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Abstract

Optimization Algorithms are very useful for solvingngineering problems. Indeed,
optimization algorithms can be used to optimizeiregring designs in terms of safety and
economy. Understanding the proprieties of matemangineering designs is very important
in order to make designs safe. Materials are raltyrperfectly homogeneous and there are
heterogeneous distributions in most materialshis paper, Self-OPTIM which is an inverse
constitutive parameter identification frameworkIvaié used to identify parameters of a linear
elastic material constitutive model. Data for SBRTIM will be obtained using ABAQUS
simulation of a dog-bone uniaxial test. Optimizatidlgorithms will be used to find
parameters such as Young’'s modulus (E) and poestam (v).



l. Introduction

This Honors Research Project is a project everydro@ollege student at the University of
Akron must complete to demonstrate his skills tteahas developed during his curriculum
I’'m working on this project under the supervisionDof Gunjin Yun, Associate Professor in
the department of Civil Engineering at the Univigrsif Akron. This project is about
parameters estimation of material constitutive niedsing Self-Optimization Inverse
Analysis Method (Self-OPTIM) and optimizatiatgorithms. The concept of optimization
will be explained using Newton’s method and secagithod.

lIl.  Concept of Engineering Optimization

Optimization is a set of methods (algorithms, matagecs, and modeling) used to make
optimal decisions or close to the optimum. Foransg, in complex problem optimization
methods can be used to minimize a cost, maxim@efi, or optimize a design. Numerical
optimization is used in engineering design. Ir,fan optimization problem defines the
objective function that is the procedure used toimize or maximize some parameters. In
addition to the objective function, some requiretaeralled constraints may be needed to be
specified. When the optimization required some trangs it is called a constraint
optimization problem otherwise it is called an umstwained optimization problem. For
example, in structural design the dimensions afanbcan be found so that it minimizes the
weight of the beam. Here, the objective funct®toi minimize the weight of the beam. The
constraints can be defined in the way that the dsias of the beam must be within a

certain interval or the dimensions are linked tiglothe design requirements.

lIl.  Numerical Optimization Algorithms

Actually, there are many algorithms used in nunaptimization methods. Some of these
methods such as linear, quadratic, dynamic, anthgg@ programming algorithms have
been developed to treat with particular classesptimization problems [1]. Algorithm such
as nonlinear programing has evolved for the satubibgeneral optimization problems [1].
There are some methods of finding roots that camsled in the numerical optimization.
Newton’s method and secant method will be usediggroject to understand the basics of

numerical optimization. Newton’s method and secaethod are used to find the roots of a



function or a system of functions. In the optimiaat applying Newton’s method and secant
method to the derivativg’ of a functionf, the roots of the derivativ€can be found. The

roots are the stationary points or extrema of timetionf .

1. Algorithms of Newton’s method and secant method
a. Newton’s method

Indeed, the Newton’s method is used to find thesroba differentiable function by iteration.

The following algorithm is used:

JICHIN

Xn+1 =x”_f’(x ),n_
n

For higher dimension (matrix) the algorithm canibéten as:
Xni1 = Xn — Ur(XD] F(X,),n = 0, JF is the jacobian of F

Let's solve Example 1 using the Newton’s method.

Example 1
ARACY
xZ _yZ =1
x2+y2—2 and x2—y2—1
6F A R E R A
| | | | | | |
| | | | | | |
) R [ S S S P |
| | | | | | |
| | | | | | |
| | | | | | |
2pf R CERERE AR -
| | | I | | |
| | | | | | |
ool [ LA AN [ S |
| | | | | | |
| | | | | | |
| | | | | | |
R s LR S SRR R E
| | | | | | |
| | | | | | |
| | | | | | |
Q- - === = N A ——— = - — - — = = [ [ R I—
| | | | | | |
| | | | | | |
| | | | | | |
T R N R R 4
-6 -4 -2 4 6

Figure 1Plot of system of equations (1)

Analytically, the solutions of the system of eqaas (1) can be found. The following points

are the solutions:

3 V2 3 W2 3 V2 3 V2
22 2P\ 2 vz 2 )2 2

The system of equations can be rewrite as follow:
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fiy) =2 +y*=2=0
foy) =42 =y =1=0

with X = (x,y)

FX) = {

Using Newton’s method, the solution can be deteeahiny finding the roots of the system of
functionsF(X).

