
The University of Akron
IdeaExchange@UAkron

Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2015

An Examination of Mathematical Models for
Infectious Disease
David M. Jenkins
dmj40@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects

Part of the Immunology and Infectious Disease Commons, Integrative Biology Commons, and
the Non-linear Dynamics Commons

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of
IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

Recommended Citation
Jenkins, David M., "An Examination of Mathematical Models for Infectious Disease" (2015). Honors Research
Projects. 194.
http://ideaexchange.uakron.edu/honors_research_projects/194

http://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=http://ideaexchange.uakron.edu/honors_research_projects/194
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/33?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1302?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/118?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects/194?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu


An Examination of Mathematical Models for Infectious Disease

David Jenkins



2

Abstract:

Starting with the original 1926 formulation of the SIR (Susceptible-Infected-Removed) model 

for infectious diseases, mathematical epidemiology continued to grow. Many extensions such as the 

SEIR, MSIR, and MSEIR models were developed using SIR as a basis to model diseases in a variety of

circumstances. By taking the original SIR model, and reducing the system of three first-order equations

to a single first-order equation, analysis shows that the model predicts two possible situations. This 

analysis is followed by discussion of an alternative use of the SIR model which allows for one to track 

the amount of sustainable genetic variation in a population of pathogens as a quantity π. Finally, using 

the 2014 West African Ebola epidemic as an example, an alternative model to SIR is presented and 

discussed.
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§1 Introduction

Infectious disease is a major source of strife for developing countries (less so of late for post-

modern nations), so it is not surprising that much effort has been placed in attempts to soften the 

suffering they bring. Be they in the form of vaccinations, antibiotics, or improved health initiatives, all 

attempts at alleviating the effects of these diseases require accurate data and projections about their 

epidemiology. In the 1960's much success was achieved in managing these diseases to the point where 

many were largely thought to be eradicated [1]. However, with the emergence of the human 

immunodeficiency virus (HIV) in the 1980's, as well as various strains of hepatitis in the 1990's, a new 

interest has emerged in epidemiology, which is the study of patterns, causes, and effects of diseases in 

defined populations [7]. Mathematical epidemiology seeks to predict an infection's behavior via the use

of mathematical models in order to provide insight into how to prevent undesirable outcomes. 

Mathematical models of how diseases spread, while having been used since the eighteenth century [1], 

became a primary tool for analyzing how diseases like HIV spread, and suggesting how to control 

them. While certainly inspired by infections in human populations, many of these models (including 

the classic Susceptible-Infected-Removed model and its derivatives) are also employed by ecologists to

study non-human population dynamics, assuming the disease does not behave anomalously in the 

population of interest [7].

Mathematical models for infectious diseases are not a recent development in epidemiology. As 

early as the eighteenth century Daniel Bernoulli developed a model to predict the effects of inoculating 

smallpox sufferers with infected material from other infected individuals; however, disease modeling 

did not really start to take off until the twentieth century [1]. In the early twentieth century, various 

models for diseases such as measles and malaria were developed, and in 1926 the Susceptible-Infected-

Removed (sometimes called Susceptible-Infected-Resistant or SIR) model was developed by Kermack 
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and McKendrik. The SIR model introduced the idea that there exists a threshold density of susceptibles

which must be surpassed in order for an infection to take hold and a true epidemic to occur [1]. 

Many variations of SIR have been developed since its introduction in 1926. One variation is the 

Susceptible-Exposed-Infected-Removed (SEIR) model, which includes a latency period where the host 

is infected, but not yet infectious. The MSIR model assumes that resistant mothers confer some of their

immunity to their children, so the model contains a M category for maternally resistant susceptibles. 

The MSEIR model includes both maternally derived immunity as well as a latency period [1]. The 

choice of which “compartments” to include in a model widely depends on the situation and pathogen 

being modeled. In fact, models other than SIR derivatives also vary and different ones work better for 

different problems. Some models depend on very accurate estimates of the parameters in the model and

require extensive analysis of preexisting data before they can be useful. Other models may not provide 

the most sophisticated or complex predictions, but require little data to parametrize effectively. Such 

models may be useful in new or not well understood situations.

