The University of Akron
IdeaExchange@UAkron

The Dr. Gary B. and Pamela S. Williams Honors

Honors Research Projects College

Spring 2015

Disc Golf Locator

Noah M. Sanor

University of Akron Main Campus, nsanor@gmail.com

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research projects

b Part of the Computer Engineering Commons

Recommended Citation

Sanor, Noah M., "Disc Golf Locator" (2015). Honors Research Projects. 91.
http://ideaexchange.uakron.edu/honors_research projects/91

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of
IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

http://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=http://ideaexchange.uakron.edu/honors_research_projects/91
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects/91?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Disc Golf Locator

Final Design Report

Design Team 11

Shane Gamble, EE
Brandon Linhart, Cp.E
Noah Sanor, Cp.E

Christian Wallenfelsz, EE

Dr. Tsukerman, Faculty Adviser

4/21/2015

Page 1 of 123

Table of Contents

S 0 T 0T =TSRSS 5
LEST OF TADIES ...ttt 6
F N o511 = Tod A (O PSP TPR 7
1. ProbIem SEALEIMENT........c..oiiiiieii et 8
NEEA STATEMENT (CWV) .ttt ettt e et et e e e e e e e e esbbaeeeeeeeeesasabaaeeeeeseeesssbeareesessensssrenereeas 8
(0] o =Yol A\ I = 1= 0 1T o A (LT U 8
Modification of Project Operation (CW).......eeiciee e e ecee sttt et et e e ee e te e s tae e sate e e taeeseaeesnsaeesnneean 9
LRSI =T= T o T (T TS 10
G S ettt bt bt a et h e et b e eh e et e he e a e e bt ea e et e eheea b e ebeehe e beehe et e bt eat et e naeeatas 10
Micro ElectromechaniCal SENSOISoo.ui ittt st e 11
AACCRIBIOMEELETS ...ttt ettt ettt at e e s bt e e s ab e e sabeesbbeesabe e e bbeesaseesabeeesabeesabeeennbeesabaeenareenn 12
YOS CO IS .. eeeeeeeeeeeeeeeeeeee e eee eeaesasasasaaaaasasasassssaasassssssassssssssassesssssasesssnssssssssassesasaseensenenns 12

Y T aT<T 0T o a1 (= oS 14

PN qTe [foTlo IAY o] o] [Tor=YuToT o I 1Y) SR 14
Flora MicroCoNtroller (NS)eee ettt eee e e e et e e e e ebae e e e eabe e e e eanbaeeeesabeeeeenarenas 15
Marketing Requirements (CW, NS, SG, BL)....oiiiiiiiiiieiiie ettt etve e e et e e e ctre e e e svr e e e s ebeeeeeeanes 17
(0] o =Tt A AV =T YT (1 USRS 18
2. Design Requirements Specification (CW, NS, SG, BL)cccoceiiiiiiniiiinceeee e 19
3. Accepted TECNICAl DESIGNc.coveieiiiiiiieieiite ettt 20
Hardware - Level 0 BIock Diagram (CW)eei ittt ettt e e et e e e e tte e e e ette e e s e tte e e e eastaeesenseaeeeanes 20
Hardware - Level 0 Functional Requirement Table (CW).....ccoveiieeiciieeee ettt 20
Hardware - Level 1 BIOck DIiagram (CW) ...c.ueeccuieeeiee ettt et e stee e stte e ste e e save e e taeenteeearaeennns 21
Hardware - Level 1 Functional Requirement Table (CW)ccvvecieeecieiecee ettt 21
Hardware - Level 2 BIock Diagram (CW)uei oottt e e ettt e e e ette e e e ette e e e e ate e e e eassaeeseaneeeaesanes 23
Hardware - Level 2 Functional Requirement Table (CW & SG).......ccocciiieieiiiie ittt 23
Tracking Device SChemMatiC (CW & SG)...cccciiiie ettt ettt et e e e et e e e e at e e e e ebbe e e e ebteeeesnreeaeennes 25

S A= oV (1) SRS 29
Off-board Battery Charger (SG)cuuicciieiieeeieeeeieeetee et e e sttt e e e e tee e s beeesbeeestbeeebeeessseesaseeesseesseeenns 29
PIEZORIECEIIC BUZZET (SG) . nvveeeiieieeee ittt ettt cette e eetee e eeetae e e eebee e e esebaeeeesbreeessbaeeeesbreeessstaeeesnsreseesnes 30
POWET CalCUIATIONS (SG) ..eiiueiieeieiiiee ettt ettt ee et e ettt e e e et e e e e tte e e e eebbeeeeebteeaesaseseeeessaeeesssaeaesassasaesnses 32
Global Positioning SYstemM (GPS) (CW)uuiiieeiiie ettt ettt ettt e e te e e e et e e e eateeeeenbeeeeennbeeesennreeas 33

Page 2 of 123

Inertial Measurement UnNit (IMU) (CW) ..ooouiiii ettt ettt e e ettt e e et e e e e tr e e e e enraeeeenraeeeeanes 36

Hardware IMOUNTING (SG) ...eecueeeiiee e eiieecee ettt e st e et e e s e e st eesate e sbaeessteesssaeesseesnseeessseeenseeensteesnseeennees 38
Weight EXPEriIMENT (CW) ..ottt ettt e e et e e e e et e e e et a e e s eaabaeeeenataeeeeabaeesenseeeeennsenas 40
MICrOSD Card BreakoUt (BL)ccoiiiiuvieiiieieeeeeiiteeeee e eeeitve et e e e e eeesataaee e e e e e eessassaeeesesesessssseseeeseseeesnsnsenes 41
BIUBTOOTN (BL) uvtttririiiiiiiiiiitieeee ettt e eettt e e et e ebbae e e e e eeeeesataaeeeeeeeeesassbssaeeseeesesassasaeeseseeesnsnsenes 42
Software - Level 0 BIOCKk Diagram (CW)oecueeeciee et ecee st e e e ee e ste e s tae e sate e s te e e snseesnteeensaaesaseeenns 42
Software - Level 0 Functional Requirement Table (NS)cceiviieiiir e 42
Software — Level 1 Block DIagram (NS)eecceieiiee et cee st e esete e see st e e saae e s teeesnseesnseeessaeesnseeanns 43
Software — Level 1 Functional Requirements Table (NS)......coccuiieiiiiiieeccee e e 43
Software - Level 2 Block DIiagram (NS)uuii ettt e e e e ate e e e et e e e e are e e s ennaaeesenreeas 46
Software - Level 2 Functional Requirement Table (NS)ooiiiiiieeciiiee e e e 46
Application Angle CalCulation (NS)ccueeecieeeie ettt e e e e e s e e e ba e e sabeeebaeesateesnsaeesareean 50
ApPPlication TOtals DAta (NS)cc.eiiiiieiiie et eeiee ettt et e e te e s ete e e tteesbee e aaeesateeesaeessteeensaeesnteeeseeesaseean 50
Application Data Transfer Operation (NS)ocueii i et e e e e eree e s e enree e s enreeas 50
Microcontroller CONTrol FIOW (CW)uveii ittt ettt e e et e e e e tte e e e ette e e s ebteeeseassaeesenseeeeesnnes 52
4. Operation, Maintenance, and Repair INStrUCLIONS..........ccccoviieieeii i 54
OPEratioN INSTIUCTIONS ..eeiiiiieiiiiiteee ettt sttt e e e e e s sttt e e e e e s s saabbbteeeeesssssnsssaaeeeessnsasssenaeeeessnnns 54
1T o (O SRS 54

S T d=Y VA Ol o T =L o (LYY SRS 54
Android Application INStallation (NS):eiiiieie et e e et e e e e e eeaaaeeeean 54

5. TESHING PrOCEAUIES........eevieie ettt ettt e te et b e st e e esae e sbeenresasenaeeneesneennas 57
GPS @Nd SD CArd (CW) e ettt ettt ettt ettt b et bttt bt et s bt et e bt sat et e s bt et e st e eseenbesaeeneenbesanen 57
IIMIU (CWW) ettt st b ettt he et s bt s at et e sb e et e s bt eat e bt sheemt e bt e ab et e sbe et e nbeemt e besneenes 57
][0Ty o To o T = ISPt 58

F AN aTe [oTlo I AN oY o] or=Tu ToT o V) PP 59

B 1Yol (1Y SRRSOt 60
6. Financial BUdQet (SG & BL) ..ot 61
7. Project SCNEAUIES (BL)oviiiiiiitiiieiieieee bbbttt 62
Midterm Report Gantt Chart ... e e e e e s r e e e e e e e e s anbeseeeeeeesesannnnnns 62

S TaF I Y=Y o To T u a G-)« o 6 o =1 o R RERROt 64
Project Design GaNntt Chartoccuiii ittt e e e tte e e e et e e e e sbte e e s sbteeeesntaeeesnraaeesnnes 65

8. Design Team Information (SG, BL, NS, CW)......ccoiiiiiiie et 65

Page 3 of 123

9. Conclusions & Recommendations (CW, BL).......cccoiiiiiiiiiierieese e 65

10, RETEIEINCES ...ttt b bbb bbb n e 67
N o 1< o [T USSR 68
GPS and SD card test Arduino sketch code (midterm_GPS_demo) (CW)cocveeeceeevcieeieeeiieeeceeenns 68
IMU Arduino sketch test code (midterm_IMU_demo) (CW)ooecueeeceeeceeesiee e s eeeeste e 70
Bluetooth Arduino sketCh test COAE (BL)coiiuurriiiieiiiiiiieieeeee ettt eeerree e e e e e e eeabareeeseeeeeeeanrenes 77
Final Project Arduing SKETCh (CW, BL) ..ueiiiiiiiie ittt e e e et e e s e tte e e e e bte e e s eabtaeesenrteaeeennes 79
FiNal Project APP COAE (NS) ..uiii ettt ettt et e e st e e e et e e e e e bte e e e ebteeeeeasteeeeeasteeeeessaeessstenassnnes 87

Page 4 of 123

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Cartesian Representation of an Earth-Centered Earth-Fixed Coordinate System 11
Precession of Rotating ODJECTc.cciiieiieie e 13
Depiction of magnetic deCHNAtION...........ccoiiiiiiiiiee e 14
12C Interface and Data FOrMAL........ccoooiiiiiiiiiiiieee e 16
Objective Tree for the DiSC GOIf LOCALONcccoiiiiiiiiiiieiesesee e 18
Level 0 Hardware BIOCK DIagram..........cccceoviiieieerieiie e s 20
Level 1 Hardware BIOCK DIagram..........cccueiiiiieiieiesie et 21
Level 2 Hardware BIOCK DIagram..........ccceoviiieiierieiie e sie st 23

SCHEMALIC FOI DISC THACKEL ... eeeeeeneenenenne 27

Figure 10: Schematic for battery CONNECLIONcccveiiiiiiieie e 27
Figure 11: Schematic for off-board battery Chargerccooeeiiiiniiiic e 27
Figure 12: Off-board battery charger mounted to proto boardccccoevveveiceiievececees 30
Figure 13: NMEA RMC SENTENCE STIUCTUIE........c.veviiiiiiitieieeiceieie ettt 33
Figure 14: GPS coordinates plotted 0N @ MaPc.ccveiiiiiiieiece e 36
Figure 15: Top View Of COMPIELE TISC.......eouveieiiieiieiiesie e 39
Figure 16: Underside of disc with mounted COMPONENLScccccveieeiieieiiece e 40
Figure 17: Five quarters wrapped in duct tape serving as a Weight...........cccccevvieienenciennnnn 41
Figure 18: Level 0 Software BIOCK DIiagramc.cccveiieieiicieie e 42
Figure 19: Level 1 Software BIOCK DIagramcccooiiiriiiniiiiiesc st 43
Figure 20: Level 2 Software BIOCK DIiagramcccvoiiiiiiieiiie e 46
Figure 21: Microcontroller Control FIOW ..ot 52
Figure 22: Raw GPS data 10gged 0N SD Card..........ccooiveiiiieiiiie e e e 57
Figure 23: GPS test data sent over BIUBIOOTN ... 59

