A-

B")==0||strcmp(tempBoard[k][j],"A-Q")==0){

 return 0;

 }

 firstPiece = 1;

 }

 k--;

56

 j++;

 }

 }

 if(kingR<7){

 k = kingR+1;

 j = kingC-1;

 if(strcmp(tempBoard[k][j],"A-Ki")==0){

 return 0;

 }

 firstPiece = 0;

 while((j>=3)&&(k<=7)&&(firstPiece==0)){

 if(tempBoard[k][j][0]!='\0'){

 if(strcmp(tempBoard[k][j],"A-

B")==0||strcmp(tempBoard[k][j],"A-Q")==0){

 return 0;

 }

 firstPiece = 1;

 }

 k++;

 j--;

 }

 k = kingR+1;

 j = kingC+1;

 if(strcmp(tempBoard[k][j],"A-Ki")==0){

 return 0;

 }

 firstPiece = 0;

 while((j<=10)&&(k<=7)&&(firstPiece==0)){

 if(tempBoard[k][j][0]!='\0'){

 if(strcmp(tempBoard[k][j],"A-

B")==0||strcmp(tempBoard[k][j],"A-Q")==0){

 return 0;

 }

 firstPiece = 1;

 }

 k++;

 j++;

 }

 }

 //check for knights

 if(kingR<7){

 if(kingC<9){

 if(strcmp(tempBoard[kingR+1][kingC+2],"A-K")==0)

 return 0;

 }

 if(kingC>5){

 if(strcmp(tempBoard[kingR+1][kingC-2],"A-K")==0)

 return 0;

 }

 }

 if(kingR<6){

 if(strcmp(tempBoard[kingR+2][kingC+1],"A-K")==0)

 return 0;

57

 if(strcmp(tempBoard[kingR+2][kingC-1],"A-K")==0)

 return 0;

 }

 if(kingR>0){

 if(kingC<9){

 if(strcmp(tempBoard[kingR-1][kingC+2],"A-K")==0)

 return 0;

 }

 if(kingC>5){

 if(strcmp(tempBoard[kingR-1][kingC-2],"A-K")==0)

 return 0;

 }

 }

 if(kingR>1){

 if(strcmp(tempBoard[kingR-2][kingC+1],"A-K")==0)

 return 0;

 if(strcmp(tempBoard[kingR-2][kingC-1],"A-K")==0)

 return 0;

 }

 }

 return 1;

}

void moveToSource(){

 int numSqsV = 0, numSqsH = 0;

 int stepsY, stepsX;

 //check and set direction

 if(sR > currentR){

 numSqsV = sR - currentR;

 Motor2Pos_Write(1u);

 Motor2Neg_Write(0u);

 }

 else if(sR < currentR){

 numSqsV = currentR - sR;

 Motor2Pos_Write(0u);

 Motor2Neg_Write(1u);

 }

 if(sC > currentC){

 numSqsH = sC - currentC;

 Motor1Pos_Write(1u);

 Motor1Neg_Write(0u);

 }

 else if(sC < currentC){

 numSqsH = currentC - sC;

 Motor1Pos_Write(0u);

 Motor1Neg_Write(1u);

 }

 CyDelay(20u);

 //calculate and move the motor

 stepsY = numSqsV*stepsPerSq;

58

 stepsX = numSqsH*stepsPerSq;

 int k;

 for(k = 0; k < stepsX; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 for(k = 0; k < stepsY; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 //set the new position

 currentR = sR;

 currentC = sC;

 CyDelay(1000u);

}

//Checks the resistive strips for the right value range

void CheckRes(int r, int c){

 int16 result;

 float volts;

 result = ADC1_GetResult16(0u);

 volts = ADC1_CountsTo_Volts(0u, result);

 volts = volts*5/3.3;

 int okay = 0;

 int neg = 0, pos = 0;

 //CyDelay(500u);

 Couple_Write(1u);

 //check the y direction

 switch(r){

 case 0 :

 if(volts>0.13&&volts<0.15){

 okay = 1;

 }

 else if(volts<0.13){

 pos = 1;

 }else if(volts>0.15){

 neg = 1;

 }

 case 1 :

 if(volts>1.01&&volts<1.02){

 okay = 1;

 }else if(volts<1.01){

 pos = 1;

 }else if(volts>1.02){

 neg = 1;

 }

 case 2 :

 if(volts>1.76&&volts<1.78){

 okay = 1;

 }else if(volts<1.76){

 pos = 1;

59

 }else if(volts>1.78){

 neg = 1;

 }

 case 3 :

 if(volts>2.28&&volts<2.3){

 okay = 1;

 }else if(volts<2.28){

 pos = 1;

 }else if(volts>2.3){

 neg = 1;

 }

 case 4 :

 if(volts>2.57&&volts<2.67){

 okay = 1;

 }else if(volts<2.57){

 pos = 1;

 }else if(volts>2.67){

 neg = 1;

 }

 case 5 :

 if(volts>2.94&&volts<2.95){

 okay = 1;

 }else if(volts<2.94){

 pos = 1;

 }else if(volts>2.95){

 neg = 1;

 }

 case 6 :

 if(volts>3.138&&volts<3.16){

 okay = 1;

 }else if(volts<3.138){

 pos = 1;

 }else if(volts>3.16){

 neg = 1;

 }

 case 7 :

 if(volts>3.333&&volts<3.345){

 okay = 1;

 }else if(volts<3.333){

 pos = 1;

 }else if(volts>3.345){

 neg = 1;

 }

 }

 if(okay==0){

 if(pos==1){

 Motor2Pos_Write(1u);

 Motor2Neg_Write(0u);

 }else if(neg==1){

 Motor2Pos_Write(0u);

 Motor2Neg_Write(1u);

 }

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

60

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 CheckRes(r,c);

 }

 result = ADC1_GetResult16(1u);

 CyDelay(20u);

 volts = ADC1_CountsTo_Volts(1u, result);

 volts = volts*5/3.3;

 okay = 0;

 pos = 0;

 neg = 0;

 switch(c){

 case 0 :

 if(volts>0.132&&volts<0.175){

 okay = 1;

 }else if(volts<0.132){

 pos = 1;

 }else if(volts>0.175){

 neg = 1;

 }

 case 1 :

 if(volts>0.62&&volts<0.658){

 okay = 1;

 }else if(volts<0.62){

 pos = 1;

 }else if(volts>0.658){

 neg = 1;

 }

 case 3 :

 if(volts>1.4&&volts<1.42){

 okay = 1;

 }else if(volts<1.4){

 pos = 1;

 }else if(volts>1.42){

 neg = 1;

 }

 case 4 :

 if(volts>1.7&&volts<1.718){

 okay = 1;

 }else if(volts<1.7){

 pos = 1;

 }else if(volts>1.718){

 neg = 1;

 }

 case 5 :

 if(volts>1.95&&volts<1.96){

 okay = 1;

 }else if(volts<1.95){

 pos = 1;

 }else if(volts>1.96){

 neg = 1;

 }

 case 6 :

 if(volts>2.17&&volts<2.19){

61

 okay = 1;

 }else if(volts<2.17){

 pos = 1;

 }else if(volts>2.19){

 neg = 1;

 }

 case 7 :

 if(volts>2.362&&volts<2.37){

 okay = 1;

 }else if(volts<2.362){

 pos = 1;

 }else if(volts>2.37){

 neg = 1;

 }

 case 8 :

 if(volts>2.537&&volts<2.55){

 okay = 1;

 }else if(volts<2.537){

 pos = 1;

 }else if(volts>2.55){

 neg = 1;

 }

 case 9 :

 if(volts>2.69&&volts<2.7){

 okay = 1;

 }else if(volts<2.69){

 pos = 1;

 }else if(volts>2.7){

 neg = 1;

 }

 case 10 :

 if(volts>2.83&&volts<2.835){

 okay = 1;

 }else if(volts<2.83){

 pos = 1;

 }else if(volts>2.835){

 neg = 1;

 }

 case 12 :

 if(volts>3.06&&volts<3.065){

 okay = 1;

 }else if(volts<3.06){

 pos = 1;

 }else if(volts>2.065){

 neg = 1;

 }

 case 13 :

 if(volts>3.17&&volts<3.175){

 okay = 1;

 }else if(volts<3.17){

 pos = 1;

 }else if(volts>3.175){

 neg = 1;

 }

 }

 if(okay==0){

 if(pos==1){

62

 Motor2Pos_Write(1u);

 Motor2Neg_Write(0u);

 }else if(neg==1){

 Motor2Pos_Write(0u);

 Motor2Neg_Write(1u);

 }

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 CheckRes(r,c);

 }

 Couple_Write(0u);

}

void moveToGrave(int r, int c){

 CyDelay(1000u);

 int numSqsV = 0, numSqsH = 0;

 int stepsY, stepsX;

 //first move to the piece

 if(r > currentR){

 numSqsV = r - currentR;

 Motor2Pos_Write(1u);

 Motor2Neg_Write(0u);

 }

 else if(r < currentR){

 numSqsV = currentR - r;

 Motor2Pos_Write(0u);

 Motor2Neg_Write(1u);

 }

 if(c > currentC){

 numSqsH = c - currentC;

 Motor1Pos_Write(1u);

 Motor1Neg_Write(0u);

 }

 else if(c < currentC){

 numSqsH = currentC - c;

 Motor1Pos_Write(0u);

 Motor1Neg_Write(1u);

