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This work is Part II of an integrated experimental/modeling investigation of a procedure to coat
nanofibers and core-clad nanostructures with thin-film materials using plasma-enhanced physical
vapor deposition. In the experimental effort, electrospun polymer nanofibers are coated with
aluminum materials under different operating conditions to observe changes in the coating
morphology. This procedure begins with the sputtering of the coating material from a target. Part I
�J. Appl. Phys. 98, 044303 �2005�� focused on the sputtering aspect and transport of the sputtered
material through the reactor. That reactor level model determines the concentration field of the
coating material. This field serves as input into the present species transport and deposition model
for the region surrounding an individual nanofiber. The interrelationships among processing factors
for the transport and deposition are investigated here from a detailed modeling approach that
includes the salient physical and chemical phenomena. Solution strategies that couple continuum
and atomistic models are used. At the continuum scale, transport dynamics near the nanofiber are
described. At the atomic level, molecular dynamics �MD� simulations are used to study the
deposition and sputtering mechanisms at the coating surface. Ion kinetic energies and fluxes are
passed from the continuum sheath model to the MD simulations. These simulations calculate
sputtering and sticking probabilities that in turn are used to calculate parameters for the continuum
transport model. The continuum transport model leads to the definition of an evolution equation for
the coating-free surface. This equation is solved using boundary perturbation and level set methods
to determine the coating morphology as a function of operating conditions. © 2005 American
Institute of Physics. �DOI: 10.1063/1.2007849�

I. INTRODUCTION

This paper is a continuation of Ref. 1, which presented a
coordinated experimental and modeling program for the syn-
thesis of core/clad and hollow nanowire structures. Physical
vapor deposition techniques were used to apply coatings to
electrospun polymer nanofibers. These fibers were coated
with films of copper, aluminum, titanium, zirconium, and
aluminum nitride by using a plasma-enhanced physical vapor
deposition �PEPVD� sputtering process, as shown in Fig. 1.

For reference, some details of the reactor and the syn-
thesized nanowires are described. In the reactor, a power
supply drives a 2-in. diameter electrode which forms the
target �or source� material. A mat of nanofibers is placed on
a holder that sits 8 cm above the target. When a negative
electrical potential is applied to the electrode �target�, a
plasma of positively charged ions forms in the gas phase.
The resulting electric field causes these ions to impact the
target. These collisions, in turn, sputter neutral species of the

target material into the gas phase. Once in the gas phase, the
neutral species are transported throughout the reactor and are
deposited on all available surfaces, including the nanofibers.
Ions from the plasma also strike the coated nanofibers, but
typically with much less energy because the substrate is not
biased. These collisions tend to smooth out the coating
through a re-sputtering process. The coating growth rate de-
pends on the rate at which atoms are supplied to the nanofi-
ber surface, the nanofiber temperature, and the ion flux to the
nanofiber. The morphology of the coating depends on the
mobility of the atoms on the surface and how much time the
atoms have to move around before the next atoms hit the
surface. The rate at which atoms are supplied to a nanofiber
depends on the rate at which atoms are sputtered from the
target. The sputtering rate depends on the ion flux, which is
determined by the power applied to the target, the pressure of
the system, and the working gas used.

Transmission electron microscopy �TEM� is used to de-
termine the effects of these variables on the film growth rate
and morphology. The average thicknesses of the fibers before
and after the coating process are compared to determine thea�Electronic mail: gwyoung@uakron.edu
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average growth rate of the coating. To determine the coating
morphology and crystalline structure, TEM images and dif-
fraction patterns are taken.

Figure 2 shows a nanofiber coated with aluminum. Fol-
lowing deposition, the polymer nanofiber may be removed
by pyrolisis while leaving the coating. Figure 3 shows the
open cylindrical cross section of a nanotube created in this
fashion. The inner diameter of the tube was around 20 nm in
this case. The approximate thickness of the tube walls was
controlled by the sputtering process. A tube with 40-nm wall
thickness is shown in Fig. 4.

The approach described above can be used to produce
cylindrical, multilayered nanostructures with precisely con-
trolled interfaces composed of many materials including
metals, semiconductors, ceramics, and polymers with con-
trolled diameters and a range of nanometer-thick walls. In
this work the deposition is taking place on nanoscale size
structures.2

II. OVERALL MODELING APPROACH

To aid in the understanding of the deposition process, a
comprehensive model for the coating of nanofibers within a

traditional PEPVD system was described in Ref. 1. The ob-
jective of the model is to determine the influence of process
conditions on the uniformity and morphology of the coating.
The system is characterized by a bulk gas phase dominated
by neutral species and sheath regions that separate the bulk
gas phase from the substrate �nanofibers� and the target, as
shown in Fig. 1. There are several disparate geometrical
length scales in the reactor system. The reactor size from the
target to the top is no more than 20 cm in length. The dis-
tance from the target to the holder is centimeters in length.
Sheath regions are several millimeters in thickness, while
nanofibers range from 20 to 100 nm in diameter. In our mod-
eling effort, we treat each nanofiber within the mat as an
isolated fiber, and also assume that the holder region of the
nanofibers does not influence the global transport of neutral

FIG. 1. Global schematic of the reactor for neutral species transport within
the reactor.

FIG. 2. TEM images of aluminum-coated fibers.

FIG. 3. TEM image of an aluminum nanotube.

FIG. 4. Aluminum nanotube with a wall thickness of 40 nm.
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species. As noted above, however, a sheath region that influ-
ences ion transport does exist in the region of the holder and
its mat of nanofibers.

The transport of neutral species is separated into two
components: �1� a one-dimensional reactor-scale model and
�2� a two-dimensional local nanofiber-scale model. The
reactor-scale model, the focus of Ref. 1, includes the sheath
region near the target and transport throughout the reactor,
but ignores the presence of the holder region. The present
paper focuses upon the transport of neutral species in the
vicinity of a typical nanofiber. With these assumptions, the
two papers are linked as follows: the reactor-scale model
provides the far-field �half the distance away from an adja-
cent fiber� input of the neutral species concentration C* at
location ŷ=y* of a particular nanofiber, as shown in Fig. 1.
Figure 5 provides a schematic of the region near a nanofiber.
The cylindrical fiber is encapsulated by a nonuniform coat-
ing of neutral species. Outside the coating we suppose a
sheath region exists and that the far-field neutral species con-
centration is C*. We note that the reactor-scale model1 pre-
dicts that this concentration is constant throughout the reac-
tor, except, of course, in the vicinity of the fiber, which is the
topic of the present paper.

As noted previously, ions strike the coated fibers with
less energy than they do the target. These collisions tend to
redistribute the neutral species on the fiber through a resput-
tering process that is heavily dependent upon the local topog-
raphy. It follows that the coating process is sensitive to the
full range of length scales, from the reactor scale to the fiber
scale and the still smaller molecular �or atomistic� scale. Re-
actor level process variables influence the surface-scale fea-
tures of the coating. Simultaneously, coating processes at the
surface scale can affect the reactor-scale characteristics.
Simulation of this feedback between the surface features and
the reactor-scale level is difficult to accomplish given the
current computational abilities. Thus, efficient solution meth-
odologies integrating simulations at the various length scales
must be developed.3–6 This paper and Ref. 1 present a strat-
egy for accomplishing some portions of this integration
through the linking of models at the global reactor scale, the
local nanofiber scale, and the molecular scale.

For the remainder of this paper, we consider the nanofi-
ber region and transport of the deposition material by diffu-
sion. Poisson and ion fluid equations govern the transport of

ions through the sheath region around the holder, and the
interaction of the ions with the coating surface. Mass balance
equations at the coating surface include deposition rate pa-
rameters and desorption parameters due to ion bombardment.
These parameters are functions of the fiber and coating cur-
vature, the ion flux to the coating surface, and the ion kinetic
energy. These parameters are passed to the continuum equa-
tions from molecular-dynamics �MD� simulations.