1

Using MATLAB code, the solution can be found. (2gmendix A)

1.2247
0.7071
The Newton’s method has some limitations for figdioots. The method finds one root. The

1
Xy = <1),the root found is X* = ( )and the number of iterations = 5

function may have many roots. In Example 1, theegfeur roots. When taking

(—1.2247
—0.7071

Depending on the initial value the algorithm wiiid different root. Newton’s method

-1
Xo = ( 1),the root found is X* =

) and the numberof iterations = 5

required one initial guess and the initial guesstne close to the root to work efficiently. It
takes less time and iteration to find the root. ldegr, Newton’s method required the
derivative or the Jacobian and in many practicaésat is difficult to find the derivative or
the Jacobian. Therefore, the secant method is apppriate because it can approximate

the derivative or the Jacobian.

b. Secant method (Broyden’s method)

The following algorithm for one dimension is used the secant method:

flx,),n=0

X — x Xn ~ Xn+1
, = —
T fCa) = f(ne)

For higher dimension (matrix) the secant updatirghmd also known as Broyden’s method

can be used. The algorithm can be written as [2]:
Given F: R" - R"™, x, € R", A, € R™"
Do fork=0,1, ...
Solve Ay s, = —F(xy) for s, A = Jr(xi)
Xp+1 = Xi T Sk
Vi = F(xpq1) — F(xp)

(Vi — Ax Sk)SkT
SkTSk

Ag1 = Ap +



Let’s solve example 1 using the Broyden’s method:

Example 1
xt+y2=2
{xz—yzzl(l)
filt,y) =x*+y*=2=0
F(X) =
D =) x—y 10

with X = (x,y)
The initial guesses ar&, and A,
Ay = Jr(Xy) = jacobian of F(X,)

X ox,  0Xn

Xo = (J.(..Z.) A =JrXp) = ¢ ™ :
Xn 0F, 0F,
s

Ay = Jr(X,) is difficult to calculate in most cases, so thté difference method can be used

to approximatg.(X,). The forward difference is used.

OF; Fi (X3 +h)-F; (X1) OF; Fy(Xp+th)—F (Xn)

0X,1 h 0Xn h

ok |\ ECaen-ro [T 0 |\ Faltath)=Fa(xa)
et %o = ()

e 0= 1
Using MATLAB code, an approximation o, can be found. (See Appendix B)
A = 2.000 2.000 ]

712,000 —2.000
In this example, it is easy to fount}) using the formula of the Jacobian.

_[2x 2y

Ay =Jr(Xy) = [; _22] which is equal to thd, approximated by the finite difference

method. Therefore, using the finite difference rodtis a good start to approximatg
When an approximation af, is obtained, the solution can be found using MAB_éode.

(See Appendix C)

1.2247

1 2 2 N
X0—<1),A0—[2 _2],therootfoundlsX —(0.7071

) and the number

of iterations = 19



Like the Newton’s method, depending on the ini@ue the Broyden’s method algorithm
will find one root. Let’s take another initial g, .

—1.2247

-1 -2 —
Xy = < ),AO = [_g 22],therootf0undisX* = (_0 7071

-1

of iteration = 19

) and the number

The same solution is found using both methods afthie and Broyden. The Newton’s
method takes less iteration than the Broyden metho@xample 1, the number of iterations
for the Newton’s method is 5 and that of the Braydeethod is 19.

2. Optimization algorithms using Newton’s method and Boyden-
Fletcher-Goldfarb-Shanno (BFGS) secant update methb
a. Newton’s method

Newton’s method in optimization is a second ordethrad. The following algorithm is used.

Fl) o

Xn+1 = Xn _m,n =
n

For n variables the algorithm can be written as [1]
Xt = X1 — [H(XD]IVF(X9), q=0, H(X?) is the Hessian matrix of X4

X
Xq = XZ
Xn
(OF (X)) 0°F(X) 9°F(XT) OF(X9 ]
90X, 0X,?  0XiX, 0X1 Xy,
OF (X%) 92F(X9) 92F(X9) 92F (X9)
VEXD =1"3x, (» HED= |"ax.X,  ax,2 " 0X.X,
OF (X%) 92F(X9) 92F(X?) 92F (X7)
. 0K X X, 0XnX, 0X,?

