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Abstract 

Optimization Algorithms are very useful for solving engineering problems. Indeed, 

optimization algorithms can be used to optimize engineering designs in terms of safety and 

economy. Understanding the proprieties of materials in engineering designs is very important 

in order to make designs safe. Materials are not really perfectly homogeneous and there are 

heterogeneous distributions in most materials. In this paper, Self-OPTIM which is an inverse 

constitutive parameter identification framework will be used to identify parameters of a linear 

elastic material constitutive model. Data for Self-OPTIM will be obtained using ABAQUS 

simulation of a dog-bone uniaxial test. Optimization Algorithms will be used to find 

parameters such as Young’s modulus (E) and poison ratio (υ). 
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I. Introduction 

This Honors Research Project is a project every Honors College student at the University of 

Akron must complete to demonstrate his skills that he has developed during his curriculum. 

I’m working on this project under the supervision of Dr. Gunjin Yun, Associate Professor in  

the department of Civil Engineering at the University of Akron. This project is about  

parameters estimation of material constitutive models using Self-Optimization Inverse 

Analysis Method (Self-OPTIM) and optimizationalgorithms. The concept of optimization   

will be explained using Newton’s method and secant method.  

II.  Concept of Engineering Optimization 

Optimization is a set of methods (algorithms, mathematics, and modeling) used to make 

optimal decisions or close to the optimum. For instance, in complex problem optimization 

methods can be used to minimize a cost, maximize a profit, or optimize a design. Numerical 

optimization is used in engineering design.  In fact, an optimization problem defines the 

objective function that is the procedure used to minimize or maximize some parameters. In 

addition to the objective function, some requirements called constraints may be needed to be 

specified. When the optimization required some constraints it is called a constraint 

optimization problem otherwise it is called an unconstrained optimization problem. For 

example, in structural design the dimensions of a beam can be found so that it minimizes the 

weight of the beam.  Here, the objective function is to minimize the weight of the beam. The 

constraints can be defined in the way that the dimensions of the beam must be within a 

certain interval or the dimensions are linked through the design requirements.  

III.  Numerical Optimization Algorithms 

Actually, there are many algorithms used in numerical optimization methods.  Some of these 

methods such as linear, quadratic, dynamic, and geometric programming algorithms have 

been developed to treat with particular classes of optimization problems [1]. Algorithm such 

as nonlinear programing has evolved for the solution of general optimization problems [1]. 

There are some methods of finding roots that can be used in the numerical optimization.  

Newton’s method and secant method will be used in this project to understand the basics of 

numerical optimization. Newton’s method and secant method are used to find the roots of a 
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function or a system of functions. In the optimization, applying Newton’s method and secant 

method to the derivative �� of a function	�, the roots of the derivative ��can be found. The 

roots are the stationary points or extrema of the function	�. 

1. Algorithms of Newton’s method and secant method 
a. Newton’s method 

Indeed, the Newton’s method is used to find the roots of a differentiable function by iteration. 

The following algorithm is used:  

���� = �� − �
�����
��� ,  ≥ 0 

For higher dimension (matrix) the algorithm can be written as: ���� = �� − ���
�������
���,  ≥ 0	, ��	��	�ℎ�	���� ��	��	� 

Let’s solve Example 1 using the Newton’s method. 

Example 1 

!�" + $" = 2�" − $" = 1		
1� 

 

                Figure 1. Plot of system of equations (1) 

 

Analytically, the solutions of the system of equations (1) can be found. The following points 

are the solutions:

 

'(32 , √22 + , '(32 ,−√22 + , '−(32 ,−√22 + , '−(32 , √22 +
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�
�� = !��
�, $� = �" + $" − 2 = 0�"
�, $� = �" − $" − 1 = 0 

,��ℎ	� = 
�, $� 
Using Newton’s method, the solution can be determined by finding the roots of the system of 

functions F(X).   

Let	�0 = 1112 

Using MATLAB code, the solution can be found. (See Appendix A) 

�0 = 1112 , the	root	found	is	�∗ = 11.2247	0.70712 �@	�ℎ�	AB �C	��	���C����� = 5 

The Newton’s method has some limitations for finding roots. The method finds one root. The 

function may have many roots. In Example 1, there are four roots. When taking  

�0 = 1−1−12 , the	root	found	is	�∗ = 1−1.2247	−0.70712 �@	�ℎ�	AB �C��	���C����� = 5	 
Depending on the initial value the algorithm will find different root. Newton’s method 

required one initial guess and the initial guess must be close to the root to work efficiently. It 

takes less time and iteration to find the root. However, Newton’s method required the 

derivative or the Jacobian and in many practical cases it is difficult to find the derivative or 

the Jacobian. Therefore, the secant method is more appropriate because it can approximate 

the derivative or the Jacobian.  