At the local nanofiber scale, a polar coordinate geometry
is considered in this investigation, and plans to extend this to
an axisymmetric configuration are underway. Level set and
evolution equation approaches are used to simulate the coat-
ing shape. Four basic components of the coating mechanism
are included in these approaches. These are attachment ki-
netics, curvature effects, etching due to ion bombardment,
and solid-state diffusion on the coating surface. These equa-
tions are solved numerically and analyzed via boundary per-
turbation techniques. Results from these analyses are shown
to verify basic experimental observations, for example, the
wavelength and magnitude of the coating roughness is larger
in both the axial and azimuthal directions for larger-diameter
fibers.

At the atomic level, MD simulations7 are used to study
the adsorption, reflection and sputtering mechanisms, and
migration of atoms on the coating. The ion kinetic energy,
ion flux, and the thickness of the coating from the continuum
models are used as input to the MD simulations. This
information serves as the initial condition for the ion
bombardment.

Because of the size of the fiber and the computational
limitations of the MD approach, it is not possible to simulate
the entire circumference of the coating surface. Hence, an
angular sector of the nanofiber is examined at fixed coating
thicknesses to develop a global picture of the coating growth.

Information concerning the angle of incidence of bom-
bardment on the sector is curve fit to form expressions for
the deposition and desorption parameters that are valid
around the circumference of the fiber, and which are then
passed to the continuum model. The information obtained
from the MD simulations at each coating thickness is curve
fit to obtain expressions that are continuous in time, for use
by the continuum models. This creates a solution methodol-
ogy that iterates between atomic and continuum models.

Putting all of the above pieces together, level set simu-
lations of the coating front are presented. The initial polymer
nanofiber landscape is taken to be a superposition of Fourier
modes, consistent with models of the electrospinning
process.8,9 Hence, our approach links models across the en-
tire fabrication process. Predictions of the coating thickness
based upon the simulations are compared with our experi-
mental observations. The model we have developed provides
reasonable trends with respect to the coating evolution on
nanoscale structures and how that evolution depends on pro-
cess parameters. The next step is to benchmark the model
against experimental data as the processing parameters are
varied. This benchmarking is the subject of Part III of this
series.

FIG. 5. Local model for neutral species transport near the nanofiber.
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III. NEUTRAL SPECIES TRANSPORT MODEL

A. Formulation

In Ref. 1 the dimensional concentration C* of the neutral
species at the reactor scale was found to be the constant,

C* =
kions

k
, �1�

where k is a reaction coefficient for sputtered material read-
sorbing to the target surface and kions is the desorption rate
coefficient for sputtering due to ion bombardment of the tar-

get surface. These rate coefficients depend on Ĵ+, the ion flux
to the surface, and �̂+, the ion kinetic energy. These two
quantities were obtained by examining the sheath region
around the target. Once determined, these quantities were
passed to the MD simulations to determine k and kions.
Knowing these parameters, the concentration C* was then
determined in the reactor as a function of the reactor operat-
ing conditions. This concentration field serves as the input
for the local transport model as shown in Fig. 5. The main
thrust of the present work is to use a coupled continuum/
atomistic approach to describe the transport of depositing
species local to the vicinity of the nanofiber. Given the spar-
sity of the nanofiber mesh, it is assumed that the concentra-
tion C* away from a nanofiber is unaffected by any loss of
depositing species due to deposition. However, the concen-
tration near the nanofiber does change due to the deposition.
Note also that the units of concentration are mole/volume,
the units of k are length/time, and the units of kions are
mole/ �area� time�.

For the local nanofiber-scale transport model around a
single nanofiber, we consider a cylindrical geometry as
shown in Fig. 5. This particular nanofiber is located at a
distance ŷ=y* from the target as shown in Fig. 1. The goal is

to determine the location, r̂= F̂�� , t̂�, of the front of the de-
posited coating. We assume that the source of the deposition

material is given by C*, and is located at r̂= ŜF, where ŜF is
half the average spacing between fibers in the mat. This
value C* remains constant around the nanofiber because the
fiber is so small in comparison to the global reactor scale.
Since C* is a result of the sputtering process and depends on
the reactor operating conditions, we have linked the local

and global models through the condition at r̂= ŜF.

Within the local region surrounding a fiber �F̂�� , t̂�� r̂

� ŜF�, we assume that the concentration ĉ of the deposition
material �neutral gas molecules� is large compared to the ion
concentration, and that the mode of transport of the deposi-
tion material is primarily governed by diffusion,

�ĉ

�t̂
= D̂� �2ĉ

�r̂2 +
1

r̂

�ĉ

�r̂
+

1

r̂2

�2ĉ

��2� , �2�

where D̂ is the mass diffusion coefficient.

At the coating front �r̂= F̂�� , t̂��, the diffusive flux of the
neutral species equals the net rate of deposition due to �i�
deposition �or reaction� from the bulk phase and �ii� desorp-

tion due to ion bombardment of the coating surface. These
two processes correspond to the respective terms on the
right-hand side of

D̂ � ĉ · n̂ = kF��, ÎF
+, �̂F

+,F̂�ĉ�1 − �̂�̂� − kFions��, ÎF
+, �̂F

+,F̂� .

�3�

Equations of this form have previously been proposed in

Refs. 10–12. Here kF is a reaction coefficient, �̂ the capillary
length scale, �̂ the curvature of the front, kFions the desorption
rate coefficient due to ion bombardment of the coating sur-

face, ÎF
+ the ion flux to the surface, and �̂F

+ the ion kinetic
energy. The latter two quantities are obtained by examining
the sheath region around the holder. This analysis is de-
scribed in Sec. IV.

The surface reaction-rate coefficents, kF and kFions, are
dependent upon the flux and energy of the ions as well as the
angle of incidence to the coating surface and the thickness of
the coating. The MD simulations in Sec. V are used to de-
velop expressions for these coefficients.

The normal velocity of the coating front, �̂n, is needed to
simulate the film growth at this length scale, using the level
set method. The normal front velocity is taken to be

�̂n = kF�ĉ�1 − �̂�̂� − �kFions − 	sDs�̂
�2�̂

�ŝ2 , �4�

where � is the molar volume, ŝ the arclength along the coat-
ing front, and 	s the thickness of the coating film that par-
ticipates in the surface diffusion phenomenon. The units for
� are determined by �= �mwt��1/density�=vol/mole, where
the density is that for the coating in the solid phase and mwt
is the molecular weight of the coating material. Equations
similar to �4� have been proposed in Refs. 12 and 13 for
chemical-vapor deposition onto flat substrates.

All of the terms in �4� are evaluated on the front, r̂

= F̂�� , t̂�. The first two terms in this equation are the contri-
butions to the normal velocity due to deposition and desorp-
tion, and the third term is diffusion along the coating surface.
Here Ds is the diffusivity of the adatoms on the coating sur-
face. The coating surface, in the two-dimensional Euclidean
vector space, is given by

r̂��, t̂� = �F̂��, t̂�cos �,F̂��, t̂�sin �� , �5�

so that the curvature of the front is

�̂��, t̂� =
F̂2��, t̂� + 2F̂�

2��, t̂� − F̂��, t̂�F̂����, t̂�

�F̂�
2��, t̂� + F̂2��, t̂��3/2

. �6�

The normal vector to the coating front is

n̂ =
�F̂� sin � + F̂ cos �,− F̂� cos � + F̂ sin ��

	F̂�
2 + F̂2

. �7�

The normal front velocity �̂n is also defined by

�̂n =
dr̂

dt̂
· n̂ . �8�
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Setting �4� equal to �8� allows one to develop an evolu-
tion equation for the shape of the coating front. In addition to
a level set simulation, this equation is analyzed via the
boundary perturbation method. In this case, the front is as-
sumed to have the form


r
 = F̂��, t̂� = f̂�t̂� + Âĝ��, t̂� , �9�

where Â is the amplitude of the angular perturbation to the

base state growth front, f̂�t̂�. We assume that Â is small and
that there are two sources for angular variation in the system.
One source is the initial shape of the nanofibers, which are
nearly circular in cross section. The other source is the varia-
tion of kFions and kF with respect to �. These parameters
depend upon � due to the electric field that develops in the
holder region. This point is elaborated upon in Sec. V. The
boundary perturbation analysis complements the level set
simulations of more complicated growth shapes.

