Spring 2015

Water Treadmill Versus Land Treadmill Training Effects on Leg Strength and Cardiovascular Endurance

Michelle E. Hudson Ms.
The University Of Akron, meh81@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects
Part of the Exercise Science Commons, Sports Sciences Commons, and the Sports Studies Commons

Recommended Citation

Hudson, Michelle E. Ms., "Water Treadmill Versus Land Treadmill Training Effects on Leg Strength and Cardiovascular Endurance" (2015). Honors Research Projects. 140.
http://ideaexchange.uakron.edu/honors_research_projects/140

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

Water Treadmill Versus Land Treadmill Training Effects on Leg Strength and Cardiovascular Endurance

Michelle Hudson

Exercise Science: Pre-Physical Therapy
The Honors College
The College of Health Professions
The Sports Science and Wellness Education Department
The University of Akron

Laura Richardson
Honors Project Sponsor

Dr. Judith Juvancic-Heltzel
Honors Faculty Advisor

TABLE OF CONTENTS

TOPIC PAGE NUMBER
ABSTRACT 3
INTRODUCTION 4
LITERATURE REVIEW 4
METHODS 7
Experimental Approach to the Problem 7
Subjects 8
Procedures 9
RESULTS 19
DISCUSSION 22
Limitations 23
CONCLUSION 24
REFERENCES 26
INFORMED CONSENT FORMS 28
PAR-Q FORMS 34
BODPOD ${ }^{\circledR}$ RESULTS 36
GODIN LEISURE-TIME EXERCISE 40QUESTIONNAIRES
BIODEX ${ }^{\circledR}$ RESULTS 44

Abstract

Underwater treadmill running can be used as a means of reducing musculoskeletal loading while maintaining a training intensity equal to that of land running. A variety of cardiovascular benefits are seen in water running, such as greater increases in stroke volume and cardiac output than on land. Additionally, increased drag while water running can significantly improve force production. PURPOSE: To investigate if differences exist between underwater treadmill and land treadmill running on leg strength and cardiovascular endurance through a case study of two 22 year old sedentary males. METHODS: An 8-week aerobic training program was designed incorporating water and land running. Participant A was assigned to a water-based program, and Participant B was assigned to a land-based program. Weeks 1 and 8 consisted of pre- and posttesting of body fat percentage, low body flexibility, VO_{2} maximum, thigh and calf circumference, wellness rating, and left leg force output. Weeks 2-7 consisted of aerobic training. Participant A completed 6 weeks of a water-based program, with two days per week on the underwater treadmill. Participant B completed 6 weeks of a land-based program, with two days per week on the land treadmill. RESULTS: Improvements were seen in left leg force output, estimated VO_{2} maximum, percent body fat, thigh and calf circumference, and wellness rating in both individuals. CONCLUSION: A water-based exercise program can be safely recommended to an individual beginning an exercise prescription which will elicit similar or greater physiological benefits to that of a land-based exercise program. This case study was a good pilot study, as physiological changes were seen in both participants; therefore, more research should be completed with a larger sample size and a longer duration in order to achieve more substantial statistical analysis.

INTRODUCTION

Underwater treadmill running has become very popular in rehabilitation, due to the decrease in limb loading and musculoskeletal stress on the joints (Rutledge, Silvers, Browder, Dolny). It is slowly being adapted from an exercise standpoint, as injured athletes or athletes in off-season are utilizing the technology to maintain training stimulus, while decreasing likelihood of injury or overtraining (Reilly, Dowzer, Cable, 2003). The goal of this case study was to determine if a water-based aerobic exercise program is capable of eliciting similar, or greater, physiological changes in a sedentary individual as a land-based program, utilizing the underwater treadmill. The focus of the study was on the effect of the underwater treadmill, and a water-based prescription, on leg strength and cardiovascular endurance, as those are the two most prominent variables affected by underwater running versus land running. Other variables were also measured in order to create a greater picture of the physiological changes taking place between the two individuals. Two sedentary males completed 6 weeks of aerobic exercise, one program completely water-based, the other completely land-based, and the percent change in each physiological variable was then measured in each individual. These percent changes were then compared, and it was determined which individual saw greater improvements in each variable. This study will act as a pilot study, as the sample size is very small, the duration is short, and there are many factors affecting the results, but the outcomes will, hopefully, shed some light on the use of underwater treadmill running for exercise prescription in sedentary individuals.

LITERATURE REVIEW

Running is a very common means of exercise due to its effects on cardiovascular endurance and strength. Running, however, can be orthopedically stressful on the joints as it is often done on hard surfaces, leading to a variety of injuries in the lower limb. Underwater
treadmill running has gained popularity over the years as it offers a way to maintain or improve fitness in injured and healthy individuals (Rutledge et al.). Limb loading is reduced significantly by running underwater, which reduces the stress on the joints (Rutledge et al.). This is very useful for overweight or obese individuals, as well as those with injuries. Until recently, deepwater and shallow-water running were the most common techniques for underwater running therapy. These methods, however, have shown to be quite different from land-based running in regards to the muscular recruitment and kinematics of the lower extremities (Schaal, Collins, Ashley, 2012). This has led to the increased popularity of underwater treadmills, as they eliminate the forward movement of the body through water and lead to a more natural gait pattern (Schaal et al., 2012). They also have the ability to incorporate a reduced impact ground support phase that can enhance the specificity of underwater training (Schaal et al., 2012).

While underwater treadmill running is used primarily on injured or overweight individuals, it can have a variety of physiological benefits. Water running can be used as a means of reducing musculoskeletal loading while maintaining a training stimulus and intensity equal to that of land-running, as well as decrease the likelihood of overtraining (Reilly et al., 2003). Water running can also elicit similar peak cardiorespiratory responses to those seen with land treadmill running during maximal exertion (Silvers, Rutledge, Dolny, 2007). Both stroke volume and cardiac output increase during water immersion, and stroke volume values during both maximal and submaximal exercise intensities are seen to be higher in water than on land (Reilly et al., 2003). These increases in stroke volume may be due to reduced cardiac filling time, the reduced amount of blood shifting centrally during exercise due to the displacement of peripheral blood volume at rest, or due to a near maximum left ventricular diastolic volume at rest while immersed in water (Reilly et al., 2003). The magnitude of these cardiovascular responses is directly proportional to the level of immersion in water (Reilly et al., 2003).

In addition to the cardiovascular benefits of underwater running, it has the ability to increase training intensity, compared to land running, due to the increase in drag factor while working underwater (Barbosa, Marinho, Reis, Silva, Bragada, 2009). Significant improvements in strength have been seen following $8,10,12$, and 24 week head-out aquatic exercise programs (Barbosa et al., 2009). Aquatic running or walking can be a very useful alternative to land running or walking for all individuals, especially those with injuries, those looking to maintain training status, and those in the at-risk population (Rebold, Kobak, Otterstetter, 2013). Improving athletic performance and decreasing the likelihood of injury are important benefits of underwater treadmill running due to its ability to reduce the musculoskeletal loading that one experiences during training and competition (Rebold et al., 2013).

