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NASA Limited Inflight Lab Sensor 

The National Aeronautics and Space Administration (NASA) is currently developing the 

capabilities needed to send humans to Mars in 2030 for a three year mission. Astronaut health 

must be monitored monthly during such a lengthy mission. The UA Enterprise Senior Design 

Team worked to design a reusable, novel blood panel cartridge system to monitor astronaut 

health and to minimize waste production. Most current cartridges are composed of 

polydimethylsiloxane (PDMS). PDMS microchannels were fabricated to conduct simple proof of 

concept experiments for the design of a novel cartridge. To determine an ideal blood cleaning 

solution, bovine blood will be injected into the microchannels at a fixed flowrate and then 

cleaned using different reagents. The presence of blood and protein residue will then be assessed 

using trypan blue staining and fluorescently-tagged bovine serum albumin. In addition, a novel, 

reusable cartridge schematic was produced and modeled in AutoCAD and MATLAB. This 

design incorporated an additional inlet to allow for cleaning of the device and a novel 

streptavidin/biotin enzyme reservoir for reintroduction of fresh enzymes. Miniaturized analytical 

techniques as well as performance tests for each priority analytical method were incorporated in 

the final design. The proposed device shows promise for this NASA mission. 
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INTRODUCTION !

The National Aeronautics and Space Administration (NASA) is currently developing the 

capabilities needed to send humans to Mars in 2030. The first trip to Mars is expected to last a 

total of three years. A space mission of this duration into deep space presents an array of unique 

problems, notably the monitoring of astronaut health. Experiments conducted on the 

International Space Station (ISS) have shown that the human body undergoes physiological 

changes in Space including a decrease in bone mass density, pooling of fluids in the lower 

extremities, and decrease in muscle mass. Furthermore, astronauts are confined to a small work 

environment with other personnel increasing the likelihood of illnesses to spread. Due to the 

above health risks, each astronaut’s health must be monitored during the duration of a mission.!

Blood panel tests are an important diagnostic tool used for the quantification of blood 

proteins and absorbed gases necessary for normal physiology. Quantification of these factors 

allow for screening of an astronaut’s health. Current quantification methods utilize a hand-held 

cartridge system where a whole blood sample is loaded into the cartridge and probes within the 

handheld directly, or indirectly, measure the concentration of proteins and absorbed gases. 

Current cartridges used for blood panel testing are not reusable due to the deposition of residue 

from the blood, the sensitive nature of the enzymes used in the cartridge, and coagulation of 

blood within the cartridge. These one time use cartridges produce considerable biohazardous 

waste, take up space, and have a relatively short shelf life. The associated handheld devices used 

for quantification also have poor measurement sensitivity and reproducibility. Material and waste 

production must be minimized in the confined space of a spacecraft. Due to these limitations, a 

novel blood characterization system is required that is reusable, minimizes waste production, and 

has high measurement sensitivity and reproducibility. !
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Dr. DeVon Griffin was the assigned primary contact at NASA. The original design 

objectives given included designing a novel blood characterization system that would lower the 

required blood panel sample volume needed to run a test, increase the shelf-life of the new 

cartridge and the potential addition of more blood markers to test. Further along in the project, 

the needs of the project changed. The UA Enterprise, the senior design team group, was charged 

with the design of a novel, reusable blood panel cartridge system that either interfaces with the 

current standard technology at NASA or utilizes a new quantification technology.!

After performing background research, the group focused on the development of a novel, 

reusable microfluidic device as detailed in the rest of this report. Due to the lack of lab space and 

laboratory resources, the senior design group could not test or fabricate the preliminary and final 

designs. However, the team’s reusable cartridge design could be promising means of analyzing 

astronauts’ blood components in space.!

!

BACKGROUND INFORMATION !