Page 5 of 123

List of Tables

Table 1: Engineering ReqUIremMents TabIeccooiiiiiieiiiie e 19
Table 2: Level 0 Hardware Functional Requirement Table...........cccccooveiieiiiieseece e 20
Table 3: Level 1 Hardware Functional Requirement Tables ... 21
Table 4: Level 2 Hardware Functional Requirement TabIesccccoveviveriiieseene e 23
Table 5: PI8Z0 BUZZEI DALAcve ettt nre et enee e 31
Table 6: CompPoNent POWEN RALINGScvoiieiiieieiieie ettt sre e 32
Table 7: Battery RAINGScoviiiiiieieie ettt nb e 32
Table 8: NMEA RMC sentence deSCrPLiONccveieiiieiieiieie e 33
Table 9: Coordinates from an ELreX GPS...........cooiiiiiiiieiieice e 34
Table 10: Level 0 Software Functional Requirement Table.........cccccvvveiiievi e 42
Table 11: Level 1 Software Functional Requirement Tables...........ccooiiiiiiniiicienece 43
Table 12: Level 2 Software Functional Requirement Tables..........cccccvvveiiieiiiieieece e 46
Table 13: Table 0f CONrOl FIOWcccoviiiiice et 53
Table 14: PropoSed PArtS LiSt........cccccvciieiieieiie ettt st sreene s 61
Table 152 PArtS REQUEST L........oiiiiiiiiiitisieeieeee ettt b e 62
Table 16: PArtS REGUEST 2......cuiciiiiieieeie sttt sttt ste et e s s te e naestaebeaneesreenneenee e 62
Table 17: MASIEr BUAGELc.oiiiieieeie et 62
Table 18: Component Datasheet LINKS..........c.ccueiieiiiiieiie i 68

Page 6 of 123

Abstract (CW)

Disc golf is a game similar to traditional golf where players throw small plastic discs into
chain-link nets. Disc golf courses cover several acres containing lakes, small wooded areas, large
bushes, and grassy fields. It is not uncommon to accidentally throw a golf disc into the woods or
bushes, so it is the goal of this project to create a device to locate the disc and make suggestions
for the player to improve performance. A small device will be attached the disc which will track
its location and flight characteristics. The device will contain a GPS receiver, an inertial
measurement unit (IMU), data storage device, wireless transfer device, and an audio alarm to
locate the disc. The GPS will record the flight path of the disc and the IMU will measure flight
characteristics which will be stored locally on the disc during flight. After the disc is thrown and
recovered, players will be able to use a smartphone app to retrieve the flight data from the
tracking device by wireless communication. The smartphone app will plot the flight path on a

map and analyze the inertial data to make suggestions for players to improve their throws.

Page 7 of 123

1. Problem Statement

Need Statement (CW)

Disc golf is a game very similar to traditional golf. In disc golf, a player attempts to
throw a small plastic disc into a slightly elevated chain-link cage rather than using clubs to hit
balls into holes. Disc golf courses consist of numerous holes and can cover a respectably large
area similar to a traditional golf course. It is common for disc golf courses to run through
wooded areas with large amounts of foliage and brush. It is also common for a hole on the course
to not be visible from the throwing location due to buildings, trees, or even elevation (throwing
up a hill). These obstructions causes great difficulty in retrieving discs when they are
consequently thrown into bushes or other foliage because it may not always be possible to see
where the disc lands. Many hours can be spent searching through woods to find a lost disc and
players will usually get frustrated and give up searching. Lost discs and time wasted detract from
the player's enjoyment of the game. These unfortunate circumstances demonstrate a need to

develop a system a player can use to easily and quickly locate a disc after it is thrown.

Objective Statement (CW)

The objective of this project is to create a system a disc golf player can use to track the
location of a golf disc after it is thrown. The system will consist of a small devices which can be
placed on the disc and software which can map the flight of the disc. The devices on the disc will
log the GPS position of the disc and sound an alarm after a short period of time once the disc has
been thrown. The alarm can be used to locate the disc audibly. The software will map the flight
path of the disc, log throwing statistics, and then display recommendations to adjust the throw

for players to improve their performance.

Page 8 of 123

Modification of Project Operation (CW)

Initially, the project was based on RFID. The theory was to use a small passive RFID tag
and use multiple readers to calculate and display distance and direction of the tag from a master
control station. However, upon more research into RFID systems, passive RFID tags were
discovered to operate within a range of a few meters. So research shifted focus into active RFID
systems. In active systems, the tag contains a microchip, antenna, RF module, on-board power
(usually a battery), and any other electronics for various purposes, whereas a passive tag mainly
consists of a microchip (Lahiri). An active tag is capable of communicating over long distances
depending on the application. While the range for the project would be satisfied with an active
tag, it is not clear whether weight and size of active tag would allow the project to work.
Furthermore, the project is meant to locate an object thrown arbitrarily into a wooded area with
thick brush, weeds, bushes, etc... The presence of unknown physical objects ranging in size and
location could potentially hinder radio based location devices due to multipath, reflections, and
other potential interference. Therefore, it was decided to find an alternative method to locate a
golf disc. The changes throughout the entire proposal were to eliminate ideas based on an RF
device.

The original concept of operation was to use the Friis equation to determine distance
from the tag on the disc. The Friis equation,

o PrGrGpA? (1)

R™ (4m)2R?’

can be used to determine the distance between the transmitter and receiver provided the gain of
the transmitting and receiving are known as well as the power transmitted and received (Levis, et
al). However, the Friis equation is valid for free-space unobstructed transmission with no noise
or interference. There are variations of the Friis formula to include noise, provided the noise
parameters are known. For this project, the noise parameters would not be known and estimating
distance based on received power would be larger because the power received would be smaller

from noise. Therefore, alternative ideas were researched in order to facilitate locating a disc.

Page 9 of 123

Research (CW)
GPS

Today, Global Navigation Satellite Systems (GNSS) are ubiquitous throughout everyday
life. GNSS is used in everything from cell phones to cars. However, satellite navigation was
developed and used after ground based systems were used. Such ground based systems like the
British DECCA and US LORAN (long range navigation) systems were developed during WWII.
These early systems used LF radio signals from known locations to geo-locate the position of
receiver stations. LORAN receivers were open to public use after WWI1I and a modified version
of LORAN, standardized as LORAN-C, was used into the 1980s. Although, the cheaper and
more accurate system GPS took over the commercial market (Chen, et al).

There are a few main satellite systems in use today. The Russian GLONASS
constellation consists of 20 working satellites from the late Soviet era. The European Union
operates the Galileo constellation and China has recently started to implement their BeiDou
constellation. The United States operates the oldest working GNSS which is the Global
Positioning System (GPS). The GPS constellation consists of 24 satellites which are in geo-
synchronous orbit to provide constant and even coverage across the globe. The GPS system is
based on a geo-location method called Time Delay Of Arrival (TDOA). TDOA works by
knowing the time and location of a transmitter. Then a hyperbola of possible locations can be
calculated from receiving one signal. GPS needs at least three different signals to provide
latitude, longitude, and a fourth signal to provide altitude (Petrovski).

Unfortunately, the world is not a nice sphere. The world’s actual shape resembles an
oblong ellipsoid. The most accurate coordinates system to resemble the Earth is the World
Geodetic System of 1984 (WGS84). The reference frame of the WGS84 model is Earth-centered,
Earth-fixed (ECEF), meaning the xyz position of (0,0,0) is the center of mass of the Earth. The z-
axis points up through the North Pole. The x-axis points out through the prime meridian at 0°
longitude. The y-axis points out through 90° E longitude. The axes rotate with the Earth as it
rotates, so coordinates are constant. The WGS84 ellipsoid has the semi-major axis defined at
6378137.0 m and the semi-minor axis defined at 6356752.3142 m. Other parameters are defined
for the WGS84 model regarding flattening and curvature. The GPS system uses the WGS84

model to describe latitude, longitude, and altitude (Acharya). In Figure 1, the relationship

Page 10 of 123

between ECEF xyz coordinates and latitude, longitude, and altitude are shown. The WGS84 is

geodetic, so the latitude is measured from the surface of the Earth.

7 @ = latitude
North Pole A = longitude

a = major axis

b = minor axis
X,¥, Z = ECEF paosition

Prime Meridian
(0” longitude)

.

Equator >

(0° latitude)

!

Figure 1: Cartesian Representation of an Earth-Centered Earth-Fixed Coordinate System

Micro Electromechanical Sensors

There are many different electronic sensors. Smaller sensors have become prevalent in
many technologies used in everyday life such as phones, game controllers, medical devices, and
even car tires. Many of these sensors are based on mechanical principles. The application of
these principles in micro-electronics has introduced devices known as micro electromechanical
sensors (MEMS). These sensors often utilize silicon structures to replace larger mechanical
systems. In some modern MEMS devices, these silicon structures have been fabricated on the

scale of 500 microns (500 micrometers).

Page 11 of 123

Accelerometers
Acceleration is defined is defined in Newton’s Second Law of Motion. The equation,
F =ma 2
relates the force applied to an object by its mass and acceleration it experiences. If a known mass
is used, the acceleration of an object can be calculated my measuring the force applied to it.
Rather than using mechanical devices, MEMS technology generally measures a capacitance. By
allowing a conductor to move between two fixed parallel plates with a known distance between
them, the capacitance between the plates will produce a voltage which can be converted which
will proportionally relate to acceleration. The transfer function of a MEMS accelerometer
relating voltage to acceleration will take the general form,
H(w) =K % |4 Z—i (3)
where K is a constant that will vary with each device and manufacturer, w is the frequency, V is
the voltage produced as the capacitance changes with position of the free conductor (Jones and
Nenadic). The important element of Equation (3) is how the movement of the conductor will
change a capacitance which can relate to acceleration. The specific formulas for accelerometers
are often proprietary and differ with manufacturer.
Gyroscopes
Angular velocity is the rate of change in an angle between two axes. Gyroscopes can
measure angular velocity based on torque and angular momentum. Torque is the measure of the
force which will cause an object to rotate around an axis. Torque is defined as,
T=rXF, 4)
where r is the distance from a reference where the force F is being applied. When a force is
applied to an object, the resulting torque will rotate the object on a perpendicular axis to the force
and distance vectors. Torque will cause angular momentum.
Angular momentum is measure of rotation of an object. It is defined as

L=rXp 5)

Page 12 of 123

where p is the momentum of an object a distance r from reference. Mathematically, angular
momentum is very similar to torque. For rotational motional, the angular momentum can be
simplified to,
L=I,w (6)
where 1, is the moment of inertia of the object and w is the angular velocity.
The final concept for a gyroscope is the rate of precession. As an object spins around its
axis, it will tend to rotate the axis. The rotation of the axis of the spinning object is called

precession as demonstrated in Figure 2.

A

spin axis

Figure 2: Precession of Rotating Object

Since angular momentum moves with precession and since torque is produced in the same
direction as the rate of precession, the rate of precession can be related to angular momentum
and torque (Kloppner & Kolenkow). Thus, from Equation 5 and Equation 6, the rate of
precession £, is,

rF

0= :
l,w

(")

These basic principles guide the operation of a gyroscope. Clearly, by measuring the
forces acting on the body, the angular velocity of the body can be determined. MEMS
gyroscopes use micro-structures which do not spin, but compress or expand which causes a
change in capacitance across the structure. Different manufactures relate this varying capacitance

to the angular velocity of an object.

Page 13 of 123

Magnetometer

For navigation purposes, orientation and direction are crucial pieces of information.
Conveniently, the Earth produces a magnetic field which is mostly constant in direction.
However, as illustrated in Figure 3, Earth’s magnetic field does not directly align with

geographic north.

\‘/

“, _
m:\i{ ‘ /Geographlc north pole

M/ T
NP

Figure 3: Depiction of magnetic declination

The angle of declination varies depending on the location of the measurement. A traditional
compass may use an iron or a magnetic dipole which will align with the field pointing to
magnetic north. MEMS magnetometers will measure the magnetic field intensity in different
directions which can be used to determine heading from magnetic north.

Android Application (NS)

The Android platform was chosen to be used in this project because all of the team
members own an Android smartphone, so the project could be tested by any person on the team.
In addition, almost all Android smartphones contain a bluetooth antenna that can interface with
the disc tracker. There are various cross-platform interactive development environments (IDEs)
such as Android Studio and Eclipse to develop Android applications using an intuitive graphical
interface. Another positive factor of Android is that the applications are written in Java. This is a
benefit, because Java is one of the most commonly used programming languages around today.

The Java programming language is a high level, object oriented language that is used on
various devices such as desktop PCs and smartphones. Java code is compiled to bytecode that is
run on a java virtual machine (VM). Java is platform independent, because a VM can be installed

on a supported system to run some compiled bytecode. Like many other programming

Page 14 of 123

languages, there are many libraries written for Java to greatly expand upon the functionality of
the language (Lindholm, et al).

Android is an operating system (OS) that is built and maintained by Google, Inc. Many
different types of devices can run Android, but it is most prevalently used as a mobile OS in
smartphones. Since Android is built on top of the linux kernel, many of the system level tools
available to desktop linux distributions are available to Android as well. Android runs a process
virtual machine called Dalvik that utilizes Just-In-Time (JIT) compilation of Java code. Many of
the wireless communication modules of the device are accessible through the use of built-in API
libraries provided by the Android Software Development Kit (Liu and Yu). One example of an
API that will be used in this project is the Bluetooth API that will be used to receive data from
the disc tracker and send a signal to the tracker to signal the buzzer to emit a sound.