The Godin Leisure-Time Exercise Questionnaire was used in this case study to gage each participants' level of activity, or wellness rating. This questionnaire is a useful tool for assessing an individual's self-reported leisure-time physical activity level (Godin, 2011). Weekly frequencies of strenuous, moderate, and mild activities self-reported by the individual are multiplied by nine, five, and three, respectively. These values, nine, three, and five, correspond to the average MET levels of the activities listed in each category (Godin, 2011). The total weekly leisure activity score is then computed by summing the products of the three components. The unit result signifies a correlation with VO_{2} maximum and health benefits (Godin, 2011). Based on this unit, the individual is then placed into a category: 24 units or more signifies the individual is active with substantial health benefits, 14 to 23 units signifies the individual is moderately active with some health benefits, and less than 14 units signifies the individual is insufficiently active with less substantial or low health benefits (Godin, 2011).

The purpose of this study was to investigate if differences exist between underwater treadmill and land treadmill running on leg strength and cardiovascular endurance through a case
study of two 22 year old sedentary males. According to a study conducted by Reilly, Dowzer, and Cable (2003), sedentary individuals benefit more physiologically from water running than athletes. Land running and water running show similar results when duration, frequency, and intensity are maintained between the two methods (Eyestone, Fellingham, George, Fisher, 1993). It was hypothesized that a 6-week water-based aerobic training program will lead to similar or greater improvements in cardiovascular endurance and leg strength as a 6-week land-based aerobic training program. The goal of this case study was to answer the following research questions:

1. Does underwater treadmill running lead to similar or greater increases in leg strength as land running?
2. Does underwater treadmill running lead to similar or greater increases in cardiovascular endurance as land running?
3. Can a water-based exercise program be safely recommended to an individual beginning an exercise prescription in order to elicit similar physiological benefits to a land-based program?

METHODS

Experimental Approach to the Problem

The case study was designed to investigate how a 6-week water-based aerobic training program and a 6-week land-based aerobic training program will influence estimated VO_{2} maximum, force production of the left leg, lower body flexibility, thigh and calf circumference, resting blood pressure, resting heart rate, body fat percentage, and overall wellness rating in two sedentary, college-aged males. The program length was set at 6 weeks due to the physiological results that are said to take place over this period of time (Lippincott, Williams, Wilkins, 2014).

Participant A completed an entirely water-based aerobic training program, including running on the HydroWorx 2000^{\circledR} (HydroWorx, Middletown, PA) underwater treadmill. Participant B completed an entirely land-based aerobic training program, including running on a land treadmill. Pre- and post-testing was completed for both individuals and statistical analysis was completed to compare these results. Pre- and post-testing consisted of: body fat percentage measured through the use of the $\operatorname{BodPod}^{\circledR}$ (COSMED, Rome, Italy), lower body flexibility measured by completing the YMCA sit-and-reach test, estimated VO_{2} maximum found through the Rockport Walking Test (Lippincott et al., 2014), thigh and calf circumference measured according to American College of Sports Medicine (ACSM) circumference measurement guidelines, wellness ratings were assessed through the completion of the Godin Leisure-Time Exercise Questionnaire (Godin, Shephard, 1985), and left leg force production was measured using the BioDex ${ }^{\circledR}$ (BioDex Medical Systems, Shirley, NY), in which participants completed isokinetic unilateral flexion and extension protocols. The percent increases in the pre- and posttesting results were found and the changes were compared between the two participants.

Subjects

Two males, both 22 years of age participated in this 8 week case study. Participants were recruited based on convenience and interest from The University of Akron College of Engineering. Baseline information was recorded for both participants, as illustrated in Table 1. Participants were eligible if they had no contraindications to exercise, were injury free, and were considered sedentary: having participated in less than or equal to 3 days of 30 minute physical activity for less than 3 months (Lippincott et al., 2014).

Table 1. Baseline information for both participants pre- and post-testing.

	Participant A		Participant B	
Measurement	Pre-Testing	Post-Testing	Pre-Testing	Post-Testing
Age	22 years	22 years	21 years	22 years
Resting Heart Rate	90 bpm	98 bpm	88 bpm	96 bpm
Resting Blood Pressure	$118 / 70$	$108 / 70$	$110 / 65$	$110 / 65$
Height	$5 ' 5 "$	$55^{\prime \prime}$	$6 ' 5 "$	$65^{\prime \prime}$
Weight	119 lbs	123.5 lbs	204 lbs	205.6 lbs
$\%$ Body Fat	7.30%	6.30%	15.90%	13.60%
Calf Circumference	29.1 cm	33 cm	38.5 cm	40.5 cm
Thigh Circumference	42 cm	45 cm	57.5 cm	60 cm
BMI	19.8	20.5	24.2	24.4

Participants were instructed to continue their normal daily activities, in addition to the training program. It was also advised that each participant maintain his current diet and refrain from using exercise supplements, such as creatine, caffeine, steroids, ephedrine, etc. Participants were advised against any anaerobic lower body resistance training that may skew the results of the study or fatigue the participant for the study. Prior to participation in the study, participants were notified about all experimental procedures and any potential risks that may be involved, as well as the benefits associated with the study. Each participant signed an informed consent form and completed a Physical Activity Readiness questionnaire, which can be found on pages 28 and 34, respectively. This study received approval from the Institutional Review Board of the Office of Research Services and Sponsored Programs at The University of Akron.

Procedures

Weeks 1 and 8 consisted of pre- and post-testing, respectively, of the following variables: estimated VO_{2} maximum, force production of the left leg, flexibility, thigh and calf circumference, resting blood pressure, resting heart rate, body fat percentage, and overall wellness rating. All procedures were based on those laid out by the ACSM (Lippincott et al., 2014).

The BodPod ${ }^{\circledR}$ (COSMED, Rome, Italy) was used to measure body fat percentage. Participants were instructed to refrain from eating or taking part in any physical activity for two hours prior to entering the $\operatorname{BodPod}^{\circledR}$ (COSMED, Rome, Italy), to wear minimal clothing (gym shorts, spandex, swim cap), and to remove all jewelry and piercings (Lippincott et al., 2014). Percent body fat in the $\operatorname{BodPod}^{\circledR}$ (COSMED, Rome, Italy) is found using air plethysmography, or a measure of air displacement, which correlates to the percentage of fat and lean body tissue. These results can be found in Table 1 and on page 36.