The i-STAT system is the leading technology currently used by NASA for quantification 

of blood factors. The i-STAT system requires a small volume of blood, varying from 11 µL to 95 

µL depending on cartridge type, and allows for the quantification of over 25 different blood 

factors. The blood sample of interest is added to the well of the cartridge, the blood enters the 

main chamber of the cartridge via capillary action, and the blood interacts with a variety of 

enzymes to produce byproducts that are measured by ion- and impedance-sensitive probes 

contained within the i-STAT handheld (Abbot Point of Care 2014). The cartridges used by the i-

STAT system are only single use due to use of capillary action to drive the sample, presence of 

only one inlet, and no means of clearing the adsorbed protein layer after completion of the 

analysis. There is also a large variation in i-STAT cartridges; there are seventeen different 
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cartridges, each of which can only measure a small subset of blood factors. This variation from 

cartridge type-to-type and within the same cartridge subtype results in significant handheld 

measurement variation. !

Numerous limitations arise due to the design of the i-STAT system. i-STAT cartridges 

operate using unidirectional flow and therefore cannot be cleaned. Residual blood is left on the 

cartridge after each use. Sensitivity of the system is low as refrigeration time increases and the 

cartridges have a limited shelf life (Abbot Point of Care 2014). As stated above, the use of 

multiple different cartridges to measure a variety of different blood factors results in a great 

range of sensitivity and therefore measurement variation (Abbot Point of Care 2014). Lastly, 

there is a significant time delay for recognition of each new cartridge after loading it into the 

handheld, so blood samples must be loaded quickly to avoid coagulation (Abbot Point of Care 

2014). Due to the above limitations and constraints of the current system, a new system must be 

adopted that uses a single cartridge that measures a range of high priority blood analytes in a 

highly accurate and reproducible manner.!

Microfluidic platforms are a promising technology that can be utilized for NASA’s 

replacement cartridge. A microfluidic platform provides a set of fluidic unit operations that are 

designed for a generic and consistent method for miniaturization, integration, and parallelization 

of biochemical processes (Nelson 2010). These systems allow for greater portability, higher 

sensitivity, shorter time-to-result, and less laboratory space consumption (Nelson 2010). !

Two microfluidic platform types were investigated for the design of a novel cartridge. 

The first was a well-defined laminar flow system and the second was a droplet microfluidic 

system. Droplet microfluidic systems manipulate single droplets to allow for the 

compartmentalization, manipulation and measurement of individual samples quickly and reliably 
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(Giri 2011, Nelson 2010, Mark 2010). Therefore, hundreds of thousands of combinations or 

samples can be run in a high-throughput manner (~108 samples per day) (Giri 2011). These 

microdroplets containing small volumes (nanoliters) that allow for quick chemical reactions due 

to short diffusion distances and the use of chaotic mixing within the droplets during flow through 

the microfluidic system (Ling 2008). Thus, these samples are very uniform and allow for 

accurate quantification (Ling 2008). Despite the above advantages, many disadvantages were 

found. These systems utilize an oil-water immersion to generate single droplets that must be 

highly stable and uniform in volume and composition to yield accurate results. Depending upon 

the design of the cartridge system or the ratio of oil to water, the high degree of stabilization and 

uniform droplet size and composition is difficult to achieve (Ling 2008, Nelson 2010). Assays 

using these droplets must also be consistent in their washing, enzyme additions, quantification 

steps and final removal from the system. Furthermore, these droplet-based microfluidic systems 

are a new, emerging area of microfluidic research (Ling 2008). The current literature on 

microfluidic technologies is not as well documented as continuous, laminar flow systems. These 

limitations coupled with the fact that only a single astronaut will be using each cartridge made 

droplet microfluidic systems unnecessary. Therefore, the team opted for a laminar-flow system.!

Well-defined laminar-flow microfluidic systems, on the other hand, are a promising 

approach since they are easy to implement, design, and scale-up in manufacturing. For 

biosensing applications, microfluids collected and then analyzed are derived from chemicals or 

biological samples from human tissue or bodily fluids (e.g. blood, saliva) (Ling 2008, Nelson 

2010). Current miniaturized diagnostic tools used in the field are often integrated with these 

laminar-flow microfluidic systems, a major reason for adoption of this system (Ling 2008).  