New mathematical models of infectious disease are still being developed. New strains of 

influenza have evolved, alongside antibiotic-resistant strains of pneumonia, tuberculosis, and gonorrhea

[1]. Mathematical disease models have been modified to account for and analyze the recent evolution 

of pathogens as understanding of evolutionary theory has matured [3, 4]. With changes in human and 

animal habitation, climate, environmental degradation, travel patterns, and even socioeconomic 

conditions, pathogens evolve to exploit emerging niches. Models that describe the infectious diseases 

associated with such pathogens must also be further developed to keep up lest these models lose their 

efficacy [1]. In the following sections an analysis of the basic SIR model will be provided, followed by 

a presentation of an alternative use of SIR, as well as an alternative model to SIR.
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§2 The Basic SIR Model and Epidemics

The SIR model (Susceptible-Infected-Removed) can be presented in a variety of ways; a simple

version is presented by Strogatz [2] as

(1) ẋ=
dx
dt

=−kxy ,

(2) ẏ=
dy
dt

=kxy−ly ,

(3) ż=
dz
dt

=ly .

Here k and l are positive constants, x (t) denotes the number of susceptible individuals in the 

population at time t , y (t) denotes the number of infected individuals at time t , and z (t)

denotes the number of dead individuals at time t . Note that z (t) could also denote the number of 

recovered individuals, in which case the model assumes that recovery confers total immunity to the 

individual with no chance of reinfection. It is assumed that z (0)=0. The model as it is presented here

assumes that healthy individuals become infected at a rate proportional to the product of x and y ,

thereby assuming that healthy and sick individuals come in contact at a rate proportional to their 

numbers with a constant probability k that an infected individual will infect a healthy individual. It is

also assumed that infected individuals die at a constant rate l . The model also assumes that the total 

population N is fixed with no entries or departures due to births or migration. There is no latency 

period in this model, meaning that a host is immediately able to infect others upon being infected. This 

system of three first-order equations can easily be reduced to a single first-order equation in the 

following manner.
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First note that

ẋ+ ẏ+ ż=
d
dt

(x+ y+ z)=0.

Thus

(4) x+ y+ z=N ,

where N is a constant representing the total population size. Note that, ż=ly>0. This implies z is 

increasing and 1-1 which further implies z (t) is invertible and has an inverse denoted t( z) . Since

t( z) exists, then the composition

x̂ (z)=x (t (z))

is valid and by the chain rule one obtains

d x̂
dz

=
dx
dt

dt
dz

=
dx
dt

1
dz
dt

=
−kxy

ly
=

−kx (t (z))
l

=
−k x̂

l
.

Therefore x̂ satisfies 

dx
dz

=
−k

l
x .

Separation of variables then yields

1
x

dx=
−k

l
dz .

So,

(5) x̂=x0e
−k

l
z

where x0 is the initial susceptible population. From (4) one can rewrite the equation for ż as

ż=ly=l(N−x−z ).

Substituting (5) for x provides 
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(6)      ż=l(N−z−x0 e
−k

l
z
).

This is a single nonlinear first-order equation for z which can now be analyzed.

This equation can be nondimensionalized using the rescalings

u=
z

k−1 l
and τ=

t
T̂

,

where T̂ is some combination of parameters with dimension of time that is specified below. If 

populations are considered to already be dimensionless then one can see that the dimension of u

denoted by [u ] is

[u ]=
[z ]

[k−1
][ l ]

=
1

(1/T )
−1T−1=1.

Thus

du
dτ

=

d (
1

k−1l
z )

d (
1
T̂

t )
=k

T̂
l

dz
dt

.