 }

 CyDelay(10u);

 stepsY = numSqsV*stepsPerSq;

 stepsX = numSqsH*stepsPerSq;

 int k;

 for(k = 0; k < stepsX; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

63

 CyDelay(width);

 }

 for(k = 0; k < stepsY; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 //figure out where the piece is moving to

 int gR = 0, gC = 0;

 if(strcmp(cBoard[r][c],"A-P")==0){

 gC = 0;

 for(k = 7; k>-1; k--){

 if(cBoard[k][gC][0]=='\0'){

 gR = k;

 }

 }

 }

 else if(strcmp(cBoard[r][c],"B-P")==0){

 gC = 13;

 for(k = 0; k<8; k++){

 if(cBoard[k][gC][0]=='\0'){

 gR = k;

 }

 }

 }

 else if(strcmp(cBoard[r][c],"A-R1")==0||strcmp(cBoard[r][c],"A-R2")==0){

 gC = 1;

 for(k = 3; k>1; k--){

 if(cBoard[k][gC][0]=='\0'){

 gR = k;

 }

 }

 }

 else if(strcmp(cBoard[r][c],"B-R1")==0||strcmp(cBoard[r][c],"B-R2")==0){

 gC = 12;

 for(k = 2; k<4; k++){

 if(cBoard[k][gC][0]=='\0'){

 gR = k;

 }

 }

 }

 else if(strcmp(cBoard[r][c],"A-B")==0){

 gC = 1;

 for(k = 5; k>3; k--){

 if(cBoard[k][gC][0]=='\0'){

 gR = k;

 }

 }

 }

 else if(strcmp(cBoard[r][c],"B-B")==0){

 gC = 12;

 for(k = 4; k<6; k++){

 if(cBoard[k][gC][0]=='\0'){

 gR = k;

64

 }

 }

 }

 else if(strcmp(cBoard[r][c],"A-K")==0){

 gC = 1;

 for(k = 1; k>-1; k--){

 if(cBoard[k][gC][0]=='\0'){

 gR = k;

 }

 }

 }

 else if(strcmp(cBoard[r][c],"B-K")==0){

 gC = 12;

 for(k = 6; k<8; k++){

 if(cBoard[k][gC][0]=='\0'){

 gR = k;

 }

 }

 }

 else if(strcmp(cBoard[r][c],"A-Q")==0){

 gC = 1;

 gR = 7;

 }

 else if(strcmp(cBoard[r][c],"B-Q")==0){

 gC = 12;

 gR = 0;

 }

 CyDelay(1000u);

 if(r>0){

 Motor2Pos_Write(0u);

 Motor2Neg_Write(1u);

 }

 else{

 Motor2Pos_Write(1u);

 Motor2Neg_Write(0u);

 }

 CyDelay(20u);

 //calculate direction and do the movement

 if(r > gR){

 numSqsV = r - gR;

 Motor2Pos_Write(0u);

 Motor2Neg_Write(1u);

 }

 else if(r < gR){

 numSqsV = gR - r;

 Motor2Pos_Write(1u);

 Motor2Neg_Write(0u);

 }

 if(c > gC){

 numSqsH = c - gC;

 Motor1Pos_Write(0u);

 Motor1Neg_Write(1u);

 }

 else if(c < gC){

 numSqsH = gC - c;

65

 Motor1Pos_Write(1u);

 Motor1Neg_Write(0u);

 }

 CyDelay(10u);

 stepsY = (numSqsV-1)*stepsPerSq;

 stepsX = (numSqsH-1)*stepsPerSq;

 Couple_Write(1u);

 CyDelay(20u);

 for(k = 0; k < stepsPerSq/2; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 CyDelay(50u);

 for(k = 0; k < stepsPerSq/2; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 CyDelay(50u);

 for(k = 0; k < stepsX; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 for(k = 0; k < stepsY; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 CyDelay(50u);

 for(k = 0; k < stepsPerSq/2; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 CyDelay(50u);

 if(r!=gR){

 for(k = 0; k < stepsPerSq/2; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 }

 else{

 if(r>0){

 Motor2Pos_Write(1u);

 Motor2Neg_Write(0u);

 }

66

 else{

 Motor2Pos_Write(0u);

 Motor2Neg_Write(1u);

 }

 CyDelay(20u);

 for(k = 0; k < stepsPerSq/2; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 }

 moveBackMore(gR, gC);

 Couple_Write(0u);

 CyDelay(20u);

 //set the current place and move back to source

 cBoard[gR][gC] = cBoard[r][c];

 cBoard[r][c] = 0;

 currentR = gR;

 currentC = gC;

 moveToSource();

}

//picks a piece for the promotion movement

int listenForPiece(){

 char8 result, command = 0u;

 int r = 10;

 int i;

 int eCount = 0;

 Key5_Write(0u);

 Key6_Write(0u);

 Key7_Write(0u);

 if(player=='A'){

 for(i = 0; i<8; i++){

 if(cBoard[i][1][0]=='\0'){

 eCount=eCount+1;

 }

 }

 }else if(player=='B'){

 for(i = 0; i<8; i++){

 if(cBoard[i][12][0]=='\0'){

 eCount=eCount+1;

 }

 }

 }

 if(eCount==8){

 return 8;

 }

 CyDelay(500u);

 for(;;){

 result = UART_1_UartGetChar();

 if(result > 0u){

67

 if(result == 's'){

 CyDelay(20);

 UART_1_UartPutChar(' ');

 CyDelay(20);

 while(command == 0u){

 command = UART_1_UartGetChar();

 if(command == 'B'){

 //look for Rook in graveyard

 if(player=='A'){

 if(cBoard[2][1]!='\0')

 r = 2;

 else if(cBoard[3][1]!='\0')

 r = 3;

 else{

 playSX();

 return 10;

 }

 }

 else if(player=='B'){

 if(cBoard[3][12]!='\0')

 r = 3;

 else if(cBoard[2][12]!='\0')

 r = 2;

 else{

 playSX();

 return 10;

 }

 }

 }

 else if(command == 'C'){

 //look for Knight in graveyard

 if(player=='A'){

 if(cBoard[1][1]!='\0')

 r = 1;

 else if(cBoard[0][1]!='\0')

 r = 0;

 else{

 playSX();

 return 10;

 }

 }

 else if(player=='B'){

 if(cBoard[7][12]!='\0')

 r = 7;

 else if(cBoard[6][12]!='\0')

 r = 6;

 else{

 playSX();

 return 10;

 }

 }

 }

 else if(command == 'D'){

 //look for Bishop in graveyard

 if(player=='A'){

 if(cBoard[4][1]!='\0')

 r = 4;

68

 else if(cBoard[5][1]!='\0')

 r = 5;

 else{

 playSX();

 return 10;

 }

 }

 else if(player=='B'){

 if(cBoard[5][12]!='\0')

 r = 5;

 else if(cBoard[4][12]!='\0')

 r = 4;

 else{

 playSX();

 return 10;

 }

 }

 }

 else if(command == 'E'){

 //look for Queen in garveyard

 if(player=='A'){

 if(cBoard[7][1]!='\0')

 r = 7;

 else{

 playSX();

 return 10;

 }

 }

 else if(player=='B'){

 if(cBoard[0][12]!='\0')

 r = 0;

 else{

 playSX();

 return 10;

 }

 }

 }

 }

 command = 0u;

 }

 }

 CyDelay(20);

 Key5_Write(1u);

 CyDelay(15);

 if(Key1_Read() == 1u){

 //look for Rook in graveyard

 if(player=='A'){

 if(cBoard[2][1]!='\0')

 r = 2;

 else if(cBoard[3][1]!='\0')

 r = 3;

 else{

 playSX();

 return 10;

 }

 }

69

 else if(player=='B'){

 if(cBoard[3][12]!='\0')

 r = 3;

 else if(cBoard[2][12]!='\0')

 r = 2;

 else{

 playSX();

 return 10;

 }

 }

 CyDelay(500u);

 }

 else if(Key2_Read() == 1u){

 //look for Queen in garveyard

 if(player=='A'){

 if(cBoard[7][1]!='\0')

 r = 7;

 else{

 playSX();

 return 10;

 }

 }

 else if(player=='B'){

 if(cBoard[0][12]!='\0')

 r = 0;

 else{

 playSX();

 return 10;

 }

 }

 CyDelay(500u);

 }

 else if(Key4_Read() == 1u){

 UART_1_UartPutChar(CMD_RECOG_SI);

 CyDelay(10u);

 UART_1_UartPutChar('D');

 LEDMIC_Write(1u);

 CyDelay(2000u);

 LEDMIC_Write(0u);

 }

 Key5_Write(0u);

 Key6_Write(1u);

 CyDelay(15);

 if(Key1_Read() == 1u){

 //look for Knight in graveyard

 if(player=='A'){

 if(cBoard[1][1]!='\0')

 r = 1;

 else if(cBoard[0][1]!='\0')

 r = 0;

 else{

 playSX();

 return 10;

 }

 }

 else if(player=='B'){

 if(cBoard[7][12]!='\0')

70

 r = 7;

 else if(cBoard[6][12]!='\0')

 r = 6;

 else{

 playSX();

 return 10;

 }

 }

 CyDelay(500u);

 }

 Key6_Write(0u);

 Key7_Write(1u);

 CyDelay(15);

 if(Key1_Read() == 1u){

 //look for Bishop in graveyard

 if(player=='A'){

 if(cBoard[4][1]!='\0')

 r = 4;

 else if(cBoard[5][1]!='\0')

 r = 5;

 else{

 playSX();

 return 10;