Let’s use the algorithm in the following exampleoptimization [1]:
Example 2

-

Using MATLAB code, the minimum can be found. (SggAndix D)

X'= (-5/7, -1/7) minimizes F with F(X = -2/7 and the number of iterations is 2.
5



b. BFGS secant update method

BFGSsecant update method is most successful used anstrained nonlinear

optimization problems. The following algorithm ised [3]:

Xk+1 = X + apd, where ay is the search parameter
dy = —Higx
Pr = axdy = Xp41 — X
Ik = V), Grer = Vf (Xps1)
Ak = Gk+1 — Yk
_ < _ HyarqicHy N ¢VkaT> . zTolqu N p;;p;’c"
UcHeQr  Drx
¢ is a parameter that generally permits to vary from one iteration to another.

P Hiqk )
Pk’ qr  qx" Hyqy

1
Vi = (QkTHkCIk)2<

Let’s use the algorithm to solve example 3.
Example 3

Minimize f(xy, x3) = (2, — 2)* + (g — 2)%2x2 + (x, + 1)2 [2]

f has the minimizer X, = [_21]

Let’s start withX, = [ﬂ In practice, it is common to start witll, = I

1 0
0 1

Using MATLAB code, the minimizer can be determingskee Appendix E)

-]

X, = [_21] is the minimizer of f and the number of iteratiand 9. It takes more time and

iterations to get the solution. Sometimes it igiclift to get the gradient of the objective

function. So, the finite difference method can bedito approximate the gradient of the

objective function.

V. Practical Optimization Problem: Self-OPTIM

In this project, the Self-Optimizing Inverse Meth@klf-OPTIM) will be used for practical

optimization problem. In fact, Self-OPTIM is an arge constitutive parameter identification

framework developed by Yun et al. Self-OPTIM is @lle of identifying parameters of
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nonlinear material constitutive models and was destrated only by numerically simulated
testing with full- field displacement fields andepcribed boundary loadings [4]. The Self-
OPTIM is capable of identifying parameters of thesen class of material constitutive
models through minimization of an implicit objeaifunction defined as a function of full-
field stress and strain fields in the optimizatmnocess [4]. Using optimization algorithms,
parameters of material constitutive models cardbatified. In this project, the objective
function is defined as a function of full-field e&s and strain fields of a material constitutive
model. Self-OPTIM data are obtained through ABAQ&it8ulation of an isotropic dog-bone
uniaxial test. DIC data are used to improve the d&the test. Digital Image Correlation
(DIC) is a 3D, full-field, non-contact optical tatique to measure contour, deformation
vibration and strain on almost any material [Skdh be used for many tests including
tensile, torsion, bending and combined loadingbfath static and dynamics applications [5].
The test simulation will be done without and withCDdata. Here the objective function is an
unconstrained nonlinear several variable functiosh lsas 2 variables; Young’'s modulus (E)
and poison ratiouw). E andv are the parameters of the material constitutivdehto be
identified. Finding the minimum of the objectivenfttion will give the parameters of the
material constitutive model or parameters closédarue values depending on the efficiency
of the optimization algorithm used. Figure 2 angufe 3 display the surface of the objective
function without DIC data and with DIC data respeslly. The surface of the objective
function is obtained using MALAB code. (See Appenid)

200
; .
: 10

150

5 100
(T )

50—

(ed )3

Figure 2. Surface of the objective function without DIC data




FuncDIC

(AN 3

Figure 3. Surface of the objective function with DIC data

Actually, the true values of the parameters ardd @60 MPa and=0.35. The minimum of
the objective function is 0. The optimization algfams used above to solve simple
mathematical optimization problems were not capabfending the parameters that
minimize the objective function. For this reasolAMLAB optimization toolbox with
solvers “fmincon” and “fminsearch” were used. Thstfsolver ‘fmincon’ attempts to find a
constrained minimum of a scalar function of seveeaiables starting at an initial estimate
[6]. Also, Fmincon provides 4 options for optimimat algorithm; ‘interior-point’, sqp’,
‘active-set’, and ‘trust-region-reflective’. In thpaper, ‘interior-point’ with options bfgs,
central difference, TolX =1e-20, TolCon=1e-20, TwiEle-20, and TypicalX= [8000, 0.2]
were used. The second solver ‘fminsearch’ findsitiiemum of a scalar function of several
variables, starting at an initial estimate by udiwedder-Mead simplex algorithm [7]. The
method does not call for any information aboutdhedients or Hessian, which makes it

suitable for problems with either non-smooth fuoetor rapidly changed Hessian [8].




Table 1.Results obtained without DIC data and DIC data.