Flora Microcontroller (NS)
The Flora is an Arduino compatible microcontroller board that runs an Atmel

ATMega32u4 at its core. This microcontroller board was designed to be used in wearable
electronics. The Flora was chosen for this project for many different reasons. Since the Flora
uses an AVR chip that is Arduino compatible, there are many AVR and Arduino libraries
available for it. Additionally, this microcontroller is very small (4.445cm in diameter) and
lightweight (4.4g), both of which are big constraints for the project (Adafruit).

Serial Interfaces (NS)
There are many different serial interfaces used in embedded systems today that all have

different advantages and disadvantages. Based on the modules chosen to be used in the disc
finder device, there are three serial interfaces that will be used in the project. The reason that
there will be three separate interfaces used in the project is because the modules that were
chosen, were primarily decided on based on power consumption, size and price. The serial
interface supported by the device was not a major deciding factor. The main features of these
interfaces are summarized in the sections below.

Universal Asynchronous Receiver Transmitter (NS)
The Universal Asynchronous Receiver Transmitter (UART) interface is commonly used

in embedded systems to communicate between a single master and a single slave node
(Mikhaylov & Tervonen). This interface operates in full duplex mode by using two
communication lines. The transmit (Tx) pin of the master is connected to the receive (Rx) pin of

the slave, while the Rx pin of the master is connected to the Tx pin of the slave.

Page 15 of 123

Serial Peripheral Interface (NS)
The Serial Peripheral Interface (SPI) is a single master, multiple slave interface that

provides full duplex communication between the master and a slave (Mikhaylov & Tervonen).
Three lines are used across all connected devices. These lines are the clock (SCLK), master input
slave output (MISO) and master output slave input (MOSI). Each slave node requires its own
separate chip select (CS) line. The CS line needs to be pulled down before communication with a
node commences. Since the chip select lines are active low, a pull-up resistor should be used to
set the lines high when the slave is not in use.

Inter-Integrated Circuit (NS)

The Inter-Integrated Circuit (I2C) Interface was created by Philips Semiconductor in 1982
(Mikhaylov & Tervonen). I1°C is a multiple master, multiple slave interface that uses two
common lines across all devices: the clock (SCLK) and the data (SDA). A pull-up resistor is
used on both of the lines. This interface uses a defined data format shown in Figure 4. An 1°C
device first sends a start bit followed by a 7-bit address and then a read/write bit to specify the

direction of communication. Next, data is continually transmitted until a stop bit is sent.

. Re . | | » Slave1
Rp Lo » (Transducer 1)
SCLK |—¢T——"— _ » Slave?2
Master . » (Transducer 2)
(Processor)
SDA - -
» olave 3
» (Transducer 3)

, Bithe |1 718 |9|1 89|71 89
Data format: Data | S |Address|R/W |A| Data |A| Data AP

Figure 4: 12C Interface and Data Format

Page 16 of 123

Marketing Requirements (CW, NS, SG, BL)

Minimally impact the disc's flight characteristics.

The system should be portable.

Operation in various temperatures.

The system should be simple to use.

Interfacing with a smartphone application.

The components should be attached directly to the golf disc.
The disc's motion should be trackable.

Audible within an average throwing range.

© © N o O bk~ w0 DR

Electrical components should be very lightweight.
10. The flight path of the disc should be displayable on a virtual map.
11. Should provide recommendations to players for accurate throws.

Page 17 of 123

Objective Tree (CW)

Disc Golf
Detection
System
|
]] |]
Reliable Durable Portable Easy to Use
— Accurate — Impact Resistant | = Small —1 Quick Detection
Minimal Game
=1 Performance |}=—] Water Resistant | Lightweight —1 Long Battery Life
Impact
| | Repeatable || Temperature || Limited User
Results Resistant Intervention

Figure 5: Objective Tree for the Disc Golf Locator

Page 18 of 123

2. Design Requirements Specification (CW, NS, SG, BL)

Table 1: Engineering Requirements Table

Marketing Requirements

Engineering Specifications

Justification

1,2

Tracker will be at most 15.24
centimeters in diameter

This is the maximum size to
reasonably fit on a golf disc

1,6,9

Tracker will weigh no more
than 100 grams

Device weight added to
weight of disc must allow it
to glide

Tracker components will be
mounted to evenly distribute
weight

An imbalance in weight of
the disc will alter its flight
path

Tracker must operate within
various outdoor temperatures
from 0°C to 40°C

People may play in cool
weather or high heat

5,10

Tracker will wirelessly send
data to a smartphone

Limits user interaction

Tracker must operate below
5W of power

Maximum power required for
sensors, data storage, wireless
transmission

7,10

Tracker will use GPS

Record flight path of disc

Tracker will be able to
produce a sound that can be
heard from at least 10 meters
away

Player must be able to locate
the disc from a distance
where it may not be visible

4,5,10

Smartphone application must
be compatible with Android
4.3+ on all carriers

App will provide easy access
for users

Smartphone application must
be able to connect and
disconnect from the tracker
without crashing or disrupting
the operation of the tracker

The tracker and application
will be connecting and
disconnecting multiple times
throughout a game

4,11

Smartphone application will
process and display flight
data and make calculations
for improvement

Easily provide feedback
about throw to a user and

Page 19 of 123

3. Accepted Technical Design

The system (shown in Figure 6) is centered around an Arduino-compatible

microcontroller which runs at 3.3V and is supplied by a battery at 3.7V. This device was chosen

for its capabilities in a very small, lightweight package. The controller takes in location and

motion data from a GPS unit and an Inertial Measurement Unit (IMU). That information is

filtered and parsed and stored in the microcontroller. After flight, the information is retrieved and

sent wirelessly to a smart phone application over Bluetooth using a Bluetooth LE breakout

module. The controller is also connected to a piezoelectric buzzer and triggers an audible alert

for location. Basic flow of hardware connections is shown in Figure 7.

Hardware - Level 0 Block Diagram (CW)

GPS Coordinates ———»

Inertial Data ——»]

Power, DC ———]

o)

— Alert Sound

Disc Tracker
IMU And
GPS Data

\ J

Figure 6: Level 0 Hardware Block Diagram

Hardware - Level 0 Functional Requirement Table (CW)

Table 2: Level 0 Hardware Functional Requirement Table

Module Microcontroller
e Activation

Inputs e Power, DC_
e GPS Coordinates
e Inertial Data

Page 20 of 123

Outputs

e Alert Sound
e |MU and GPS Data

Functionality

The device receives DC power from a battery. Upon activation,
after which the disc is thrown, the microcontroller logs inertial
data (acceleration, radial velocity, magnetic field intensity) and
GPS coordinates. The data is then used in a smartphone
application.

Hardware - Level 1 Block Diagram (CW)

battery

sSensors

—>
—>

data storage

—»{ audio alarm

microcontroller

—| wireless transceiver

Figure 7: Level 1 Hardware Block Diagram

Hardware - Level 1 Functional Requirement Table (CW)

Table 3: Level 1 Hardware Functional Requirement Tables

Module Battery
Inputs e Power, DC
Outputs e Power, 3.7VDC

Functionality

The battery supplies power to the microcontroller and all on-
board devices. It is recharged by an off-board charger.

Module Sensors
e Inertial Forces
Inputs e GPS signals
e Power, DC
e GPS data
Outputs e Inertial metrics (IMU data)

Functionality

The sensors measure GPS location data, inertial data and supply
it to the microcontroller.

Page 21 of 123

Module Data Storage
e IMU data
Inputs e GPS data
e Power, DC
e IMU data
Outputs e GPS data

Functionality

The data storage was intended to log the IMU and GPS data in
real time during flight. The microcontroller could then retrieve
the data when needed.

Module Audio Alarm
Inputs e Power, DC
Outputs e Sound

Functionality

The audio alarm is triggered when device is ready to be thrown
and after the device is thrown for the player to locate the device.

Module Wireless Transceiver
e IMU data
Inputs e GPSdata
e Power
e Wireless signal from smartphone
Outputs e Wireless signal with IMU and GPS data

Functionality

The wireless transceiver communicates with a smartphone to
transfer the IMU and GPS data stored on the disc.

Module Microcontroller
e |MU data
Inputs e GPS data
e Power, DC
e Power, DC
Outputs e IMU data
e GPS data

Functionality

The microcontroller controls every attached device. It directly
power each peripheral as well as send and receive data at
appropriate times.

Page 22 of 123

Hardware - Level 2 Block Diagram (CW)

GPS

accelerometer

magnetometer

gyroscope |— buzzer

Y Y |
Wall outlet or USB |—3 charger

microcontroller

by

A
4

Bluetooth LE TRX

battery

microSD

Figure 8: Level 2 Hardware Block Diagram

Hardware - Level 2 Functional Requirement Table (CW & SG)

Table 4: Level 2 Hardware Functional Requirement Tables

Module Charger

e Power, DC from supply

Inputs e Power, DC from USB

Outputs e Power, DC

The off-board charger charges the battery when it is depleted and

Functionality disconnected from the golf disc.

Module Battery
Inputs e Power, DC
Outputs e Power, 3.7 VDC

The battery supplies power to the microcontroller and all on-

Functionality board devices. It is recharged by an off-board charger.

Page 23 of 123

Module

Gyroscope

Inputs

e Rotational Force
e Power, DC

Outputs

e 3-D Radial Velocity

Functionality

Measures the angular rate at which the device changed from its
last position. Angular velocities are measured around the 3
Cartesian axes relative to the device.

Module Accelerometer
Inputs e Linear Force
e Power, DC
Outputs e 3-D Linear Acceleration

Functionality

Measures acceleration of the device in three linear directions in
Cartesian space relative to the device.

Module Magnetometer
Inputs e Magnetic Field Intensity
Outputs e 3-D Magnetic Field Intensity

Functionality

Measures the magnetic field intensity of Earth’s magnetic field in
three dimensions of Cartesian space relative to the device.

Module GPS
e RF signals
Inputs e Power, DC
Outputs o GPS data

Functionality

The GPS receives signals from satellites to calculate coordinates
and other data such as translational speed.

Module Micro SD
e Power, DC
Inputs e GPS data
e MU data
e GPS data
Outputs e [IMU data

Functionality

Micro SD was intended to be used to store GPS information and
IMU data in flight. The information could be retrieved when it
needs to be sent to the smartphone.

Module Buzzer
Inputs e Power, DC
Outputs e Sound, ~95dB

Functionality

The buzzer is powered on after the disc hits lands to produce a
loud audio signal for location.

Page 24 of 123

Module

Bluetooth LE Transceiver

Inputs

e Power, DC

Outputs

e RF Bluetooth LE signal

Functionality

A Bluetooth LE (Low Energy) transceiver allows communication
between the Tracker and a smartphone. The data from the
microcontroller is sent to the smartphone via a bluteooth
connection.

Module Microcontroller
e Power, DC

Inputs e GPS data
e |MU data
e Power, DC
e GPS data

Outputs e IMU data
e Alarm Signal

Functionality

The microcontroller powers and communicates with each
peripheral when appropriate. It logs the GPS and IMU data
during flight, powers the buzzer after it lands, and then sends the
data to a smartphone through a Bluetooth LE connection.

Tracking Device Schematic (CW & SG)

The schematic for the tracking device attached to the golf disc is shown in Figure 9. The

schematic shows the pin connections between the Flora microcontroller and each module. The

connections for the battery to the microcontroller and to the off-board charger are shown in

Figure 10 and Figure 11, respectively. The rechargeable battery connects directly to the

microcontroller with a JST connecter. Each tracker module connects via appropriate serial

communication pins. Some of the modules support different serial communication protocols and

some can only connect with a particular protocol because of how the module was constructed.

The module operations and connections are explained below.

Page 25 of 123

w
w B
N B
£
,
|
® < o
0 i 2
M
s
o
o £
((e]
O
T B
Q@ S B 5 &
:
Y REQ RST SCKMOSMIST [SDA S&L T |
@ -
% w
© & . 9
N (=1 O 2
] = W
g o
GND GND 3V GND 3V | |GND 3.3V

]

|

Figure 9: Schematic for Disc Tracker

FLORA Microcontroller
(U1)
|
GND 3.7V
* Battery
(B1)
" 500 mAh

Figure 10: Schematic for battery connection

6 Volt
DC Supply Computer
e Charger o~
(U2)

BATT

* Battery

(B1)
~ 500 mAh

Figure 11: Schematic for off-board battery charger

Page 27 of 123

Page 28 of 123

Battery (SG)

A battery had to be chosen that could be small enough to attach to a golf disc while
having at least enough capacity to power the tracker for an average game length and not add an
enormous amount of weight. The battery used, therefore, is of lithium ion polymer (LiPoly)
construction with a capacity of 500 mAh and a weight of 10.5 grams. The package size was
small enough to be affixed to the underside of the golf disc and it was more than capable of
powering the tracking device for an average game length. The battery supplies power to the
microcontroller which regulates incoming voltage and distributes power to the peripheral
components with limited current. When depleted, the battery shuts off at 3 VVolts and must be

disconnected from the system and connected to the off-board charger.