Many difficulties may arise in the use of such a system. First, all of the preparative steps such as 
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collection of the sample, filtration of that sample, enrichment of the analytes, labeling, detection, 

and quantification must be done mostly before injection of the sample or the cartridge must 

implement many of these steps (Ling 2008, Nelson 2010). Also, laminar flow systems vary 

greatly along the path of flow making it so the entire flow field is dependent upon each section of 

the flow path. This inherent feature will introduce measurement deviations and inaccuracies 

(Ling 2008, Nelson 2010, Simmons 2006). Luckily, due to the large body of literature on laminar 

flow systems, design considerations for all major components such as valves, separators, 

micropumps, mixers and concentrators are elucidated (Ling 2008). Due to this major advantage 

and the fact that blood work of an individual astronaut does not require the advantages of 

droplet-based microfluidics, a laminar flow system was chosen.!

For the duration of the project, the sample system studied was the original i-STAT 

system. The group studied this original system and the analysis methods used, and then designed 

a novel system that integrates these methods into a novel, laminar flow, reusable microfluidic 

system that also takes advantage of current miniaturized quantification systems. !

The majority of the i-STAT tests are performed using enzymatic electrochemical assays. 

While it is necessary to remove the blood from the microchannels, it is unclear what effect a 

cleaning solution would have on the enzymes used to produce the measured analytes. After 

consulting with experts in biochemistry and electrochemistry, it was decided the best approach 

would be to rinse the microchannels with a mild surfactant followed by a rinse with water or 

PBS (Phosphate Buffered Saline). Since enzymes will likely rapidly degrade after wetting, 

literature on enzyme stabilization in a range of solvents was reviewed. After rinsing, one 

promising solution is to stabilize the enzymes in an ionic liquid. An ionic liquid’s polarity, H-

bond basicity, anion nucleophilicity, viscosity, and hydrophobicity can be tailored to the specific 
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enzyme being stabilized in the reusable cartridge system (Zhao 2010).!

The primary analytes of interest for NASA are displayed in Table 1 of the Appendix. The 

analytical methods that can be used to measure these analytes include ion selective electrodes, 

spectrophotometry, automated cell counting, and enzymatic electrochemical assays. Research 

was conducted by the team to determine how traditionally bulky analytical methods could be 

scaled down for a reusable cartridge system. The Moxi Z system pictured in Figure 1 is a 

miniaturized cell counting technology that could easily be incorporated into a reusable cartridge. 

Moxi Z boasts 95% accuracy, and injection volume of 75 µL, and an 8 second analysis time 

(Dittami 2012). The cells from previous tests could be backflushed through a second inlet with a 

detergent to clean the pre-filter.!

Spectrophotometry is a valuable tool for indirectly measuring enzymatic activity, 

concentration, and even metabolites of interest via the absorption of light at a specific 

wavelength. Current spectrophotometers, such as the Olympus 480 typically used by NASA 

Glenn Research Center, are desktop models. Even though these models have high reproducibility 

and a large range of measurable wavelengths (300 nm - 700 nm), the reliance on cuvettes and 

large sample volumes (3 mL or greater) to read sample absorbances makes this traditional 

method unfeasible for this application. Recent technology has scaled spectrophotometers to the 

miniaturized scale via the use of visible and ultraviolet light in conjunction with grating and 

photodiodes to measure absorbances of samples (Ling 2008, Nelson 2010). These technologies 

have great promise for this project.!

!

PROJECT OBJECTIVES AND GOALS!

 With the above limitations and background research in mind, the project objectives and 

goals are as follows. The objective of this senior design project is to accurately monitor the 
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health of astronauts in space by designing a novel, microfluidic device that is reusable. This 

system will be used to measure analytes of interest found within the blood of the astronauts. 

Because a cartridge is soiled by the deposition of blood residue after each use, the primary goal 

of the project was to deduce how to best remove this residue with secondary goals in ensuring 

enzymatic activity over time, methods of introducing new enzymes, and a fully integrated design 

of the reusable, novel microfluidic platform. Due to the complex chemical analytical methods 

integrated into blood panel cartridges, each analytical component had to receive special 

consideration for cleansing.!

 To best remove the blood residue, The UA Enterprise designed an experiment with the 

goal of identifying the optimal cleaning solution for a blood panel cartridge containing simple 

PDMS microchannels shown in Table 2 and Figure 2 in the Appendix, respectively. A 

secondary goal of this experiment was to determine the best method of injecting the cleaning 

solution into the cartridge. Finally, the traditional blood panel cartridge design needed to be 

modified with an additional inlet and other considerations to enable effective backflushing for 

cleansing.!