b. Secant method (Broyden’s method) 

The following algorithm for one dimension is used for the secant method:  

���" = �� − �� − �����
��� − �
����� �
���,  ≥ 0 

For higher dimension (matrix) the secant updating method also known as Broyden’s method 

can be used. The algorithm can be written as [2]: E�F�	�:	ℝ� → ℝ�, �0	J	ℝ�, K0	J	ℝ�L� M�	��C	N = 0, 1, …: P�QF�	KR 	�R = −�
�R�		��C		�R		, KR = ��
�R�	�R�� = �R + �R $R = �
�R��� − �
�R� 
KR�� = KR + 
$R − KR 	�R��RS�RS�R  
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Let’s solve example 1 using the Broyden’s method: 

Example 1 

!�" + $" = 2�" − $" = 1 
1�  
�
�� = !��
�, $� = �" + $" − 2 = 0�"
�, $� = �" − $" − 1 = 0 

,��ℎ	� = 
�, $� 
The initial guesses are		�0		�@			K0 K0 = ��
�0� = ���� ��	��	�
�0� 
�0 = 1TUTV….TW2	, K0 = ��
�0� = XY

YZ
[�U[\U ⋯ [�U[\W⋮ ⋱ ⋮[�W[\U ⋯ [�W[\Wà

ab   
K0 = ��
�0� is difficult to calculate in most cases, so the finite difference method can be used 

to approximate	��
�0�. The forward difference is used. 

	'[�U[\U..[�W[\U
+ = 	'�U
\U�c���U
\U�c..�W
\U�c���W
\U�c

+ ,……'[�U[\W..[�W[\W
+ = 	'�U
\W�c���U
\W�c..�W
\W�c���W
\W�c

+										 
Let		�0 = 1112 

Using MATLAB code, an approximation of  K0 can be found. (See Appendix B) 

K0 = d2. 000 2.0002.000 −2.000e 
In this example, it is easy to found		K0 using the formula of the Jacobian.  

��
�� = f2x 2y2x −2yi 
K0 = ��
�0� = d2 22 −2e, which is equal to the K0 approximated by the finite difference 

method. Therefore, using the finite difference method is a good start to approximate	K0. 

When an approximation of K0 is obtained, the solution can be found using MATLAB code. 

(See Appendix C) 

�0 = 1112 , K0 = d2 22 −2e , �ℎ�	C���	��A@	��	�∗ = 1	1.2247		0.70712 	�@	�ℎ�	AB �C	 
��	���C����� = 19 
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Like the Newton’s method, depending on the initial value the Broyden’s method algorithm 

will find one root. Let’s take another initial guess	�0. 
�0 = 1−1−12 , K0 = d−2 −2−2 2 e , the	root	found	is	�∗ = 1−1.2247	−0.70712 	�@	�ℎ�	AB �C	 
��	���C���� = 19 

The same solution is found using both methods of Newton and Broyden. The Newton’s 

method takes less iteration than the Broyden method.  In example 1, the number of iterations 

for the Newton’s method is 5 and that of the Broyden method is 19. 

 

2. Optimization algorithms using Newton’s method and Broyden-
Fletcher-Goldfarb-Shanno (BFGS) secant update method. 

a. Newton’s method 

Newton’s method in optimization is a second order method. The following algorithm is used. 

���� = �� − ��
������
��� ,  ≥ 0 

For n variables the algorithm can be written as [1]: �k�� = �k − �l
�k����∇�
�k�, n ≥ 0	, l
�k�	��	�ℎ�	l�����	B��C��	��	�k 

�k = o���"…��p 

∇�
�k� =
qrr
s
rrt
u�
�k�u��u�
�k�u�"……u�
�k�u�� vrr

w
rrx ,					l
�k� = 			

XY
YY
YY
YZu

"�
�k�u��" 		u"�
�k�u���" 			 ⋯ u"�
�k�u���� 		
u"�
�k�u�"�� 		u"�
�k�u�"" 	⋮ ⋱ u"�
�k�u�"��⋮u"�
�k�u���� 		u"�
�k�u���" ⋯ u"�
�k�u��" àa

aa
aa
b
 

Let’s use the algorithm in the following example of optimization [1]: 

Example 2 

Minimize � = ��"−3���" + 4�"" + �� − �" 
�0 = y22z 
Using MATLAB code, the minimum can be found. (See Appendix D) 