Off-board Battery Charger (SG)

To charge the LiPoly battery properly and safely, a compatible charger was chosen.
Initially, a small solar panel was to be mounted to the golf disc to provide supplemental power
during game play. Thus, the charger is capable of accepting power from a solar panel in addition
to an external source and is small and light enough to fit on the golf disc. It became apparent that
for the additional weight to the disc, the marginal amount of power supplied by a 1 Watt solar
panel under best conditions was not enough to warrant mounting it on the disc.

Since the charger is not used in such a fashion as previously mentioned, it simply uses
incoming power from a DC supply or USB connection to charge the battery at constant current
and constant voltage (CC/CV). To maintain health of the battery and avoid overheating, a
resistor was soldered in to set the charging current to a safe limit of 150 mA. Bypass capacitors
were also soldered in to stabilize the charging control loops in the absence of a connection. The
charger was assembled onto a small proto-board to increase its size for ease of handling as
shown in Figure 12. A yellow and a green LED with current-limiting resistors were soldered to

the board to increase visibility of "Charging"” and "Charge Complete" indicators.

Page 29 of 123

0000000000@00@@@00g©u®
OOOOOOOOOOG 009000008y

+

+ 1516171819 3 21 22 23 24 25 26 27 28 29 30
J OOOO 900 eeseseee)
OOO»Q@y OO RER
OO goub@@@@@@eH
O 09900009908 °C
w‘pu SOOI

,2 zed 1readboard

)00 0eeeee E
gvngv@@@ D
B
B
A

s TN ; a§7
3

Figure 12: Off-board battery charger mounted to proto board

Piezoelectric Buzzer (SG)

To make an audible alert from the disc that is loud enough at a long distance, a low-
power, small buzzer was needed. The Mallory Sonalert MSO206NR piezoelectric buzzer is a
small device capable of producing a large amount of sound. It is a solid-state component that
requires only a small DC voltage. It works on the principles of piezoelectricity in which voltages
applied to materials with a crystalline structure cause deformations of the material and vice-
versa. This allows a loud, high frequency (3.5 kHz) sound to be produced using very little
electrical power. Within the rated 2 - 6 Volts DC it only draws up to 30 mA of current.

It was decided that the buzzer should be audible at a maximum distance of 100 meters.
Based on typical sound pressure levels measured in decibels, dBspi, the sound from the buzzer at
this distance needed to be a minimum of 40 dB. This is roughly the sound level of a quiet
conversation at normal talking distance. Since sound intensity follows the inverse square law, the

minimum sound pressure level the buzzer needed to produce was calculated working backwards

Page 30 of 123

from 40 dB at 100 meters. Considering a roughly 1 meter distance from a buzzer at ground level
to the listener's ear, that equates to a 100 times increase in distance. Applying the inverse square

law to these numbers yields the amount of change of intensity level,

I, = *0 = 400,000
1= g, = 400,000 ©®)
[1o0!
Converting this to dBspy yields
400,000
104

Therefore, the decrease in sound level across 100 meters is 40 dBspL S0 the minimum required

ES 4‘0 dBSPL' (9)

level from the buzzer was set at 40 + 40 or 80 dBspr, at 1 meter.

Table 5: Piezo Buzzer Data

Manufacturer: Mallory CUI Kingstate
Operating Voltage: 2106 VDC 3to5VDC 31020 VDC
Max Current Draw: 30 mA 35 mA 10 mA
Loudness: 90t0 99 dB @ 1ft. | 95dB @ 10cm | 95 @ 30cm
Normalized Loudness (Im): | 79.68 to 88.68 dB | 75 dB 85 dB
Weight: 3.59 1.49 7.0g

To ensure the minimum sound level of 40 dBsp. at 100 meters, the buzzer needed to be
able to produce a level of, at minimum, 80 dBspL normalized at 1 meter. As power and weight
were also concerns, the device needed to be as sensitive as possible. From Table 5, Mallory
MSO206NLR in the first column was the best choice among piezoelectric buzzers. During tests,

a disc was thrown roughly 30 meters and the buzzer was audible well within that range.

Page 31 of 123

Power Calculations (SG)

Table 6: Component Power Ratings

Component Voltage (V) | Current (mA) | Power (mW)
Microcontroller 3.6 150 540
GPS 3.3 25 82.5
Piezo Buzzer 3.3 30 99
IMU 3.3 6.45 21.285
microSD Reader 3.3 150 495
Bluetooth LE 3.3 12.5 41.25

The maximum power consumption of the components necessary for this design under
continuous operating conditions are given in Table 6. Using these values, the worst-case power
consumption of the whole system was calculated. The maximum total power is:

540 4+ 82.5 + 99 + 21.285 + 495 + 41.25 = 1,279.04 mW, (10)

or
1.28 Watts.

Since the microSD card breakout module was not able to be successfully integrated in the
tracker's operation, its power connection was cut. The worst-case power consumption was then

784.04 miliwatts.

Table 7: Battery Ratings

Battery Voltage Capacity Weight Cycle Life
V) (mAh) (9) (hrs)
Adafruit 258 3.7 1200 25 3.3
SparkFun PRT-00339 3.7 1000 22 2.7
Adafruit 1578 3.7 500 10.5 1.4
Adafruit 1317 3.7 150 4.65 0.4

Table 7 gives data for several of the considered choices of onboard energy storage. All
batteries listed are of Lithium lon (Li-ion) or Lithium lon Polymer (LiPo) construction. The
cycle life is the calculated amount of time that the battery is capable of supplying the system on
a full charge. This is based on the battery's capacity and the original 1.28 W system power draw.
To convert the battery's capacity rating to a power rating based on a system operating voltage of

3.5 Volts, the calculation is,

Battery Power (Watt — Hours) = Capacity (mAh) x 1000 x 3.5 (V). (11)
Cycle life is,

Page 32 of 123

Battery Energy(WH)
1.28W

Battery Life (Hours) = (12)

Given that the actual power draw of the components during normal use is much less than
the worst case scenario, the battery life is actually much greater than the values given especially
considering the disconnected microSD breakout module.. Since weight was more of a limiting
factor, the 500 mAh Adafruit 1578 was the most appropriate choice of battery as it delivers more
than enough lifetime (>1.4 hrs) and adds only 10.5 grams to the disc. Even after several hours of

use, the battery was able to maintain sufficient charge.

Global Positioning System (GPS) (CW)

The GPS 3.3 V and GND pins are connected to the 3.3 V and GND output pins on the
Flora for power. The GPS is connected with two wires for UART serial communication. The TX
and RX pins on the Flora are connected to the RX and TX pins on the GPS, respectively. The
GPS will be used to track the location of the disc during its flight. It will be set to calculate a fix
at an update rate of 5 Hz. This is the maximum fix rate civilian GPS units can calculate their
position at. The baud rate for the UART connection will be set to the default 9600 baud rate for
the GPS. The project only needs latitude, longitude, and time to operate. Therefore, as defined by
National Marine Electronics Association (NMEA) standard 0183, the GPS will output NMEA
RMC sentences which provides the required position relative to the WGS84 ellipsoid. The RMC
sentence means the recommended minimum navigation information. The format of an NMEA

RMC sentence is shown in Figure 13.

12
3 4 5 6 7 8 9 10 21
| || || I I | ||
11111)a, VYYYV: VVra; XX, XX XXXX X Xy a*hh

1 2
I |
$——RMC, hhmmss.ss,A,

Figure 13: NMEA RMC sentence structure

The definitions of each field are explained below in Table 8Error! Reference source not

found..

Table 8: NMEA RMC sentence description

Field Description
1 UTC Time
2 Status, A = Active, V = Void

Page 33 of 123

3 Latitude

4 North or South

5 Longitude

6 East or West

7 Ground Speed (knots)

8 Track Good (degrees)

9 Date (ddmmyy)

10 | Magnetic Declination (degrees)
11 East or West

12 Checksum

The RMC sentences are provided in a CSV format where each different sentence is on a new
line. Since each location fix is calculated every 200 ms, an RMC sentence will be set to output
every 200 ms. The Flora will read each sentence from the GPS and then send it to the micro SD
card for storage until it is required for transmission over Bluetooth.

A test was conducted to demonstrate relative accuracy of a commercial GPS. An Etrex
Venture HC handheld GPS was carried along a walk to emulate a disc throw. The path began in
the southwestern end of parking area for an apartment complex. The initial GPS coordinates
were recorded from the Etrex GPS as N 41° 04.55 (latitude) and W 81° 29.832’ (longitude). The

beginning and end points recorded are the first and last points in Table 9.

Table 9: Coordinates from an Etrex GPS

Latitude Longitude
degrees | minutes | decimal degrees | degrees | minutes | decimal degrees
41 4.543 41.075717 -81 29.833 -81.497217
41 4.543 41.075717 -81 29.832 -81.497200
41 4.543 41.075717 -81 29.831 -81.497183
41 4.543 41.075717 -81 29.83 -81.497167
41 4.543 41.075717 -81 29.829 -81.497150
41 4.543 41.075717 -81 29.828 -81.497133
41 4.543 41.075717 -81 29.827 -81.497117
41 4.543 41.075717 -81 29.826 -81.497100
41 4.543 41.075717 -81 29.825 -81.497083
41 4.543 41.075717 -81 29.824 -81.497067
41 4.543 41.075717 -81 29.823 -81.497050
41 4.543 41.075717 -81 29.822 -81.497033
41 4.543 41.075717 -81 29.821 -81.497017
41 4.543 41.075717 -81 29.82 -81.497000
41 4.543 41.075717 -81 29.819 -81.496983

Page 34 of 123

41 4.543 41.075717 -81 29.818 -81.496967
41 4.543 41.075717 -81 29.817 -81.496950
41 4.543 41.075717 -81 29.816 -81.496933
41 4.543 41.075717 -81 29.815 -81.496917
41 4.543 41.075717 -81 29.814 -81.496900
41 4.543 41.075717 -81 29.813 -81.496883
41 4.543 41.075717 -81 29.812 -81.496867
41 4.544 41.075733 -81 29.811 -81.496850
41 4.545 41.075750 -81 29.81 -81.496833
41 4.546 41.075767 -81 29.809 -81.496817
41 4.547 41.075783 -81 29.808 -81.496800
41 4.548 41.075800 -81 29.807 -81.496783

The data in Table 9 shows the GPS coordinates retrieved from walking an Etrex GPS through a
parking lot. The length of the walk is similar to a moderate golf disc throw. The points illustrate
the relatively good accuracy of civilian GPS. During this experiment, the horizontal dilution of
precision (HDOP) was recorded at £13 ft. The HDOP value occurs from the large distance
between the unit and the GPS satellites. Perhaps more intuitively, HDOP is similar to the error
that occurs from the small angle approximation, or comparing arc length to straight distance
between two points separated by an angle. However, the received coordinates for this test were
confirmed accurate after the coordinates were converted into decimal degrees and plotted on a

map of the area in Figure 14.

Page 35 of 123

Figure 14: GPS coordinates plotted on a map

The path can be clearly seen from the image. The image in Figure 14 is from a website

tool which plots multiple points onto Google Maps (www.darrinward.com). The tool requires

decimal degrees to plot the coordinates which is the reason for the column in Table 9.

Inertial Measurement Unit (IMU) (CW)

The microcontroller will control the IMU and log the data it outputs. The IMU will
consist of a 9-DOF (degrees-of-freedom) chip composed of a 3-axis accelerometer, gyroscope,
and magnetometer. The accelerometer will provide values of acceleration in m/s? based on a
Cartesian coordinate system centered on the chip. The gyroscope will provide values of deg/s
around the axes defined in the Cartesian coordinate system for the accelerometer. Finally, the
magnetometer will provide measurements of the magnetic field intensity in gauss along the three
Cartesian axes of the accelerometer.

The magnetometer can be used to determine orientation on the surface of the earth. The
magnetometer will provide the output of the magnetic field intensity in a horizontal and vertical
direction on the surface of the earth. Therefore, the heading can be calculated from the angle

between the two given vectors,

Page 36 of 123

http://www.darrinward.com/lat-long/

H
heading = tan~1 -2 (13)
g
H,

where magnetic field intensities in the vertical and horizontal positions are given by H,, and H,,
respectively. Magnetic declination can be accounted for after the global position is known.