 Due to the nature of the analytical methods used to measure some of NASA’s primary 

analytes of interest, a cartridge that simultaneously measures all analytes of interest is currently 

not known. Therefore, another goal of this project was to incorporate new miniaturized 

technologies to substitute for traditionally bulky analytical methods.!

!

METHODS/PROCEDURES/MANUFACTURING!

After taking into consideration the current technologies used in laminar flow 

microfluidics and the need for a means of cleansing a reusable system after each use, The UA 

Enterprise came up with a preliminary design for a reusable blood panel cartridge. This design is 
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represented in an AutoCAD drawing shown in Figure 3 of the Appendix. Annotations will be 

added for the final report. One key feature is the presence of a second inlet to backflow cleaning 

solution through. This feature is unique to the team’s design and has not been found elsewhere in 

the team’s review of the literature and patents.!

In addition to designing a cartridge with the capability for reusability, the team sought to 

conduct an experiment to evaluate the optimal cleaning material to remove the blood residue. To 

accomplish this, a PDMS disc with several microchannels had to be fabricated, since PDMS is 

the most common material used for microchannel construction in cartridge systems. The 

complete PDMS making process is shown in Figure 4. The first step was getting the appropriate 

proportions of the PDMS solution to that of the PDMS curing agent, a 10:1 PDMS to curing 

agent ratio. Next, this solution was poured over a mold of micro channels, as shown in Figure 5, 

and then put into a degassing, vacuum chamber to remove trapped air in the liquid PDMS. This 

process took approximately 30 minutes. Leftover air bubbles were blown off the surface using a 

hand pump. The mold was then placed into a 65°C oven and the PDMS was allowed to cure for 

6 hours. !

When the PDMS had finished baking, a scalpel was used to remove the PDMS from the 

mold. The finished result was a PDMS disc containing indentations/channels corresponding to 

the mold. These discs were then cut into square blocks, holes were cut at the end of each lane,  

and the cut microfluidic device was plasma treated and then adhered to a glass slide. Plastic 

tubing can then be attached to the microfluidic chamber to create input and outputs for liquid. 

These final, crude microfluidic devices can be used for basic proof of concept experiments. !

The UA Enterprise planned to conduct an experiment to identify the best cleaning 

solution to clean the reusable cartridge. Due to lab space issues, the cleaning experiment has not 
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yet been completed. The team has compiled a lab protocol, a list of materials with their 

corresponding MSDSs (Material and Safety Data Sheets), and a chemical hygiene plan approved 

by The University of Akron’s Health and Safety Department. The experiment involves injecting 

bovine blood at a fixed flow rate using a syringe pump into a PDMS microchannel. The cleaning 

material of interest will then be run through the channel at a fixed flow rate. The PDMS disc will 

then be plasma treated and adhered to a glass cover slide. The microchannel will be observed 

under a light microscope using trypan blue as a staining agent to qualitatively assess the presence 

of blood residue. The team aims to complete the cleaning experiment as soon as lab space is 

available.!

!

PERFORMANCE TESTING !

Enzymes are typically stored in a lyophilized, solid powder form. Once wetted by a fluid 

such as water, the enzymes may undergo rapid degradation. When the enzymes in an 

electrochemical enzymatic assay begin to degrade, the amount of product molecule produced 

will be reduced, and the detected level of the compound of interest in the blood will be 

artificially low. One way to ensure that the new blood panel cartridge is delivering accurate 

results after repeated use is to inject a standard compound after each use. For example, injecting 

Aspartate Aminotransferase (AST) at a concentration of 37 U/L the first time may evoke a 100% 

response and yield the correct measurement of 37 U/L. However, the second use may only evoke 

a 50% response, and therefore the instrument would incorrectly display 18.5 U/L as the result. 

The way in which the response weakens, however, is quantifiable. In the example shown in 

Figure 5, the measured response to a repeated 37 U/L standard AST injection decayed 

exponentially. When measuring a sample of blood with an unknown concentration after a known 

number of uses, the correct concentration could be interpolated and the actual value could be 
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displayed. This procedure could be used to validate all the enzymatic measurements, including 

glucose, AST, and Alanine Aminotransferase (ALT). 