X*= (-5/7, -1/7) minimizes F with F(X*) = -2/7 and the number of iterations is 2. 
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b. BFGS secant update method 

BFGS secant update method is most successful used in unconstrained nonlinear 

optimization problems. The following algorithm is used [3]: 

�R�� = �R + {RdR		where	{R	is	the	search	parameter dR = −lR�R �R = {RdR = �R�� − �R �R = ∇�
�R�,				�R�� = ∇�
�R���	 nR = �R�� − �R 

lR�� = �lR − lRnRnRSlRnRSlRnR + �vRvRS� ∗ �RSnRnRSlRnR + �R�RS�RSnR 

ϕ	is	a	parameter	that	generally	permits	to	vary	from	one	iteration	to	another. 
vR = 
nRSlRnR��" 1 �R�RSnR − lRnRnRSlRnR2 

Let’s use the algorithm to solve example 3. 

Example 3 

Minimize �
��, �"� = 
�� − 2�� + 
�� − 2�"�"" + 
�" + 1�"       [2] 

�	ℎ��	�ℎ�	B��B���C	�∗ = d 2−1e		 
Let’s start with �0 = d11e. In practice, it is common to start with  	l0 = � 
l0 = d1 00 1e 
Using MATLAB code, the minimizer can be determined. (See Appendix E) 

�∗ = d 2−1e is the minimizer of f and the number of iterations is 19. It takes more time and 

iterations to get the solution. Sometimes it is difficult to get the gradient of the objective 

function. So, the finite difference method can be used to approximate the gradient of the 

objective function.  

IV.  Practical Optimization Problem: Self-OPTIM 

In this project, the Self-Optimizing Inverse Method (Self-OPTIM) will be used for practical 

optimization problem. In fact, Self-OPTIM is an inverse constitutive parameter identification 

framework developed by Yun et al. Self-OPTIM is capable of identifying parameters of 
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nonlinear material constitutive models and was demonstrated only by numerically simulated 

testing with full- field displacement fields and prescribed boundary loadings [4]. The Self-

OPTIM is capable of identifying parameters of the chosen class of material constitutive 

models through minimization of an implicit objective function defined as a function of full-

field stress and strain fields in the optimization process [4]. Using optimization algorithms, 

parameters of material constitutive models can be identified. In this project, the objective 

function is defined as a function of full-field stress and strain fields of a material constitutive 

model. Self-OPTIM data are obtained through ABAQUS simulation of an isotropic dog-bone 

uniaxial test.  DIC data are used to improve the data of the test. Digital Image Correlation 

(DIC) is a 3D, full-field, non-contact optical technique to measure contour, deformation 

vibration and strain on almost any material [5]. It can be used for many tests including 

tensile, torsion, bending and combined loading for both static and dynamics applications [5]. 

The test simulation will be done without and with DIC data. Here the objective function is an 

unconstrained nonlinear several variable function and has 2 variables; Young’s modulus (E) 

and poison ratio (υ). E and υ are the parameters of the material constitutive model to be 

identified. Finding the minimum of the objective function will give the parameters of the 

material constitutive model or parameters close to the true values depending on the efficiency 

of the optimization algorithm used. Figure 2 and Figure 3 display the surface of the objective 

function without DIC data and with DIC data respectively. The surface of the objective 

function is obtained using MALAB code. (See Appendix F)  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2. Surface of the objective function without DIC data 
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Actually, the true values of the parameters are E =10000 MPa and υ=0.35. The minimum of 

the objective function is 0. The optimization algorithms used above to solve simple 

mathematical optimization problems were not capable of finding the parameters that 

minimize the objective function. For this reason, MATLAB optimization toolbox with 

solvers “fmincon” and “fminsearch” were used. The first solver ‘fmincon’ attempts to find a 

constrained minimum of a scalar function of several variables starting at an initial estimate 

[6]. Also, Fmincon provides 4 options for optimization algorithm; ‘interior-point’, sqp’, 

‘active-set’, and ‘trust-region-reflective’. In this paper, ‘interior-point’ with options bfgs, 

central difference, TolX =1e-20, TolCon=1e-20, TolFun=1e-20, and TypicalX= [8000, 0.2] 

were used. The second solver ‘fminsearch’ finds the minimum of a scalar function of several 

variables, starting at an initial estimate by using Nelder-Mead simplex algorithm [7]. The 

method does not call for any information about the gradients or Hessian, which makes it 

suitable for problems with either non-smooth function or rapidly changed Hessian [8].  

 

 

 

 

 

 

 

  

Figure 3. Surface of the objective function with DIC data 
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Table 1. Results obtained without DIC data and DIC data. 