The accelerometer can be used to determine distance traveled with the acceleration
measurements and the elapsed time. The accelerometer measures instantaneous acceleration at
given intervals. The time between intervals can be used to calculate distance traveled. Velocity

can be obtained from integrating acceleration,

t
v(t) =]adt = at, (14)
0
where a is the value of acceleration. Further, position can be calculated as,

x(t) = fot vdt = vt. (15)
where v is the velocity. Considering initial position and combining Equation Error! Reference

source not found.(14) and Equation (15) yield a formula to calculate distance traveled,

1
x(t) =x, + vt + Eatz. (16)

The basic kinematic equations can be used to calculate position by integrating the
acceleration measurement twice. This calculation can be implemented recursively to calculate
total distance traveled by adding the new distance to the previous distance.

Since the gyroscope measures angular velocity, which is the derivative of the angular
position, the angle of change for each axis can be calculated. Therefore, the angle is

%)
6 =] wdt = w(t, — ty), (17)
t

1

where w is the angular velocity output from the gyroscope. Since the angle can be calculated on

each axis, yaw, pitch, and roll can be defined for the device attached to the gyroscope.

Page 37 of 123

Hardware Mounting (SG)

A critical part of the design was the mounting of all hardware to the golf disc. Ideally, the
hardware should be mounted such that the disc can sustain significant impact at any point which
is possible during game play. However, because of the constraints imposed by using separate,
interconnected modules, the system was designed to sustain only impact from the top and edge
of the disc. Fragile electronics were left exposed on the underside of the disc but since they did
not extend beyond the lip of the disc, it was possible for the disc to be dropped at all angles on
flat surfaces.

Components were arranged on the disc according to weight distribution and sensor
orientation as well as routing of connections. The ideal balance of weight that was symmetric
around the center point of the disc was found and then a small compromise was made to
facilitate electrical connections by shifting some components to different points on the disc.
Though the disc ended up being slightly heavier on the side where the battery (the heaviest
component) was mounted, the overall balance was such that it did not noticeably impede the
flight characteristics of the disc.

Several methods were utilized to secure components to the disc and make electrical
connections between components. Primarily, a clear RTV silicone sealant was used to bond
components to the disc. It was chosen for its flexible, adhesive properties. To mount the GPS
module, a square hole was cut in the center of the disc to allow the main chip to stick up on the
top of the disc so that the antenna could receive an un-attenuated satellite signal during flight, as
seen in Figure 15. The IMU chip was adhered to the back of the GPS so that it was aligned to the
rotational and mass centers of the disc. Remaining components were sewn to the disc or attached

with Velcro.

Page 38 of 123

Figure 15: Top view of completed disc

Several connections, mainly those to the Bluetooth module, were made using a
conductive thread. The thread was a 3-ply thread made entirely of 316L stainless steel and
designed for wearable electronics. It was chosen for its size, tensile strength, and conductivity.
At 10 Ohms per foot, the thread served two purposes: make electrical connections, and hold
components to the golf disc. Using a standard sewing needle, the thread was sewn into the disc in
such a manner to create "traces"” in which a majority of the thread was exposed on the underside
of the disc. Connections to the modules were made either by pulling the thread through the
contact holes and tying a large knot that pulled tight to the contact or by wrapping the thread
through the contact holes several times and securing with a knot. It was found that the best
connections were those with the thread that had been wrapped several times around the chip
contact. Since the thread had a slight tendency to fray, microscopic shorts appeared between a
few of the traces. This was rectified by coating each thread trace with a thin lacquer (i.e. clear

Page 39 of 123

finger nail polish). The lacquer also safeguarded against human contact and moisture. All
connections are mounted are visible in Figure 16.

Figure 16: Underside of disc with mounted components

Weight Experiment (CW)

Weight is a serious concern for this project. The final design connect to the disc must not
weigh too much or the disc will fall quickly to the ground when it is thrown. An (Saturday,
September 13, 2014) experiment was conducted at the Arboretum Disc Golf course in Canton,
OH to determine potential weights which may drastically hinder the disc’s performance. This

experiment was performed by duct taping five quarters into a thin weight shown in Figure 17.

Page 40 of 123

Figure 17: Five quarters wrapped in duct tape serving as a weight

The five quarters were then taped to the underside of a golf disc. The tape was wrapped all the
way around the disc in a cross pattern with the quarters at the underside cross section. The US
Mint indicates that quarters weigh 5.670 grams. So five quarters had an approximate weight of
28.4 grams. The disc was thrown multiple times with and without the quarters attached.

Two different people threw the disc with and without the weight attached. When the first
person threw the weighted disc, there was no discernable difference between flight path or
distance thrown from that of the un-weighted disc. Similarly, when the second person threw the
weighted it appeared to travel just as far as the un-weighted disc. The specific distances were not
measured because there was not a tool available during the test to accurately measure throw
distances. Since the theoretical weight of the current device design is estimated around 30 grams
and nearly 30 grams did not interfere with the performance of a disc, this test helped lead to the

idea this project would be successful.

MicroSD Card Breakout (BL)

The FLORA microcontroller will maintain storage logs of sensor information using the
proposed MicroSD card breakout board+ (MicroSD reader) from Adafruit, in addition to a
standard MicroSD card formatted using FAT32. The MicroSD reader will be directly connected
to the microcontroller as portrayed in Figure 9 from Section 3 above. In this implementation, the
CS, CLK, DI, and DO pins of the MicroSD reader will be connected to the SS, SCK, MOSI, and
MISO pins of the microcontroller respectively. The DI and DO pins regulate the data inflow and
outflow to the slave node (MicroSD reader) from the master node (microcontroller). The
MicroSD card will contain disc information collected for each flight from the IMU and GPS
sensors. This data will then be transmitted to the smart phone application using the system’s

Bluetooth feature.

Page 41 of 123

Bluetooth (BL)

As discussed previously, the FLORA microcontroller will communicate flight sensor data
stored on the MicroSD card to the smartphone application by means of Bluefruit LE - Bluetooth
Low Energy (BLE 4.0) (Bluetooth) device; produced by Adafruit. The smartphone application
will communicate with the microcontroller and determine what data to transmit back to the
smartphone to synchronize sensor characteristics of sequential flight attempts. This data will
then be stored on the smartphone’s internal storage for use by the application. Additionally, the
user may select data sets corresponding to individual flights and mark them for deletion,
removing them from both the phone and disc’s storage. The Bluetooth unit will be connected to

the microcontroller as depicted in Figure 9 from Section 3 above.

Software - Level 0 Block Diagram (CW)

4 N

IMU Data ——m — Flight Path

GPS Data —*| Smariphone App

—* Control Signals
User Input ——™

N /

Figure 18: Level 0 Software Block Diagram

Software - Level 0 Functional Requirement Table (NS)

Table 10: Level 0 Software Functional Requirement Table

Module Smartphone App
e IMU Data
Inputs e GPS Data
e User Input
e Flight Path
Outputs e Control Signals

Page 42 of 123

Functionality

The app will use the logged IMU and GPS
data to map the flight path of the disc onto a
map of the area. It will also plot the best case
next throw and send commands to the
microcontroller to change the operation of the
device.

Software — Level 1 Block Diagram (NS)

Android Application
ML Fﬁ?;ﬁ and Best Throw
» Initial Release i
Data Calculations Calculations
R 1
L
Historical
Data
k. W
GRS Google Maps Map of Flight
Data APl * Data
k
User Microcontroller Microcontraller
Input » Command * Control Signals
Logic

Figure 19: Level 1 Software Block Diagram

Software — Level 1 Functional Requirements Table (NS)

Table 11: Level 1 Software Functional Requirement Tables

Module Distance and Initial Release Calculations
Input(S) ° IMU Data
e GPS Data
Output(s) e Distance
e Direction

Page 43 of 123

This module calculates the distance traveled using the initial and final GPS

Function . .
coordinates and calculates initial release data.
Module Historical Data
e GPS Data
Input(s) e Flight Distance
e Direction.
e Distance traveled for previous throws
Output(s) e Direction for previous throws
e GPS coordinates for previous throws
Function This module stores the flight information for every previous throw.
Module Best Throw Calculations
e Flight Distance
Input(s) e Direction
e Historical Data.
Output(s) e Best available throw
This module calculates the distance traveled using the initial and final GPS
Function coordinates and calculates the average speed of the throw using the distance
and the initial and final timestamps.
Module Microcontroller Command Logic
Input(s) e User input
Output(s) e Microcontroller Control Signals
. This module takes user input from the touch screen and sends commands to
Function

the microcontroller to control the operation of the disc.

Page 44 of 123

Module Google Maps API

e GPS Data
Input(s) e Historical Data
e Best Throw Calculations
e User Input
Output(s) e Map of flight data
This module uses the location data from all previous throws and puts the
Function flight paths on a map of the golf course. The best throw calculations are used

to show how far the disc can be thrown next. The module also takes user input
to place intended targets on the map.

Page 45 of 123

Software - Level 2 Block Diagram (NS)

Android Application
MU | calcuiate initia A Best Throw
Data Direction v IrErr::lﬂrna Calculations [|
* T 4
+ L 4
Find Average
Calculate Total L
Distance »l Historical Data Directional
Error
F
—* Find Average
- Distance
L 4
GPS Plot Previous Plot Distance Plot Best Map of Flight
Data ¥ Throws » forBest " Casefor |[— Data
Throw Throw
User +
Input 1
Get Send Microcontroller
Micracantroller ™ Ccommand ———= Control Signals
Command

Figure 20: Level 2 Software Block Diagram

Software - Level 2 Functional Requirement Table (NS)

Table 12: Level 2 Software Functional Requirement Tables

Module Plot Previous Throws
Inputs e GPS data
Outputs e Map of course highlighting all previous throws
. Plot the initial and final GPS coordinates of every prior throw onto a map of
Function
the golf course.
Module Calculate Total Distance

Page 46 of 123

Inputs

e GPS Data

Outputs e Distance of throw
Function Calculate the distance between the initial and final GPS coordinates.
Module Calculate Directional Error
Inputs e GPS Data
e I|nitial direction
Outputs e Directional error
Function Calculate the difference between the direction of the initial release and the
direction the disc actually took using the GPS data.
Module Historical Data
e GPS Data
Inputs e Distance
e Directional error
e GPS Data
Outputs e Distance
e Directional error of previous throws
. Stores the flight data for every throw and outputs the data from all previous
Function
throws.
Module Find Average Directional Error

Page 47 of 123

Inputs

e Historical directional errors

Outputs e Average directional error
Function Calculate average directional error based on all previous directional errors
Module Find Average Distance
Inputs e Historical distances
e Directional errors
Outputs e Average distance
Function Calculate the average distance based on all previous distances and their
corresponding directional errors.
Module Best Throw Calculations
Inputs e Average distance
e Average directional error
Outputs e Distance of best possible throw
Function Calculate the distance of the best possible throw using the average flight data.
Module Plot Distance for Best Throw
Inputs e Distance of best possible throw
e Map of previous throws
Outputs e Map of course with all previous throws and the distance of the best

possible throw

Page 48 of 123

Plot a circle with a radius of the distance of the best possible throw on the map

Function . .
created in the Plot Previous Throws block.
Module Plot Best Case for Throw
e User input
Inputs e Map of course with all previous throws and the distance of the best
possible throw
Outputs e Map of flight data
User input is used to select the direction of the throw and a line is plotted that
Function shows the best case scenario of the next throw (distance) and an indicator
showing any directional compensation that should be considered.
Module Get Microcontroller Command
Inputs e User input
Outputs e Microcontroller command
Function User input is used to select a mode of operation for the disc and the
corresponding command is looked up from storage.
Module Send Command
Inputs e Microcontroller command
Outputs e Microcontroller control signals
Function Format and send the command over Bluetooth to the disc.

Page 49 of 123

Application Angle Calculation (NS)

In the Android application, the total angle of difference is calculated and saved for every
throw. The angle from the starting GPS location to the user-plotted hole is referred to as the hole
angle. The angle from the starting GPS location to the final GPS location is referred to as the
actual angle. The total angle of difference describes the difference between the hole angle and

the actual angle. The angle calculation is shown below.

Hole Angle = atan2(sin(longitude2 — longitudel) = cos(latitude?2), cos(latitudel) *
sin(latitude2) — sin(latitudel) * cos(latitude2) * cos(longitude2 — longitudel)) (18)

Where latitudel/longitudel are the coordinates of the starting GPS location and

latitude2/longitude2 are the coordinates of the hole.

Actual Angle = atan2(sin(longitude2 — longitudel) * cos(latitude2), cos(latitudel) *
sin(latitude2) — sin(latitudel) * cos(latitude?2) * cos(longitude2 — longitudel)) (19)

Where latitudel/longitudel are the coordinates of the starting GPS location and

latitude2/longitude2 are the coordinates of the final GPS location.