 }

 }

 else if(player=='B'){

 if(cBoard[5][12]!='\0')

 r = 5;

 else if(cBoard[4][12]!='\0')

 r = 4;

 else{

 playSX();

 return 10;

 }

 }

 CyDelay(500u);

 }

 Key7_Write(0u);

 if(r!=10){

 return r;

 }

 }

}

//does a promotion movement

void promMove(){

 char8 result, command = 0u;

 int stepsX, stepsY;

 int numSqsH = 0, numSqsV = 0;

 int r = 10, c = 0;

 Key5_Write(0u);

 Key6_Write(0u);

 Key7_Write(0u);

 while(r == 10){

 result = UART_1_UartGetChar();

71

 if(result > 0u){

 if(result == 's'){

 CyDelay(20);

 UART_1_UartPutChar(' ');

 CyDelay(20);

 while(command == 0u){

 command = UART_1_UartGetChar();

 if(command == 'B'){

 r = listenForPiece();

 }

 }

 command = 0u;

 }

 }

 CyDelay(20);

 Key5_Write(1u);

 CyDelay(15);

 if(Key4_Read() == 1u){

 UART_1_UartPutChar(CMD_RECOG_SI);

 CyDelay(10u);

 UART_1_UartPutChar('A');

 LEDMIC_Write(1u);

 CyDelay(2000u);

 LEDMIC_Write(0u);

 }

 Key5_Write(0u);

 CyDelay(15);

 Key7_Write(1u);

 CyDelay(15);

 if(Key4_Read() == 1u){

 r = listenForPiece();

 CyDelay(500u);

 }

 Key7_Write(0u);

 if(r==8){

 playSX();

 return;

 }

 }

 if(player=='A'){

 c = 1;

 }

 else if(player=='B'){

 c = 12;

 }

 moveToGrave(dR,dC);

 sR = r;

 sC = c;

 currentR = dR;

 currentC = dC;

 moveToSource();

 //calculate direction and do the movement

72

 if(r>0){

 Motor2Pos_Write(0u);

 Motor2Neg_Write(1u);

 }

 else{

 Motor2Pos_Write(1u);

 Motor2Neg_Write(0u);

 }

 if(r > dR){

 numSqsV = r - dR;

 Motor2Pos_Write(0u);

 Motor2Neg_Write(1u);

 }

 else if(r < dR){

 numSqsV = dR - r;

 Motor2Pos_Write(1u);

 Motor2Neg_Write(0u);

 }

 if(c > dC){

 numSqsH = c - dC;

 Motor1Pos_Write(0u);

 Motor1Neg_Write(1u);

 }

 else if(c < dC){

 numSqsH = dC - c;

 Motor1Pos_Write(1u);

 Motor1Neg_Write(0u);

 }

 CyDelay(10u);

 stepsY = (numSqsV-1)*stepsPerSq;

 stepsX = (numSqsH-1)*stepsPerSq;

 Couple_Write(1u);

 CyDelay(20u);

 int k;

 for(k = 0; k < stepsPerSq/2; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 CyDelay(50u);

 for(k = 0; k < stepsPerSq/2; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 CyDelay(50u);

 for(k = 0; k < stepsX; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

73

 }

 for(k = 0; k < stepsY; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 CyDelay(50u);

 for(k = 0; k < stepsPerSq/2; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 CyDelay(50u);

 if(r!=dR){

 for(k = 0; k < stepsPerSq/2; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 }

 else{

 if(r>0){

 Motor2Pos_Write(1u);

 Motor2Neg_Write(0u);

 CyDelay(10u);

 }

 else{

 Motor2Pos_Write(0u);

 Motor2Neg_Write(1u);

 CyDelay(10u);

 }

 CyDelay(20u);

 for(k = 0; k < stepsPerSq/2; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 }

 moveBackMore(dR, dC);

 Couple_Write(0u);

 CyDelay(20u);

 //set the current place

 cBoard[dR][dC] = cBoard[sR][sC];

 cBoard[sR][sC] = 0;

 currentR = dR;

 currentC = dC;

}

//decides whose turn it is

void switchPlayer(){

 int k;

74

 if(player == 'A'){

 for(k=0;k<30;k++){

 Turn_Write(1u);

 CyDelayUs(700);

 Turn_Write(0u);

 CyDelayUs(19300);

 }

 LEDA_Write(0u);

 LEDB_Write(1u);

 player = 'B';

 }

 else if(player == 'B'){

 for(k=0;k<30;k++){

 Turn_Write(1u);

 CyDelayUs(1900);

 Turn_Write(0u);

 CyDelayUs(18100);

 }

 LEDA_Write(1u);

 LEDB_Write(0u);

 player = 'A';

 }

}

//find out which rook they want to castle with

int whichRook(){

 char8 result, command = 0u;

 Key5_Write(0u);

 Key6_Write(0u);

 Key7_Write(0u);

 for(;;){

 result = UART_1_UartGetChar();

 if(result > 0u){

 if(result == 's'){

 CyDelay(20);

 UART_1_UartPutChar(' ');

 CyDelay(20);

 while(command == 0u){

 command = UART_1_UartGetChar();

 if(command == 'B'){

 return 3;

 }

 if(command == 'I'){

 return 10;

 }

 else{

 return 0;

 }

 }

 }

 }

 Key5_Write(1u);

 CyDelay(15);

 if(Key1_Read() == 1u){

 return 3;

75

 }

 else if(Key4_Read() == 1u){

 UART_1_UartPutChar(CMD_RECOG_SI);

 CyDelay(10u);

 UART_1_UartPutChar('D');

 CyDelay(2000u);

 }

 Key5_Write(0u);

 Key6_Write(1u);

 CyDelay(15);

 if(Key3_Read() == 1u){

 return 10;

 }

 Key6_Write(0u);

 }

}

//does a castling movement if conditions satisfy

void doCastle(){

 int stepsX;

 int c = 0;

 int notCheck;

 int endC;

 if(player=='A'){

 if(pieceMoved[4]==1){

 playSX();

 return;

 }else if(pieceMoved[0]==1&&pieceMoved[1]==1){

 playSX();

 return;

 }

 sR = kingAR;

 sC = kingAC;

 }

 else if(player == 'B'){

 if(pieceMoved[5]==1){

 playSX();

 return;

 }else if(pieceMoved[2]==1&&pieceMoved[3]==1){

 playSX();

 return;

 }

 sR = kingBR;

 sC = kingBC;

 }

 c = whichRook();

 if(c==0){

 playSX();

 return;

 }

 if(player=='A'){

76

 if(c==3){

 if(pieceMoved[0]==1){

 playSX();

 return;

 }else if(cBoard[sR][sC-1][0]!='\0'||cBoard[sR][sC-

2][0]!='\0'){

 playSX();

 return;

 }

 else{

 moveToSource();

 Couple_Write(1u);

 CyDelay(100u);

 Motor1Pos_Write(0u);

 Motor1Neg_Write(1u);

 CyDelay(10u);

 cBoard[0][6] = cBoard[0][3];

 cBoard[0][3] = 0;

 dR = 0;

 dC = sC-2;

 notCheck = verifyNotCheck();

 if(notCheck == 0){

 cBoard[0][3] = cBoard[0][6];

 cBoard[0][6] = 0;

 playSX();

 return;

 }

 stepsX = 2*stepsPerSq;

 int k;

 for(k = 0; k < stepsX; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 moveBackMore(dR, dC);

 Couple_Write(0u);

 currentR = sR;

 currentC = sC-2;

 cBoard[sR][dC] = cBoard[sR][sC];

 cBoard[sR][sC] = 0;

 sC = 3;

 moveToSource();

 stepsX = 3*stepsPerSq;

 endC = sC + 3;

 Motor1Pos_Write(1u);

 Motor1Neg_Write(0u);

 Motor2Pos_Write(1u);

 Motor2Neg_Write(0u);

 Couple_Write(1u);

 CyDelay(100u);

 for(k = 0; k < stepsPerSq/2; k++){

 Motor2Steps_Write(1u);

77

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 CyDelay(50u);

 for(k = 0; k < stepsX; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 Motor2Pos_Write(0u);

 Motor2Neg_Write(1u);

 CyDelay(50u);

 for(k = 0; k < stepsPerSq/2; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 moveBackMore(dR, endC);

 Couple_Write(0u);

 }

 }else if(c==10){

 if(pieceMoved[1]==1){

 playSX();

 return;

 }else

if(cBoard[sR][sC+1][0]!='\0'||cBoard[sR][sC+2][0]!='\0'){

 playSX();

 return;

 }

 else{

 moveToSource();

 Couple_Write(1u);

 CyDelay(100u);

 Motor1Pos_Write(1u);

 Motor1Neg_Write(0u);

 CyDelay(10u);

 cBoard[0][8] = cBoard[0][10];

 cBoard[0][10] = 0;

 dR = 0;

 dC = sC+2;

 notCheck = verifyNotCheck();

 if(notCheck == 0){

 cBoard[0][10] = cBoard[0][8];

 cBoard[0][8] = 0;

 playSX();

 return;

 }

 stepsX = 2*stepsPerSq;

 int k;

 for(k = 0; k < stepsX; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

78

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 moveBackMore(dR, dC);

 Couple_Write(0u);

 currentR = sR;

 currentC = sC+2;

 cBoard[sR][dC] = cBoard[sR][sC];

 cBoard[sR][sC] = 0;

 sC = 10;

 moveToSource();

 stepsX = 2*stepsPerSq;

 endC = sC - 2;