Resting heart rate was taken at each participant's radial artery on the wrist. Resting blood pressure was taken based on ACSM protocols, as were thigh and calf circumference (Lippincott et al., 2014). Thigh circumference was measured just below each participant's gluteal fold and calf circumference was measured at the widest point of the calf between the knee and the ankle (Lippincott et al., 2014). The results of these tests can be found in Table 1.

The Rockport Walking Test was used to estimate each participant's estimated VO_{2} maximum. Each participant was instructed to walk one mile as quickly as possible. Time, heart rate immediately upon completion, age, weight, and gender were then recorded and plugged into the equation: VO_{2} maximum $=132.853-(0.0769 \mathrm{x}$ body weight in pounds $)-(0.3877 \mathrm{x}$ age in years $)+(6.3150 \times$ gender $[$ female $=0$, male $=1])-(3.2649 \times 1$-mile walk time in minutes and hundredths $)-(0.1565 \times$ heart rate at end of mile in beats per minute $)$. This test is 68% accurate with a standard deviation of $+/-5.0 \mathrm{~mL} / \mathrm{kg} / \mathrm{min}$ of the calculated value. These results can be found in Table 2.

Table 2. Rockport Walking test results for participant A and B both pre- and post-testing.

	Participant A		Participant B	
Measurement	Pre-Testing	Post-testing	Pre-Testing	Post-Testing
Weight	119 lbs	123.5 lbs	204 lbs	205.6 lbs
Age	22 years	22 years	21 years	22 years
Sex	Male	Male	Male	Male
Time	$15: 10$	$14: 17$	$13: 20$	$12: 07$
Post-Test Heart Rate	136 bpm	120 bpm	120 bpm	133 bpm
Estimated VO2	$50.68 \mathrm{~mL} / \mathrm{kg} / \mathrm{min}$	$72.64 \mathrm{~mL} / \mathrm{kg} / \mathrm{min}$	$53.028 \mathrm{~mL} / \mathrm{kg} / \mathrm{min}$	$54.45 \mathrm{~mL} / \mathrm{kg} / \mathrm{min}$

Strength was measured through two trials of three sets of an isokinetic unilateral extension/flexion test of the left leg on the BioDex ${ }^{\circledR}$ machine (BioDex Medical Systems, Shirley, NY). The best of each set between the two trials was used. The first set of each trial consisted of participants completing 5 repetitions of 60 degree/second flexion and 5 repetitions of 60 degree/second extension. Set two consisted of participants completing 10 repetitions of 180 degree/second flexion and 10 repetitions of 180 degree/second extension. Set three consisted of participants completing 15 repetitions of 300 degree/second flexion and 15 repetitions of 300 degree/second extension. The maximum repetition to total work calculation provided by the machine then showed the total muscular force output for the repetition with the greatest amount of work, which is indicative of the muscles' capability to produce force throughout the range of motion and was used to compare the pre- and post-test results. The pre- and post-testing results of this test can be found in Tables 3 and 4.

Table 3. BioDex ${ }^{\circledR}$ test results for participant A and B both pre- and post-testing.

Participant		Force Production	$60 \% \mathrm{sec}$	180 \% sec	$300 \% \mathrm{sec}$	60% sec	180 \% sec	$300 \% \mathrm{sec}$
Participant A	PreTesting	Trial	Trial 1			Trial 2		
		Extension (ft-lbs)	72.5	51.1	37.5	75.4	52.7	36.1
		Flexion (ft-lbs)	59	44.3	41.3	62.9	42.2	36.4
	PostTesting	Trial	Trial 1			Trial 2		
		Extension (ft-lbs)	79.1	75.7	47.7	81.3	68.8	54.7
		Flexion (ft-lbs)	55.9	49.9	40.4	54.9	47.3	43.2
Participant B	PreTesting	Trial	Trial 1			Trial 2		
		Extension (ft-lbs)	141.6	120.6	89.8	144.6	124.6	89.7
		Flexion (ft-lbs)	80.5	60.8	45.1	74.5	51.7	43.5
	PostTesting	Trial	Trial 1			Trial 2		
		Extension (ft-lbs)	129.3	120.3	97.1	84	114.9	99
		Flexion (ft-lbs)	84	64	45.7	58.1	56.1	45.6

Table 4. The best of each BioDex ${ }^{\circledR}$ trial for participant A and B both pre- and post-testing.

Participant		Force Production	$60 \% \mathrm{sec}$	$180 \% \mathrm{sec}$	$300 \% \mathrm{sec}$
Participant A	Pre-Testing	Extension (ft-lbs)	75.4	52.7	37.5
		Flexion (ft-lbs)	62.9	44.3	41.3
	Post-Testing	Extension (ft-lbs)	81.3	75.7	54.7
		Flexion (ft-lbs)	55.9	49.9	43.2
Participant B	Pre-Testing	Extension (ft-lbs)	144.6	1246	89.8
		Flexion (ft-lbs)	80.5	60.8	45.1
	Post-Testing	Extension (ft-lbs)	129.3	120.3	99
		Flexion (ft-lbs)	84	64	45.7

Flexibility was measured through the sit-and-reach test, based on the guidelines
established by the YMCA and ACSM (Lippincott et al., 2014). The participants sat with their legs straight out in front of them and feet flat against the sit and reach box. Each participant then leaned forward at his waist, with his arms straight out, as far as was comfortable for him. The distance was recorded and the average of three trials was analyzed. These results can be found in Table 5.

Table 5. Sit and reach test results for participant A and B both pre- and post-testing.

	Participant A		Participant B	
	Pre-Testing	Post-Testing	Pre-Testing	Post-Testing
Trial	Distance	Distance	Distance	Distance
1	15 cm	12 cm	16 cm	24 cm
2	15.5 cm	15 cm	11.5 cm	21 cm
3	16 cm	16 cm	17 cm	19 cm
Average	15.5 cm	14.3 cm	14.8 cm	21.3 cm

Each participant completed a Godin Leisure-Time Exercise Questionnaire pre- and postintervention, as well. In this questionnaire, each participant answered four questions, rating an estimation of his overall level of fitness in an average week. These responses were then added to the equation: Weekly leisure activity score $($ Wellness rating $)=(9 \times$ Strenuous $)+(5 \times$ Moderate $)$ $+(3 \mathrm{x}$ Mild $)$. This equation provided an estimated wellness rating for each participant. These results can be seen in Table 6.

Table 6. Godin Leisure-Time Exercise Questionnaire results for participant A and B both preand post-testing. Weekly leisure activity score $($ Wellness rating $)=(9 \times$ Strenuous $)+(5 x$ Moderate) + (3 x Mild).