Substituting these rescaled variables into (6) produces

l
k T̂

du
dτ

=l(N−
l
k

u−x0e
−kl

kl
u
),

du
dτ

=k T̂ (N−
l
k

u−x0 e−u
),  

du
dτ

=k T̂ N−l T̂ u−k T̂ x0 e−u .

Note that

[kx0]=1[k ]=
1
T

.

Thus T̂=(kx0)
−1 i.e. the time it takes for the initial susceptible population to come in contact with the 

infected individuals, is a valid choice of T̂ and produces
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du
dτ

=
N
x0

−
l

kx0

u−e−u ,

or

(7)                    
du
dτ

=a−bu−e−u ,

where

a=
N
x0

, b=
l

kx0

and both a and b are dimensionless. Clearly a≥1 since N≥x0>0 and b>0 since

l ,k , x0>0.

Using the rescaled model (7), one can then determine the number and stability of fixed points 

(values of u where constant solutions to (7) exist) by studying the graphs of a−bu and e−u.

These two curves are shown in Figure 1 for typical values of a and b.
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Fig. 1. The value of u corresponding to the intersection of the two curves represents the unique stable fixed point ũ. One can

see that for values of a>1 and b>0 there is always one unique intersection and thus one unique fixed point.

From Figure 1, one can see that there exists a unique fixed point for some u value u=~u where the 

two curves intersect. If u<~u , then a−bu>e−u and thus 
du
dτ

=a−bu−e−u
>0, which means that 

solutions to (7) will increase to the fixed point for values of u less than the fixed point. If u>~u then

a−bu<e−u and solutions will decrease to ~u . Hence ~u is a stable fixed point.

 Next the concept of an epidemic is introduced and analysis of (7) provides what conditions are 

necessary for one to occur. Recall that z is the number of dead individuals and u is z rescaled. So

du
dτ

is the death rate. From (7) one can see that the death rate can be described as the difference 

between the two functions f 1=a−bu and f 2=e−u . In Figures 2 and 3 one can see the difference of 
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these two functions as the length of the vertical lines spanning from f 1(u) to f 2(u) for arbitrary 

values of u . Both figures are for the same fixed a≥1. In Figure 2 0<b<1, while in Figure 3

b>1.

Fig. 2. The lengths of the vertical lines indicate the death rate. One can see that as u increases from 0 to the fixed point ũ the

lengths increase to a maximum length at a point umax and then decrease to zero. Note that umax is not exactly 1.
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Fig. 3. The length of the vertical lines again indicate the magnitude of the death rate. Here one can see that lengths decrease

to 0 as u increases to the fixed point.

To understand what these two figures say about the death rate, note that u(0)=0 and that u

increases monotonically to the unique fixed point ~u (the intersection of the curves in Figures 2 and 

3) as τ increases. So the change in the death rate is seen in Figures 2 and 3 as the change in the 

lengths of the vertical lines as one moves from left to right. It is clear from Figure 2 that the death rate

du
dτ

achieves a unique maximum at some u value umax corresponding to a unique time denoted

τmax . In the case where b>1, τmax=0 since the longest vertical line occurs at u=0.
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Since u is simply a rescaling of z , then
dz
dt

must also achieve a unique maximum when

du
dτ

does at time tmax where tmax=
τmax

kx0

. The case described by Figure 2 with 0<b<1 refers to 

the situation in which an epidemic occurs. The rate at which individuals die increases before it 

decreases; or stated simply, things get worse before they get better. On the other hand, if b>1 the 

peak of the epidemic occurs at time 0, thus it is inappropriate to say an epidemic occurs at all since 

things only get better. 

It follows that b=1  is the threshold value for the occurrence of an epidemic. Recall that

b=
l

kx0

, where l is the rate at which infected individuals die, and kx is the rate at which healthy 

individuals are infected. When b is smaller than 1, it follows that at times t close to 0, so that x (t )

is close to x0, the rate at which infected individuals die is smaller than that at which healthy 

individuals become infected and thus the number of infected individuals y is increasing. However 

the death rate, ly , depends on the number of infected individuals, and it increases as y increases. 