 The number of cycles or cartridge uses that leads to decreased enzymatic activity must be 

determined for each enzyme. The enzyme activity can be quantified by measuring the amount of 

substrate processed by the enzyme per minute as measured using UV-Vis spectrophotometry at 

the wavelength of maximal absorption of product and a product standard curve. This will allow 

for the quantification of the amount of product released by the enzyme within a given time 

period. This value will be the measure of the enzyme activity.!

 The enzyme activity for each enzyme should be measured for each cycle until a 

noticeable decrease in enzymatic activity is seen. An example graph of such a decrease in 

enzyme activity can be seen in Figure 6 in the Appendix. The number of cycles that leads to a 

diminished enzymatic activity will mark the maximal number of times the cartridge can be used 

before the enzymes must be replaced or a whole new cartridge is used by the astronaut.!

Measurements involving automated cell counting include white blood cell count, 

hemoglobin, neutrophils, and lymphocytes. A calibration kit with known cell quantities could be 

used to ensure that the instrument’s measurements are accurate. The main concern with a 

reusable system is that it is necessary to completely wash away residual cells so that the 

measurements after the first measurement use are not inflated. If completely washing away the 

cells from a prior use is not possible, the cartridge can be “blanked”. For example, if there were 

12 cells remaining in the counting area from the first measurement, the instrument would ignore 

those 12 cells and start counting the new cells starting from zero.!

 Compounds measured with an ion selective electrode include potassium and sodium. The 

electrodes can be cleansed with a pH neutral solution such as water. To ensure that the electrode 



11 

is clean and not corroded, standards of a known ion concentration could be run. If the electrodes 

are in working order, the measured values will closely match the standard concentration.!

 Creatinine is one analyte in the blood that can be measured spectrophotometrically. The 

oxidation of p-methylamino phenol sulfate (Metol) in the presence of copper sulfate and 

creatinine yields an intense violet colored species with maximum absorbance at 530 nm. This 

method of constructing a linear calibration curve by injecting a dilution series of a creatinine 

standard has been validated (Krishnegowda 2013). The same-day precision of this test normally 

ranges from 2.5-4.8% (Krishnegowda 2013). The probable reaction mechanism forming the 

imine group that causes the purple color and the calibration curve obtained from Krishnegowda 

2013 can be seen in Figure 7 and Figure 8 in the Appendix. To maintain the same accuracy in a 

reusable system, the system would have to be thoroughly cleansed to make sure no leftover 

coloration carries over to the next sample. This could be validated by remeasuring the same 

sample after cleaning. The two measurements should be within a reasonable margin of error.!

!

FUTURE DIRECTIONS !

In order to ensure reusability of this device, a means of selectively introducing the same 

concentration of enzyme after a full cleaning must be developed and tested. We recommend the 

use of a highly selective biotin and streptavidin system for the introduction of new enzyme on a 

glass surface.!

The interaction of biotin and streptavidin has been exploited for use in many protein and 

nucleic acid detection and purification methods. Biotin labels are small, stable and rarely 

interfere with the functionality of the labeled molecule. Biotin has a very high affinity to 

streptavidin molecules. This strong non-covalent interaction can be exploited in a manner so as 

to introduce the same number of enzymes on a given surface. In a microfluidic blood panel 
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system, this may allow for reusability of the same chip system and thus lower the amount of 

waste.!

A glass surface can be conjugated with immobilized streptavidin at a specified density. 

Biotinylated enzymes are then introduced under physiological flow and the enzymes are 

anchored to the glass surface via the biotin-streptavidin interaction. If new enzyme needs to be 

introduced after enzyme activity has fallen below acceptable levels that will affect the blood 

panel’s final analysis, the glass surface can be washed with a basic solution (pH 10) and the 

biotin-streptavidin interaction will dissociate and the old enzyme will be washed off of the 

surface. After washing the surface with phosphate buffered saline (PBS) or deionized water so as 

the immobilized streptavidin is at physiological pH, the process can be repeated to add additional 

enzymes. This process of washing and introducing new enzymes on a glass surface containing 

immobilized streptavidin is shown in Figure 9.!