 Motor1Pos_Write(0u);

 Motor1Neg_Write(1u);

 Motor2Pos_Write(1u);

 Motor2Neg_Write(0u);

 Couple_Write(1u);

 CyDelay(100u);

 for(k = 0; k < stepsPerSq/2; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 CyDelay(50u);

 for(k = 0; k < stepsX; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 Motor2Pos_Write(0u);

 Motor2Neg_Write(1u);

 CyDelay(50u);

 for(k = 0; k < stepsPerSq/2; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 moveBackMore(dR, endC);

 Couple_Write(0u);

 }

 }

 }

 else if(player == 'B'){

 if(c==3){

 if(pieceMoved[2]==1){

 playSX();

 return;

 }else if(cBoard[sR][sC-1][0]!='\0'||cBoard[sR][sC-

2][0]!='\0'){

 playSX();

 return;

79

 }

 else{

 moveToSource();

 Couple_Write(1u);

 CyDelay(100u);

 Motor1Pos_Write(0u);

 Motor1Neg_Write(1u);

 CyDelay(10u);

 cBoard[7][6] = cBoard[7][3];

 cBoard[7][3] = 0;

 dR = 7;

 dC = sC-2;

 notCheck = verifyNotCheck();

 if(notCheck == 0){

 cBoard[7][3] = cBoard[7][6];

 cBoard[7][6] = 0;

 playSX();

 return;

 }

 stepsX = 2*stepsPerSq;

 int k;

 for(k = 0; k < stepsX; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 moveBackMore(dR, dC);

 Couple_Write(0u);

 currentR = sR;

 currentC = sC-2;

 cBoard[sR][dC] = cBoard[sR][sC];

 cBoard[sR][sC] = 0;

 sC = 3;

 moveToSource();

 stepsX = 3*stepsPerSq;

 endC = sC + 3;

 Motor1Pos_Write(1u);

 Motor1Neg_Write(0u);

 Motor2Pos_Write(0u);

 Motor2Neg_Write(1u);

 Couple_Write(1u);

 CyDelay(100u);

 for(k = 0; k < stepsPerSq/2; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 CyDelay(50u);

 for(k = 0; k < stepsX; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

80

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 Motor2Pos_Write(1u);

 Motor2Neg_Write(0u);

 CyDelay(50u);

 for(k = 0; k < stepsPerSq/2; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 moveBackMore(dR, endC);

 Couple_Write(0u);

 }

 }else if(c==10){

 if(pieceMoved[3]==1){

 playSX();

 return;

 }else

if(cBoard[sR][sC+1][0]!='\0'||cBoard[sR][sC+2][0]!='\0'){

 playSX();

 return;

 }

 else{

 moveToSource();

 Couple_Write(1u);

 CyDelay(100u);

 Motor1Pos_Write(1u);

 Motor1Neg_Write(0u);

 CyDelay(10u);

 cBoard[7][8] = cBoard[7][10];

 cBoard[7][10] = 0;

 dR = 7;

 dC = sC+2;

 notCheck = verifyNotCheck();

 if(notCheck == 0){

 cBoard[7][10] = cBoard[7][8];

 cBoard[7][8] = 0;

 playSX();

 return;

 }

 stepsX = 2*stepsPerSq;

 int k;

 for(k = 0; k < stepsX; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 moveBackMore(dR, dC);

 Couple_Write(0u);

 currentR = sR;

 currentC = sC+2;

81

 cBoard[sR][dC] = cBoard[sR][sC];

 cBoard[sR][sC] = 0;

 sC = 10;

 moveToSource();

 stepsX = 2*stepsPerSq;

 endC = sC - 2;

 Motor1Pos_Write(0u);

 Motor1Neg_Write(1u);

 Motor2Pos_Write(0u);

 Motor2Neg_Write(1u);

 Couple_Write(1u);

 CyDelay(100u);

 for(k = 0; k < stepsPerSq/2; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 CyDelay(50u);

 for(k = 0; k < stepsX; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 Motor2Pos_Write(1u);

 Motor2Neg_Write(0u);

 CyDelay(50u);

 for(k = 0; k < stepsPerSq/2; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 moveBackMore(dR, endC);

 Couple_Write(0u);

 }

 }

 }

 currentR = dR;

 currentC = endC;

 switchPlayer();

}

void setupBoard(){

 //set the pawn locations for both players

 int i;

 for(i = 0; i<8; i++){

 cBoard[i][0] = 0;

 cBoard[i][1] = 0;

 cBoard[i][12] = 0;

 cBoard[i][13] = 0;

 }

 for(i = 3; i<11; i++){

82

 cBoard[2][i] = 0;

 cBoard[3][i] = 0;

 cBoard[4][i] = 0;

 cBoard[5][i] = 0;

 }

 for(i = 3; i < 11; i++){

 cBoard[1][i] = "A-P";

 cBoard[6][i] = "B-P";

 }

 //set the rook locations

 cBoard[0][3] = "A-R1";

 cBoard[0][10] = "A-R2";

 cBoard[7][3] = "B-R1";

 cBoard[7][10] = "B-R2";

 //set the knight locations

 cBoard[0][4] = "A-K";

 cBoard[0][9] = "A-K";

 cBoard[7][4] = "B-K";

 cBoard[7][9] = "B-K";

 //set the bishop locations

 cBoard[0][5] = "A-B";

 cBoard[0][8] = "A-B";

 cBoard[7][5] = "B-B";

 cBoard[7][8] = "B-B";

 //set the queen locations

 cBoard[0][6] = "A-Q";

 cBoard[7][6] = "B-Q";

 //set the king locations

 cBoard[0][7] = "A-Ki";

 kingAR = 0;

 kingAC = 7;

 cBoard[7][7] = "B-Ki";

 kingBR = 7;

 kingBC = 7;

 player = 'A';

 for(i=0;i<30;i++){

 Turn_Write(1u);

 CyDelayUs(1900);

 Turn_Write(0u);

 CyDelayUs(18100);

 }

 LEDA_Write(1u);

 LEDB_Write(0u);

 for(i=0;i<6;i++){

 pieceMoved[i] = 0;

 }

}

83

//moves all the pieces to their original spots and reset the board

void moveBackPieces(){

 int stepsX, stepsY;

 int numSqsH, numSqsV;

 int k, j;

 int x;

 int i;

 for(j=0;j<14;j++){

 for(k=0;k<8;k++){

 if(cBoard[k][j][0]!='\0'){

 sR = k;

 sC = j;

 if(strcmp(cBoard[sR][sC],"A-P")==0){

 dR=1;

 int c;

 for(c=10;c>2;c--){

 if(sR==1){

 dC = sC;

 }

 else

if(cBoard[dR][c][0]=='\0'||(strcmp(cBoard[dR][c],"A-P")!=0)){

 dC = c;

 }

 }

 }

 else if(strcmp(cBoard[sR][sC],"B-P")==0){

 dR=6;

 int c;

 for(c=10;c>2;c--){

 if(sR==6){

 dC = sC;

 }

 else

if(cBoard[dR][c][0]=='\0'||(strcmp(cBoard[dR][c],"B-P")!=0)){

 dC = c;

 }

 }

 }

 else if((strcmp(cBoard[sR][sC],"A-R1")==0)){

 dR = 0;

 dC = 3;

 }

 else if((strcmp(cBoard[sR][sC],"A-R2")==0)){

 dR = 0;

 dC = 10;

 }

 else if((strcmp(cBoard[sR][sC],"B-R1")==0)){

 dR = 7;

 dC = 3;

 }

 else if((strcmp(cBoard[sR][sC],"B-R2")==0)){

 dR = 7;

 dC = 10;

 }

 else if((strcmp(cBoard[sR][sC],"A-B")==0)){

 dR = 0;

 if((strcmp(cBoard[dR][5],"A-B")!=0)){

84

 dC = 5;

 }else if((strcmp(cBoard[dR][8],"A-B")!=0)){

 dC = 8;

 }else{

 dC = sC;

 }

 }

 else if((strcmp(cBoard[sR][sC],"B-B")==0)){

 dR = 7;

 if((strcmp(cBoard[dR][5],"B-B")!=0)){

 dC = 5;

 }else if((strcmp(cBoard[dR][8],"B-B")!=0)){

 dC = 8;

 }else{

 dC = sC;

 }

 }

 else if((strcmp(cBoard[sR][sC],"A-K")==0)){

 dR = 0;

 if((strcmp(cBoard[dR][4],"A-K")!=0)){

 dC = 4;

 }else if((strcmp(cBoard[dR][9],"A-K")!=0)){

 dC = 9;

 }else{

 dC = sC;

 }

 }

 else if((strcmp(cBoard[sR][sC],"B-K")==0)){

 dR = 7;

 if((strcmp(cBoard[dR][4],"B-K")!=0)){

 dC = 4;

 }else if((strcmp(cBoard[dR][9],"B-K")!=0)){

 dC = 9;

 }else{

 dC = sC;

 }

 }

 else if((strcmp(cBoard[sR][sC],"A-Q")==0)){

 dR = 0;

 dC = 6;

 }

 else if((strcmp(cBoard[sR][sC],"B-Q")==0)){

 dR = 7;

 dC = 6;

 }

 else if((strcmp(cBoard[sR][sC],"A-Ki")==0)){

 dR = 0;

 dC = 7;

 }

 else if((strcmp(cBoard[sR][sC],"B-Ki")==0)){

 dR = 7;

 dC = 7;