	Participant A		Participant B	
Question	Pre-Testing	Post-Testing	Pre-Testing	Post-Testing
Times per week spent completing strenuous activity	0	4	2	5
Times per week spent completing moderate activity	2	4	0	0
Times per week spent completing mild activity	5	5	5	5
During a typical 7-day period, how often do you engage in any regular activity long enough to work up a sweat?	2. Sometimes	1. Often	2. Sometimes	2. Sometimes
Wellness Rating	25	71	71	
Category	Active, Substantial Benefits			

Weeks 2 through 7 consisted of using the participants' respective treadmills, underwater or land-based, two times per week in addition to completing aerobic exercise one to three times per week, as seen in Tables 7 and 8.

Table 7. Weekly treadmill protocols.

Participant	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8
A	Pre-testing	3 days, 20 minutes, 65\% HRR, 30\% jet resistance	4 days, 25 minutes, 70\% HRR, 40\% jet resistance	4 days, 25 minutes, 70\% HRR, 40\% jet resistance	4 days, 30 minutes, 75\% HRR, 50\% jet resistance	4 days, 30 minutes, 75\% HRR, 50\% jet resistance	5 days, 30 minutes, 80\% HRR, 50\% jet resistance	PostTesting
B	Pre-testing	$\begin{gathered} 3 \text { days, } 20 \\ \text { minutes, } \\ 65 \% \\ \text { HRR, } \\ 1.5 \% \\ \text { grade } \end{gathered}$	4 days, 25 minutes, 70\% HRR, 2\% grade	4 days, 25 minutes, 70\% HRR, 2\% grade	4 days, 30 minutes, 75\% HRR, 3\% grade	4 days, 30 minutes, 75\% HRR, 3\% grade	5 days, 30 minutes, 80\% HRR, 3\% grade	PostTesting

Table 8. Participant A weekly treadmill protocols. Target Heart Rate $=[($ Maximum heart rate - Resting heart rate) x \% Intensity] + Resting heart rate. Maximum Heart Rate = 220- Age.

Week	Resting Heart Rate	Maximum Heart Rate	Percentage	Target Heart Rate	Grade	Time	Speed
	88 bpm	199 bpm					
2			65\%	160 bpm	30\%	20 min	7.5 mph
3			70\%	165 bpm	40\%	25 min	7.5 mph
4			70\%	165 bpm	40\%	25 min	$7.5-8 \mathrm{mph}$
5			75\%	171 bpm	50\%	30 min	$7.5-8.5 \mathrm{mph}$
6			75\%	171 bpm	50\%	30 min	$7.5-8.5 \mathrm{mph}$
7			80\%	176. bpm	50\%	30 min	$8-8.5 \mathrm{mph}$
					Warm-Up/CoolDown		
					0\%	5 min	2.5 mph

Participant A completed an entirely water-based training program. In week 2, he exercised 3 days for 20 minutes at 65% of his heart rate reserve. Maximum heart rate was found using the equation 220 - Age, and heart rate reserve was determined through the following equation: $H R R=($ Maximum HR - Resting HR $) \times \%$ Intensity + Resting HR. Two of the three
days involved running on the underwater treadmill at 30% jet resistance. While on the underwater treadmill, participant A was submerged to the top of his shoulders and positioned approximately 1 meter away from the jets in order to standardize the amount of fluid resistance (Silvers et al., 2007). Additionally, the jets were aimed at his torso in order to provide adjustable resistance (Silvers et al., 2007). He completed a 5 minute warm-up and a 5 minute cool-down with no resistance and at a speed of 2.5 mph . On the third day of week 2, participant A completed 20 minutes of water-based aerobic exercise of his choosing. He used a heart rate monitor to ensure he was working at 65% of his HRR. Weeks 3 and 4 consisted of 4 days of water-based aerobic exercise for 25 minutes per day at 70% of his HRR. The 2 days on the underwater treadmill consisted of the same 5 minute warm-up and cool-down, and had an increased jet resistance of 40% during exercise. The other 2 days consisted of 25 minutes of water-based aerobic exercise of the participant's choosing. Weeks 5 and 6 consisted of 4 days of water-based aerobic exercise for 30 minutes per day at 75% of his HRR. The 2 days on the underwater treadmill consisted of the same 5 minute warm-up and cool-down, and had an increased jet resistance of 50% during exercise. The other 2 days consisted of 30 minutes of water-based aerobic exercise of the participant's choosing. Week 7 consisted of 5 days of waterbased aerobic exercise for 30 minutes per day at 80% of his HRR. The 2 days on the underwater treadmill consisted of the same 5 minute warm-up and cool-down with the same 50% jet resistance during exercise. The other 3 days consisted of 30 minutes of water-based aerobic exercise of the participant's choosing. These protocols can be found in Tables 7 and 8.

Participant B completed an entirely land-based training program. In week 2 he exercised 3 days for 20 minutes at 65% of his HRR. Two of these days involved running on the land treadmill at 1.5% grade. He completed a 5 minute warm-up and a 5 minute cool-down at zero grade and a speed of 2.5 mph . On the third day of week 2, participant B completed 20 minutes of
land-based aerobic exercise of his choosing. He used a heart rate monitor to ensure he was working at 65% of his HRR. Weeks 3 and 4 consisted of 4 days of land-based aerobic exercise for 25 minutes per day at 70% of his HRR. The 2 days on the land treadmill consisted of the same 5 minute warm-up and cool-down, and had an increased grade of 2% during exercise. The other 2 days consisted of 25 minutes of land-based aerobic exercise of the participant's choosing. Weeks 5 and 6 consisted of 4 days of land-based aerobic exercise for 30 minutes per day at 75% of his HRR. The 2 days on the land treadmill consisted of the same 5 minute warm-up and cooldown, and had an increased grade of 3% during exercise. The other 2 days consisted of 30 minutes of land-based aerobic exercise of the participant's choosing. Week 7 consisted of 5 days of land-based aerobic exercise for 30 minutes per day at 80% of his HRR. The 2 days on the land treadmill consisted of the same 5 minute warm-up and cool-down with the same 3% grade during exercise. The other 3 days consisted of 30 minutes of land-based aerobic exercise of the participant's choosing. These protocols can be found in Tables 7 and 9.

Table 9. Participant B weekly treadmill protocols. Target Heart Rate $=$ [(Maximum heart rate - Resting heart rate) x \% Intensity] + Resting heart rate. Maximum Heart Rate = 220 - Age.

The self-monitored training days consisted of various types of exercises laid out to each of the participants prior to the start of the study. Participant A was given various water-based exercises to choose from, including lap swimming and water aerobics. Participant B was given
various land-based exercises to choose from, including elliptical, stair-stepper, rowing machine, stationary bicycle, or any of the aerobic exercise classes offered at The University of Akron Student Recreation and Wellness Center. The completed protocols for each day of exercise for participant A and B can be found in Tables 10 and 11, respectively.

Table 10. Participant A exercise protocols.