 This system has many advantages over what is currently used on the market. The binding 

of the streptavidin to the biotinylated enzyme is highly specific and thus will yield a constant 

enzyme loading onto the surface. The major disadvantaged for such a system is cost; each 

enzyme of interest will have to biotinylated and the resulting complex enzymatic activity will 

have to be investigated prior to its use in the microfluidic system.!

 With the above design considerations in mind, the senior design group is currently in the 

process of making a 3-D model of the final microfluidic chip design in both Solidworks and 

MATLAB. In Solidworks, a 3-D representation of how of the parts will fit together will be 

shown in multiple views (aerial, left/right, from below, and stacked). MATLAB modeling 

capabilities and Solidworks will be used to model the fluid and pressure forces as well as the 

mechanical properties of the entirety of the chip. If time allows, designs for the miniaturized 
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coulter counting system and spectrophotometer will be included in the final Solidworks design. !

!

FUNCTIONAL REQUIREMENTS !

The functional requirements taken into consideration during the duration of this research 

and design project are listed in Table 3 of the Appendix. These requirements must be met in 

order for the proposed device to be utilized in space.!

!

CONSTRAINTS AND LIMITATIONS!

One major limitation of the project was that all design work for a device to be used in 

zero gravity conditions had to be done on Earth. The system implemented had to take up 

minimal space, add minimal additional weight, and produce minimal waste. Because the planned 

Mars mission is expected to take 3 years, the device must have a shelf life of at least 3 years. The 

background research and design work had to be completed within a two semester timeframe with 

a $500 budget. Finally, The materials used for the reusable cartridge must be nontoxic and non-

hazardous. The accuracy of the system must also be maintained after multiple uses. !

 

TIMELINE !

 A Gantt chart was utilized to keep track of all phases of the project. During the first 

semester, background research on the current i-STAT system was conducted and proof of 

concept experiments for the microfluidic device were brainstormed and evaluated. In the second 

semester of this design project, a blood and protein adhesion proof of concept experiment was 

devised. Due to lack of laboratory resources, this experiment and others could not be conducted. 

From research conducted in the first semester, a design of the novel, microfluidic device was 
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drafted. Modeling of this design is currently being done in MATLAB, Solidworks and 

AutoCAD, and will be included in the final report.!

 

BUDGET !

During the course of this design project, the major experiment of interest was to 

determine the ideal cleaning agent or detergent that could be used for a reusable cartridge. The 

items listed in Table 4 were procured for the proposed cleaning experiment whose result would 

elucidate the best cleaning agent for the system.!

Other supplies and lab space was generously supplied by Dr. Hossein Tavana from the 

Biomedical Engineering Department at The University of Akron. Even though the experiments 

were cancelled due to the inability to find lab space, the cost to conduct the experiments was 

$106.74. This is excluding the cost of any machinery that would be required in order to make 

molds and treat the PDMS.!

In order to independently manufacture these PDMS microfluidic chambers, a 65oC oven, 

oxygen plasma treatment machine, vacuum pump, cutting apparatus, and an surface contact 

measurement device would be required. The oven used for curing the PDMS elastomer kit would 

range from $500 to $800. The oxygen plasma treatment device used to both make the plastic 

hydrophilic and sterilize the plastic device would cost $6000 to $10,000 depending on the model. 

Lastly, the surface contact measurement device could be made using <$500 worth of equipment. 

The surface angle measurement device is of upmost importance; the measurement of the contact 

angle made by a droplet of water on the PDMS surface of the microfluidic device is a direct 

measure of the hydrophobicity of the surface. This hydrophobicity measurement can be used as a 

means of quality control during manufacturing of numerous devices.!
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The rest of the costs associated with this device, besides those listed above, are related to 

exploratory research in the use of enzymes for this system. For testing reusability of enzymes, a 

biotinylation kit can be acquired from Life Technologies, Inc. to biotinylate the enzymes of 

interest. Enzymes that will be tested and/or used for this system include Serum Glutamate 

Oxaloacetic Transaminase (SGOT) and Serum Glutamate Pyruvate Transaminase (SGPT). 

Streptavidin will also be procured from Life Technologies, Inc.!
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Appendix!