 }

 if((sR!=dR)||(sC!=dC)){

if(cBoard[dR][dC][0]!='\0'&&(strcmp(cBoard[sR][sC],cBoard[dR][dC])!=0)){

85

 sR = dR;

 sC = dC;

 dR = i;

 dC = 11;

 i++;

 moveToSource();

 if(i==7){

 i = 0;

 }

 k--;

 }else{

 moveToSource();

 }

 if(sR>0){

 Motor2Pos_Write(0u);

 Motor2Neg_Write(1u);

 }

 else{

 Motor2Pos_Write(1u);

 Motor2Neg_Write(0u);

 }

 Motor1Pos_Write(1u);

 Motor1Neg_Write(0u);

 CyDelay(10u);

 //calculate direction and do the movement

 numSqsH = 0;

 numSqsV = 0;

 if(sR > dR){

 numSqsV = sR - dR;

 Motor2Pos_Write(0u);

 Motor2Neg_Write(1u);

 }

 else if(sR < dR){

 numSqsV = dR - sR;

 Motor2Pos_Write(1u);

 Motor2Neg_Write(0u);

 }

 if(sC > dC){

 numSqsH = sC - dC;

 Motor1Pos_Write(0u);

 Motor1Neg_Write(1u);

 }

 else if(sC < dC){

 numSqsH = dC - sC;

 Motor1Pos_Write(1u);

 Motor1Neg_Write(0u);

 }

 CyDelay(10u);

 stepsY = (numSqsV-1)*stepsPerSq;

 stepsX = (numSqsH-1)*stepsPerSq;

 Couple_Write(1u);

 CyDelay(20u);

 for(x = 0; x < stepsPerSq/2; x++){

 Motor1Steps_Write(1u);

86

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 CyDelay(20u);

 for(x = 0; x < stepsPerSq/2; x++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 CyDelay(20u);

 for(x = 0; x < stepsX; x++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 CyDelay(20u);

 for(x = 0; x < stepsY; x++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 CyDelay(20u);

 if(sC!=dC){

 for(x = 0; x < stepsPerSq/2; x++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 }

 else{

 Motor1Pos_Write(0u);

 Motor1Neg_Write(1u);

 CyDelay(20u);

 for(x = 0; x < stepsPerSq/2; x++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 }

 CyDelay(20u);

 if(sR!=dR){

 for(x= 0; x < stepsPerSq/2; x++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 }

 else{

 if(sR>0){

 Motor2Pos_Write(1u);

87

 Motor2Neg_Write(0u);

 CyDelay(10u);

 }

 else{

 Motor2Pos_Write(0u);

 Motor2Neg_Write(1u);

 CyDelay(10u);

 }

 CyDelay(20u);

 for(x = 0; x < stepsPerSq/2; x++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 }

 moveBackMore(dR, dC);

 Couple_Write(0u);

 CyDelay(20u);

 currentR = dR;

 currentC = dC;

 numSqsH = 0;

 numSqsV = 0;

 cBoard[dR][dC]=cBoard[sR][sC];

 cBoard[sR][sC] = 0;

 }

 }

 }

 }

 sR = 4;

 sC = 4;

 moveToSource();

 setupBoard();

}

//does the movement of each piece

void doMovement(int fourMoves[]){

 //grab the source and destination

 sR = fourMoves[0]-1;

 sC = fourMoves[1]+2;

 dR = fourMoves[2]-1;

 dC = fourMoves[3]+2;

 int stepsx, stepsy;

 int stepsoff = 0;

 int numSqsX = 0, numSqsY = 0;

 int k=0;

 //Set the enemy

 char oppPlayer = 'P';

 if(player == 'A'){

 oppPlayer = 'B';

 }

 else if(player == 'B'){

 oppPlayer = 'A';

 }

88

 //check to see if this movement will leave the king in check

 int notCheck = verifyNotCheck();

 if(notCheck == 0){

 playSX();

 LEDMIC_Write(1u);

 CyDelay(400);

 LEDMIC_Write(0u);

 CyDelay(400);

 LEDMIC_Write(1u);

 CyDelay(400);

 LEDMIC_Write(0u);

 return;

 }

 //check if the source piece exists and is the player's

 if(cBoard[sR][sC][0]!='\0'){

 if(cBoard[sR][sC][0]==player){

 moveToSource();

 }

 else{

 playSX();

 return;

 }

 }

 else{

 playSX();

 return;

 }

 //pawn movements

 if(strcmp(cBoard[sR][sC],"A-P")==0){

 //check if the pawn is capturing another piece

 if(dC!=sC){

 if((dC==(sC+1))||(dC==(sC-1))){

 if((cBoard[dR][dC][0]!='\0')&&(cBoard[dR][dC][0]==oppPlayer))

 moveToGrave(dR,dC);

 else if((strcmp(cBoard[sR][dC],"B-

P")==0)&&(cBoard[sR][dC][0]==oppPlayer))

 moveToGrave(sR,dC);

 else{

 playSX();

 return;

 }

 stepsx = stepsPerSq;

 stepsy = stepsPerSq;

 if(dC==sC+1){

 Motor1Pos_Write(1u);

 CyDelay(10u);

 Motor1Neg_Write(0u);

 CyDelay(10u);

 }

 else{

 Motor1Pos_Write(0u);

89

 CyDelay(10u);

 Motor1Neg_Write(1u);

 CyDelay(10u);

 }

 CyDelay(10u);

 Motor2Pos_Write(1u);

 CyDelay(10u);

 Motor2Neg_Write(0u);

 CyDelay(10u);

 Couple_Write(1u);

 CyDelay(20u);

 for(k = 0; k < stepsx/2; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 CyDelay(10u);

 for(k = 0; k < stepsy; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 CyDelay(10u);

 for(k = 0; k < stepsx/2; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 moveBackMore(dR, dC);

 Couple_Write(0u);

 CyDelay(20u);

 }

 else{

 playSX();

 return;

 }

 }

 else{ //otherwise check if the pawn is just

moving correctly

 if(dR==(sR+2)){

 if(sR!=1){

 playSX();

 return;

 }

 else

if((cBoard[sR+1][dC][0]!='\0')||(cBoard[sR+2][dC][0]!='\0')){

 playSX();

 return;

 }

 stepsy = stepsPerSq*2+stepsoff;

 }

 else if((dR==(sR+1))&&(cBoard[sR+1][dC][0]=='\0')){

 stepsy = stepsPerSq+stepsoff;

90

 }

 else{

 playSX();

 return;

 }

 Motor2Pos_Write(1u);

 CyDelay(10u);

 Motor2Neg_Write(0u);

 CyDelay(10u);

 Couple_Write(1u);

 CyDelay(20u);

 for(k = 0; k < stepsy; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 moveBackMore(dR, dC);

 Couple_Write(0u);

 CyDelay(20u);

 }

 if(dR==7){

 promMove();

 }

 }

 else if(strcmp(cBoard[sR][sC],"B-P")==0){

 //check if the pawn is capturing another piece

 if(dC!=sC){

 if((dC==(sC+1))||(dC==(sC-1))){

 if((cBoard[dR][dC][0]!='\0')&&(cBoard[dR][dC][0]==oppPlayer))

 moveToGrave(dR,dC);

 else if((strcmp(cBoard[sR][dC],"A-

P")==0)&&(cBoard[sR][dC][0]==oppPlayer))

 moveToGrave(sR,dC);

 else{

 playSX();

 return;

 }

 stepsx = stepsPerSq+stepsoff;

 stepsy = stepsPerSq+stepsoff;

 if(dC==sC+1){

 Motor1Pos_Write(1u);

 CyDelay(10u);

 Motor1Neg_Write(0u);

 CyDelay(10u);

 }

 else{

 Motor1Pos_Write(0u);

 CyDelay(10u);

 Motor1Neg_Write(1u);

 CyDelay(10u);

91

 }

 CyDelay(10u);

 Motor2Pos_Write(0u);

 CyDelay(10u);

 Motor2Neg_Write(1u);

 CyDelay(10u);

 Couple_Write(1u);

 CyDelay(20u);

 for(k = 0; k < stepsx/2; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 CyDelay(10u);

 for(k = 0; k < stepsy; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 CyDelay(10u);

 for(k = 0; k < stepsx/2; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 moveBackMore(dR, dC);

 Couple_Write(0u);

 CyDelay(20u);

 }

 else{

 playSX();

 return;

 }

 }

 else{ //otherwise check if the pawn is moving

correctly

 if(dR==(sR-2)){

 if(sR!=6){

 playSX();

 return;

 }

 else if((cBoard[sR-1][dC][0]!='\0')||(cBoard[sR-

2][dC][0]!='\0')){

 playSX();

 return;

 }

 stepsy = stepsPerSq*2+stepsoff;

 }

 else if((dR==(sR-1))&&(cBoard[sR-1][dC][0]=='\0')){

 stepsy = stepsPerSq+stepsoff;

 }

 else{

92

 playSX();

 return;

 }

 Motor2Pos_Write(0u);

 CyDelay(10u);

 Motor2Neg_Write(1u);

 CyDelay(10u);

 Couple_Write(1u);

 CyDelay(20u);

 for(k = 0; k < stepsy; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 moveBackMore(dR, dC);

 Couple_Write(0u);

 CyDelay(20u);

 }

 if(dR==0){

 promMove();