Day of Week	Date	Method	Warm-up Time	Cool-Down Time	Workout Time	Max HR	Comments
Week 2							
1	2/16/2015	Underwater Treadmill	5 min	5 min	20 min	160 bpm	
2	2/21/2015	Laps	5 min	N/A	20 min	160 bpm	
3	N/A	Underwater Treadmill	N/A	N/A	N/A	N/A	Incomplete- Weather Related Issues
Week 3							
1	2/23/2015	Underwater Treadmill	5 min	5 min	25 min	165 bpm	
2	2/25/2015	Laps	5 min	5 min	25 min	165 bpm	
3	N/A	Underwater Treadmill	N/A	N/A	N/A	N/A	Incomplete- Treadmill Malfunctions
4	2/28/2015	Laps	5 min	5 min	25 min	165 bpm	
Week 4							
1	3/4/2015	Underwater Treadmill	5 min	5 min	25 min	165 bpm	
2	3/5/2015	Laps	5 min	5 min	25 min	165 bpm	
3	3/6/2015	Underwater Treadmill	5 min	5 min	25 min	165 bpm	
4	3/7/2015	Laps	5 min	5 min	25 min	165 bpm	
Week 5							
1	3/9/2015	Underwater Treadmill	5 min	5 min	30 min	171 bpm	
2	3/11/2015	Laps	5 min	10 min	30 min	171 bpm	
3	3/13/2015	Underwater Treadmill	5 min	5 min	30 min	171 bpm	
4	3/14/2015	Laps	5 min	5 min	30 min	171 bpm	
Week 6							

1	$3 / 16 / 2015$	Underwater Treadmill	5 min	5 min	30 min	171 bpm	
2	$3 / 18 / 2015$	Laps	5 min	5 min	30 min	171 bpm	
3	$3 / 20 / 2015$	Underwater Treadmill	5 min	5 min	30 min	171 bpm	
4	$3 / 21 / 2015$	Laps	5 min	5 min	30 min	171 bpm	
Week 7							
1	$3 / 30 / 2015$	Underwater Treadmill	5 min	5 min	30 min	176.4 bpm	
2	$3 / 31 / 2015$	Laps	5 min	5 min	30 min	176.4 bpm	
3	$4 / 2 / 2015$	Laps	5 min	5 min	30 min	176.4 bpm	
4	$4 / 3 / 2015$	Underwater Treadmill	5 min	5 min	30 min	176.4 bpm	
5	$4 / 4 / 2015$	Laps	5 min	5 min	30 min	176.4 bpm	

Table 11. Participant B exercise protocols.

Day of Week	Date	Method	Warm-up Time	$\begin{gathered} \text { Cool-Down } \\ \text { Time } \end{gathered}$	Workout Time	Max HR	Comments
Week 2							
1	2/18/2015	Land Treadmill	5 min	5 min	20 min	$\begin{gathered} 160.15 \\ \mathrm{bpm} \end{gathered}$	
2	2/19/2015	Land Treadmill	5 min	5 min	20 min	$\begin{gathered} 160.15 \\ \mathrm{bpm} \end{gathered}$	
3	2/21/2015	Stationary Bike	N/A	N/A	20 min	$\begin{gathered} 160.15 \\ \mathrm{bpm} \end{gathered}$	
Week 3							
1	2/24/2015	Indoor track	5 min	5 min	25 min	165.7 bpm	
2	2/25/2015	Land Treadmill	5 min	5 min	25 min	165.7 bpm	
3	2/26/2015	Land Treadmill	5 min	5 min	25 min	165.7 bpm	
4	2/28/2015	Stationary Bike	5 min	N/A	25 min	165.7 bpm	
Week 4							
1	3/5/2015	Stationary Bike	5 min	5 min	25 min	165.7 bpm	
2	3/4/2015	Land Treadmill	5 min	5 min	25 min	165.7 bpm	Incomplete- Must stay even with other participant

3	3/6/2015	Land Treadmill	5 min	5 min	25 min	165.7 bpm	
4	3/7/2015	Indoor Track	5 min	5 min	25 min	165.7 bpm	
Week 5							
1	3/10/2015	Indoor Track	5 min	5 min	30 min	$\begin{gathered} 171.25 \\ \mathrm{bpm} \end{gathered}$	
2	3/11/2015	Land Treadmill	5 min	5 min	30 min	$\begin{gathered} 171.25 \\ \mathrm{bpm} \end{gathered}$	Incomplete- Must stay even with other participant
3	3/12/2015	Land Treadmill	5 min	5 min	30 min	$\begin{gathered} 171.25 \\ \mathrm{bpm} \end{gathered}$	
4	3/14/2015	Indoor Track	5 min	5 min	30 min	$\begin{gathered} 171.25 \\ \mathrm{bpm} \end{gathered}$	
Week 6							
1	3/16/2015	Trail Running	5 min	5 min	30 min	$\begin{gathered} 171.25 \\ \mathrm{bpm} \end{gathered}$	
2	3/18/2015	Land Treadmill	5 min	5 min	30 min	$\begin{gathered} 171.25 \\ \mathrm{bpm} \end{gathered}$	
3	3/19/2015	Land Treadmill	5 min	5 min	30 min	$\begin{gathered} 171.25 \\ \mathrm{bpm} \end{gathered}$	
4	3/20/2015	Trail Running	5 min	5 min	30 min	$\begin{gathered} 171.25 \\ \mathrm{bpm} \end{gathered}$	
Week 7							
1	3/29/2015	Trail Running	5 min	5 min	30 min	176.8 bpm	
2	3/30/2015	Trail Running	5 min	5 min	30 min	176.8 bpm	
3	4/1/2015	Land Treadmill	5 min	5 min	30 min	176.8 bpm	
4	4/2/2015	Land Treadmill	5 min	5 min	30 min	176.8 bpm	
5	4/4/2015	Trail Running	5 min	5 min	30 min	176.8 bpm	

RESULTS

Percent increases between pre- and post-testing variables were determined for both participant A and B following completion of this case study. Each of these percentages can be found in Table 12. Increases were seen in estimated VO_{2} maximum, calf circumference, thigh
circumference, overall force output, and wellness rating in both participants. Each saw a decrease in percent body fat, as well. Participant B saw an increase in flexibility, while participant A saw a decrease in flexibility over the 6 week case study. While a majority of the variables saw similar improvements, participant A saw a much greater improvement in force output, or strength, and estimated VO_{2} maximum, or cardiovascular endurance, than participant B.

Table 12. Percent increases in each pre- and post-testing variable in participant A and B.