Angle of Dif ference = Actual Angle — Hole Angle (20)

Application Totals Data (NS)

The Android application keeps track of user data by holding the throw count, average
distance and average angle in a totals object that is accessible to the entire application. Every
time this object is changed, its data is written to a table in a SQLite database. The database
allows for nonvolatile storage of the data. When a new throw is transferred, the throw count gets

incremented and the average angle and distance are updated to include the new data.

Application Data Transfer Operation (NS)
Data is transferred from the disc tracker device to the application in 20 byte increments.
When data is received it is buffered by saving it into a single string. The end of transmission is

signaled by the receipt of the string “$SFF”. When the termination string is received, the buffered

Page 50 of 123

data string is split on the “$” character into a vector of strings. This vector is sent to a function
that parses the latitude/longitude pair out of each string and saves them into a file. The total
distance is found by using the built in distanceTo function found in the Google Maps API to
return the distance between the first and last GPS points that were transferred. The angle of
difference is calculated using the equations shown above. Once these parameters are calculated

the totals data is updated using the method described above.

Page 51 of 123

Microcontroller Control Flow (CW)

config GPS

!

init accelerometer

!

init gyro

|

ready alert

!

P read GPS

!

——» read gyro [

log GPS into EEPROM

Is EEPROM full?

—) turn alamm on

!

start Bluetooth

!

broadcast connection |«

turn off alarm

!

read GPS data from EEPROM j«——

!

send GPS data over Bluetooth

All GPS data sent?

Figure 21: Microcontroller Control Flow!

! The red line is used to indicate no intersection between flow options.

Page 52 of 123

Figure 21 shows the control flow of the device. The process starts when the
microcontroller is turned on. Table 13 below describes each control block in detail.

Table 13: Table of Control Flow

Control Step

Function

Config GPS

Sets GPS to calculate a fix 5 Hz and send current fix 2 Hz to
FLORA over UART.

Init Accelerometer

Turns on the accelerometer to provide acceleration
measurements at 50 Hz with 2g sensitivity through 12C.

Init Gyroscope

Turns on gyro to provide radial velocity measurements at 95
Hz with 2000 dps sensitivity through 12C.

Ready alert

The buzzer will sound to indicate disc can be thrown.

Read gyro

Reads the radial velocity on the axis perpendicular to the disc.

Is Gyro > Threshold

If the radial velocity is greater than 1000 dps, the disc is
spinning and process continues to the next step. Otherwise, it
reads the radial velocity again.

Read GPS

Reads and parses the NMEA RMC string to attain latitude and
longitude in decimal-minute degrees.

Log GPS into EEPROM

Logs the parsed GPS string into the EEPROM.

Is EEPROM full?

If the EEPROM is not full, read the next GPS string.
Otherwise, move to the next step.

Turn alarm on

Turn the buzzer on.

Starts Bluetooth

Starts the Bluetooth device.

Broadcast Connection

Starts advertising available Bluetooth connection.

Is app connected?

If the app has connected to Bluetooth, move to the next state.
Otherwise, continue broadcasting Bluetooth connection.

Turn off alarm

Turns buzzer off after app connects.

Read GPS data from
EEPROM

Reads the parsed GPS string from the EEPROM.

Send GPS data over
Bluetooth

Bluetooth sends the GPS string 20 characters per packet.

All GPS data sent?

If all the GPS data has been sent, start control process again.
Otherwise, read the next GPS string from EEPROM to send.

Page 53 of 123

4. Operation, Maintenance, and Repair Instructions

Operation Instructions
Disc (CW):

1) Attach battery to Velcro slot on the disc.

2) Plug the male JST end of the battery cable into the JST female port on the disc.
3) On the disc, turn the power switch to the ON position.

4) Ensure the top of the disc has line-of-sight with the sky.

5) When the disc alarm is heard, it should be thrown.

6) The disc alarm will continue to sound once it lands until the disc connects to the
app.
Battery Charger (CW):

1) Plug the USB Type-A male end of the USB to mini-USB cable into a USB Type-
A female port on a computer.
2) Plug the mini-USB Type-B male end of the USB to mini-USB cable into the
mini-USB Type-B female connector on the charger.
a. Ifthered LED is on, the battery is charging.
b. If the green LED is on, the battery is fully charged and ready to use.

Android Application Installation (NS):
1) Enter into the security settings on the Android device and enable “Installation
from unknown sources”.
2) Download the app.apk file and open it.
3) Select “Ok” to accept the required permissions for the application. This will
install the application to the device and it will appear in the application drawer as
“Where’s My Disc”.
Android Application Operation (NS):

The application has three tabs to separate the different operations. The tabs can be
navigated through by selecting each from the action bar at the top or by swiping in the
direction of the desired tab. There is also a menu that is accessible by selecting the three

dots at the top right of the action bar. The menu contains options for starting a new game,

Page 54 of 123

adding the demo throw, viewing the Bluetooth log, viewing the legend for the map,
clearing all of the saved data and viewing information about the design team.

The Connect tab is a simple tab that facilitates connecting to the Bluetooth
adapter on the disc tracker device. Upon entering the application, if Bluetooth isn’t
enabled on the Android device, a prompt will appear to ask permission to enable it. Once
it is enabled, to search for the tracker device, select “Search for Devices”. This will
perform a Bluetooth LE scan for compatible adapters. Any devices found will appear in
the “Devices Found” list. The disc tracker device will appear as “WMD 4.0”. Select the
device from the list and the connection status will change from “Device Disconnected” to
“Device Connected”. To refresh the status of the connection, select “Refresh Connection
Status”. This will return the status to “Disconnected” if the disc tracker device is out of
range, or will remain unchanged if it is still connected.

The Data tab consists of a list of throws. Each entry in the list represents a single
throw and displays the throw 1D, angle of difference and total distance of the throw. The
throws are selectable and selecting a throw brings up a more detailed view of the
statistics of that throw. In addition to the three fields mentioned earlier, the game id and
the sync time of the throw are shown. To return to the data tab from the individual throw
details view, select the back arrow at the top of the screen or use the android system back
button. If new data is transferred, the list of throws can be refreshed by pulling down on
the list, until a white circle fully appears at the top, and then releasing.

The final tab is the Map tab, which uses the Google Maps API to plot GPS
coordinates onto a map of the disc golf course. The map will automatically default to the
location of the user’s android device. When data is transferred from the disc tracker
device it is automatically parsed and plotted on the map. The GPS module on the tracker
device can sometimes collect a few bad GPS points. To remedy this issue, if a set of
coordinates is transferred the application checks if they are within 50 meters of the
Android device or 5 meters of the previous throw. If they are not, those points are not
plotted or processed. The map tab has a planning feature that allows a user to plot out the
path they will take to avoid obstacles and reach the hole in the most efficient way. First
the user will plot where the hole on the course is by pressing the “Plot Hole” button.

After pushing the button, a flag icon can be placed on the map where the actual hole is

Page 55 of 123

located. Next, the player icon will have a circle surrounding it that represents the
maximum distance that the user can throw the disc based on previous throws. The user
will select a spot within this hole for the first throw to land. Once the first spot has been
selected, the circle will move to surround this new point. This process repeats for all
subsequent selections, until the user has plotted a full path leading to the hole. There are
many different icons used on the map tab, and the all are defined on the map legend

shown below.

@] 3 1 4, . 71% 5 9:56 au

Map Legend

Figure 20: Android Application Map Legend

Page 56 of 123

5. Testing Procedures

GPS and SD card (CW)

Arduino code was developed to use GPS and the SD card reader. Although, the SD card
reader was not implemented in the final design because of power issues, it was tested in the
development phase of the project since the intention was to use it. The Arduino sketch
midterm_GPS_demo was written to configure the GPS and write the GPS data into a file on the
SD card. The two devices were successfully implemented and tested together. The Arduino
sketch is located in the Appendix. A screenshot of the output file saved on the SD card is shown

in Figure 22: Raw GPS data logged on SD card. The specific GPS configuration is explained in

Table 13.

File Edrt Format View Help

|SGPRMC ,183739.
$GPRMC,183740.
$GPRMC,184000.
$GPRMC,184000.
$GPRMC,184000.
$GPRMC,184001.
$GPRMC,184001.
$GPRMC,184001.
$GPRMC,184001.
$GPRMC,184001.
$GPRMC,184002.
$GPRMC,184002.
$GPRMC,184002.
$GPRMC,184002.
$GPRMC,184002.
$GPRMC,184003.
$GPRMC,184003.
$GPRMC,184003.
$GPRMC,184003.
$GPRMC,184003.
$GPRMC,184004.
$GPRMC,184004.
$GPRMC,184004.
$GPRMC,184004.
$GPRMC,184004.
$GPRMC,184005.
$GPRMC,184005.
$GPRMC,184005.

$GPRMC,184005.
$GPRMC,184005.
$GPRMC,184006.
$GPRMC,184006.
$GPRMC,184006.
$GPRMC,184006.

4

IMU (CW)
Similarly, Arduino code was developed to use the IMU. While the accelerometer and

311,v,,,,,0.00,0.00,100180, , ,N*41

$GPRMC ,184000. 200,A,4104. 5521 ,N,08130.7995,w,1.09,73.18,050215, , ,A*4F
5520,N,08130.
5518,N,08130.
5519,N,08130.
5518,N,08130.
5520,N,08130.
5521,N,08130.
5521,N,08130.
5520,N,08130.
5521,N,08130.
5520,N,08130.
5520,N,08130.
5519,N,08130.
5519,N,08130.
5519,N,08130.
5521,N,08130.
5520,N,08130.
5520,N,08130.
5520,N,08130.
5521,N,08130.
5522,N,08130.
5520,N,08130.
5519,N,08130.
5518,N,08130.
5518,N,08130.
5518,N,08130.
5519,N,08130.
5519,N,08130.
5519,N,08130.
5519,N,08130.
5519,N,08130.
5519,N,08130.
5520,N,08130.

400,A,4104.
600,A,4104.
800,A,4104.
000,A,4104.
200,A,4104.
400,A,4104.
600,A,4104.
800,A,4104.
000,A,4104.
200,A,4104.
400,A,4104.
600,A,4104.
800,A,4104.
000,A,4104.
200,A,4104.
400,A,4104.
600,A,4104.
800,A,4104.
000,A,4104.
200,A,4104.
400,A,4104.
600,A,4104.
800,A,4104.
000,A,4104.
200,A,4104.
400,A,4104.
600,A,4104.
800,A,4104.
000,A,4104.
200,A,4104.
400,A,4104.
600,A,4104.

7994 ,w,1.
7991,w,1.
7988,w,1.

7987 ,w,1.

7981
7981,w

15,82.
38,94.
67,87.
62,91.
.67,83.

35,050215, , ,A%45
70,050215, , ,A*40
28,050215, , ,A%42
66,050215, , ,A%4D
83,050215, , ,A%4B

.06,318.00,050215,,,A%70

.74,325.43,050215,,

,A¥79

.34,348.30,050215,, ,A*7E

.29,12.
0.29,59.
.45,81.
.56,94.
.73,90.
.71,90.
.00,60.
.08,61.
.11,63.
.42,69.
.48,66.
.49,65.
.37,75.
.35,85.
.52,87.
.62,89.
.60,88.
.56,87.
.70,85.
.75,83.
.71,83.
.65,83.
.55,84.
.45,82.

07,050215, , ,A%40
11,050215, , ,A%4A
60,050215, , ,A%42
38,050215, , ,A*4F
21,050215, , ,A%48
25,050215, , ,A%47
65,050215, , ,A%44
21,050215, , ,A¥49
16,050215, , ,A%44
27,050215, , ,A%40
51,050215, , ,A%4B
04,050215, , ,A%4F
52,050215, , ,A%41
45,050215, , ,A%41
96,050215, , ,A%49
08,050215, , ,A%44
77,050215, , ,A%4E
64,050215, , ,A%40
55,050215, , ,A%40
82,050215, , ,A%45
99,050215, , ,A%48
97,050215, , ,A%40
15,050215, , ,A%47
63,050215, , ,A¥49

Figure 22: Raw GPS data logged on SD card

Page 57 of 123

magnetometer were, also, not implemented the final process, they were tested along with the
gyroscope. The Arduino sketch midterm_IMU_demo was written to configure and test the IMU.

The sketch displays the 3-D vector for each IMU device on the serial monitor. The gyroscope

configuration is explained in Table 13. The Arduino sketch is located in the Appendix.

Bluetooth (BL)

The nRF8001 Bluetooth breakout was tested using an Arduino Uno board as
recommended by Adafuit’s “Getting Started with the nRF8001 Bluefruit LE Breakout”
instructions located on their website. For android users, a nRF UART v2.0 application is
available on the android marketplace for connecting to this device. The Bluetooth breakout’s
UUID is not supported by standard Bluetooth applications, so it must be included in the
application which will connect to it.