 }

 }

 else if((strcmp(cBoard[sR][sC],"A-R1")==0)||(strcmp(cBoard[sR][sC],"A-

R2")==0)||(strcmp(cBoard[sR][sC],"B-R1")==0)||(strcmp(cBoard[sR][sC],"B-

R2")==0)){

 //check if the rook is moving correctly

 if(dR!=sR){

 if(dC!=sC){

 playSX();

 return;

 }

 }

 //check the direction the rook is moving

 //also check if there are pieces in the way

 int i=0;

 if(sR>dR){

 for(i=(sR-1);i>dR;i--){

 if(cBoard[i][dC][0]!='\0'){

 playSX();

 return;

 }

 }

 if((cBoard[dR][dC][0]!='\0')&&(cBoard[dR][dC][0]==oppPlayer)){

 moveToGrave(dR, dC);

 }

 else if(cBoard[dR][dC][0]==player){

 playSX();

 return;

 }

93

 numSqsY = sR-dR;

 Motor2Pos_Write(0u);

 CyDelay(10u);

 Motor2Neg_Write(1u);

 CyDelay(10u);

 }

 else if(dR>sR){

 for(i=(sR+1);i<dR;i++){

 if(cBoard[i][dC][0]!='\0'){

 playSX();

 return;

 }

 }

 if((cBoard[dR][dC][0]!='\0')&&(cBoard[dR][dC][0]==oppPlayer)){

 moveToGrave(dR, dC);

 }

 else if(cBoard[dR][dC][0]==player){

 playSX();

 return;

 }

 numSqsY = dR-sR;

 Motor2Pos_Write(1u);

 CyDelay(10u);

 Motor2Neg_Write(0u);

 CyDelay(10u);

 }

 else if(sC>dC){

 for(i=(sC-1);i>dC;i--){

 if(cBoard[dR][i][0]!='\0'){

 playSX();

 return;

 }

 }

 if((cBoard[dR][dC][0]!='\0')&&(cBoard[dR][dC][0]==oppPlayer)){

 moveToGrave(dR, dC);

 }

 else if(cBoard[dR][dC][0]==player){

 playSX();

 return;

 }

 numSqsX = sC-dC;

 Motor1Pos_Write(0u);

 CyDelay(10u);

 Motor1Neg_Write(1u);

 CyDelay(10u);

 }

 else if(dC>sC){

 for(i=(sC+1);i<dC;i++){

 if(cBoard[dR][i][0]!='\0'){

 playSX();

 return;

 }

 }

94

 if((cBoard[dR][dC][0]!='\0')&&(cBoard[dR][dC][0]==oppPlayer)){

 moveToGrave(dR, dC);

 }

 else if(cBoard[dR][dC][0]==player){

 playSX();

 return;

 }

 numSqsX = dC-sC;

 Motor1Pos_Write(1u);

 CyDelay(10u);

 Motor1Neg_Write(0u);

 CyDelay(10u);

 }

 else{

 playSX();

 return;

 }

 stepsy=numSqsY*stepsPerSq+stepsoff;

 stepsx=numSqsX*stepsPerSq+stepsoff;

 Couple_Write(1u);

 CyDelay(20u);

 for(k = 0; k < stepsx; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 CyDelay(10u);

 for(k = 0; k < stepsy; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 moveBackMore(dR, dC);

 Couple_Write(0u);

 CyDelay(20u);

 //keep track of which rooks moved for castling

 if(strcmp(cBoard[sR][sC],"A-R1")==0)

 pieceMoved[0]=1;

 else if(strcmp(cBoard[sR][sC],"A-R2")==0)

 pieceMoved[1]=1;

 else if(strcmp(cBoard[sR][sC],"B-R1")==0)

 pieceMoved[2]=1;

 else if(strcmp(cBoard[sR][sC],"B-R2")==0)

 pieceMoved[3]=1;

 }

 else if((strcmp(cBoard[sR][sC],"A-B")==0)||(strcmp(cBoard[sR][sC],"B-

B")==0)){

 //check invalid movement

95

 if((sR==dR)||(sC==dC)){

 playSX();

 return;

 }

 else if(abs(sR-dR)!=abs(sC-dC)){

 playSX();

 return;

 }

 //set directions and check spaces

 int j = 0, i = 0;

 if(sR>dR){

 j = sR-1;

 if(sC>dC){

 for(i = sC-1;i>dC;i--){

 if(cBoard[j][i][0]!='\0'){

 playSX();

 return;

 }

 j--;

 }

if((cBoard[dR][dC][0]!='\0')&&(cBoard[dR][dC][0]==oppPlayer)){

 moveToGrave(dR, dC);

 }

 else if(cBoard[dR][dC][0]==player){

 playSX();

 return;

 }

 Motor1Pos_Write(0u);

 CyDelay(10u);

 Motor1Neg_Write(1u);

 CyDelay(10u);

 }

 else if(sC<dC){

 for(i = sC+1;i<dC;i++){

 if(cBoard[j][i][0]!='\0'){

 playSX();

 return;

 }

 j--;

 }

if((cBoard[dR][dC][0]!='\0')&&(cBoard[dR][dC][0]==oppPlayer)){

 moveToGrave(dR, dC);

 }

 else if(cBoard[dR][dC][0]==player){

 playSX();

 return;

 }

 Motor1Pos_Write(1u);

96

 CyDelay(10u);

 Motor1Neg_Write(0u);

 CyDelay(10u);

 }

 Motor2Pos_Write(0u);

 CyDelay(10u);

 Motor2Neg_Write(1u);

 CyDelay(10u);

 numSqsX = sR-dR;

 }

 else if(sR<dR){

 j = sR+1;

 if(sC>dC){

 for(i = sC-1;i>dC;i--){

 if(cBoard[j][i][0]!='\0'){

 playSX();

 return;

 }

 j++;

 }

if((cBoard[dR][dC][0]!='\0')&&(cBoard[dR][dC][0]==oppPlayer)){

 moveToGrave(dR, dC);

 }

 else if(cBoard[dR][dC][0]==player){

 playSX();

 return;

 }

 Motor1Pos_Write(0u);

 CyDelay(10u);

 Motor1Neg_Write(1u);

 CyDelay(10u);

 }

 else if(sC<dC){

 for(i = sC+1;i<dC;i++){

 if(cBoard[j][i][0]!='\0'){

 playSX();

 return;

 }

 j++;

 }

if((cBoard[dR][dC][0]!='\0')&&(cBoard[dR][dC][0]==oppPlayer)){

 moveToGrave(dR, dC);

 }

 else if(cBoard[dR][dC][0]==player){

 playSX();

 return;

 }

 Motor1Pos_Write(1u);

97

 CyDelay(10u);

 Motor1Neg_Write(0u);

 CyDelay(10u);

 }

 Motor2Pos_Write(1u);

 CyDelay(10u);

 Motor2Neg_Write(0u);

 CyDelay(10u);

 numSqsX = dR-sR;

 }

 stepsx = stepsPerSq*numSqsX+stepsoff;

 Couple_Write(1u);

 CyDelay(20u);

 for(k = 0; k < stepsx; k++){

 Motor1Steps_Write(1u);

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 moveBackMore(dR, dC);

 Couple_Write(0u);

 CyDelay(20u);

 }

 else if((strcmp(cBoard[sR][sC],"A-K")==0)||(strcmp(cBoard[sR][sC],"B-

K")==0)){

 //check movement and set directions

 if((sR-dR)==2){

 if((sC-dC)==1){

 if((cBoard[dR][dC][0]!='\0')&&(cBoard[dR][dC][0]==oppPlayer))

 moveToGrave(dR, dC);

 else if(cBoard[dR][dC][0]==player){

 playSX();

 return;

 }

 Motor2Pos_Write(0u);

 CyDelay(10u);

 Motor2Neg_Write(1u);

 CyDelay(10u);

 Motor1Pos_Write(0u);

 CyDelay(10u);

 Motor1Neg_Write(1u);

 CyDelay(10u);

 }

 else if((dC-sC)==1){

 if((cBoard[dR][dC][0]!='\0')&&(cBoard[dR][dC][0]==oppPlayer))

 moveToGrave(dR, dC);

 else if(cBoard[dR][dC][0]==player){

 playSX();

 return;

 }

98

 Motor2Pos_Write(0u);

 CyDelay(10u);

 Motor2Neg_Write(1u);

 CyDelay(10u);

 Motor1Pos_Write(1u);

 CyDelay(10u);

 Motor1Neg_Write(0u);

 CyDelay(10u);

 }

 else{

 playSX();

 return;

 }

 stepsx = stepsPerSq+stepsoff;

 stepsy = 2*stepsPerSq+stepsoff;

 Couple_Write(1u);

 CyDelay(20u);

 for(k = 0; k < stepsx/2; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 for(k = 0; k < stepsy; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 for(k = 0; k < stepsx/2; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 moveBackMore(dR, dC);

 Couple_Write(0u);

 CyDelay(20u);

 }

 else if((dR-sR)==2){

 if((sC-dC)==1){

 if((cBoard[dR][dC][0]!='\0')&&(cBoard[dR][dC][0]==oppPlayer))

 moveToGrave(dR, dC);

 else if(cBoard[dR][dC][0]==player){

 playSX();

 return;

 }

 Motor2Pos_Write(1u);

 CyDelay(10u);

 Motor2Neg_Write(0u);

 CyDelay(10u);

 Motor1Pos_Write(0u);

 CyDelay(10u);

 Motor1Neg_Write(1u);

99

 CyDelay(10u);

 }

 else if((dC-sC)==1){

 if((cBoard[dR][dC][0]!='\0')&&(cBoard[dR][dC][0]==oppPlayer))

 moveToGrave(dR, dC);

 else if(cBoard[dR][dC][0]==player){

 playSX();

 return;