Percent Increases	Participant A	Participant B
Estimated VO_{2} Maximum	43.33%	2.68%
Heart Rate	8.89%	9.09%
Systolic Blood Pressure	-8.47%	0.00%
Diastolic Blood Pressure	0.00%	0.00%
Percent Body Fat	-13.70%	-14.47%
Calf Circumference	13.40%	5.19%
Thigh Circumference	7.14%	4.35%
60% sec Extension (Force Output)	7.82%	-10.58%
60% sec Flexion (Force Output)	-11.13%	4.35%
180% sec Extension (Force Output)	43.64%	-3.45%
180% sec Flexion (Force Output)	12.64%	5.26%
$300{ }^{\circ}$ sec Extension (Force Output)	45.87%	10.24%
300% sec Flexion (Force Output)	4.60%	1.33%
Sit and Reach Flexibility	-7.74%	43.92%
Godin Leisure-Time Questionnaire	184%	82%

Figure 1. Pre- and post-testing estimated VO_{2} maximum in participant A and B .

Figure 2. Percent change in estimated VO_{2} maximum in participant A and B .

Figure 3. Force output at 180% second extension and flexion pre- and post-testing in participant A and B .

Figure 4. Percent increases in force output at 180% second extension and flexion in participant A and B.

Figure 5. Percent increases in each pre- and post-testing variable in participant A and B.

DISCUSSION

The purpose of this study was to investigate if differences exist between underwater treadmill and land treadmill running on leg strength and cardiovascular endurance through a case study of two 22 year old sedentary males. It was hypothesized that a 6-week water-based aerobic training program will lead to similar or greater improvements in cardiovascular endurance and leg strength as a 6-week land-based aerobic training program. Based on the results of this case study, this hypothesis was supported. While both participants saw increases, participant A saw much greater increases in both leg strength and cardiovascular endurance following the completion of the 6 week training program. Participant A's estimated VO_{2} maximum increased by 43.33% after 6 weeks, while participant B 's estimated VO_{2} maximum increased by only 2.68% in the same 6 weeks. Both participants also saw similar increases in flexion at 60
degree/second, 180 degree/second, and 300 degree/second, but participant A had much greater increases in extension at each resistance. Both participants saw similar improvements in all other areas, including percent body fat, thigh and calf circumference, and wellness ratings.

Following the 6 weeks, participants A and B both had increases in body weight, but decreases in percent body fat. This was an extremely positive result, as it indicates a decrease in fat tissue but an increase in muscle tissue in each individual.

The results of this case study show that a water-based exercise program can be safely recommended to an individual beginning an exercise prescription, as it will elicit similar or greater physiological benefits to that of a land-based exercise program. The results of this case study were presented at The University of Akron Student Innovation Symposium at The University of Akron and at the Northeast Ohio Exercise Science Conference at Youngstown State University.

Limitations

Many limitations affected this case study throughout the course of the 8 weeks. Equipment malfunctions and snow days caused participant A to miss two days of running on the underwater treadmill. Missing these days caused the administrators to dismiss two days of land treadmill running for participant B , in order to keep the two on an equal time line. This was not ideal, as treadmill running was the basis of this case study and missing time on said treadmill could have been detrimental to the results.

In addition to equipment malfunctions, there was some difficulty with participant A's heart rate monitor while on the underwater treadmill. As the weeks progressed, the monitor seemed to show a less accurate reading. It would read as a very low heart rate, but participant A's appearance and rate of perceived exertion (RPE) revealed it should be much higher than the device was reading. These malfunctions were attributed to the jets on the underwater treadmill.

The jets point directly at the individual's chest, where the heart rate monitor is also located, which may have skewed the device's ability to read participant A's heart rate properly. This inaccurate reading, however, made it impossible to know the exact percentage of participant A's heart rate reserve at which he was working while on the underwater treadmill. Only estimations were made during this time, which may have indicated he was working at a higher, or lower, intensity than was required.

Another limitation was the dramatic size difference between the two participants.
Participant B was a foot taller and almost 100 pounds heavier than participant A at the beginning of the case study, which may have affected some results.

Finally, a longer study, 10 weeks or more, would have been much more ideal for this research, as greater physiological changes can be seen during a longer duration of time. A larger sample size would also have been preferred. More participants may have allowed for more substantial statistical analysis and a decrease in subject-based limitations, but time constraints and scheduling conflicts did not allow for a larger study.

CONCLUSION

Overall, this case study was a very good pilot study, as physiological benefits were seen in both participants; therefore, further research should be completed over a longer period of time with a larger sample size in order to obtain more substantial statistical analysis. The results of this case study were positive, and it is the feeling of all researchers that it was a success, as all variables increased and decreased as was expected.

A great deal was learned from conducting this research, both practically and intellectually. The process of collecting data and completing research can be very tedious and frustrating at times, but it is experience that will be beneficial both in my continued education and in my future as an allied health professional. A great deal of equipment that is unique to The

University of Akron was used in this research. Familiarization with this equipment will be important knowledge and experience to have throughout my future as a health professional and student. While there were a great deal of difficulties and complications throughout the research process, collecting and interpreting this data has proven to be a very valuable experience.

REFERENCES

Barbosa, T. M., Marinho, D. A., Reis, V. M., Silva, A. J., \& Bragada, J. A. (2009). Physiological Assessment of Head-Out Aquatic Exercises in Healthy Subjects: A Qualitative Review. Journal of Sports Science \& Medicine, 8(2), 179-189.

Brubaker, P., Ozemek, C., Gonzalez, A., Wiley, S., \& Collins, G. (2011). Cardiorespiratory Responses During Underwater and Land Treadmill Exercise in College Athletes. Journal Of Sport Rehabilitation, 20(3), 345-354.

Eyestone, E., Fellingham, G., George, J., \& Fisher, A. (1993). Effect of water running and cycling on maximum oxygen consumption and 2-mile run performance. American Journal Of Sports Medicine, 21(1), 41-44.

Godin, G., \& Shephard, R. J. (1985) A simple method to assess exercise behavior in the community. Canadian Journal of Applied Sport Sciences, 10, 141-146.

Godin, G. (2011). The Godin-Shephard Leisure-Time Physical Activity Questionnaire. The Health \& Fitness Journal Of Canada, 4(1), 18-22. Retrieved from http://newhfjc.library.ubc.ca/index.php/html/article/view/82.

Lippincott, Williams, \& Wilkins. (2014). In ACSM's Guidelines for Exercise Testing and Prescription (9th ed., pp. 1-456). Baltimore, MD: Wolters Kluwer Health.

Porter, R., Blackwell, S., Smith, G., Wagner, D., Gordin, R., \& Dolny, D. (n.d.). Metabolic Cost Comparison of Running on an Aquatic Treadmill with Water Jets and Land Treadmill with Incline. Retrieved from http://www.hydroworx.com/Uploads/Files/study-metabolic-cost-comparision.pdf.

Rebold, M. J., Kobak, M. S., Otterstetter, R. (2013). The Influence Of A Tabata Interval Training Program Using An Aquatic Underwater Treadmill On Various Performance Variables.

Journal Of Strength \& Conditioning Research (Lippincott Williams \& Wilkins), 27(12), 3419-3425.