The governing equations and boundary conditions are
nondimensionalized using the following scalings:

Dimensional variable Scale

ĉ C*

r̂ ŜF

t̂ ŜF / �KF�C*�
ŝ—arclength ŜF

Here KF is a constant representing the average value of
kF. Dimensionless variables are hatless. These scalings lead
to the nondimensional groups

DkF
= �kFŜF�/D̂ ,

� = �̂/ŜF,

QF = KFŜF�C*/D̂ 
 1,

where DkF
, the Damköhler number, is the ratio of the rate of

deposition on the fiber to the rate of neutral species transport
by diffusion, and QF is the ratio of the rate of front motion to
the rate of diffusion of the neutral species.

The nondimensional governing equation for concentra-
tion is

QFct = crr +
1

r
cr +

1

r2c�� for F��,t� � r � 1. �10�

Here, F�� , t�= F̂�� , t̂� / ŜF is the dimensionless coating
thickness. We impose two spatial boundary conditions upon
the concentration field. At the edge of the local region �r
=1�, the concentration is uniform as predicted by the reactor-
scale model,

c = 1. �11�

At the edge of the coating �r=F�� , t��, we apply the dimen-
sionless version of �3�:

cr − �F�/F�2c�

	1 + �F�/F�2
= DkF

c�1 − ��� −
kFionsŜF

C*D̂
, �12�

where

� =
F2 + 2F�

2 − FF��

�F2 + F�
2�3/2 �13�

is the nondimensional curvature.
The coating front velocity �4� in dimensionless form is

�Ft cos �,Ft sin �� · ��F sin ���,�− F cos ����
	F�

2 + F2

=
kF

KF
c�1 − ��� −

kFions

KFC* −
	sDs

�C*KFŜF
2

�
�2�

�s2 . �14�

Note that �2� /�s2= ��� /	F2+F�
2�� /	F2+F�

2 is the second de-
rivative of curvature with respect to arclength, so �14� takes
the form

FFt

	F2 + F�
2

=
kF

KF
c�1 − ��� −

kFions

KFC*

−
	sDs�

�C*KFŜF
2

���/	F2 + F�
2��

	F2 + F�
2

. �15�

This expression is used to develop an evolution equation for
the dynamic location of the coating front.

B. Solutions

Based upon our experimental observations, the growth
rates of the coatings are very slow while the mass diffusivi-
ties are quite large at these pressures. The TEM images of
some, but not all, coated nanofibers indicate that the coatings
are nearly circular. Given this observation and if the nanofi-
bers are sparse, then the concentration gradient and the rate
constants around the nanofibers should be independent of
angle as a leading-order approximation.

As a result of these observations, we make three assump-
tions to make analytical progress in the solution of the above
system of equations: �i� the rate of growth of the front com-
pared to the rate of diffusional transport is negligible �QF


1, so the system is quasistatic�, �ii� the coating is nearly
circular, and �iii� derivatives of the concentration and of the
two rate constants with respect to � are negligible at leading
order.

The Appendix describes a solution to the above equa-
tions using the boundary perturbation expansion

F��,t� = f�t� + Ag��,t�, A 
 1, �16�

where A= Â / ŜF, and g is a small perturbation �with ampli-

tude Â� of the boundary front from the growing circular
front, r= f�t�.

To obtain a weakly nonlinear evolution equation to de-
fine the shape, F�� , t�, of the coating front, we use assump-
tions �i� and �iii� above. In particular we assume that the
shape of the coating does not significantly influence the
transport of c in the � direction. The solution procedure for
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�10� and boundary conditions �11�–�15� is now similar to that
used by the boundary perturbation analysis �in the Appen-
dix�, except that the front shape is no longer expanded as in
�16� and the etching terms are retained. We find that

c = 1 +
DkF

�1 − �/F� − kFionsŜF/C*D̂

1/F − DkF
ln F�1 − �/F�

ln r . �17�

This concentration field is substituted into boundary con-
dition �15� to obtain a nonlinear evolution equation for the
coating front,

FFt

	F2 + F�
2

=
kF

KF
�1 +

DkF
�1 − �/F� − kFionsŜF/C*D̂

1/F − DkF
ln F�1 − �/F�

ln F�
��1 − ��� −

kFions��,t�
KFC*

−
	sDs�

KF�C*ŜF
2

���/	F2 + F�
2��

	F2 + F�
2

, �18�

subject to periodic boundary conditions

F�0� = F�2��, F��0� = F��2�� ,

�19�
F��0� = F��2��, F��0� = F��2�� .

Equations �A10� and �A18� can equivalently be derived
from �18� using the boundary perturbation expansion �16�.
Hence, from here forward we use �18� together with the con-
centration field �17� to qualitatively elucidate the stabilizing
and destabilizing mechanisms for the coating growth. Quan-
titative discussions of these equations and mechanisms ap-
pear in Sec. VI after values for kF and kFions are developed in
Secs. IV and V.

From �17� and for a fixed set of parameters, the concen-
tration field increases in the radial direction. It follows that
protruding irregularities in the coating, such as fingers and
bumps, are surrounded by a higher concentration level than
valleys or depressions. Also the concentration field depends
highly nonlinearly on the size of F. For small values of F the
concentration field is larger throughout the local region be-
cause there is less surface area on the coating to absorb the
depositing atoms. This trend holds true until F becomes large
enough that it is close to the source of the concentration at
r=1. Here the decrease in concentration due to increased
deposition onto the larger surface area is countered by the
near proximity to the source.

The surface Damköhler number DkF
also plays a key role

in the features of the concentration field. For small values of
DkF

, due to either increased diffusion or decreased deposition
rate, the concentration field approaches the constant far-field
value everywhere in the local region and along the coating
surface. On the other hand, for large DkF

there is a greater
change in concentration with position both radially into the
local region and along the coating surface. These observa-
tions are shown quantitatively in Sec. VI.

One final approximation that can be made for the con-
centration field is to simplify �17� by replacing F with rF, the
average initial radius of the uncoated nanofiber. Under this

approximation, the concentration field is not affected by per-
turbations in the coating surface. This type of approximation
has been used for deposition onto planar surfaces.12 This
assumption is valid for all DkF

for small coating thickness,
and is always relevant for small DkF

due to the nearly con-
stant value of the coating profile in such highly diffusive
systems. We use this approximation to simplify the numeri-
cal simulations in Sec. VI.