  
MatLab built-in 

function 
Algorithms Xoptim Fvalue Iteration 

Without 
DIC 

fmincon “Interior-point”:bfgs 
E = 10000.367 MPa 

0.00335 63 
v = 0.348 

fminsearch Simplex method 
E =10000.23 MPa 

0.000102 35 
v =0.35001 

With 
DIC 

fmincon “Interior-point”:bfgs 
E = 10001 MPa 

0.0472 44 
v = 0.341 

fminsearch Simplex method 
E =10000 MPa 

0.00000123 61 
v =0.35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Convergence of objective function without DIC data  

Interior-point: bfgs Simplex method 
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project will give me basic knowledge of  This 

 
 
Figure 5. Convergence of objective function with DIC data 
 
Table 1 shows the results obtained using interior-point algorithm (bfgs) and simplex method. 

The optimization algorithms were run without DIC data and with DIC data. The results show 

that without DIC data the interior-point algorithm is more accurate than the one that runs with 

DIC data; but it requires less iteration with DIC data. For the Simplex method, the results are 

more accurate with DIC data; but it requires more iterations. The simplex method is better 

than the interior-point in both cases (without DIC data and with DIC data).  

Figure 4 and Figure 5 show the convergence of the objective function without DIC data and 

with DIC data respectively. The simplex method converges faster to the solution than the 

interior-point algorithm. 

V. Conclusion 

In this paper, basic knowledge of numerical optimization algorithms was discussed using 

simple mathematical problems.  Practical optimization problem such as Self-OPTIM was also 

used to emphasize the importance of optimization in engineering. The results from Self-

OPTIM showed that optimization is very useful in engineering. Being able to identify 

parameters of material constitutive models can improve engineering designs. Although in this 

paper the data used are from test simulation, other articles have showed that Self-OPTIM 

works with more realistic experimental data. 

Interior-point: bfgs 

 

Simplex method 
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Appendix A. MATLAB code for example 1 using Newton’s method 

% Newton's method to find a solution of a system of  equations  
% f is a system of symbolic functions  
% X0 is the initial value  
% tol is the tolerance  
% maxiter is the max of iteration allowed  
% c is a root of f  
% iter is the number of iteration to get the root c  
  
syms x y  
f = [x^2+y^2-2;x^2-y^2-1];  
X0 = [1;1];  
maxiter = 200;  
tol = [1e-10;1e-10];  
Fxy = matlabFunction(f);  
J = matlabFunction(jacobian(f, [x, y]));  
  
Xn=X0;  
for  n = 1:maxiter  
    Xnplus1 = Xn - inv(J(Xn(1), Xn(2)))*Fxy(Xn(1), Xn(2));  
    abserr = abs (Xnplus1 -Xn);  
    relerr = abserr./(abs(Xn)+ eps);  
     
    a1 = all(abserr<tol);  
    a2 = all(relerr<tol);  
     
    if  a1==1 && a2==1  
        c = Xnplus1;  
        iter = n;  
        return ;  
    end  
   Xn = Xnplus1;  
end  

 
Appendix B. MATLAB code for approximation of A 0 

% Finite method to approximate jacobian 
% h=step for finite method 
% A0= jacobian of f at x0  
syms x y 
f = [x^2+y^2-2;x^2-y^2-1]; 
x0 = [1;1]; 
h =  1e-10; 
A = (subs(f, [x],[x0(1)+h])-subs(f, [x],[x0(1)]))/h ; 
B = (subs(f, [y],[x0(2)+h])-subs(f, [y],[x0(2)]))/h ; 
A0 = double([A,B]); 

  
Appendix C. MATLAB code for example 1 using secant method 

% Boyden's method (secant method)to find a solution  of a system of 
equations  
% f is a system of symbolic functions  
% x0 is the initial value  
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% A0 is the initial guess for the jacobian of f at x0  
% tol is the tolerance  
% maxiter is the max of iteration allowed
 
% c is a root of f  
% iter is the number of iteration to get the root c  
syms x y  
f = [x^2+y^2-2;x^2-y^2-1];  
x0 = [1;1];  
A0 = [2,2;2,-2];  
tol = [1e-10;1e-10];  
maxiter = 200;  
Fxy = matlabFunction(f);  
Ak= A0;  
xk=x0;  
  
for  k = 1:maxiter  
sk = -1 * inv(Ak)*Fxy(xk(1), xk(2));  
xkplus1 = xk + sk;  
yk = Fxy(xkplus1(1),xkplus1(2)) - Fxy(xk(1),xk(2));  
Akplus1 = Ak + sk'*(yk-Ak*sk)/(sk'*sk);  
  
abserr = abs (xkplus1 -xk);  
relerr = abserr./(abs(xk)+ eps);  
     
a1 = all(abserr<tol);  
a2 = all(relerr<tol);  
  
if  a1==1 && a2==1  
    c = xkplus1;  
    iter= k;  
    return ;  
end  
xk = xkplus1;  
Ak = Akplus1;  
end 