Adafruit has provided an “Adafruit BLE UART” library with sample code “echoDemo,”
which has been included at the conclusion of this report. The echoDemo provides the capability
of sending and receiving hex characters over the Bluetooth connection, translating the data to
readable text upon arrival. Once tested, the nRF UART application was used to receive GPS data
from the disc, which is portrayed in Figure 23 below. The final implementation of the project
immediately sends the GPS data, saved in EEPROM, to developed Android Application, which
will be discussed later.

Page 58 of 123

@ES VU YU el 1:38 PM

i nRF UART v2.0

Disconnect

[1:37:49 PM] Connected to: UART
[1:38:08 PM] RX: $GPRMC,173605.092,V
[1:38:08 PM] RX: ,,,0.00,0.00,08018
[1:38:08 PM] RX: ,,N*41

$GPRMC,173

[1:38:08 PM] RX: 06.$GPRMC,173722.00
[1:38:08 PM] RX: ,A,4104.5100,N,0813
[1:38:08 PM] RX: .6485,W,0.42,114.19

[1:38:08 PM] RX: 070415,,A*73
$GPR

[1:38:08 PM] RX: C,173723.000,A,4104
[1:38:08 PM] RX: 5099,N,08130.6486,W

Send

Device: UART -ready

Figure 23: GPS test data sent over Bluetooth

Android Application (NS)

The application was tested thoroughly using GPS data that was collected from the disc
tracking device. Once the GPS data string format was decided on, we gathered data from test
throws on the device. That data was saved into a text document so it could be tested in the
application. The data was split into separate, twenty character long, strings as this length was a
limitation of the Bluetooth module. The shortened strings were run through the data parsing
functions and the resulting latitude/longitude pairs were examined for accuracy.

In addition to the data transfer and parsing tests, functional testing was performed
extensively. The operation of each tab was explored and tested for cosmetic and functional
issues. The map tab was the most complex tab, and therefore endured the most thorough testing.
The route planning feature, plotting transferred points, and saving the hole location were all
inspected in code and in operation.

Page 59 of 123

Disc (CW)

When everything was assembled on the disc, it was tested by throwing it outside on the
east side of the Student Union. The assembled disc is shown in <insert figure of disc>. The disc
was tested multiple times. The first test resulted in the buzzer breaking off, but everything else
worked and data was sent to the app. The buzzer was reattached and the disc was tested again.
Everything worked and parts remained on the disc. The app would parse data when it reads an
end of transmission string “FF” which was accidentally left out of the Arduino code. The ending
code was added into the Arduino sketch and the disc was tested again. When it landed, the
battery cable broke. A replacement battery was obtained and the parts on the disc were
reinforced by tying steel thread around components into the disc. The disc was tested again and it

successfully landed, transferred data, and plotted the GPS data.

Page 60 of 123

6. Financial Budget (SG & BL)
Table 14: Proposed Parts List

Ref. Part Part
Des. Name Manufacturer Number Price Weight Qty Website
Ul | Controller Adafruit 659 $24.95 | 4.40¢g 1 http://www.adafruit.com/product/659
U2 | GPS Chip Adafruit 1059 $39.95 | 5.43¢g 1 | http://www.adafruit.com/product/1059
U3 | IMU Chip Adafruit 2020 $19.95 | 2.00g | 1 | http://www.adafruit.com/product/2020
Piezo http://www.digikey.com/product-
P1 Buzzer Mallory MSO206NR $8.75 3.50¢g 1 detail/en/MSO206NR/458-1163-
ND/2442606
microSD . .
U4 Reader Adafruit 254 $14.95 | 3.43¢g 1 http://www.adafruit.com/product/254
us B:-uEe(t;cr)]ci);h Adafruit 1697 $19.95 | 1.80g 1 | http://www.adafruit.com/product/1697
sgLaerl Adafruit 1485 $24.95 - 1 | http://www.adafruit.com/product/1485
Battery . .
U6 Charger Adafruit 390 $17.50 n/a 1 | http://www.adafruit.com/products/390
B1 | Battery Adafruit 1578 $7.95 105g 1 | http://www.adafruit.com/product/1578
TOTAL $178.90 | 31.06¢g

Page 61 of 123

Table 15: Parts Request 1

Qty. Part Num. Description Cost Cost
1 659 | FLORA Microcontroller $19.95 | $19.95
1 1059 | Flora GPS Module 39.95 39.95
1 2020 | Flora Accelerometer/Gyroscope/Magnetometer 19.95 19.95
1 | MSO206NR BUZZ PIEZO CIRC 23MM RADIAL 8.75 8.75
1 254 | MicroSD card breakout board+ 14.95 14.95
1 1697 | Bluefruit LE - Bluetooth Low Energy (BLE 4.0) 19.95 19.95
1 1485 | Flexible 6V 1W Solar Panel 24.95 24.95
1 390 | USB / DC/ Solar Lithium lon/Polymer charger - v2 17.50 17.50
1 1578 | Lithium lon Polymer Battery - 3.7v 500mAh 7.95 7.95

Table 16: Parts Request 2

Qty. Part Num. Description Cost Cost
2 | MSO206NR BUZZ PIEZO CIRC 23MM RADIAL $8.75 $17.50
2 102 | SD / MicroSD Memory Card 7.95 15.90
1 254 | MicroSD card breakout board+ 14.95 14.95
1 1697 | Bluefruit LE - Bluetooth Low Energy (BLE 4.0) 19.95 19.95
1 1578 | Lithium lon Polymer Battery - 3.7v 500mAh 7.95 7.95
1 641 | Conductive Thread 6.95 6.95
2] 0-135 Blizzard Champion Disc Golf - Orange, weight 135 13.99 27.98

Table 17: Master Budget
Date Iltem Amount
11/17/2014 | Initial Team Budget of $400 S 400.00
11/18/2014 | Parts Request Form 1 S (173.90)
1/20/2015 | Parts Request Form 2 $(111.18)
| Remaining balance: $ 114.92 |

7. Project Schedules (BL)

Midterm Report Gantt Chart

Page 62 of 123

Mame

Dur._| Begin date |Enddate| Members

T @ |Midterm Report

¢ @ 1. Problem Statement

@ PNeed Statement

@ (bjective Statement

¢ @ Research
& GPS

Micro Electromech...
Accelerometers
Gyroscopes
Magnetometer
Android Application
@ Flara Microcontroller

@ & & & @

@ Marketing Requiremen...

@ QObjective Tree
¢ @ 2 Design Reguirements ...

@ Engineering Requirem...
¢ @ 3 Accepted Technical Des..

@ HW Level 0 Block Diag...

HW Level 1 Block Diag...

HW Level 2 Block Diag...

SW Level 0 Block Diag...
SW Level 0 Functional ...
SW Level 1 Block Diag...
SW Level 1 Functional ...
SW Level 2 Block Diag...
@ SW lLevel 2 Functional ...
4. Project Schedules

5. Design Team Information
Midterm Design Presentat...
@ Slide Show

@ Presentation 2:15-4.00

@ @ @ & @ @ @ @ @ @

@ @& @

HW Level 0 Functional ...

HW Level 1 Functional ...

HW Level 2 Functional ...

40812514
35 8/25/14
68/29/14
318/20/14
26 8/20/14
26.8/29/14
26.829/14
26 8/29/14
26 8/20/14
26.8/29/14
169112114
25911114
6 O/5/14
18125114
6 9/5/14
6 O/5/14
22 0115/14
22915/14
22911514
27 9115/14
22 0115/14
22915/14
22911514
99/29/14
90/29/14
99/29/14
109/29/14
109/29/14
109/29/14
37 8/25/14
1812514
41014114
31011414
1101714

10M7M4 ALL
1010114 ALL
/514 CW
10M0M14 CW
10314 CW
100314
100314
100314
100314
100314
10514 NS
10/5M14 NS
91214 ALL
82514 CwW
anMz2n4 ALL
924 ALL
1011414
101414 CW
101414 CWY
101414 CW
101414 CW
101414 CW
10M4M14 506G, CW
10/9M14 CW
10/9M14 NS
10/9M14 N3
10M2M14 NS
10M2M14 NS
10M2M14 NS
10/1414 BL
8/25M4 ALL
10M7M4 ALL
10M6M4 ALL
107114 ALL

—
b2

Page 63 of 123

Final Report Gantt Chart

Name |Dur...| Begin date |Enddate| Members
? @ Final Report 108 8/25/14 12115 ALL
? @ 1. Problem Statement 60 8/25/14 1115114 ALL
@ MNeed Statement 682914 9/514 CwW
@ Objective Statement 318/29M14 10M0/14 CW
@ Modification of Projec... 11101714 10031114 CW
? @ Research 56 8/29/14 1115/14 CW
@ GPS 26 8/29/14 101314
@ Micro Electromec... 26 8/2914 10314
@ Accelerometers 268/2914 10314
@ GyIosScopes 26829114 100314
@ Magnetometer 268/29/14 100314
@ Android Application 1691214 100314 NS
@ Flora Microcontrol... 259114 10314 NS
@ Serial Interfaces 1101714 101714 NS
@ Universal Asynch.... 1101714 101714 NS
@ Serial Peripheral ... 2111314 11M5/14 NS
@ |nter-Integrated C... 111M3M4 111314 NS
@ Marketing Requirem... 69514 aM2M4 ALL
@ Objective Tree 1812514 8/25114 CW
@ 2 Design Requirements... 69514 aM2M4 ALL
¢ @ 3 Accepted Technical D... 99 9/5/14 12115 ALL
@ HW Level 0 Block Dia... 22 89M5/14 10M4/14 CW
@ HW Level 0 Function... 2291514 10M4/14 CW
@ HW Level 1 Block Dia... 229M5/14 10M4/14 CW
@ HW Level 1 Function... 229M5/14 10M4/14 CW
@ HW Level 2 Block Dia... 229M5/14 10M14/14 CW
@ HW Level 2 Function... 22915114 1014114 5G, CW
@ Tracking Device Sch... 511/2414 11128114 5G, CW
@ Piezoelectric Buzzer 11112414 11124114 5G
@ Power Calculations 3101514 10M7M14 5G
o Global Positioning Sy.. 211/26M4 [11/26/14 |CW
? @ Inertial Measurment ... 69/5114 91214 CW
@ Engineering Req... 69514 aM2M4 ALL
@ Hardware Mounting 111/2414 11124114 SG
@ Weight Experiment 2111314 1115114 CW
@ MicroSD Card Break:... 1111714 12MM14 BL
@ Bluetooth 11 11M7M4 12MM4 BL
@ SW Level 0 Block Dia... 99/29M14 10/9M14 CW
@ SV Level 0 Function... 99/29/14 10/9M14 NS
@ SW Level 1 Block Dia... 99/29/14 10/9M14 NS
@ SW Level 1 Function... 10 9/2914 10M0/14 NS
@ SW Level 2 Block Dia... 108/29/14 10M0/14 NS
@ SW Level 2 Function... 10 9/29/14 10M0/14 NS
@ Microsontroller Contr... 112115 12115 NS
@ 4 Parts List 12111314 1118114 3G, BL
? @ b5 Project Schedules 67 9114 12/2M4 BL
@ Midterm Report 19114 aMM4 BL
@ Final Report 212114 121214 BL
@ . Design Team Informat... 18/25M14 al25M4 ALL
@ 7. Conclusions & Recom... 2112714 11/28M14 3G
@ B References 11112714 11127114 ALL
@ 9 Appendices 21112714 11128114 ALL
o= @ Midterm Design Present... 410M4M14 1011714 ALL
¢ @ Final Design Presentation 412114 121414 ALL
@ Slide Show 312114 121314 ALL
@ Presentation 2:15-4:00 11214114 12/414 ALL

Page 64 of 123

Project Design Gantt Chart

4

& » Zoom In | Zoom Out Today ~ | — Past | Future — Show critical path | Baselines...
) |
- =
leek 3 k/\feakﬂ kNaekS k}\teekﬁ k/\teek? k/\feaka kNaekS k}\leekm \/\teekﬂ k/\feamz kNaakﬂE kNeekM \/VEEK15 k/\feak

project

Name |Beg|n d'| End date 1MAMG 11815 1/25M5 2MHS 20815 21515 212215 IHHE 3815 31515 3/22M5 3/2015 4515 FH2
= ¢ Hardware 1/12/15 3/5/15 4 N
= ¢ Testing 1/12/15 1/29/15 | | pr————
® Bluetooth 1/12/15 1/23/15 ||
° GPS 1/12/15 1/16/15 |
e Accel 1/19/15 1/29/15 I
¢ Micro SD 1/19/15 1/29/15 [
° Buzzer 1/19/15 1/23/15 ——
= © Development 1/19/15 2/19/15 || | —
* Bluetooth 1/26/15 2/19/15 4 |
® GPS 1/19/15 1/30/15 [I
° Accel 1/30/15 2/13/15 [—
¢ Micro 5D 1/30/15 2/13/15 /]
® Buzzer 1/26/15 1/30/15
¢ Mount Compo... 2/24/15 3/5/15 | —
=2 ¢ Software 1/19/15 3/6/15 L4 N
° Interface 1/19/15 1/30/15 | E——
® Bluetooth Conn... 2/20/15 2/23/15
* Bluetooth Data ... 2/24/15 3/6/15 [
@ GPS Interface 2/2/15 2/13/15 |
© GPS Test Points 2/16/15 2/20/15 —
@ Testing 3/9/15 3/13/15 [—
* Debugging 3/16/15 3/27/15 /T
* Finalizations 3/30/15 4/10/15 | E—

8. Design Team Information (SG, BL, NS, CW)

Team Member Position Major

Shane Gamble Hardware Manager Electrical Engineering
Brandon Linhart Archivist Computer Engineering
Noah Sanor Software Manager Computer Engineering
Christian Wallenfelsz Project Leader Electrical Engineering

9. Conclusions & Recommendations (CW, BL)

The goal of the project was to design a device which could be attached to a disc and help
locate it after it was thrown. The final implementation could locate the disc and it could display
the flight path of the disc on the app. The project was a complete success. There were power
issues which did not allow every component to be powered, write to the SD card, and read from
the GPS. The power issue limited the amount of data which could be recorded during a flight.
Therefore, metrics about a throw were trimmed down to determine total throw distance and angle

of throw relative to the hole.