At the same time, the infection rate, kxy−ly , decreases as the death rate increases and becomes 

negative once ly exceeds kxy . Once the infection rate becomes negative, the number of infected 

individuals decreases, and as such the death rate tends toward zero and the epidemic comes to a halt.

To illustrate the notion of an epidemic consider the situation where a population consisting of 

1000 individuals initially has 50 that are infected and 950 are susceptible to the infection. Also assume 

that infected and susceptible individuals encounter each other at a rate of .15 encounters per unit time, 

and those infected recover, with complete immunity, at a rate of 12 individuals per unit time. In the 

context of the original system x0=950, y0=50, z0=0, k=.15, l=12. Calculating b for this situation 
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one obtains

b=
l

kx0

=
12

.15(950)
≈.084 .

In this case b is certainly less than 1 so one would expect an epidemic to occur. Figure 4 shows the 

solutions to x, y, and z with this set of parameters and initial conditions.

Fig. 4. Here one sees the solutions x(t), y(t), z(t) for the original SIR system described at the beginning of this section with

k=.15, l=12, x0=950, y0=50, and z0=0.

The solutions observed in Figure 4 comply with the expected solution behavior in an epidemic. Here 

one can see the number of removed, or recovered, individuals stabilizing as the removal rate goes to its 

equilibrium point. The number of infected individuals reaches a unique maximum when the removal 

rate is at its highest, and then goes to 0 as the removal rate goes to 0.
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§3 The SIR Model and Genetic Diversity of 
Pathogens

Mathematical epidemiology has been a powerful component of the population biologist's 

repertoire since the SIR model was first proposed by Kermack and McKendrik in 1927 [2]. Some years

later, quantitative biology was further augmented when biologists such as Sewall Wright, Ronald 

Fischer, and Ernst Mayr attempted to integrate methods of population biology and quantitative genetics

with evolutionary theory during a period known as the Modern Synthesis. The Modern Synthesis 

created a new paradigm by which evolutionary theory could be explored and studied by biologists. 

Perhaps as an extension of the Modern Synthesis of the twentieth century, a new synthesis has emerged

combining the concepts proposed during the Modern Synthesis with mathematical epidemiology. This 

new framework, dubbed “Phylodynamics” by Grenfell et al. combines methods of mathematical 

epidemiology and evolutionary biology in order to better assess the dynamics of an epidemic by 

accounting for selection on pathogen populations [3]. 

In particular, a 2009 paper by Gordo et al. uses the SIR model to assess the levels and patterns 

of genetic diversity in pathogen populations [4]. They introduce a SIR model that has been modified to 

allow for births and deaths of hosts for reasons not related to the infection. The SIR model is then used 

to track the infection as it spreads throughout a population. However, the ultimate goal of the paper is 

to track the pathogens themselves and not the individuals or hosts. Via numerical simulation using the 

SIR model the researchers are able to develop a mathematical framework that monitors the genetic 

diversity of pathogens whose epidemiology is compliant with the SIR structure as the status of the 

infection changes [4]. 

In their paper the pathogen population is treated as a metapopulation where each subpopulation 

(deme) consists of those pathogens within a given infected host. A metapopulation is simply a 
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collection of demes of a given organism, where interbreeding and interactions between demes is so 

small that it is considered negligible. The demes then are nothing more than the largest interbreeding 

groups within the metapopulation. In the case of asexual organisms, such as the pathogens tracked in 

this paper, a deme is the largest group of collectively mutating and reproducing organisms in the 

metapopulation. In their model, births of hosts (and thus the creation of empty demes or niches to be 

occupied by pathogens) are accounted for, and the contact structure of hosts is such that any host may 

come in contact with another host with equal chances of infection. It should be noted however that the 

model does not allow for reinfection, therefore only empty demes in the susceptible state may be 

occupied and those in the recovered state are always empty. It is also assumed that all reproduction of 

pathogens following an infection event is done with some rate of mutation per genome per generation 

[4, 5]. Since many pathogens reproduce at extremely high rates [4], mutations are also occurring 

quickly thus positive selection must be occurring in some portion of the genome of a given deme. As a 

genome is altered more rapidly, new and beneficial collections of mutations become more likely to 

occur and will thus be selected for.