 }

 Motor2Pos_Write(1u);

 CyDelay(10u);

 Motor2Neg_Write(0u);

 CyDelay(10u);

 Motor1Pos_Write(1u);

 CyDelay(10u);

 Motor1Neg_Write(0u);

 CyDelay(10u);

 }

 else{

 playSX();

 return;

 }

 stepsx = stepsPerSq+stepsoff;

 stepsy = 2*stepsPerSq+stepsoff;

 Couple_Write(1u);

 CyDelay(20u);

 for(k = 0; k < stepsx/2; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 for(k = 0; k < stepsy; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 for(k = 0; k < stepsx/2; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 moveBackMore(dR, dC);

 Couple_Write(0u);

 CyDelay(20u);

 }

 else if((sR-dR)==1){

 if((sC-dC)==2){

 if((cBoard[dR][dC][0]!='\0')&&(cBoard[dR][dC][0]==oppPlayer))

 moveToGrave(dR, dC);

 else if(cBoard[dR][dC][0]==player){

 playSX();

100

 return;

 }

 Motor2Pos_Write(0u);

 CyDelay(10u);

 Motor2Neg_Write(1u);

 CyDelay(10u);

 Motor1Pos_Write(0u);

 CyDelay(10u);

 Motor1Neg_Write(1u);

 CyDelay(10u);

 }

 else if((dC-sC)==2){

 if((cBoard[dR][dC][0]!='\0')&&(cBoard[dR][dC][0]==oppPlayer))

 moveToGrave(dR, dC);

 else if(cBoard[dR][dC][0]==player){

 playSX();

 return;

 }

 Motor2Pos_Write(0u);

 CyDelay(10u);

 Motor2Neg_Write(1u);

 CyDelay(10u);

 Motor1Pos_Write(1u);

 CyDelay(10u);

 Motor1Neg_Write(0u);

 CyDelay(10u);

 }

 else{

 playSX();

 return;

 }

 stepsx = 2*stepsPerSq+stepsoff;

 stepsy = stepsPerSq+stepsoff;

 Couple_Write(1u);

 CyDelay(20u);

 for(k = 0; k < stepsy/2; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 for(k = 0; k < stepsx; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 for(k = 0; k < stepsy/2; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 moveBackMore(dR, dC);

101

 Couple_Write(0u);

 CyDelay(20u);

 }

 else if((dR-sR)==1){

 if((sC-dC)==2){

 if((cBoard[dR][dC][0]!='\0')&&(cBoard[dR][dC][0]==oppPlayer))

 moveToGrave(dR, dC);

 Motor2Pos_Write(1u);

 CyDelay(10u);

 Motor2Neg_Write(0u);

 CyDelay(10u);

 Motor1Pos_Write(0u);

 CyDelay(10u);

 Motor1Neg_Write(1u);

 CyDelay(10u);

 }

 else if((dC-sC)==2){

 if((cBoard[dR][dC][0]!='\0')&&(cBoard[dR][dC][0]==oppPlayer))

 moveToGrave(dR, dC);

 Motor2Pos_Write(1u);

 CyDelay(10u);

 Motor2Neg_Write(0u);

 CyDelay(10u);

 Motor1Pos_Write(1u);

 CyDelay(10u);

 Motor1Neg_Write(0u);

 CyDelay(10u);

 }

 else{

 playSX();

 return;

 }

 stepsx = 2*stepsPerSq+stepsoff;

 stepsy = stepsPerSq+stepsoff;

 Couple_Write(1u);

 CyDelay(20u);

 for(k = 0; k < stepsy/2; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 for(k = 0; k < stepsx; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 for(k = 0; k < stepsy/2; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

102

 }

 moveBackMore(dR, dC);

 Couple_Write(0u);

 CyDelay(20u);

 }

 else{

 playSX();

 return;

 }

 }

 else if((strcmp(cBoard[sR][sC],"A-Q")==0)||(strcmp(cBoard[sR][sC],"B-

Q")==0)){

 stepsx = stepsPerSq*abs(sC-dC)+stepsoff;

 stepsy = stepsPerSq*abs(sR-dR)+stepsoff;

 int i = 0, j = 0;

 //check the spaces are empty

 if(sR==dR){

 i = sR;

 if(sC>dC){

 for(j=sC-1;j>dC;j--){

 if(cBoard[i][j][0]!='\0'){

 playSX();

 return;

 }

 }

 numSqsX = sC-dC;

 }

 else if(sC<dC){

 for(j=sC+1;j<dC;j++){

 if(cBoard[i][j][0]!='\0'){

 playSX();

 return;

 }

 }

 numSqsX = dC-sC;

 }

 else{

 playSX();

 return;

 }

 if((cBoard[dR][dC][0]!='\0')&&(cBoard[dR][dC][0]==oppPlayer)){

 moveToGrave(dR, dC);

 }

 else if(cBoard[dR][dC][0]==player){

 playSX();

 return;

 }

 //set movement directions

 if(sR>dR){

 Motor2Neg_Write(1u);

 Motor2Pos_Write(0u);

 CyDelay(10u);

 }

103

 else{

 Motor2Neg_Write(0u);

 Motor2Pos_Write(1u);

 CyDelay(10u);

 }

 if(sC>dC){

 Motor1Neg_Write(1u);

 Motor1Pos_Write(0u);

 CyDelay(10u);

 }

 else{

 Motor1Neg_Write(0u);

 Motor1Pos_Write(1u);

 CyDelay(10u);

 }

 stepsx=numSqsX*stepsPerSq+stepsoff;

 Couple_Write(1u);

 CyDelay(20u);

 for(k = 0; k < stepsx; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 moveBackMore(dR, dC);

 Couple_Write(0u);

 CyDelay(20u);

 }

 else if(sC==dC){

 j = sC;

 if(sR>dR){

 for(i=sR-1;i>dR;i--){

 if(cBoard[i][j][0]!='\0'){

 playSX();

 return;

 }

 }

 numSqsY = sR-dR;

 }

 else if(sR<dR){

 for(i=sR+1;i<dR;i++){

 if(cBoard[i][j][0]!='\0'){

 playSX();

 return;

 }

 }

 numSqsY = dR-sR;

 }

 if((cBoard[dR][dC][0]!='\0')&&(cBoard[dR][dC][0]==oppPlayer)){

 moveToGrave(dR, dC);

 }

 else if(cBoard[dR][dC][0]==player){

 playSX();

 return;

 }

104

 //set movement directions

 if(sR>dR){

 Motor2Neg_Write(1u);

 Motor2Pos_Write(0u);

 CyDelay(10u);

 }

 else{

 Motor2Neg_Write(0u);

 Motor2Pos_Write(1u);

 CyDelay(10u);

 }

 if(sC>dC){

 Motor1Neg_Write(1u);

 Motor1Pos_Write(0u);

 CyDelay(10u);

 }

 else{

 Motor1Neg_Write(0u);

 Motor1Pos_Write(1u);

 CyDelay(10u);

 }

 stepsy=numSqsY*stepsPerSq+stepsoff;

 Couple_Write(1u);

 CyDelay(20u);

 for(k = 0; k < stepsy; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 moveBackMore(dR, dC);

 Couple_Write(0u);

 CyDelay(20u);

 }

 else if(abs(sR-dR)==abs(sC-dC)){

 if(sR>dR){

 j = sR-1;

 if(sC>dC){

 for(i = sC-1;i>dC;i--){

 if(cBoard[j][i][0]!='\0'){

 playSX();

 return;

 }

 j--;

 }

 }

 else if(sC<dC){

 for(i = sC+1;i<dC;i++){

 if(cBoard[j][i][0]!='\0'){

 playSX();

 return;

 }

 j--;

 }

 }

105

 numSqsX = sR-dR;

 }

 else if(sR<dR){

 j = sR+1;

 if(sC>dC){

 for(i = sC-1;i>dC;i--){

 if(cBoard[j][i][0]!='\0'){

 playSX();

 return;

 }

 j++;

 }

 }

 else if(sC<dC){

 for(i = sC+1;i<dC;i++){

 if(cBoard[j][i][0]!='\0'){

 playSX();

 return;

 }

 j++;

 }

 }

 numSqsX = dR-sR;

 }

 stepsx = stepsPerSq*numSqsX+stepsoff;

 if((cBoard[dR][dC][0]!='\0')&&(cBoard[dR][dC][0]==oppPlayer)){

 moveToGrave(dR, dC);

 }

 else if(cBoard[dR][dC][0]==player){

 playSX();

 return;

 }

 //set movement directions

 if(sR>dR){

 Motor2Neg_Write(1u);

 Motor2Pos_Write(0u);

 CyDelay(10u);

 }

 else{

 Motor2Neg_Write(0u);

 Motor2Pos_Write(1u);

 CyDelay(10u);

 }

 if(sC>dC){

 Motor1Neg_Write(1u);

 Motor1Pos_Write(0u);

 CyDelay(10u);

 }

 else{

 Motor1Neg_Write(0u);

 Motor1Pos_Write(1u);

 CyDelay(10u);

 }

 Couple_Write(1u);

106

 CyDelay(20u);

 for(k = 0; k < stepsx; k++){

 Motor1Steps_Write(1u);

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 moveBackMore(dR, dC);

 Couple_Write(0u);

 CyDelay(20u);

 }

 else{

 playSX();

 return;