Mathab .bu"t"n Algorithms Xoptim Fvalue Iteration
unction
_ _ _ E = 10000.367 MPa
fmincon “Interior-point”:bfgs 0.00335 63
Without v =0.348
biC E =10000.23 MPa
fminsearch Simplex method : 0.000102 35
v =0.35001
. y , . E = 10001 MPa
With fmincon Interior-point”:bfgs V=034l 0.0472 44
DIC , , E=1 MP
fminsearch Simplex method 0000 MPa 0.00000123 61
v =0.35
Interior-point: bfgs Simplex method
Current Function Yalue: 0.00335415 ,
& Current Function Value: 0.000102167
ol 15 T T T T T T
N 0
ile =9
s | > 1Ty
T 08 Mﬂmmmmq. C ¢
§ 06F 05 L
T =
o
2 ey,
. . 'Olllllnuuuuauu
02 ® U """ \RALARARAARARALARA
o 0 i 10 15 A 5 L) 3
] L L | So000000,00, 1 ,
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fteration

Figure 4. Convergence of objective function without DIC data




Interior-point: bfgs Simplex method

Current Function Yalue: 0.047152
154 15¢
¢

Current Function Value: 123255806
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$0% 0000000,
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&£
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Figure 5. Convergence of objective function with DIC data

Table 1 shows the results obtained using intermnipalgorithm (bfgs) and simplex method.
The optimization algorithms were run without DICaand with DIC data. The results show
that without DIC data the interior-point algorithenmore accurate than the one that runs with
DIC data; but it requires less iteration with DI&ta. For the Simplex method, the results are
more accurate with DIC data; but it requires mtgeations. The simplex method is better
than the interior-point in both cases (without Ri&ta and with DIC data).

Figure 4 and Figure 5 show the convergence of ltipective function without DIC data and
with DIC data respectively. The simplex method aanges faster to the solution than the

interior-point algorithm.

V. Conclusion

In this paper, basic knowledge of numerical optatian algorithms was discussed using
simple mathematical problems. Practical optim@aproblem such as Self-OPTIM was also
used to emphasize the importance of optimizatie@nigineering. The results from Self-
OPTIM showed that optimization is very useful irggreering. Being able to identify
parameters of material constitutive models can awprengineering designs. Although in this
paper the data used are from test simulation, athietes have showed that Self-OPTIM

works with more realistic experimental data.
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Appendix A. MATLAB code for example 1 using Newton$ method

% Newton's method to find a solution of a system of equations
% f is a system of symbolic functions

% XO is the initial value

% tol is the tolerance

% maxiter is the max of iteration allowed

% c is a root of f

% iter is the number of iteration to get the root ¢

syms x vy
f = [x"2+yn2-2;x"2-y"2-1];

X0 =[1;1];

maxiter = 200;

tol = [1e-10;1e-10];

Fxy = matlabFunction(f);

J = matlabFunction(jacobian(f, [x, y]));

Xn=X0;
for n = l:maxiter
Xnplusl = Xn - inv(J(Xn(1), Xn(2)))*Fxy(Xn(1), Xn(2));

abserr = abs (Xnplusl -Xn);
relerr = abserr./(abs(Xn)+ eps);

al = all(abserr<tol);
a2 = all(relerr<tol);

if al==1&& a2==1
¢ = Xnplusy,;
iter = n;
return ;
end
Xn = Xnplusy;
end

Appendix B. MATLAB code for approximation of A,

% Finite method to approximate jacobian

% h=step for finite method

% AO= jacobian of f at xO

syms x y

f = [x"2+y"2-2;x"2-y"2-1];

x0 = [1;1];

h = le-10;

A = (subs(f, [x],[x0(1)+h])-subs(f, [x],[x0(1)]))/h ;
B = (subs(f, [y],[x0(2)+h])-subs(f, [y],[x0(2)]))/h ;
A0 = double([A,B]);

Appendix C. MATLAB code for example 1 using secantnethod

% Boyden's method (secant method)to find a solution of a system of
equations

% f is a system of symbolic functions

% x0 is the initial value

11



% AO is the initial guess for the jacobian of f at x0
% tol is the tolerance
% maxiter is the max of iteration allowed

% c is a root of f

% iter is the number of iteration to get the root ¢
syms Xx vy

f = [x"2+y"2-2;x"2-y"2-1];
x0 = [1;1];

A0 =[2,2;2,-2];

tol = [1e-10;1e-10];
maxiter = 200;