Ultimately the researchers examine the parameter R0 in the model, known as the basic 

reproductive number [4], which is essentially an average of the number of infection events a particular 

infected host can cause; alternatively, R0 measures the number of new demes a given deme can 

create. Extrapolating from R0 one can obtain some estimate of a given deme's fitness since any 

demes created by it would share the same basal genome and set of mutations. Those demes with a 

higher R0 would implicitly have a higher fitness and thus would have greater positive selection 

pressure. In order to understand the effects R0 and selection had in the model, the researchers 

allowed for a slightly distinct variant with higher fitness to the population [4]. A randomly chosen host 

is infected with the more fit strain, and then that strain's fate is tracked as the simulation runs its course 
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until one of two scenarios occur: either the strain is lost or the strain is fixed. Fixation refers to the 

event where one deme excludes the others as it continues to be selected for until it is the only strain 

present in the population [4]. From this, the probability that the particular mutant will fixate is given by

the number of simulations in which fixation of that mutant occurred over the total number of 

simulations. The authors also study the time to fixation which can be measured using the number of 

succeeding generations it takes for a mutant to attain fixation [4]. High fixation probabilities and short 

times to fixate correspond to strong selective forces on a particular pathogen strain and thus indicate 

ultimately lower levels of genetic diversity. Alternatively, in situations where fixation probabilities 

were low, genetic diversity was greater and selective forces weaker [4].

One problem with the researcher's simulations that ran to fixation was that they assumed an 

infected state conferred total immunity to the host, thus no reinfection could occur. Since most 

pathogens do not behave in this manner [4], the model had to be modified using H3N2 (Influenza A) as

a model organism. H3N2 does not confer total immunity, and its evolution is characterized by periods 

of increasing diversity due to mutations punctuated by periods of decreasing diversity when fixation of 

an advantageous strain occurs [4]. Advantageous strains often emerge when a strain is able to overcome

the antigenic resistance conferred upon previously infected hosts. The SIR variant used was further 

modified to allow for such reinfection by allowing recovered hosts to be reinfected with the some 

probability distinct from that which susceptible hosts are infected [4]. In an analysis similar to before, a

new, more advantageous strain was introduced into a random host. The advantage of this strain came 

from the fact that it created a longer infection in hosts where a reinfection event had occurred although 

the same duration in first-time infection events as the other strains [4]. The selective advantage was 

accounted for by establishing a threshold number of mutations dc by which any strain that had 

acquired a number of mutations greater than dc is considered to have the selective advantage over 
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those below this threshold [4]. After running simulations using the modifications to permit reinfection, 

the researchers observed an evolutionary pattern similar to that of H3N2, thus adding support to their 

framework.

Using phylodynamic techniques the researchers were able to develop a framework by which 

genetic diversity among pathogen metapopulations can be studied via analysis of both within and 

between host evolutionary processes [4]. In particular, their analyses allowed them to derive and use 

the following expression, 

π=
IU

e+b
,

where π represents the level of genetic diversity, I is an estimation of the infected proportion of the 

host population or the number of demes, U is the mutation rate, and e+b is a measure of the 

probability a deme will be removed [4]. According to this expression, genetic variability in pathogen 

metapopulations is proportional not only to the level of an infection but also its duration, that is, 

pathogens which have the capacity to cause longer infections also have the capacity to sustain higher 

amounts of genetic variation. By allowing reinfection into the model, the researchers developed a 

mathematical framework derived from a simple modified SIR epidemiology model that can be used to 

study the evolution of pathogens which behave in such a manner [4].
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§4 An Alternative to SIR Based Modeling

Not all epidemiology models are appropriately applied to any disease event. To illustrate this 

point, consider the recent Ebola epidemic in West Africa in 2014. The SIR model works very well for 

outbreaks and epidemics where there is much data about the epidemiology of the particular pathogen. 

The SIR model requires information about incidence, immunity, and contact patterns of the host 

population. When there is little or unreliable data on an epidemic, the SIR model tends to be ineffective

as its parameters cannot be determined with any appreciable confidence. For the Ebola outbreak that 

began in 2014, there was very little past data available on the epidemiology of Ebola. In fact, fifty 

percent of all the documented cases of Ebola occurred during the outbreak of 2014, which is still 

ongoing [6]. Reports coming out of West Africa were also highly erratic or admittedly conjectural. 

Because of this lack of confidence in the data, or a complete lack of data thereof, modelers were forced 

to use different methods to make predictions.

In 2013 a model known as the Incidence Decay with Exponential Adjustment or “IDEA” model 

was proposed and got to see its first major use during the Ebola epidemic of 2014 [6]. The model is the 

simple equation

It=( R0

(1+d )
t)

t

,

where t is time scaled in generation time, R0 is the basic reproductive number, and d is a control 

parameter used to cause a decay in incidences [6]. Values of d change with control initiatives such as 

increased public sanitation or other public health gains, behavioral change, increased immunity, and 

other changes that slow transmission [6]. I t gives the number of incidences within a given 

generation. One notable feature of this model is that in the absence of control, when d=0, the model 

becomes
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It=R0
t ,

which is always exponential growth in time. However when d≠0 the number of incidences decreases

by a power of t2, which then causes transmission to cease  [6]. This model works very well for 

analyzing short term outbreaks or epidemics that have little data available, since R0 can be fairly 

easily estimated via empirical analysis of what data is available. 

 Researchers Fisman et al. decided to use the IDEA model and what data were available to 

generate quick projections for the outbreak as well as determine what course of action would be most 

beneficial to stopping it. The only reliable data available to them were cumulative incidence data 

compiled by the World Health Organization (WHO), which was sufficient for the IDEA model to work.

They began by parametrizing the model by fitting it to the data obtained from the WHO; choosing the 

parameter values that minimized the distance between the model projections and the acquired incidence

data [6]. They then established a range of parameters that most accurately described the current status 

of the epidemic, and found R0≈1.8 and d to be only around .010 [6]. As it stood the model 

projected that the number of incidences would continue to increase, peaking in April 2015, and 

carrying forward into 2016, with a final size of more than 140,000 total cases [6]. However the 

researchers did find that a small increase in d (.014 instead of .010) caused a constant decrease in 

incidences with a peak of less than 10,000 total cases. 

The researchers were able to determine that immediate action was required in order to 

potentially decrease the number of victims in this outbreak tenfold. Had the researchers relied solely on

the SIR model, or other models like it, they would have undoubtedly been unable to acquire such 

alarming results, and any results obtained would have been highly unreliable. While the IDEA model 

does not give any indication as to what specific interventions are needed to increase the value of d ,

and thus drastically slow the spread of the virus, the researchers were able to use the model to 
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determine that intervention early on was critical in preventing the outbreak from spreading to extremely

catastrophic dimensions.

Despite being the classic epidemiology model, from which many models are then derived, SIR 

is not without its weaknesses—as made apparent in 2014. SIR is useful for diseases which have much 

reliable data readily available, which is often not the case in modeling epidemics. Most diseases for 

which reliable data are available are also already well understood, having already been modeled in 

typical conditions after years of data collection. For quick and meaningful results (as are often required 

in these situations) a simple model such as IDEA is often more desirable. That is not to say SIR is 

without its uses. SIR still remains as the basis on which many infectious disease models are built, and 

can be further used to study things such as pathogen population dynamics and evolution, thereby 

extending its potential.
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