 }

 }

 else if((strcmp(cBoard[sR][sC],"A-Ki")==0)||(strcmp(cBoard[sR][sC],"B-

Ki")==0)){

 if(((sR-dR)==1||(dR-sR)==1)&&((sC-dC)==1||(dC-sC)==1)){

 if((cBoard[dR][dC][0]!='\0')&&(cBoard[dR][dC][0]==oppPlayer)){

 moveToGrave(dR, dC);

 }

 else if(cBoard[dR][dC][0]==player){

 playSX();

 return;

 }

 if(sR>dR){

 Motor2Neg_Write(1u);

 Motor2Pos_Write(0u);

 CyDelay(10u);

 }

 else{

 Motor2Neg_Write(0u);

 Motor2Pos_Write(1u);

 CyDelay(10u);

 }

 if(sC>dC){

 Motor1Neg_Write(1u);

 Motor1Pos_Write(0u);

 CyDelay(10u);

 }

 else{

 Motor1Neg_Write(0u);

 Motor1Pos_Write(1u);

 CyDelay(10u);

 }

 stepsx = stepsPerSq+stepsoff;

 Couple_Write(1u);

 CyDelay(20u);

 for(k = 0; k < stepsx; k++){

 Motor1Steps_Write(1u);

 Motor2Steps_Write(1u);

107

 CyDelay(width);

 Motor1Steps_Write(0u);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 moveBackMore(dR, dC);

 Couple_Write(0u);

 CyDelay(20u);

 }

 else if((sR==dR)&&((sC-dC)==1||(dC-sC)==1)){

 if((cBoard[dR][dC][0]!='\0')&&(cBoard[dR][dC][0]==oppPlayer)){

 moveToGrave(dR, dC);

 }

 else if(cBoard[dR][dC][0]==player){

 playSX();

 return;

 }

 if(sC>dC){

 Motor1Neg_Write(1u);

 Motor1Pos_Write(0u);

 CyDelay(10u);

 }

 else{

 Motor1Neg_Write(0u);

 Motor1Pos_Write(1u);

 CyDelay(10u);

 }

 stepsx=stepsPerSq+stepsoff;

 Couple_Write(1u);

 CyDelay(20u);

 for(k = 0; k < stepsx; k++){

 Motor1Steps_Write(1u);

 CyDelay(width);

 Motor1Steps_Write(0u);

 CyDelay(width);

 }

 moveBackMore(dR, dC);

 Couple_Write(0u);

 CyDelay(20u);

 }

 else if((sC==dC)&&((sR-dR)==1||(dR-sR)==1)){

 if((cBoard[dR][dC][0]!='\0')&&(cBoard[dR][dC][0]==oppPlayer)){

 moveToGrave(dR, dC);

 }

 else if(cBoard[dR][dC][0]==player){

 playSX();

 return;

 }

 if(sR>dR){

 Motor2Neg_Write(1u);

 Motor2Pos_Write(0u);

 CyDelay(10u);

108

 }

 else{

 Motor2Neg_Write(0u);

 Motor2Pos_Write(1u);

 CyDelay(10u);

 }

 stepsy=stepsPerSq+stepsoff;

 Couple_Write(1u);

 CyDelay(20u);

 for(k = 0; k < stepsy; k++){

 Motor2Steps_Write(1u);

 CyDelay(width);

 Motor2Steps_Write(0u);

 CyDelay(width);

 }

 moveBackMore(dR, dC);

 Couple_Write(0u);

 CyDelay(20u);

 }

 else{

 playSX();

 return;

 }

 if(strcmp(cBoard[sR][sC],"A-Ki")==0){

 kingAC = dC;

 kingAR = dR;

 pieceMoved[4]=1;

 }

 else if(strcmp(cBoard[sR][sC],"B-Ki")==0){

 kingBC = dC;

 kingBR = dR;

 pieceMoved[5]=1;

 }

 }

 //CheckRes(dR, dC);

 cBoard[dR][dC] = cBoard[sR][sC];

 currentR = dR;

 currentC = dC;

 cBoard[sR][sC] = 0;

 switchPlayer();

}

void checkMate(){

 LEDA_Write(1u);

 LEDMIC_Write(1u);

 LEDB_Write(1u);

 playSX();

 CyDelay(1000);

 LEDA_Write(0u);

 LEDMIC_Write(0u);

 LEDB_Write(0u);

 CyDelay(1000);

 LEDA_Write(1u);

 LEDMIC_Write(0u);

109

 LEDB_Write(0u);

 playSX();

 CyDelay(1000);

 LEDA_Write(0u);

 LEDMIC_Write(1u);

 LEDB_Write(0u);

 CyDelay(1000);

 LEDA_Write(0u);

 LEDMIC_Write(0u);

 LEDB_Write(1u);

 playSX();

 CyDelay(1000);

 LEDA_Write(1u);

 LEDMIC_Write(1u);

 LEDB_Write(1u);

 CyDelay(1000);

 LEDA_Write(0u);

 LEDMIC_Write(0u);

 LEDB_Write(0u);

 CyDelay(1000);

 playSX();

 if(player == 'A'){

 LEDA_Write(1u);

 LEDB_Write(0u);

 }

 else if(player == 'B'){

 LEDA_Write(0u);

 LEDB_Write(1u);

 }

}

int main(){

 CyGlobalIntEnable;

 UART_1_Start();

 ADC1_Start();

 ADC1_StartConvert();

 PowerVR_Write(1u);

 setupBoard();

 char8 command, result;

 int movement[4];

 int i = 0;

 UART_1_UartPutChar(CMD_TIMEOUT);

 CyDelay(20u);

 UART_1_UartPutChar('C');

 CyDelay(20u);

 UART_1_UartPutChar(CMD_LANGUAGE);

 CyDelay(20u);

 UART_1_UartPutChar('A');

 CyDelay(20u);

 UART_1_UartPutChar(CMD_MIC_DIST);

 CyDelay(20u);

 UART_1_UartPutChar('@');

 CyDelay(20u);

110

 UART_1_UartPutChar('C');

 CyDelay(30u);

 UART_1_UartGetChar();

 UART_1_UartGetChar();

 UART_1_UartGetChar();

 for(;;)

 {

 Key5_Write(0u);

 Key6_Write(0u);

 Key7_Write(0u);

 //Test SI command recognition

 result = UART_1_UartGetChar();

 if(result > 0u){

 if(result == 's'){

 CyDelay(20);

 UART_1_UartPutChar(' ');

 CyDelay(20);

 while(command == 0u){

 command = UART_1_UartGetChar();

 if(command == 'B'){

 movement[i] = 1;

 i++;

 }

 else if(command == 'C'){

 movement[i] = 2;

 i++;

 }

 else if(command == 'D'){

 movement[i] = 3;

 i++;

 }

 else if(command == 'E'){

 movement[i] = 4;

 i++;

 }

 else if(command == 'F'){

 movement[i] = 5;

 i++;

 }

 else if(command == 'G'){

 movement[i] = 6;

 i++;

 }

 else if(command == 'H'){

 movement[i] = 7;

 i++;

 }

 else if(command == 'I'){

 movement[i] = 8;

 i++;

 }

 else if(command == 'J'){

 doCastle();

 }

 else if(command == 'K'){

111

 checkMate();

 }

 else if(command == 'A'){

 moveBackPieces();

 }

 }

 command = 0u;

 }

 }

 CyDelay(20);

 //Code for keypad

 Key5_Write(1u);

 CyDelay(15);

 if(Key1_Read() == 1u){

 movement[i] = 1;

 i++;

 CyDelay(500u);

 }

 else if(Key2_Read() == 1u){

 movement[i] = 4;

 i++;

 CyDelay(500u);

 }

 else if(Key3_Read() == 1u){

 movement[i] = 7;

 i++;

 CyDelay(500u);

 }

 else if(Key4_Read() == 1u){

 UART_1_UartPutChar(CMD_RECOG_SI);

 CyDelay(10u);

 UART_1_UartPutChar('D');

 LEDMIC_Write(1u);

 CyDelay(1000u);

 LEDMIC_Write(0u);

 }

 Key5_Write(0u);

 Key6_Write(1u);

 CyDelay(15);

 if(Key1_Read() == 1u){

 movement[i] = 2;

 i++;

 CyDelay(500u);

 }

 else if(Key2_Read() == 1u){

 movement[i] = 5;

 i++;

 CyDelay(500u);

 }

 else if(Key3_Read() == 1u){

 movement[i] = 8;

 i++;

 CyDelay(500u);

 }

 else if(Key4_Read() == 1u){

 moveBackPieces();

112

 CyDelay(500u);

 }

 Key6_Write(0u);

 Key7_Write(1u);

 CyDelay(15);

 if(Key1_Read() == 1u){

 movement[i] = 3;

 i++;

 CyDelay(500u);

 }

 else if(Key2_Read() == 1u){

 movement[i] = 6;

 i++;

 CyDelay(500u);

 }

 else if(Key3_Read() == 1u){

 doCastle();

 CyDelay(500u);

 }

 else if(Key4_Read() == 1u){

 checkMate();

 CyDelay(500u);

 }

 Key7_Write(0u);

 CyDelay(20);

 if(i == 4){

 i = 0;

 doMovement(movement);

 }

 }

}

	The University of Akron
	IdeaExchange@UAkron
	Spring 2016

	Voice Activated Chess Set
	William Weigand
	Alysha Jansto
	Kerim Bojadzija
	Mitchell Hall
	Recommended Citation

	tmp.1462475953.pdf.haecE

