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Introduction 

 This project involves the simulation of electronic health records (EHRs) for use in a 

classroom setting, specifically with application to aspiring dietetics students. While similar 

EHR simulators exist, few if any allow the use of “dummy” patients; that is, in order to use 

these EHRs in a classroom setting, it is required that real people (with real social security 

numbers) be used, which isn’t an option due to HIPAA. Many health professions programs, 

therefore, do not teach with respect to EHRs, which is only of detriment to the students. By 

being exposed to EHRs prior to seeing the ones installed in most every hospital, students 

are better prepared to enter the workforce.  

The primary purpose of this project, then, was to satisfy a fellow undergraduate’s 

design specifications for such an application. It was required of me to implement a number 

of primary features and make the interface appear as desired. It was then up to me to 

determine the appropriate technologies required to satisfy the request of a “client”. I was to 

have an application where an instructor could fill in the chart of a fictional patient which 

students could then see and give responses such as diagnoses and intervention plans. 

Instructors should then be able to see these responses. All of this should be organized by 

class. 

 

Design/Planning 

 When it came to design, many of the functional requirements had already been 

established for me. First, instructors needed to be able to create fictional patients. This is to 

be similar to an instructor filling in an electronic chart. Upon patient creation, the data is 

stored in a bank which allows any instructor to view any patient. Instructors then needed 

to be able to post these patients to individual classes. When posted, students that are 

members of particular classes could then view the patient’s chart, and fill out information 

such as height and weight conversions and nutritional recommendations. The instructor 

would then be able to view student responses for each patient.  

 From this description, I could refine my requirements: I would need a login system; 

different users would be allowed to access different parts of the application; I would need 

several database tables for patient information; and I would need some sort of 



administration user. This administration user would be able to delete old classes and 

change the basic student account into an instructor account. 

 This problem seemed best able to be addressed by a web application. By using 

ASP.NET, which includes many software facilities for things such as form authentication, 

SQL database access, and website planning, I was able to accomplish more work. Since 

ASP.NET is a Microsoft technology, it also made sense to use Visual Studio for development 

and Azure for hosting, as it only took one click to publish the project every time I wanted to 

test and debug my code. 

 The technologies I used included ASP.NET, HTML, C#, SCSS, and SQL. ASP.NET, 

HTML, and C# all went hand-in-hand, allowing for the creation of active server pages which 

could easily connect to the SQL database storing all user, class, and patient information. 

SCSS (or Sass, as it is also known) allowed for more programmatic CSS styling, since it 

allowed for variables and nested declarations that could then be compiled into actual CSS. 

SQL (a language with which I am admittedly inexperienced) was used for the database 

queries, with most of the actual database design done using Microsoft Azure’s online 

database management portal. 

 

Implementation 

 There were a total of 17 pages in the website, organized into three directories. The 

home directory (which all users could access) were login, register, refresh, index, 

ViewClass, apply, and response. The Admin subdirectory contained the pages for managing 

Users and Classes. The Teach subdirectory contained the pages AddClass, AddPatient, 

Classes, EditPatient, Patients, ViewClass, ViewResponses, and response. 

 

 

 I first implemented the user authentication and authorization. User authentication 

(and authorization) is handled through a login form [1]. When the user logs in, it 

authenticates the session and also updates the database to update the last date on which 

the user was seen—this is useful for database management on a long term scale, allowing 

for the deletion of accounts that are not used within a certain timeframe. I also included a 

date of creation for the account, for use in a similar purpose. This table also helped when 



dealing with authorization; I could assign each user a role number (compared against a 

second table for a role name) which would prevent student users from accessing instructor 

or administrator pages. On authentication, a session is started which stores the user’s 

unique identifier, allowing other tabular data to be accessed in other pages. 

 

1-A simple login page, with a link for account creation. 

One issue I ran into is that the user’s unique ID was lost if the user idled on one page 

too long. For example, the student could be spending time looking through references while 

entering patient information. To prevent this, I placed an iframe which contained an empty 

page, refresh.aspx, in the footer of my master page (which all pages inherit from) 
 [2]. This 

page refreshes every several minutes, which keeps the session active as long as the 

browser is left open.  

 

2-All pages contains an invisible page which refreshes automatically. 

 After implementing the login system, I had to handle user administration before I 

could do anything else. While administrators technically have privilege to create classes, 

and there’s nothing wrong with that, it is not wise for every instructor to have 

administrator privilege.  



 

3-User administration page, class administration is similar. Users have three roles: Admin, Prof, and Student(default). 

 The next major step was figuring out how to “enroll” students in a course. Having 

instructors create courses was easy enough (it was roughly the same implementation as 

creating a patient, which is just a SQL INSERT INTO query), but it was not as simple for 

just anyone to be able to enroll in said courses. Since there are no limits on who can create 

an account, it made sense for me to put a restriction here. Students can apply to a class 

from the landing page, listed under their current courses. From there, they can see a list of 

all classes, as well as buttons to apply for any class they have not requested to be enrolled 

in [4]. Instructors can then view their class and approve any student pending approval. In 

the scope of the University of Akron, instructors would only approve someone whose 

username was identical to a UANet ID on the class list. 

 

4-Students can apply for courses they have not yet applied to. "Pending" is displayed when Enrolled but not approved. 

 Students then needed to be able to enter in their responses. The .NET Wizard web 

control seemed natural for this: I was able to spread information to multiple ‘tabs’, much 

like an EHR would do, while collecting various information that could then be submitted to 

a separate database table that instructors could access later[5]. 



 

5- Step 1 of the response wizard. Submit button is located on the final page. 

 Since many pages share similar functionality, it is redundant to discuss every page 

of the website. For instance, several pages access the same table of my database, organized 

in a slightly different manner. As such, I have omitted the pages for adding patients to a 

class, approving students, administrating classes, creating a patient, and viewing individual 

student responses. 

  

Closing/Reflection 

 This project taught me much about the process of creating real software. I already 

knew that working alone on large projects was a lot less glamorous than the media would 

lead you to believe, but firsthand experience with such a situation truly cemented that fact. 

It is difficult to only have oneself to rely on when a problem arises, and not having a second 

pair of eyes to help debug leads to many an hour of head scratching. Given another 

opportunity, I would have definitely tried to find another student to help create this 

website, so that it would be more fully featured. 

 I also was able to learn a couple of new technologies, namely SQL and SCSS/Sass. I 

already knew a bit about SQL and how databases work, but I had never done anything like 

designing my own schema, which was a lot more interesting than simple queries. I now 

have confidence in my ability to not only write SQL queries but also to write schemas. 

 SCSS was different in that I already knew how to write CSS, but did not enjoy writing 

it. SCSS changed that by making CSS more fun: I could now declare variables for things like 



padding and color. This made it easy to fiddle with elements without having to scroll 

through a CSS document to find the specific element I wanted to change. The best part was, 

since SCSS compiled into CSS automatically every time I saved the file in Visual Studio, I 

didn’t have to do anything differently in my implementation. 

 Lastly, this project taught me about the importance of communication between 

developer and client. Without the constant communication I had with my “client”, I would 

not have been able to stay as on track with the intended design as I did. I was also able to 

get important input on styling—which saved me hours of attempting to make something 

that looks pleasing to me, but not to others. 

 The experience has left me excited to enter the workforce and face new challenges. I 

haven’t had the privilege of being able to work internships like many of my classmates, so it 

is important to me that I have projects that I can be proud of to show prospective 

employers.  

  



 

Appendix 

Website: http://smb193-hrp.azurewebsites.net/ 

Github: https://github.com/smb193/EHR-Sim  
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