 

 Appendix D. MATLAB code for example 2 using Newton’s method 

% optimization of a objective function using Newton ’s method  
syms X1 X2; 
F=X1^2-3*X1*X2+4*X2^2+X1-X2; 
X0=sym([2;2]);    % X0 is the initial value  
tol=[1e-10;1e-10];   % tol is the tolerance  
maxiter=200;   % maxiter is the max of iteration allowed  
H=hessian(F);  
G=gradient(F); 
Xn=X0; 
for n = 1:maxiter 
    Xnplus1 = Xn-
inv(subs(H,[X1,X2],[Xn(1),Xn(2)]))*subs(G,[X1,X2],[ Xn(1),Xn(2)]); 
    abserr = abs (Xnplus1 -Xn); 
    relerr = abserr./(abs(Xn)+ eps); 
    if abserr<tol & relerr<tol; 
       c = Xnplus1;   % c is the minimizer of F  
       iter = n;    % iter is the number of iterations   
 
        return; 
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    end   
   Xn = Xnplus1; 
end 
 

Appendix E. MATLAB code for example 3 using BFGS secant update 
method 

clear all  
fclose( 'all' );  
syms X1 X2;  
f=(X1-2)^4+(X1-2)^2*X2^2+(X2+1)^2;  
X0=[1;1]; % X0 is the initial value  
tol=1e-6; % tol is the tolerance  
h=[1e-10;1e-10]; % step used  for the finite differnce method  
maxiter=200; % maxiter is the max of iteration allowed  
H0=eye(2); % H0 is the initial value of the hessian of f at x0  
Xk=X0;  
Hk=H0;  
F=matlabFunction(f);  
phi=1.0;  
alpha=1.0;  % search parameter  
  
for  k = 1:maxiter  
    
    %GXK is an approximation of gradient of F(Xk)using finite difference  
     GXk=[(F(Xk(1)+h(1),Xk(2))-F(Xk(1),Xk(2)))/h(1) ;  
        (F(Xk(1),Xk(2)+h(2))-F(Xk(1),Xk(2)))/h(2)];  
    Xkp = Xk-Hk*GXk;  
        
    %GXKplus1 is an approximation of gradient of F(Xkp)  using finite 
difference  
     GXkplus1=[(F(Xkp(1)+h(1),Xkp(2))-F(Xkp(1),Xkp( 2)))/h(1);  
       (F(Xkp(1),Xkp(2)+h(2))-F(Xkp(1),Xkp(2)))/h(2 )];  
    qk = GXkplus1-GXk;  
    pk = Xkp-Xk;  
  
    if  mod(k,size(Hk,1))==0  
        Hkplus1=H0;  
    else        
        vk = sqrt(qk'*Hk*qk).*(pk./(pk'*qk)-(Hk*qk) ./(qk'*Hk*qk));  
        Hkplus1 = (Hk-
(Hk*(qk)*qk'*Hk)./(qk'*Hk*qk)+phi.*vk*vk').*(pk'*qk /(qk'*Hk*qk))+(pk*pk')./
(pk'*qk);  
    end  
    abserr = abs (Xkp-Xk);  
    relerr = abserr./(abs(Xk)+ eps);  
    if  max(abserr)<tol && max(relerr)<tol;  
        c = Xkp; % c is the minimizer of F  
        iter = k; % iter is the number of iterations  
        return ;  
    end  
    Xk = Xkp;  
    Hk=Hkplus1;  
end ;  
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Appendix F. MATLAB code for surface of objective function  

% visualization of self-optim objective function su rface 
% isotropic materials
 
% Func: objective function without DIC data  
% FuncDIC: objective function with DIC data  
 
clear all ;  
fclose( 'all' );  
E=8000:200:11900;  
v=0.1:0.02:0.49;  
for  i=1:size(E,2)  
    for  j=1:size(E,2)  
       g(i,j) = Func(E(1,i),v(1,j)); 
     %g(i,j) = FuncDIC(E(1,i),v(1,j));  
 
    end  
end  
[E,v]=meshgrid(E,v);  
surf(E,v,g');
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