Fxy = matlabFunction(f);
Ak= AO;

xk=x0;

for k= 1:maxiter

sk = -1 * inv(Ak)*Fxy(xk(1), xk(2));

xkplusl = xk + sk;

yk = Fxy(xkplus1(1),xkplus1(2)) - Fxy(xk(1),xk(2));
Akplusl = Ak + sk™(yk-Ak*sk)/(sk™*sk);

abserr = abs (xkplusl -xk);
relerr = abserr./(abs(xk)+ eps);

al = all(abserr<tol);
a2 = all(relerr<tol);

if al==1&& a2==1
¢ = xkplusi;
iter=k;

return ;

end

xk = xkplus1;

Ak = Akplusi;

end

Appendix D. MATLAB code for example 2 using Newtofs method

% optimization of a objective function using Newton 's method
syms X1 X2;

F=X172-3*X1*X2+4*X2/2+X1-X2;

X0=sym([2;2]); % X0 is the initial value

tol=[1e-10;1e-10]; % tol is the tolerance

maxiter=200; % maxiter is the max of iteration allowed

H=hessian(F);
G=gradient(F);
Xn=X0;
for n = L:maxiter
Xnplusl = Xn-
inv(subs(H,[X1,X2],[Xn(1),Xn(2)]))*subs(G,[X1,X2],[ Xn(1),Xn(2)]);
abserr = abs (Xnplusl -Xn);
relerr = abserr./(abs(Xn)+ eps);
if abserr<tol & relerr<tol,

¢ = Xnplusi; % c is the minimizer of F
iter = n; % iter is the number of iterations
return;

12



end
Xn = Xnplusy;
end

Appendix E. MATLAB code for example 3 using BFGS ssant update
method

clear all
fclose( ‘'all' );
syms X1 X2;

f=(X1-2)M+(X1-2)"2*X2"2+(X2+1)"2;
X0=[1;1]; % XO is the initial value

tol=1e-6; % tol is the tolerance

h=[1e-10;1e-10]; % step used for the finite differnce method
maxiter=200; % maxiter is the max of iteration allowed
HO=eye(2); % HO is the initial value of the hessian of f at x0
Xk=X0;

Hk=HO;

F=matlabFunction(f);

phi=1.0;

alpha=1.0; % search parameter

for k= l:maxiter

%GXK is an approximation of gradient of F(XK)using finite difference
GXk=[(F(Xk(1)+h(1),Xk(2))-F(Xk(1),Xk(2)))/h(1) ;
(F(Xk(1),Xk(2)+h(2))-F(Xk(1),Xk(2)))/h(2)];
Xkp = Xk-Hk*GXK;

%GXKplusl is an approximation of gradient of F(Xkp) using finite
difference
GXkplus1=[(F(Xkp(1)+h(1),Xkp(2))-F(Xkp(1),Xkp( 2))/h(1);
(F(Xkp(1),Xkp(2)+h(2))-F(Xkp(1),Xkp(2)))/h(2 )I;
gk = GXkplus1-GXKk;
pk = Xkp-Xk;

if mod(k,size(Hk,1))==0
Hkplus1=H0;
else
vk = sqrt(gk™Hk*gk).*(pk./(pk™*gk)-(Hk*gk) J(gk'*Hk*gk));
Hkplusl1 = (Hk-
(Hk*(gk)*gk'*HK)./(gk™*Hk*qk)+phi.*vk*vk").*(pk*gk /(gk"™*Hk*gk))+(pk*pk’)./
(pk™qgk);
end
abserr = abs (Xkp-XKk);
relerr = abserr./(abs(Xk)+ eps);
if max(abserr)<tol && max(relerr)<tol;

¢ = Xkp; % c is the minimizer of F
iter = k; % iter is the number of iterations
return ;
end
Xk = Xkp;
Hk=Hkplus1;

end;
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Appendix F. MATLAB code for surface of objective function

% visualization of self-optim objective function su rface
% isotropic materials

% Func: objective function without DIC data
% FuncDIC: objective function with DIC data

clear all
fclose( ‘all' );
E=8000:200:11900;
v=0.1:0.02:0.49;
for i=1l:size(E,2)

for j=1:size(E,2)

9(i.j) = Func(E(L,i),v(1.)));

%g(i,j) = FuncDIC(E(1,),v(1,)));

end
end
[E,v]=meshgrid(E,v);
surf(E,v,g";
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