Reilly, T., Dowzer, C. N., \& Cable, N. (2003). The physiology of deep-water running. Journal Of Sports Sciences, 21(12), 959-972.

Research Studies Regarding The Benefits Of Hydrotherapy. (2014). Retrieved from http://www.hydroworx.com/research-education/research-studies/.

Rutledge, M., Silvers, W., Browder, K., \& Dolny, D. (n.d.). Metabolic-Cost Comparison of Submaximal Land and Aquatic Treadmill Exercise. Retrieved from http://www.hydroworx.com/Uploads/Files/Running 2 [Converted].pdf.

Schaal, C. M., Collins, L., \& Ashley, C. (2012). Cardiorespiratory Responses to Underwater Treadmill Running Versus Land-Based Treadmill Running. International Journal Of Aquatic Research \& Education, 6(1), 35-45.

Silvers, W., Rutledge, E., \& Dolny, D. (2007). Peak Cardiorespiratory Responses during Aquatic and Land Treadmill Exercise. Official Journal of the American College of Sports Medicine, 39(6), 969-975.

Wilder, R., Brennan, D., \& Schotte, D. (1993). A standard measure for exercise prescription for aqua running. American Journal Of Sports Medicine, 21(1), 45-48.

Informed Consent Foriti = Underwater Versus Land Treadmill Study

 Indarme

 pelat in Mar whit

 peraitc.

 patomed by in quilited isholicher

 －of ther 3aly］

 －widndrix

 I＇Rini Rschantref
 －Kobsh ITranciósleltoul

310－972－6273

Shool of Sport Belened is Whens Education
Golnge od Halth Profesphons

MTM

Witame: \qquad Du: $2 / 4 / 15$

Collige of Hedth Profrestons

(4)

Informed Consed Form - Underweler Versus Land Treadmill Study

 Erituries

 pewnity

 Mar ficip pulvella wind timyth

 you achicvod，the activity you cinmplesed，and the amoum af time poa enverived inas a wolly loy that will he］ －locaied an a Gougle Spreadichoer］

 of the shably

 Windrow．

$$
\begin{aligned}
& \text { Minaelle Hidlon 「 } \\
& \text { Underpnolvar Risesichier } \\
& \text { Maste Mvancio Helool } \\
& \text { Honon Résench Adrier }
\end{aligned}
$$

」 $330.931-2972$ a mels 1 nipuabronpda

330．97262 6

Participant A

PAR-Q \& YOU

|h ©

 thla?

II

you

answered

YE5 to one or more questions

NO to all questions

 nift houmyman ietin.

낲I, Gnon Lew

 \qquad

 Promer

PAR-Q \& YOU

 menmmatal lifict

 Hilur

YEs to one or more questions

o Pa may

NO to all questions

4 \qquad

Body Composition Test Results.

Body Composition Test Results

RESULTS
Fercent Fut : 15.9
Percont Lean 1 解, 1 I
Eat. MMR $=2006 i$ heal/day

Date : Feb 112015
Helght : 79 15a [196 cual Model : siri
Dencityi 1.062 kg/1

Fat welqht : 32.4 1be

Total Welght : 203.5 1be

7	Pody Fat Rating	Men	Wemen	Explanation
	Fisky (High Body Faty	330%	3409	
	Eviess Fat	20,1-30\%	3011	
	Moderately Lean	12.1-204	$22.1-304$	
	Lean	$8.1-12 \%$	181-223	
	Ultra Lean	$5-8 \%$	$15=18 \%$	
	Risky (Low Body Fat)	45%	415	

Rent, TEE

Bes 1nLo bhemt Ius devplaniationa

Eati TEE (konlday)

4217

MCILYITY LETEL Bubentazy
Low Hew 1 Iq
Artive
Tery Rotive

Body Composition Test Results

sublect

RESULTS
Percent Fat : 6.3
Percent Lean | 93.7 事

Dute = Apy 062015
leight 36 Ina (145 gral Motnl II girt
Denalty: $1.085 \mathrm{~kg} / 1$

Fat weight 7. . ith
Lem Endght $: 115.7$ 15
Total Welpht : 123.5 1he

\checkmark	Bedy Fat Rating	Men	Women	Explanation
	Risky (High Body Fat)	330\%	340\%	
	Excess Fat	20.1-30\%	301.405	
	Moderatoly Lean	121-20\%	221-30\%	
	Lean	自1-12\%	18.1-22\%	
	Ultra Lean	$5-8.8$	15-189	
	Rishy (Low Eody Fat)	450	4154	 pher ribpalimed

Eat. TEE |heal/day|

Bat. TEE

- Eat. MME A Activity Level

See Info thent Eor axplanationa

1751
2065
2100
2145

ACTIVITT LEVEL Bedentary Eam AEEIW ACEI*
Very hative

Body Composition Test Results

subuect

AESULTS
Fercent Fat｜｜ 13.6 4
Fereent Leman ：B6． 4


```
Date | Apr 00 2015
Helght : T6 Hny ils3 cmal
Houlal : BlyI
D4nsit⿱⿲㇒丨丶㇒⿴囗⿱一一卜!
```

Fat Woighe ： 27.0 1he
Lenin Welphit 177.7 1bu
Total Weight

 hath maf be comprominol bet tationdimh

$\sqrt{7}$	Body Fat Rating	Men	Women	Explanation
	Risky（High Body Fat）	\＄30\％	＞40N	
	Exices Fat	201． 304	301.408	
	Moderately Lean	12．1－204	221－30\％	
	Lean	10．1－12\％	14．1－22\％	
	Ultra Lean	5－8\％	$15 \cdot 18 \mathrm{x}$	
	Rishy（Low Body Fat）	＜5N	415%	Hatrone

BEE＝TEE

Gen Into whet tox explrintions

2727
3717
3707
4432

> AETIVITT ETHEL sedentary Low hotive Actiwe Wery hetirm

Godin Leisure－Time Exarcise Questionnaire

NSTRUCTIONS

CHLGLLHTHNS

 Erti－la

［旦县明

$$
\begin{aligned}
& \text { Pre }=(9 \times 0)+(5 \times 2)+(3 \times 5)=0+10+15=25 \\
& \text { Post }=(9 \times 4)+(5 \times 4)+(3 \times 5)=71
\end{aligned}
$$

 and Solene in Spats and Exerie． 29 June Supplemmi：56－5ik

Godin Lelsure-Time Exarchen Ouettionruire

 Hu 4quaprita rumber

Trim Pir

4 ${ }^{4}$ TRFHUDUS TXLRCISE MFFAET HFAT RHPCLTI

H MGPERHTE EREROSI

4 NILDEXEHCISE [HHMML EFFTFT|

BOHETMES
2 F
HEYTRPMFILT
1.1

Godin Leisure-Time Exercise Questionnaire

instructions

CALCLIATMNS

 bumule

EAANPLE

$$
\begin{aligned}
& \text { Maticill }
\end{aligned}
$$

 and Scienai in Sports and Exrise. 29 June Supponent 536538.