These qualitative observations of the concentration field
provide insight into the structure of the evolution equation.
Notice the first term on the right-hand side of �18�,
kF /KFc�1−���, which describes the deposition of the sput-
tered material. Since this term is positive, it may lead to a
destabilizing effect whereby bumps in the coating surface
grow faster than valleys because of the increase in the con-
centration level. This term is composed of three contribu-
tions. The expression kF /KF contains deposition rate infor-
mation from the MD simulations at the coating surface.
Clearly c is the concentration of the deposition material at
the coating surface. The expression in parentheses may be
qualitatively described as �1−��1/ radius of coating��.
Hence, smaller-radius nanofibers �or thinner coatings� result
in a decrease in this term. This trend implies that a smoother
coating may be achieved on smaller nanofibers even though
such small nanofibers give rise to an overall larger concen-
tration field in the local region, as discussed above. Hence,
one should expect faster deposition on large-diameter nanofi-
bers and that such fibers will have a rough coating due to
enhanced growth of protruding regions. Thus, the first term
of the evolution equation reveals general trends that rougher
coatings develop on nanofibers with larger radii, in systems
with higher levels of concentration, and in systems charac-
terized by high rates of deposition.

The second term, −kFions /KFC*, on the right-hand side of
�18� describes the etching of the coating surface due to ion
bombardment. Since this term is negative, it may provide for
a stabilizing or smoothing effect.

The last term on the right-hand side of �18� describes the
effects of surface diffusion. This term provides a stabilizing
effect. However, it is shown in Sec. VI that this effect is
small except in regions of very high curvature.

IV. THE SHEATH MODEL NEAR THE HOLDER

A. Formulation

The surface reaction-rate parameters, kF and kFions, are
dependent upon the flux and energy of the ions in the local
region. Hence, the flux and energy of the ions are needed for
the MD simulations that directly determine these parameters.
This section briefly describes a sheath model at the holder
region to determine the flux and energy. This model relates
the applied electrical potential, pressure, and temperature to
the kinetic energy and flux of the ions at the coating surface.
The model is nearly identical to that presented in Ref. 1.
Note that any effects on the electric field due to the local bias
around a nanofiber are neglected. The reason is that the
nanofibers are much smaller than the thickness of the sheath
at the holder. Hence, we neglect the local bias field around
the individual nanofibers because these fibers are all assumed
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to lie completely within the sheath at the holder. Here the
larger field of the sheath dwarfs the local bias. Hence, ions
travel in the y direction only rather than radially toward the
center of the nanofiber. This is accounted for in the MD
simulations that follow by allowing the ions to strike the
coating surface through a range of incident angles.

The intent of the modeling is to connect macroscale phe-
nomena to nanoscale phenomena by linking simple models
at each length scale. Hence, in the sheath region near the
holder we seek a model to reasonably approximate the phys-
ics. In the experiments we use an rf sputtering head. We are
approximating the plasma as a uniform cylindrical column in
an intermediate pressure regime �mean free path less than or
equal to the characteristic lengths of the plasma but greater
than the ratio of ion temperature to electron temperature mul-
tiplied by the characteristic length of the plasma �Lieberman
and Lichtenberg14��. Under these cases it is reasonable to
assume that the voltage drop occurs almost entirely across
the sheath region.

In the experiments, which will provide a basis for com-
parison in Paper III of this series, a 2-in. aluminum target is
sputtered in a background gas of argon. The pressure is var-
ied between 4 and 40 mtorr, the power is varied between 50
and 150 W, and the target to substrate distance is 8 cm. No
external bias is applied to the target or substrate �the sub-
strate is grounded�. We estimate, based on a uniform plasma
model,14 that the voltage difference between the target and
the plasma is 500 V and the voltage difference between the
substrate and the plasma is 10 V �see Fig. 1�. We expect that
there is a voltage field within the bulk plasma but that the
variation in voltage across the bulk plasma is very small
relative to the voltage change across the sheaths. Hence, we
isolate the sheath models from each other even though their
potential drops are linked in the sense that the voltage differ-
ences, listed above, are both due to the overall reactor ap-
plied voltage. These differences primarily distinguish the two
sheath models. The sheath model at the target uses a rela-
tively high velocity �due to the high voltage difference� local
ion transport to get an approximation for the concentration of
the neutral deposition material. The sheath model at the
holder uses a relatively low velocity �due to the low voltage
difference� ion transport to approximate the etching rate at
the coating surface. Our operating conditions are near the
edge of consistency with the assumptions of a uniform
plasma model approximation �Lieberman and Lichtenberg14�
and with the time-averaged model of Economou et al.15 The
latter is the basis for the sheath models at the target and the
holder.

Similar to Ref. 1, the sheath layer at the holder, only a
few millimeters in thickness, is thin relative to the size of the
reactor. By ignoring the end effects, the sheath is modeled as
a one-dimensional region that possesses a positive space
charge due to an overabundance of positively charged ions.
Temperature gradients and magnetic fields in the region are
ignored. We assume the ions satisfy the continuity equation

d

dỹ
�ûn̂� = 0, �20�

in which û�ỹ� is the velocity of the ions and n̂�ỹ� is their
number density. The coordinate ỹ represents the distance
from the holder, as shown in Fig. 1. Ions conserve momen-
tum according to the equation

û
dû

dỹ
= −

qÊ

m
+

Hû2

m
, �21�

where q and m are the charge and mass associated with a

single ion, and Ê is the local electric field. The first two
terms in �21� represent inertia and electromotive force. The
last term represents the effect of ions colliding with the back-
ground nonionized gas atoms or molecules, and the nanofi-
bers. In this expression H represents the strength of this
interaction. The magnitude of this collision term is assumed
to be larger than its counterpart in Ref. 1 due to the presence
of the nanofibers, which are large in comparison to the size
of the nonionized gas atoms or molecules. The collision ex-
pression in �21� is a convenient physical form �proportional
to velocity squared� and mathematical form �for obtaining
solutions�. This form replicates the expression used by Ref.
15 to simulate the frictional force on an ion as an average
over all possible collisions experienced by the ion.

The gradient of the electric field is related to the charge
density according to the equation

d

dỹ
Ê = −

qn̂

�0
. �22�

Here, �0 is the vacuum permittivity. The final field equation
relates the electric field to the electrical potential:

Ê =
dV̂

dỹ
. �23�

The Bohm criterion and quasineutrality11,15 are used to
define the boundary conditions for this system of first-order
differential equations. We refer the reader to Ref. 15 for a
thorough discussion of the boundary conditions. Ordinarily,
this system would require four boundary conditions. How-

ever, the location ỹ= ŜH �see Fig. 1� at which the sheath layer
ends is also an unknown and must be determined as part of
the solution, so a fifth boundary condition is needed. Four

boundary conditions are applied at ỹ= ŜH,

n̂�ŜH� = n̂p, �24�

û�ŜH� = −	 kBTe

m + 2H�D
, �25�

Ê�ŜH� =
kBTe

2q�D
, �26�

and

V̂�ŜH� = V̂H, �27�

and one at the holder surface,
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V̂�0� = 0. �28�

In these expressions, n̂p is the ion number density in the
plasma, kB=1.38�10−23 J /K is the Boltzmann constant, Te

is the electron temperature �in Kelvin�, and �D is the Debye
length,

�D =	�0kBTe

n̂pq2 . �29�

The constant V̂H that appears in �27� is the voltage. This
voltage and the plasma ion density n̂p are both assumed con-
trollable and therefore specified by the operator. Therefore,
all constants that appear within this system of equations are
either material properties or can be experimentally con-

trolled, at least in principle. Note that the magnitude of V̂H is
taken to be less than its counterpart at the target since the
target is the driven electrode. Hence, the electric field will be
smaller near the holder due to the smaller potential drop.

The system of equations �20�–�28� is nondimensional-
ized with the selection of the following scales for length,
number density, velocity, electric field, and potential, respec-
tively: �D, n̂p, 	kBTe /m, kBTe /q�D, and kBTe /q. Dimension-
less variables are hatless versions of their dimensional coun-
terparts. The dimensionless constant

CH =
H�D

m
�30�

arises in the nondimensionalization procedure and represents
the effect of collisions in slowing the ions. The solution pro-
cedures, asymptotic for small and large values of CH and
numerical for intermediate values, for the governing equa-
tions are identical to that presented in Ref. 1 and so are not
repeated here.

B. Results

The controllable operating conditions for the reactor are
pressure, power, temperature, target-nanofiber distance, mat
porosity, and initial nanofiber radius. These parameters and
ranges of their values will be more thoroughly discussed in
Part III. Representative values are used in the results that
follow. Further, the voltage drop between the plasma and the
holder, and the plasma density and the electron temperature
depend on the applied power, the pressure, and the charac-
teristic length scales �radius and length� of the plasma col-
umn. These dependencies will also be more thoroughly dis-
cussed in Part III of this series. Representative ranges of
these values are used in the results that follow.

Dimensionless ion velocities u are plotted against dis-
tance ỹ from the holder in Fig. 6 for three values of the
collision parameter: CH=0, 1, and 10. The assumed voltage

across the sheath is V̂H=10 V and the electron temperature is
Te=104 K. The ion density n̂p in the plasma �which increases
with increasing power and pressure in our system� is taken as
approximately 1015 atoms/m3, the vacuum permittivity �0 of
the sheath region is 8.9�10−12 F/m, and the charge q of the
species is 1.6�10−19 C. The solid and dashed curves in the
figure represent asymptotic and numerical results, respec-

tively. The asymptotic and numerical results coincide for
CH=0 and 10. However, the solid curve for CH=1, which is
based upon the CH�1 asymptotic solution, does not coin-
cide with the numerical result. We attribute the observed dif-
ference to the error in the asymptotic solution which assumes
CH�1, a condition that is violated in this case. Similar re-
sults are obtained for electron temperatures up to Te=2.6
�104 K, which represent ranges of current interest.

The figure also shows the sensitivity of the ion velocity
to the parameter CH: the scale of 
u
 increases by a factor of
3 as CH decreases from unity to zero. The sheath thickness

ŜH simultaneously increases modestly from approximately
1.23 to 1.28 mm. The sheath thickness corresponds to the
positive distance from the holder where a curve in the figure
terminates.

Figure 7 shows the kinetic energy �mû2 /2� with which
ions impact the coating surface of a nanofiber at ỹ= ỹ*=0
�see Fig. 1; similar figures can be defined for any value of ỹ*

using the results for velocity shown in Fig. 6� as a function
of the collision parameter CH for two different voltages

across the sheath, V̂H=10 and 50 V, and two different elec-
tron temperatures, Te=104 and 2.6�104 K. Expressed as po-
tentials �kBT /q�, these electron temperatures are 0.863 and
2.24 V, respectively. The uniform plasma model suggests
that the voltage across the sheath layer is on the order of
10 V under deposition conditions.14 To see the effect of volt-
age on the kinetic energy, we also consider one order of
magnitude more. Kinetic energies of 40 eV or more are be-

FIG. 6. Dimensionless ion velocities as a function of distance from the

holder surface for several values of CH with V̂H=10 V and Te=104 K.

FIG. 7. Kinetic energy as a function of collision parameter.
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lieved to be necessary for the material to be sputtered off the
coating surface. This observation is supported by the MD
simulations discussed in Sec. V.

In the top graph in Fig. 7, it is seen that the voltage

V̂H=10 V is too low for sputtering to occur for all tempera-
tures considered and all values of the collision parameter.

The lower graph shows that when the voltage is V̂H=50 V,
kinetic energies of 40 eV are achieved provided the collision
parameter is less than about 0.05.

V. CALCULATION OF SPUTTERING AND STICKING
PROBABILITIES AND RATE COEFFICIENTS
BY MOLECULAR-DYNAMICS SIMULATION

Solution �17� of the local diffusion problem requires the
values of two coefficients, the adsorption rate coefficient kF

and the desorption rate coefficient kFions, which first appeared
in boundary condition �3�. These coefficients are computed
using a molecular-dynamics simulation at the atomic scale.
The MD simulation consists of an atomic model of the sys-
tem where the initial positions of the atoms or molecules and
the interactions between the atoms or molecules are speci-
fied. Classical equations of motion �Newton’s� are solved
numerically.7 Previously, MD calculations have been very
useful for the investigation of metallic film growth by physi-
cal vapor deposition.5,16–19 Such simulations provide the
probabilities of adsorption, reflection, and sputtering events
due to an incoming particle by tracking the trajectories of
individual atoms.

In order to run the MD simulation, the velocity, kinetic
energy and flux of the bombarding particles are specified as
described in Sec. IV. The bombarding particles can be argon
ions or aluminum atoms. The same simulation can be used
for either particle because both have roughly the same mass
and the electric charge does not appreciably affect the sput-
tering and adsorption processes.3 It is assumed that the ki-
netic energy of an incoming argon ion is similar to that of an
aluminum atom that approaches the coating surface through
diffusion.

One of the unique features of the MD simulation is that
the substrate surface is not flat but curved, and has a
nanometer-size radius of curvature. Hence, in order to study
metal coating growth on nanofibers, a model different from a
flat substrate is needed. A conventional MD supercell with
regular periodic boundary conditions is only useful for the
simulation of the coating with small diameter and thickness.
Thus, to study growth on cylindrical coatings of larger diam-
eters similar to the experimental structures, an atomic model
with modified periodic boundary conditions is created. This
model consists of a slice or angular region of an Al cylindri-
cal coating. For the atomic displacements in the azimuthal
direction, angular periodicity is assumed. On the other hand,
regular periodic boundary conditions are employed for the
atomic displacements along the axis of the coatings. Thus,
the coatings are modeled as if they are perfectly cylindrical
and infinitely long. The MD simulation was run with 279
particles bombarding a curved aluminum substrate �the coat-
ing surface�. The substrate consists of varying numbers of
layers of Al. Varying the number of layers allows us to vary

the thickness of the coating. This observation is important for
the curve-fitting procedure to determine kF and kFions. Fur-
ther, due to the number of atoms involved, it is not possible
to simulate the entire coating surface with a single MD simu-
lation. Hence, only a sector of the surface is considered and
the angular ��� variations of kF and kFions are determined
from the angle of incidence data.

The above discussion only concerns growth onto an ex-
isting coating surface. The overall growth of the coatings on
polymer nanofibers is hundreds of angstroms in thickness.
The growth on the polymer surface of the nanofiber repre-
sents only the initial stage of the growth process. We have
chosen to simulate the main growth that occurs after the
polymer surface is covered by aluminum. Thus we assume
there is already a layer of Al on the surface of the nanofiber.
For the next body of work we are investigating the initial
stages of coating by considering models for nucleation sites
on the polymer surface.

The interaction between the aluminum atoms is modeled
by an extensively tested embedded-atom-type �or glue-type�
potential20 with a repulsive potential17 for the short-range
interaction of Al atoms with kinetic energies above 10 eV.
Molecular-dynamics simulations are performed and struc-
tures are relaxed at different constant reactor temperatures
ranging from 300 to 500 K using the velocity scaling algo-
rithm. The initial simulation cell includes a 30° angular por-
tion of the coating with 34-nm inner diameter, 2.0-nm length
in the axial direction, and a 2.0-nm coating thickness that
contains 2811 atoms. As the coating thickness increases, only
the outermost 2.0 nm of the coating is included in the simu-
lation cell. The initial structure is created from a fcc Al crys-
tal structure with the �111� surface facing radially outwards.
This surface structure is selected because it has the lowest
formation energy and it has been used in other MD simula-
tions of thin-film growth on flat surfaces.17 Thus we can
compare our results with other investigations. We believe the
MD results do not strongly depend on the selection of this
surface structure because the temperature is high �500 K�
and the overall geometry of the surface �flat or curved� is
found to be more important. If the temperature were low,
then the surface structure would be important as there would
be particular peaks in the adsorption and reflection probabil-
ity graphs related to the surface structure.

In the boundary regions, atom pairs are investigated and
if the distance between the atoms is less then 2 Å, one of the
atoms is removed. The positions of the innermost atoms that
are within a radial distance of 34.5 nm from the coating axis
are fixed and all the other atoms are relaxed. After relaxing
the coating’s atomic structure at constant temperatures of
300 and 500 K, we found that the coating preserved its shape
and only the atoms in or close to the boundary regions had
additional displacements.

Estimating the standard error7 we found that it is around
4% for the flat surface simulations and 4%–6% for the coat-
ing simulations. This error estimate is comparable with other
MD simulations that used 200 impinging Al atoms and re-
ported less than 5% error.17 Considering these error estimates
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we believe 279 impinging atoms per energy per angle are
sufficient. This number of atoms is above the numbers used
in other MD simulations.17,21

The next step in MD simulations of metal coating
growth is the calculation of the rate coefficients, kF and
kFions, by bombarding the coating surface with argon ions or
aluminum atoms. The kinetic energies of the incoming argon
ions are specified to be 25, 50, 75, and 100 eV. These values
are in the range suggested by the sheath model. Incident
angles of 0°–80° from the normal to the coating surface with
a 5° increment were used in order to determine the angular
dependence of kF and kFions. Since the geometry of the coat-
ing surface is cylindrical, the surface is not symmetrical with
respect to the bombarding ions as is a flat surface. Thus, the
lateral component of the initial velocity of the impinging
particles is selected either parallel or perpendicular to the
axis of the cylindrical coating. A single run �279 particles at
one kinetic energy at one incident angle� takes about 24 h to
complete on an INTEL-based workstation.

In order to obtain the desorption rate kFions for a fixed
incident angle, the 279 bombarding particles are sent in one
at a time and the number of aluminum atoms sputtered off
the surface is counted. The ratio of this number to 279 �the
number of incoming argon ions� is computed. This ratio is
multiplied by the flux n̂ · û from the holder sheath model and
divided by Avogadro’s number to get kFions at a particular
coating thickness. The experiment is repeated with different
incident angles to obtain the angular dependence of kFions.

Figure 8 shows the values of kFions as a function of inci-
dent angle for incoming argon ions with kinetic energies of
25, 50, 75, and 100 eV, which are consistent with the sheath
model. As expected, kFions increases with kinetic energy. Fur-
ther, kFions tends to achieve a maximum value for incident
angles around 55°. The kFions value stays relatively high at
the very large grazing angles of 75°–80°. We believe this is
due to the cylindrical geometry since it is easier to etch the
atoms away from the coating surface by particles bombard-
ing the surface in the direction perpendicular to the axis of
the coating.

In order to obtain the adsorption rate kF for a fixed inci-
dent angle, the incoming particles are now considered to be
aluminum atoms that hit the substrate via diffusion. The 279
bombarding particles are sent in one at a time and the num-
ber of aluminum atoms that are adsorbed is counted. The
ratio of this number to 279 �the number of incoming alumi-

num atoms� is computed. This ratio is multiplied by the ve-
locity of the aluminum atoms to determine kF at a particular
coating thickness. This velocity is estimated using the ex-
pression 	kBT /mAl where mAl is the mass of an aluminum
atom. For this calculation it is also assumed that the sput-
tered atoms eventually equilibrate at T=300 K.

Figure 9 shows the values of kF as a function of incident
angle for incoming aluminum atoms with kinetic energies of
25, 50, 75, and 100 eV. It is seen that kF decreases with
kinetic energy, since highly energetic atoms do not easily
adsorb onto the coating surface. Further, atoms that strike the
surface with normal incidence are more likely to adsorb. Ad-
ditionally, atoms that strike the surface with incidence nearly
parallel to the surface �incident angle near 90°� do not easily
attach to the surface. This is in contrast to the results for the
flat surface obtained in Ref. 1. There, atoms that grazed the
surface tended to stick. We attribute the attachment differ-
ence to the high degree of curvature of the coating.

Figure 10 shows the values of kF and kFions as a function
of the kinetic energy of the incoming particles for normal
incidence, consistent with the radially dominant diffusion
transport model. We see from Figs. 9 and 10 that kF is nearly
constant for normal incidence, as mentioned for �A2�. Hence,
we take it to be a constant in the level set simulations that
follow. Also kFions increases with kinetic energy and, as

FIG. 8. Values of kFions as a function of incident angle for incoming argon
ions with kinetic energies of 25, 50, 75, and 100 eV, and for a coating
thickness of 2.0 nm.

FIG. 9. Values of kF as a function of incident angle for incoming aluminum
atoms with kinetic energies of 25, 50, 75, and 100 eV, and for a coating
thickness of 2.0 nm.

FIG. 10. Values of kF and kFions as a function of the kinetic energy of the
incoming particles for normal incidence.
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stated earlier, kinetic energies of 40 eV and higher are
needed to achieve sputtering of material from the curved
coating.

Figure 11 shows the values of kFions and kF for a fixed
kinetic energy of the incoming particles and a fixed incident
angle � as a function of coating thickness. This figure further
supports our decision to keep kF constant. Additionally, we
see that kFions is smallest for small curvature. Thus it is
harder to sputter atoms from surfaces with very small radius
than from flat surfaces.

VI. LEVEL SET SIMULATIONS OF THE COATING
SURFACE

The analytical models of Sec. III provide insight into the
mechanisms involved in coating growth. In this section, we
employ a numerical model based upon the level set method22

to simulate growth of the coating front. This numerical
method, which is described below, is used to conduct a para-
metric study to further our understanding of the mechanisms
of coating growth.

In the level set method, the front r=F�� , t� is represented
as the zero isocontour of the level set function ��r ,� , t�,
which satisfies the evolution equation

�t + �̂n
 � �
 = 0, �31�

where �̂n is the normal velocity �4�. As is typical of level set
problems, the only difficulty in the implementation is in the
computation of the normal velocity. There are two features of
the normal velocity that complicate the computation: �i� the
second derivative of curvature with respect to arclength is
needed, and �ii� the concentration of aluminum atoms at the
front is needed.

The curvature derivative is handled by requiring that the
front location r=F�� , t� remain a single-valued polar func-
tion. The advantage of this assumption is that the numerical
derivatives are simple to compute.23 On the other hand, the
restriction is undesirable because it prohibits the front from
forming mushroom-shaped tendrils. However, many of the

experimental runs show single-valued cross sections, so the
assumption is valid over a wide range of typical operating
conditions for the system.

For simplicity the approximate concentration �17� is
used. This approach is similar to that in Ref. 12. Further, we
follow Ref. 12 by replacing F with rF, the average initial
radius of the uncoated nanofiber, in �17�.

The main issue in coating morphology is the interplay
among the mechanisms of deposition, etching, and surface
diffusion as embodied in the three respective terms on the
right-hand side of the evolution equation �18�. Due to the
considerable uncertainty associated with the values of sev-
eral material constants that appear in the model, a parametric
study is conducted. Preliminary analysis suggests values for
several parameters that are held constant in the study:

kFions: 0.0 mole/m2 s,
�: 9.6�1021 nm3/mole,

ŜF: 500 nm,

D̂: 7.5�1013 nm2/s.

Observe that we have set kFions, the parameter that con-
trols the rate of etching �or desorption�, to zero based upon
the low values for this parameter obtained through the MD
simulations. More correctly we are ignoring the desorption
term EC=kFions /KFC* in �18�. Data from Fig. 10 together
with values for C* listed below indicate that the size of this
term is on the order of 10−2, whereas the size of the deposi-
tion term is order one. Therefore, with the exception of
Fig. 23, only the mechanisms of deposition and surface
diffusion play a role in the following parametric study.
The parameters that are varied �with indicated ranges� in-
clude the concentration of neutral species C*�6�10−37 to 6
�10−36 moles/nm3�, the reaction rate coefficient at the fiber
kF�7.5�1011 to 7.5�1013 nm/s�, the surface diffusion com-
ponent 	sDs�6.5 to 1.5�102 nm3/s�, and the capillary

length scale �̂�0.0101 to 0.2020 nm�. Note that kF and C*

are calculated by the model, � is the molar volume for alu-

minum, and D̂, �̂, and 	sDs are estimated from the
literature.12

Concentration at the front. The concentration at the front
is approximated by �17� evaluated at r=F. Figure 12 shows
how this concentration depends on the radius of the coating
�recall that r=1 is half the distance between fibers�. As dis-
cussed in Sec. III, the concentration field varies highly non-

FIG. 11. kFions and kF for a fixed kinetic energy of the incoming particles
and a fixed incident angle as a function of coating thickness.

FIG. 12. Concentration at the front as a function of nondimensional coating
radius F.

044304-11 Buldum et al. J. Appl. Phys. 98, 044304 �2005�



linearly with the size of F. For small values of F the concen-
tration field is larger throughout the local region because
there is less surface area on the coating to absorb the depos-
iting atoms. This trend holds true until F becomes large
enough that it is close to the source of the concentration at
r=1. Here the increased loss of concentration due to in-
creased deposition onto the larger surface area is countered
by the near proximity to the source.

From �17� and for a fixed set of parameters, the concen-
tration field increases with radius, as shown in Fig. 13. It
follows that protruding irregularities in the coating, such as
fingers and bumps, are surrounded by a higher concentration
level than valleys or depressions. Hence, bumps see a higher
concentration than valleys, leading to a higher rate of depo-
sition on the bumps. Further, the surface Damköhler number
DkF

plays a key role in the features of the concentration field.
For small values of DkF

, due to either increased diffusion or
a decrease in the deposition, Figs. 12 and 13 show that the
concentration field approaches the constant far-field value
everywhere in the local region and along the coating surface.
On the other hand, for large DkF

there is a greater change in
concentration with position both radially into the local region
and along the coating surface. Hence, when DkF

is large, the
deposition dominates and bumps will grow, leading to a
rough surface. When DkF

is small, diffusion dominates and
dips will fill in faster, leading to a smoother surface. These
predictions are verified in the simulations of the coating sur-
face that follow.

Standard parameter set. Our experiments show that in
15 min, the coating grows about 20–30 nm. Simulations us-
ing three different initial fiber profiles were run to calibrate
the model. The parameter set

kF: 7.5�1012 nm/s,
C*: 3�10−36 mole/nm3,

�̂: 0.0505 nm,
	sDs: 6.5 nm3/s,
DkF: 50

was determined to yield results that match the experimental
results. The three profiles are shown in Figs. 14–16. The
fiber shown in Fig. 14 has a circular cross section with four
bumps that have magnitudes of 20% and 14% of the fiber
radius. The fiber shown in Fig. 15 has a circular cross section
with four bumps that have magnitudes of 2% and 1.4% of
the fiber radius. The fiber shown in Fig. 16 has a circular
cross section with several Fourier modes superposed atop it.
These modes are consistent with models of the landscape of
electrospun nanofibers.8,9 In each case, the coating growth
after 15 min is about 20–30 nm in the smoother regions.
There is faster growth at the bumps; this phenomenon is
described below.

Varying the concentration. The concentration of alumi-
num atoms in the plasma surrounding the fiber plays a sig-
nificant role in the coating process. The value of the concen-
tration increases as the system power and pressure are
increased. Figure 17 shows the effect of varying the concen-
tration over one order of magnitude. Here, the standard pa-
rameter set is used for the other parameters. Clearly there is

FIG. 14. Coating growth using the standard parameter set with large bumps.

FIG. 15. Coating growth using the standard parameter set with small bumps.

FIG. 13. Concentration off the front as a function of radius, for an initial
nondimensional nanofiber radius of 0.3.

FIG. 16. Coating growth using the standard parameter set with Fourier
modes.
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a significant increase in growth as C* increases.
Varying the Damköhler number DkF

. The Damköhler
number DkF

is the ratio of the rate of deposition of aluminum
on the fiber to the rate of transport of aluminum to the fiber
via diffusion. Hence, as DkF

increases, the expectation is that
the coating growth accelerates, because the model assumes
an unlimited supply of aluminum atoms at the outer compu-
tational boundary. Also, because of the sharp increase in con-
centration as radius increases �Fig. 13�, bumps in the coating
surface should grow faster, leading to a rougher surface. Fig-
ure 18 shows that this is indeed the case. With DkF

=5, dif-
fusion dominates and the surface is smoothed. When DkF

is
raised to 50, there is little change, but when DkF

is set to 500,
the roughening effect is clearly visible. Here, the concentra-
tion C*=1�10−36 was used.

Varying the bump size. Given the sharp increase in con-
centration as the radius increases �Fig. 13�, larger bumps
should grow faster than smaller bumps, all else being equal.
This effect is clearly shown in Figs. 19 and 20. As a conve-
nient reference point, consider the growth along the ray �
=3� /2, at the bottom bump. The small bump in Fig. 19
grows about 5.4 nm in 15 min, while the large bump in Fig.
20 grows about 11.5 nm in 15 min. It is interesting to note
that the growth of tiny bumps is exaggerated when the
Damköhler number is sufficiently high because experimental
results indicate that the coating surface often roughens, and a
high Damköhler number provides a possible explanation for
the underlying physical mechanism. In these figures, DkF
=50 and C*=1�10−36.

Varying the surface diffusion. The expectation is that a
change in the surface diffusivity component 	sDs causes a
change in the smoothness of the coating without changing
the overall growth rate. The simulation was run using the

standard parameter set, with 	sDs ranging from 6.5 to 1.5
�102. Figure 21 shows the coating growth for this range of
values. For smaller values of 	sDs, the coating is virtually
indistinguishable from that with 	sDs=6.5. As expected, the
surface is noticeably smoother when more surface diffusion
occurs, as shown in Fig. 22, which zooms in on the cusp
region at the bottom of Fig. 21.

Varying the capillary length. When the value of �̂ is
varied from 0.0101 to 0.2020, there is essentially no differ-
ence in the coating growth after 15 min.

Varying the etching number EC. The effects of etching of
the coating surface due to ion bombardment were neglected
in the previous simulations due to the size of EC �10−2�. Fig-
ure 23 displays a parametric study of the influence of in-
creasing EC. Clearly there is less growth as EC increases.
However, this effect is not significant until EC is much larger
than 10−2, in which case the growth is noticeably slowed.

VII. SUMMARY

The coating of nanoscale structures and the evolution of
crystalline structures at the nanoscale are and will continue
to be important issues. We develop a comprehensive model
integrating across atomic to continuum length scales for
simulating the sputtering, transport, and deposition of a coat-
ing material onto a nanoscale substrate. The intent of the
comprehensive model is to connect macroscale phenomena

FIG. 17. The effect of changing concentration with DkF
=50.

FIG. 18. The effect of changing DkF
with concentration C*=1�10−36.

FIG. 19. The growth of small bumps when DkF
=50 and C*=1�10−36.

FIG. 20. The growth of large bumps when DkF
=50 and C*=1�10−36.
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to nanoscale phenomena by linking simple models at each
length scale. The solution procedure is critical to this intent.
Hence, we have made many simplifying assumptions to
piece together a collection of simple submodels into one
comprehensive model. We plan to revisit each submodel in
future efforts to improve the comprehensive model.

In this paper the interrelationships among processing
factors for the sputtering, transport, and deposition are inves-
tigated from a detailed modeling approach that describes the
salient physical and chemical phenomena. Solution strategies
that couple continuum and atomistic models are used. Infor-
mation is passed between the various length scale models so
that the simulations are integrated together. To keep the nu-
merical simulations at a manageable level, asymptotic analy-
ses are used to reduce the complex models to simpler, but
still relevant, models.

In Part I of this series, we described a model of the
sheath region at the target and the reactor dynamics near the
target surface.1 The reactor model determined the concentra-
tion of the coating material.

In Part II of this series �this paper� we describe the
sheath region at the holder and the local dynamics near the
substrate surface. The concentration from Part I is used as
input to this local model. At the atomic level, we use mo-
lecular dynamics �MD� simulations to study the sputtering
and deposition mechanisms at a curved surface. Ion kinetic
energies and fluxes are passed from the continuum sheath
model to these MD simulations. These simulations calculate
sputtering and sticking probabilities that in turn are used to
calculate parameters for the local model. The local model
determines an evolution equation for the coating surface.
Parametric studies of this equation reveal general trends that
rougher coatings develop on nanofibers with larger radii, in
systems with higher levels of concentration, and in systems
characterized by high rates of deposition.

The model we have developed provides reasonable
trends with respect to the coating evolution on nanoscale
structures and how that evolution depends on process param-
eters. To become more useful to the application engineer, we
must now benchmark the model against experimental data as
the processing parameters are varied. This benchmarking is
the subject of Part III of this series. With a validated model
we can then predict how coating properties will change with
deposition conditions for similar geometries. This predictive
capability will be quite useful as the size of solid-state opto-
electronic components continues to decrease.
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APPENDIX: SOLUTION BY BOUNDARY
PERTURBATION

As discussed in Sec. III B we make three assumptions to
make analytical progress in the solution of �10�–�12� and
�15�: �i� the rate of growth of the front compared to the rate
of diffusional transport is negligible �QF
1, so the system is
quasistatic�, �ii� the coating is nearly circular, and �iii� de-
rivatives of the concentration and of the two rate constants
with respect to � are negligible at leading order. The second
assumption corresponds to the perturbation expansion �16�.
The third assumption is equivalent to the three fields c, kF,
and kFions possessing the following perturbation expansions:

c = c0�r� + Ac1�r,�� + ¯ , �A1�

kF = kF0
+ AkF1

��� + ¯ , �A2�

kFions = kFions0
+ AkFions1

��� + ¯ . �A3�

The latter two expressions account for �-dependent adsorp-
tion and etching at the coating front. In the above, the
leading-order terms are independent of �, but may depend
upon f�t�. This point is elaborated upon further in the de-
scription of how MD simulations are used to obtain kF and
kFions. Those simulations predict that for aluminum and the
operating conditions of our reactor, kF0

is a constant �KF� and
kF1

is negligibly small. Nevertheless, we assume the form
�A2� for generality. Also due to this expansion for kF, DkF

is
expanded similarly �DkF0

is the leading-order term�.
The leading-order concentration problem is

0 = c0rr
+

1

r
c0r

�A4�

together with boundary conditions

c0 = 1 on r = 1, �A5�

c0r
= DkF0

c0�1 −
�

f
� − J0 on r = f , �A6�

and

FIG. 21. The effect of the surface diffusion component �	sDs� for the stan-
dard parameter set.

FIG. 22. Local view of the coating surface of the region near the bottom of
Fig. 21.
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f t = c0�1 −
�

f
� −

kFions0

KFC* on r = f , �A7�

where J0=kFions0
ŜF /C*D̂. In �A7� �2� /�s2=0 due to the an-

gular independence of f�t�. Further, the MD simulations pre-
dict that for aluminum and the operating conditions of our
reactor, the etching terms kFions0

/KFC* and J0 are small com-
pared to the deposition term. Hence, we neglect the etching
terms.

The general solution to �A4� is c0=a�t�ln r+b�t�. Apply-
ing boundary conditions �A5� and �A6�, it is seen that b�t�
=1 and

a�t� =
DkF0

�f − ��

1 − DkF0
ln f�f − ��

. �A8�

So the leading-order concentration is

c0 = 1 + � DkF0
�f − ��

1 − DkF0
ln f�f − ���ln r . �A9�

Substituting the leading-order concentration into bound-
ary condition �A7�, we develop a nonlinear ordinary differ-
ential equation describing the free boundary of the circular
coating shape:

f t =� DkF0
�f − ��

1 − DkF0
�f − ��ln f�ln f + 1��1 −

�

f
� . �A10�

The solution of �A10� defines the leading-order radius f of
the coating at time t and is shown in Fig. 24. This solution
gives an estimate of the time to achieve a desired coating
thickness. This solution is also needed to complete the de-
scription of the leading-order concentration field through
�A9�.

The leading-order problem, however, can only give in-
sight into the growth of radially uniform coatings. To under-
stand how a coating can grow nonuniformly, we must con-
sider the order A problem for both c1 and g�� , t�.

The order A concentration problem is

c1rr
+

1

r
c1r

+
1

r2c1��
= 0 �A11�

together with the boundary conditions

c1 = 0 on r = 1, �A12�

and

c0rr
g + c1r

= DkF1
���c0�1 −

�

f
� + DkF0

�c0r
g + c1��1 −

�

f
�

+ DkF0
c0�� g

f2 +
g��

f2 � − J1��� on r = f ,

�A13�

where J1���=kFions1
ŜF /C*D̂.

While it is possible to solve this problem using eigen-
function expansions, we shall instead for simplicity assume
that c1��


1. Hence, �A11� has as general solution

c1 = a1��,t�ln r + b1��,t� , �A14�

where a1�� , t� and b1�� , t� are functions of integration. Ap-
plying boundary condition �A12�, we find that

b1 = 0. �A15�

After substituting �A14� into boundary condition �A13�, we
determine

−
a

f2g +
a1

f
= DkF1

�1 + a ln f��1 −
�

f
�

+ DkF0
�a

f
g + a1 ln f� + DkF0

�1 + a ln f�

��� g

f2 +
g��

f2 � − J1��� . �A16�

From here a1 is found to be

a1 =
��a/f2�g�f

1 − DkF0
ln f�f − ��

+
�DkF1

�1 + a ln f��1 − �/f��f

1 − DkF0
ln f�f − ��

+ DkF0

��a/f�g�
1 − DkF0

ln f�f − ��
f

+ DkF0

DkF0
�1 + a ln f���g/f2 + g��/f2�

1 − DkF0
ln f�f − ��

f

−
J1���f

1 − DkF0
ln f�f − ��

. �A17�

FIG. 23. Coating growth using the standard parameter set and nonzero EC.
FIG. 24. Dimensional plot of the radius of the circular coating shape as a

function of time ��̂=0.0505 nm, ŜF=500 nm, J0=0, and f̂�0�=100 nm�.
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Using c1 evaluated at r= f and the order A expansion of
�15�, we determine a differential equation describing the
front perturbation g�� , t�,

gt = c0r
�r = f�g�1 −

�

f
� + c1�r = f��1 −

�

f
� + c0�r = f�

��� g

f2 +
g��

f2 � − � kFions

KFC*�
1

+
	sDs�

KF�C*ŜF
2

�g�� + g�����
f4 .

�A18�

The structure of this equation provides insight into the
mechanisms defining the morphology of the coating front as
discussed in Sec. III B. Further, we use the boundary pertur-
bation structure �16� as input to an analysis describing the
response of the coated nanostructures to applied electric
fields.24 Hence, our approach links models across the entire
fabrication process with models for the application of the
coated nanostructures.
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