Table 1!

!
Table 1: Major analytes that need to be measured by this device and the analytical method used to determine their 
relative concentrations in the blood.!

Figure 1!

!

Figure 1:  Image of the Coulter Counter Moxi Z miniaturized cell counting system. This commercially available 
system demonstrates the potential in miniaturized devices that can be directly translated to the team’s microfluidic 
system.!
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Figure 2!

!

Figure 2: Details the layout for the basic microfluidic system used for preliminary tests. Groove Pattern 1 has a 
groove width of 3800 µm and a gap width of 4000 µm. Groove Pattern 2 has a groove width of 1000 µm and a gap 
width of 3500 µm. Two different groove patterns were used to demonstrate the effects of differing channel sizes.!

!

!

Table 2!

!

Table 2: For the proposed experiment to determine the optimal cleaning solution for the device, the above table 
would have been used to record results. The residual blood particles would have been determined via light and 
fluorescent microscopy. In fluorescent microscopy, BSA, bovine serum albumin, with fluorescent tags would be 
flowed through the device. The following fluids would then be used to try to clean the device. Residual fluorescence 
would be noted as compared to a control group. - The UA Enterprise!

!

!
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Figure 3!

Figure 3: AutoCAD Drawing of Reusable Cartridge In Progress. - The UA Enterprise!
!

Figure 4 

!

Figure 4: First six steps of the PDMS molding procedure, from the removal of air from the liquid PDMS to the 
fixation of PDMS via using the oven. - The UA Enterprise!

! !
!

1!

An!empty!cup!and!mixing!stick!is!
obtained!to!mix!liquid!PDMS.!

2!

Polydimethylsiloxane!(PDMS)!

3!

Curing!Agent!!

! ! !

! ! !

4!

The!empty!cup!is!zeroed.!

5!

40!grams!of!PDMS!is!weighed.!

6!

After!PDMS!and!the!curing!agent!
are!measured!and!mixed,!they!
are!poured!into!the!PDMS!mold.!

!
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Figure 5 
!

!
Figure 5: Last six steps of the PDMS molding procedure, from the removal of air from the liquid PDMS to the 
fixation of PDMS via using the oven. - The UA Enterprise!

Figure 6 
!

!
Figure 6: Example of diminishing enzymatic activity after multiple device uses as shown by lowered ability to 
determine the concentration of Aspartate Aminotransferase. - The UA Enterprise!
!

! ! !

7!

Air!is!removed!from!PDMS!liquid!inside!
of!the!mold!via!20!minutes!inside!a!

degassing!chamber.!

8!

A!hand?pump!is!used!to!remove!
excess!bubbles!from!PDMS!liquid.!

9!

A!bubbleless!PDMS!liquid!inside!
of!the!mold.!

! ! !

! !
!

10!

PDMS!liquid!inside!of!the!mold!is!placed!
into!the!oven.!

11!

The!oven!is!set!to!65°!C.!

12!

After!at!least!6!hours,!the!PDMS!
mold!is!removed!and!the!PDMS!
disk!is!cut!out!and!ready!for!use.!

!
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Figure 7!

!

Figure 7:  Mechanism for the formation of a violet colored species from Creatinine and Copper Sulfate with a 
maximal absorbance at 530 nm. (Krishnegowda 2013)!

!

!

!

Figure 8!

!

Figure 8: Graph of absorbance versus creatinine concentration as measured by spectroscopy. (Krishnegowda 2013)!

!
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Figure 9!

!

Figure 9: Immobilized streptavidin is washed with a solution containing biotinylated enzyme (Step 1), resulting in a 
relatively consistent density of enzyme on the surface. If the old enzyme loses its enzymatic activity, the surface can 
be washed with a basic solution to dissociate the strong streptavidin-biotin interaction.!

!

!

Table 3!

!

Table 3: The above functional requirements were first supplied by Dr. DeVon Griffin from NASA Glenn Research 
Center. During the duration of the project, each requirement was taken into consideration in a manner proportionate 
to its relative importance to the entirety of the project.!

!

!
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Table 4!

!

Table 4: Reagents used in the proposed design experiment to determine the optimal cleaning solution for the 
reusable cartridge.!
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