Godin Leisure-Tima Enartie Questicnnaire

 the mpriepriah numbint.
(4) BTHLNLOUS ExEHDEE

HEAHT BEATS HAMDLY

Hquinh, baspatbal eross ourtif ining pio

pocular and fols thaneral

6 MLD FXFRLIS
BHIMTH EFFQFT
 4

4FTEN
$442-1+\frac{4}{4}+4$
Poct-Testims

क日|
3 Pr
Pr

MEVLBPMEL
3.

Pre-Testing

General Evaluation

Nan

[^0]$T_{1}+2-1+\frac{1}{2}+1+1$

General Evaluation

Heres E	$\text { Fsthichan } H$		Emerit
			Iratert
Erin Dive			Hiniowe
H：			Erintail
W	4318		Jent
Preder	困哑		－

Higs
Haw
Hun

5－1．．．

HIITMU
Cutcerion

If－mutit			
－79			
	H14	33	3H0
Hatar	4	34	377
	H40	174	413
	＊	1.7	02
106meta	＊	1050	107.5
	［	000	120.4
Biclumenctimen	Hewr	1450	156
1－3］	［14）	13日	
Hanfum	F4\％	137	323
Arrusmane	－	91．6	4：780

Winlown	Hav
Prutwer	hactiontr Linlurai
Pisw	Bramamy
Usdin	hetirate
Dorturites	－0．40N
4ntir	H2

－
BSEMAE

［－4			
Futimipuin	Fun	日15	575
	\pm	［2］	44
	minem	Tf．4	625
conir Preme	4	ET	10.1
Whinwin	ส1\％	Et7	54
	Un＋14	410	400
	U－15	1390	50
H2t	덤	150	
	HTLT	744	509
H5\％	4	715	0 夈直

Pre-Testing

General Evaluation

Name Parthipant A 4

NHIS
hum
nem

FHETEH nim getatc

CuTLedran
Hembaric

EXTENSIOH
300 Dedrsed

-
0

FLEMON
300 DEOSEC

Pre－Testing

General Evaluation

hand Py lich fortat F
Et

He

W	340	Hent
Cricer	Wat	Deghoail：

M Levirc

		ETTEHEMA H Lechec	HuEng Hoticyex
Ifthet			
	PTLe	－48．3	771
mantury	5	71.7	2TE
	THin	1416	805
witit wry	T	27	117
－atherere	－	1485	71.1
	elus	10.0	200
	成家	T00	600
－	배난	85.7	
	Fim	1111	67 7
Mricutainers	－	47］	4 b b 4

Wrearig	H－7
Protuer	
Pinter	Eraralowf Mrice
Hobe	luct
Dintarime	Crwpoid
GET：	Ha Printic Cameth

ETHKHEN
Henctin

A－mit			
H，［10－904	P10\％	1183	sㅓㄷ
mentum	4	1580	301
\％un＋	174	1350	EtB
	t	3 H	H
Ert mive	Eirn	2347	11晋畐
	Hxes	580	700
	Hwic	4300	108.8
－	C64	He 1	
	P4＊	153	553
	t	51.	470

FLEXOON
CDEDEC

EXTEFHSTA
ibe Degmec

FLEMOA
130 EEDSEC

－

Pre-Testing
General Evaluation

[4]	
PH+4	
Hhemmalin	

Pre-Testing

General Evaluation

Post-Testing

General Evaluation

FLEXION
 6 Deasec

EXTEREIGN 169 DEOGEC

PLEOON 130 Degrec

Post－Testing

General Evaluation

Wrils	H＂4
Prowert	hachirute Lhalliend
Prater	Bumatiolitim
星枹	hetinatis
Conturion：	OLHOLS
1410	

Fundinf

Henimity			
－604\％			
mbin rixion	748	F1	489
［里國男	\pm	5	$3{ }^{\text {H }}$
Henemprormith	H14	813	518
copar ernem	4	102	12.1
－FMrait		58	390
Wirimuria	Whry	300	500
cosountrgerm	untu	\＄0	70
－	595	P7	
	P早县	－4． 1	413
	4	－42	E时0

		ExTEMATH Nin Cetricc	41 Mancher
14－40］			
HEEPram			
Hu＊ 15	Fin	42	20．
Hinticmern	4	52	28.3
	74．m	47.7	40.4
	4	B3	16
	（6）TT	175	툰 5
Ecaturach	Hise	107	178
caciumarceitel	Hax	1400	1100
戒或	5FF＋3	585	
cyrrmen	14．03	37.4	278
－Pratariul itw	5	B75	6．Ten

EXTINEDON
 6 DEOSEC

FLEXION
40 DEDAFC

 －rinn

Post-Testing

umarticipont A E

General Evaluation

Hin
2-1

H14 1

 H1H1414

FLEDION

110 DEDGEC

ETEASIOH

WO DESAEC

FLEXION 300 Deased

4月 - -

 -

[^1]Post-Trsting

General Evaluation

EXTERESION
1 OS DEMGEC

FLEXIOA 165 DEDREC

 4r-4

 -

Post-Testing

General Evaluation
now Panturant 8 17

HThly		
H｜		
H：	ㅂㅐㅐ	
Parrer	Hint	

	Mratirnt	H
	Proturit	Hothintulimumal
	Premer	Erimatimipulen
	Hetwr	
$\mathrm{He+t}$	Prilarlim	
	IET．	

Hinimi			
－14			
｜nemersu	PTHF	418	72
	显	51．1	153
Hentiply	FTH	54．1	5.1
	4	14＊	137
EMi mratily		困直	171
Lertiranty	＋rim	117	＋ H_{4}
	His	10.7	118
［－4		E8E	
	Hers	팝	$4{ }_{4}$
	4	H28	4 4－4

＂HTHH표

4
HP4T
HBETBE
俋

		IRILH 3	
HLe 14＊	P4im	11111	1837
	5	H5	235
	Pres	HF．1	HET
	5	1 ± 5	11］
	HETTE	13－4	1－4
		＋14	H4
［HM	H－4］	171	9 ${ }^{\text {P18 }}$
Him	國	里豆	
	19＋18	58.3	498
	4	ㄷ42	E TEA

IBILHILA
 3日
by
285
45.7

134 量
4
PD
49.9

BTA

G DEGGEC

FLEOON bo Degrec

F－4

 Hoc｜latinn

[^2]$$
\operatorname{Ton}^{2}+4+\pi+4+4
$$

General Evaluation

EXTERSION
300 Dedrsec

FLEDOAN
SOD DEOVSEC

[^3]
[^0]:

 Hin

[^1]:

[^2]:
 وmanimi

 Hinumenturn

[^3]:

