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Electrospinning is a simple, versatile, and cost effective method for generating nanoscale fibers,
wires, and tubes. Nanowires and nanotubes could be important building blocks for nanoscale
electronics, optoelectronics, and sensors as they can function as miniaturized devices as well as
electrical interconnects. We report on a simple method to fabricate free standing ceramic nanofiber
heterostructures, which exhibit rectifying behavior of a p-n junction. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3157206�

I. INTRODUCTION

Electrospinning has been recognized as an efficient tech-
nique for the fabrication of submicron sized fibers from a
wide variety of materials including polymer, molten poly-
mer, and polymeric precursors of ceramics.1–4 When the di-
ameters of fibrous materials are reduced from micrometers to
nanometers the surface area to volume ratio becomes unusu-
ally large, so more chemically functional bonds can form and
unusual mechanical properties are achieved. These outstand-
ing properties make the nanofibers optimal candidates for
many important applications. Among the electrospun nanofi-
bers, ceramic materials are very promising for a number of
applications, such as high temperature catalysis, filtration,
hydrogen storage, energy conversion, electronic, optoelec-
tronic, photonic, and sensor devices.5

It is well recognized that there are considerable difficul-
ties in handling a single nanofiber or making well organized
structures from single nanofibers. By making yarns from
bundles of oriented electrospun nanofibers it is possible to
obtain ordered structures large enough to handle. Since the
fiber bundle or the yarn is more robust than a single nanofi-
ber it is more convenient to transfer it onto a substrate. The
electrical, physical property characterization of the nanofi-
bers may not require special equipment.

The yarn manufacturing method6–8 involves collecting
the electrically charged fibers between two parallel and elec-
trically grounded collector surfaces separated by a distance
commensurate with the diameter of the loops formed by the
electrically driven bending instability.9 One collector shaped
as a hemisphere with diameter of 8 cm is rotated around its
axis at an appropriate rate to twist the nanofibers into a mi-
croyarn. The yarn is extended by translating the nonrotating
rod-shaped collector in an axial direction away from the ro-
tating collector. Properties such as yarn length, diameter, fi-

ber count, and twist per unit length are controlled by the
rotation rate of the hemispherical collector and the transla-
tion rate of the rod shaped collector. Yarns of nanofibers can
be produced from any polymer or polymeric precursor of
ceramic solutions that can be electrospun into fibers.

We synthesized and characterized several semiconduct-
ing ceramic �ZnO, NiO� nanofiber yarns using a modified
version of an electrospinning setup, which is reported
elsewhere.8 ZnO, a wide bandgap �3.4 eV� II-VI compound
semiconductor having n-type properties, has been intensively
studied due to its unique properties and versatile applications
in transparent electronics, ultraviolet �UV� light emitters,
piezoelectric devices, chemical sensors, and spin
electronics.10–15 ZnO is a strong candidate for semiconductor
devices operating in harsh environments, such as extraterres-
trial space and nuclear reactors because ZnO is more radia-
tion resistant than either Si, SiC, GaAs, or GaN. ZnO is also
very suitable for high power and high-frequency semicon-
ductor device applications, based on its large breakdown
voltage and high saturated electron drift velocity.16

NiO on the other hand is one of the relatively few metal
oxides that tend to have p-type properties. It has been attract-
ing considerable attention because of its stable and wide
bandgap �3.7 eV�. Nickel oxide is a very important material
extensively used in catalysis, battery cathodes, gas sensors,
electrochromic films, and magnetic materials.17–21

ZnO/NiO composites have been studied extensively as
important soft ferrite materials, gas sensitive materials, and
as semiconductors.22–27 Although the most interesting prop-
erty of semiconductors is the p-n interface, attempts to form
p-n interfaces with oxide semiconductor nanofibers are rare.
We demonstrate in this paper that the p-n interface using
oxide semiconductor nanofibers can be fabricated using elec-
trospun nanofibers, which do not require adhesion to a solid
substrate. The electrospun ZnO/NiO nanofiber heterostruc-
tures exhibit rectifying current-voltage �I-V� characteristics.

a�Author to whom correspondence should be addressed. Tel.: 330-972-7943.
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II. EXPERIMENTAL

Zinc oxide/nickel oxide heterojunction structures were
made from zinc oxide and nickel oxide nanofiber yarns in
two different ways. In the first approach, as spun
Zn�CH3COO�2 /PVP nanofiber yarn was made and then
some portion of this yarn was masked and
Ni�CH3COO�2 /PVP nanofibers were electrostatically spun
around the unmasked portion of the Zn�CH3COO�2 /PVP
nanofiber yarn. The twisted yarns of Zn�CH3COO�2 /PVP
and Ni�CH3COO�2 /PVP nanofibers were heat treated at 873
K �at the rate of 1 K/min in ambient conditions� to obtain the
twisted two-oxide ceramic nanofiber yarns. Here we refer
this heterostructured yarn as tapered nanofiber p-n junction
yarn. In the second approach, nanofiber yarns of
Zn�CH3COO�2 /PVP and Ni�CH3COO�2 /PVP were made in-
dividually and then were twisted around each other. These
twisted yarns were heat treated in the same manner to obtain
the ceramic heterojunction yarns. For convenience, we refer
this heterostructured yarn as twisted nanofiber p-n junction
yarn. Figure 1 schematically illustrates the formation of p-n
heterojunction nanofiber yarns.

III. CHARACTERIZATION

A. Scanning electron microscopy

For scanning electron microscopy �SEM� �Hitachi
S-2150� analysis, the nanofibers were placed on an alumi-
num stub with a strip of carbon tape applied to the surface to
promote fiber adhesion while minimizing charging effects.
The samples were silver coated �S150B Sputter Coater, Ed-
wards� and imaged using an accelerating voltage of 20 kV.
Figure 2 shows optical images of the p-n heterojunction
nanofiber yarns and representative SEM images of individual
yarn portion. The average diameters of the yarns were
30–40 �m. Yarn diameters were dependent on the duration
of electrospinning. Zinc oxide nanofibers in the yarn had an
average diameter of 60.3 nm with the standard deviation of
7.4 nm. Nickel oxide nanofibers had an average diameter of
95.2 nm and standard deviation of 4.8 nm.

B. X-ray diffraction

X-ray powder diffraction patterns were obtained with a
Philips diffractometer employing Cu K� radiation, with 2�
in the range of 10°–60°, to examine the crystal structures of
the zinc oxide/nickel oxide heterojunction nanofiber yarns.
The x-ray source was operated at 40 kV and 35 mA. The
diffraction profiles of zinc oxide/nickel oxide p-n junction
nanofiber yarns annealed at 873 K are presented in Fig. 3.

FIG. 1. Schematic diagram for the formation of �a� tapered nanofiber p-n
junction yarn; �b� twisted nanofiber p-n junction yarn. For both junctions the
white yarn is an n-type ceramic material �ZnO� while the gray yarn is a
p-type ceramic material �NiO�. Both types of yarns are made up of many
nanofibers �not shown�.

FIG. 2. ��a� and �b�� Optical microscope image of twisted p-n junction
NiO/ZnO nanofiber yarns annealed at 873 K. �c� Optical microscope image
of tapered p-n junction NiO/ZnO nanofiber yarns annealed at 873 K. �d�
SEM image of NiO nanofiber yarn annealed at 873 K. �e� SEM image of
ZnO nanofiber yarn annealed at 873 K.

FIG. 3. XRD patterns of ZnO/NiO nanofibers annealed at 873 K.
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The x-ray diffraction �XRD� pattern indicates that the nanofi-
ber heterostructure is well crystallized after annealing at 873
K.

In the XRD patterns of the heterostructures, only peaks
that could be assigned to ZnO and NiO were observed and
there was no evidence for any different crystalline phases.
The peaks can be indexed separately to the cubic nickel ox-
ide phase at 2�=37.2° �111�, 43.2° �200�, and to the hexago-
nal zinc oxide phase at 2�=31.79° �100�, 34.45° �200�,
36.28° �101�, 47.54° �102�, and 56.61° �110�. These reflec-
tion peak positions are also in good agreement with reported
values in the literature.28,29

C. Auger electron spectroscopy imaging

Auger electron spectroscopy �AES� measurements were
performed under high vacuum conditions in a VG ES-
CALAB Mk II system that had been outfitted with a custom
data acquisition system enabling the digital acquisition of
images where each pixel has an associated Auger spectrum.
The major elements detected were Zn, Ni, and O, with a
minor C feature, most likely due to adventitious carbon and
organic residues, as shown in Fig. 4. The two spectra shown
were constructed by averaging spectra in all pixels where
either the nickel or zinc signal was found to be dominant.
The spectra are therefore representative of the entire sample
as shown, rather than of two single points in the image. No
other impurities were detectable by AES, thereby verifying
the degradation and removal of the polymer precursors by
annealing at 873 K. Low and controlled impurity concentra-
tions are important if electrospun nanofibers are to be used
for optoelectronic, photonic, or sensor-related device appli-
cations.

D. Electrical properties of ZnO/NiO heterojunction
nanofiber yarns

The electrical properties of the individual yarns as well
as heterojunction nanofiber yarns were measured with a Kei-
thley 2410 sourcemeter. The yarns were placed on an insu-
lating glass slide and Ohmic contacts were made by depos-
iting silver paste onto the two ends of the yarn. Silver wires
were then connected to the electrodes of the sourcemeter for
measurements. The temperature dependence of the conduc-
tivities of these individual ceramic nanofiber yarns �ZnO,
NiO� is consistent with semiconducting behavior.8 Seebeck

coefficients of ZnO and NiO nanofibers were found to be
�45.5 and +25.5 �V /K by hot probe measurements.

The I-V curves for the heterojunctions without illumina-
tion of light showed clear rectifying behavior while that of
individual yarn of ZnO and NiO were linear indicating
Ohmic contacts. Figure 5 shows the rectifying characteristic
curves of the ZnO/NiO heterojunction nanofiber yarns with-
out light illumination. Some leakage current was observed in
the reverse bias region and the turn-on voltage was �3.0 V.

The photo I-V characteristics of the twisted p-n junction
nanofiber yarns were measured at room temperature using a
black ray UV lamp �model B 100 AP, wavelength range 315–
390 nm�. A Mannix UV light meter �wavelength range 290–
390 nm� was used to measure the intensity of light. Figure 6
shows the characteristic I-V curve under illumination of the
UV light source with a power density of 18 mA /cm2. Under
UV illumination, the turn-on voltage is lowered and the cur-
rent in both directions �reverse bias as well as forward bias�
is found to increase. The observed increase in current flow is
due to the generation of electron-hole pairs, created within
the ZnO material from exposure to the UV photons. It should
be noted that possible heating effects due to illumination by
UV light was not accounted for in these measurements.

The diode matrix was fabricated using different p- and
n-type semiconducting oxides with a large lattice mismatch
and with polycrystalline structures. Structural imperfections

FIG. 4. �a� Secondary electron image of a twisted p-n junction NiO/ZnO
nanofiber yarn; �b� corresponding AES summed over each region of the
twisted NiO/ZnO nanofiber yarn.

FIG. 5. I-V property for p-NiO /n-ZnO heterojunction nanofiber yarns.

FIG. 6. Photoresponse of twisted p-n junction NiO/ZnO nanofiber yarns to
UV excitation �wavelength range 315–390 nm� with a power density of
18 mA /cm2.
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exist at grain boundaries and the interfaces; therefore, these
defects contribute to the formation of diodes with less effec-
tive rectification characteristics than in other materials sys-
tems. However, the rectifying behavior is apparent.

IV. CONCLUSION

Twisted yarns of several ceramic nanofibers were made
using an electrospinning setup. We show that p-n junctions
can be formed using electrospun semiconducting nanofibers
where they were not deposited on any substrate. The p-n
junction fabricated from n-ZnO and p-NiO nanofiber yarns
showed typical rectifying current-voltage characteristics,
dominated in forward bias by the flow of space-charge-
limited current in the n-ZnO region. The p-n junction nanofi-
ber structure appears to be highly responsive to ultraviolet
irradiation but further measurements are required to account
for any heating effects.
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