Page 65 of 123

The team members involved in this project have decided on few recommendations which
could improve on implementation; given additional budget or desire to market this product. For
instance, the electrical components could have been eliminated and replaced with a custom
designed component containing each of their required functions. This would help in eliminating
cost, as well as the need to distribute the weight evenly over the disc. Additionally, this would
eliminate the exposed wires between components on the underside of the disc. Further, the
single component could be enclosed under a protective layer, which would increase durability

from landing shock and defend against moisture.

Page 66 of 123

10. References

Acharya, R. (2014). 1.3. Referencing A Position. In Understanding Satellite Navigation.
Academic Press.

Adafruit Industries, “Getting Started with FLORA,” Adafruit Flora datasheet, June 2014.

Bartlett, D. (2013). Essentials of Positioning and Location Technology. Cambride University
Press.

Chen, X., Parini, C., Collins, B., Yao, Y., & Rehmen, M. (2012). History of GNSS. In Antennas
for Global Navigation Satellite Systems. John Wiley & Sons.

J. Liu and J. Yu, "Research on Development of Android Applications," in Intelligent

Jones, T., & Nenadic, N. (2013). Electromechanics and MEMS. Cambride University Press.

Kleppner, D., & Kolenkow, R. (2013). 8.3 Gyroscopes. In An Introduction to Mechanics (2nd
ed.). Cambride University Press.

Networks and Intelligent Systems (ICINIS), 2011 4th International Conference on, pp.69-
72, 1-3 Nov. 2011. doi: 10.1109/ICINIS.2011.40

T. Lindholm, F. Yellin, G. Bracha and A. Buckley, The Java® Virtual Machine
Specification, 7th ed., Redwood City, California: Oracle America, Inc., 2013, p. 1-2.

Petrovski, 1. (2014). GNSS ground and space segments. In GPS, GLONASS, Galileo, and
BeiDou for Mobile Devices. Cambride University Press.

Untitled diagram of ECEF coordinate system. Retrieved October 1, 2014 from

http://upload.wikimedia.org/wikipedia/commons/6/6b/ECEF.png

Page 67 of 123

http://upload.wikimedia.org/wikipedia/commons/6/6b/ECEF.png

11. Appendices

Table 18: Component Datasheet Links

Ref. Part
Des. Name Datasheet Link
U1 | controller]:'::rgs;)/g:cearn.adafrwt.com/downIoads/pdf/gettlng—started-W|th-

http://www.adafruit.com/datasheets/GlobalTop-FGPMMOPAGH-
Datasheet-VOA.pdf

U3 | IMU Chip | http://www.adafruit.com/datasheets/LSM9DSO0.pdf

U2 | GPS Chip

Pi

P1 BL::; http://www.mallory-sonalert.com/specifications/MSO206NR.PDF
B

U6 C;;Z;yr http://www.adafruit.com/datasheets/MCP73871.pdf

https://www.adafruit.com/images/product-
B1 Battery | files/1578/C1854%20PKCell%20Datasheet%20Li-
Polymer%20503035%20500mAh%203.7V%20with%20PCM.pdf

GPS and SD card test Arduino sketch code (midterm_GPS_demo) (CW)

#include <SD.h>
#include <SPI.h>
#include <Wire.h>

void notify(void);

/INMEA command sentences

#define PMTK_SET_NMEA_ OUTPUT_RMCONLY "$PMTK314,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*29\r\n"
#define PMTK_SET_NMEA _UPDATE_5HZ "$PMTK220,200*2C\r\n"

#define PMTK_SET_NMEA_BAUDRATE "$PMTK?251,115200*1F\r\n"

#define PMTK_API_SET_FIX_CTL 5HZ "$PMTK300,200,0,0,0,0*2F\r\n"

/I SD card utilities

Sd2Card card;

SdVolume volume;

SdFile root;

const int CS = 10; // use 10 for Adafruit product
File fp;

volatile unsigned int loops = 0;
void setup()

/I NOTE: RECONNECT GPS EACH test time.
/I the baudrate needs to reset on the GPS

pinMode(7,0UTPUT);

Page 68 of 123

digitalWrite(7,LOW);

char c; // this char is for reading GPS

Serial.begin(115200);
delay(5000);
Seriall.begin(9600);
delay(5000);

/I Delay 120 seconds for GPS to get a fix
delay(120000);

/I configure the GPS
Seriall.write(PMTK_SET_NMEA_OUTPUT_RMCONLY);
Serial.printIn("\nGPS set to RMC sentences only");
delay(4000);
Seriall.write(PMTK_SET_NMEA_BAUDRATE);
Serial.printIn("\nGPS baudrate set to 115200");
delay(4000);

Seriall.end();

delay(4000);

Seriall.begin(115200);

delay(5000);
Seriall.write(PMTK_API_SET_FIX_CTL_5HZ);
Serial.printIn("\nGPS Fix rate changed to 5 Hz");
delay(4000);
Seriall.write(PMTK_SET_NMEA_UPDATE_5HZ);
Serial.printIn("\nGPS set to send location at 5 Hz");
delay(4000);

notify();

/I SD.begin(CS);
/I licreate GPS log on the SD card

/I if ('SD.begin(CS))

/I Serial.printIn("\nSD card init failure™);
/I else

/I Serial.printIn("\nSD card init success");

delay(3000);

Il Il checks for GPS log, removes and creates new if it exists
/I if (SD.exists("GPS_LOG.txt"))

Il {

/I SD.remove("GPS_LOG.txt");

/I Serial.printin("\nremoved old GPS_LOG.txt");
/I delay(100);

/I fp = SD.open("GPS_LOG.txt", FILE_WRITE);
/l'}

/I else

/I fp = SD.open("GPS_LOG.txt", FILE_WRITE);
1l

/I delay(100);

/I Serial.printIn("\ncreated GPS_LOG.txt");

I

Page 69 of 123

/I delay(1000);

/I writes 8000 characters to SD card
/[Serial.printIn(*\nabout to read GPS...");
while(loops < 30000)

if (Seriall.available())

¢ = Seriall.read();
/[fp.write(c);
loops++;
Serial.write(c);
}
}

delay(100);
/Ifp.close();
Serial.printIn("\ndone reading GPS");

digitalWrite(7,HIGH);
} // end setup

void loop()
{

}
void notify(void)
{

int limit=0;

while(limit < 6)

{
digitalWrite(7,HIGH);
delay(300);
digitalWrite(7,LOW);
delay(300);
limit++;

IMU Arduino sketch test code (midterm_IMU_demo) (CW)

#include <Wire.h>

#define Ism_accmag (0x1D) // accelerometer and magnetometer have same address
#define Ism_gyro (0x6B) // gyro address

/I accelerometer registers

#define WHO_AM_I| (0xOF)
#define CTRL_REGO_XM (0x1F)
#define CTRL_REG1_XM (0x20)
#define CTRL_REG2_XM (0x21)

Page 70 of 123

#define OUT_X L_A (0x28)
#define OUT_X_H_A (0x29)
#define OUT_Y_L_A (0x2A)
#define OUT_Y_H_A (0x2B)
#define OUT_Z L A (0x2C)
#define OUT_Z H A (0x2D)

/I magnetometer registers

#define CTRL_REG5_XM (0x24)
#define CTRL_REG6_XM (0x25)
#define CTRL_REG7_XM (0x26)
#define OUT_X_L_M (0x08)
#define OUT_X_H_M (0x09)
#define OUT_Y_L_M (0x0A)
#define OUT_Y_H_M (0x0B)
#defineOUT_Z L M (0x0C)
#define OUT_Z H_M (0x0D)

/I gyro registers

#define CTRL_REG1_G (0x20)
#define CTRL_REG4_G (0x23)
#define OUT_X_L_G (0x28)
#define OUT_X_H_G (0x29)
#define OUT_Y_L G (0x2A)
#define OUT_Y_H_G (0x2B)
#define OUT_Z L_G (0x2C)
#define OUT_Z H_G (0x2D)

/I prototypes for IMU init
void initGYRO(void);
void initACCEL(void);
void initMAG(void);

intled =7; // FLORA pin 7 is connected to LED (red)

/I sensitivity characteristics from Table 3 of LSM9DSO0 datasheet
float sensitivity A 2G =0.061;
float sensitivity_A_4G = 0.122;
float sensitivity A 6G = 0.183;

float sensitivity M_2G = 0.08;
float sensitivity_M_4G = 0.16;
float sensitivity M_8G = 0.32;
float sensitivity M_12G = 0.48;

float sensitivity G_245 = 8.75;
float sensitivity_G_500 = 17.5;
float sensitivity G_2K = 70;

I
I

void setup() {

Serial.begin(115200);

Page 71 of 123

initACCEL();
delay(1000);
iNitMAG();
delay(1000);
initGYRO():
delay(1000);

/I confirm successful init

pinMode(led, OUTPUT);

for (int i=0;i<10;i++) {
digitalWrite(led, HIGH);
delay(100);
digitalWrite(led, LOW);
delay(100);

/I identify device

unsigned int who = 0;
Wire.beginTransmission(lsm_gyro);
Wire.write(WHO_AM_);
Wire.endTransmission();
Wire.requestFrom(Ism_gyro, 1);
who = Wire.read();
Serial.printin(who);

digitalWrite(led, HIGH);

delay(2000);

} // end setup

1
1

void loop() {

unsigned int xI = 0;
int xh =0;
unsigned int yl = 0;
int yh =0;
unsigned int zl = 0;
int zh=0;
float x = 0;

floaty = 0;

float z = 0;

/I I read all the bytes from each accel register
/I Wire.beginTransmission(lsm_gyro);

/I Wire.write(OUT_X_L_G);

/I Wire.endTransmission();

/I Wire.requestFrom(lsm_gyro, 1);

/I Xl = Wire.read();

/I I/Serial.printIn(xI);

1

/I Wire.beginTransmission(lsm_gyro);

Page 72 of 123

/I Wire.write(OUT_X_H_G);

/I Wire.endTransmission();

/I Wire.requestFrom(lsm_gyro, 1);
/I xh = Wire.read();

/I I/Serial.printIn(xh);

1

/I Wire.beginTransmission(lsm_gyro);
/I Wire.write(OUT_Y_L_G);

/I Wire.endTransmission();

/I Wire.requestFrom(lsm_gyro, 1);
/I yl = Wire.read();

1

/I Wire.beginTransmission(lsm_gyro);
/I Wire.write(OUT_Y_H_G);

/I Wire.endTransmission();

/I Wire.requestFrom(lsm_gyro, 1);
/I yh = Wire.read();

1l

/I Wire.beginTransmission(lsm_gyro);
/I Wire.write(OUT_Z L G);

/I Wire.endTransmission();

/I Wire.requestFrom(lsm_gyro, 1);
/I zI = Wire.read();

1

/I Wire.beginTransmission(lsm_gyro);
/I Wire.write(OUT_Z H_G);

/I Wire.endTransmission();

/I Wire.requestFrom(lsm_gyro, 1);
/I zh = Wire.read();

1l

/I /I form all the measurements from 2's complement
/I xh <<= 8;

Il xh |=xl,

/I x = xh * sensitivity G_245;

/I x /= 1000;

Il 1Ix *=9.81,;

1

/I yh <<=8;

Il yh |=yl;

/I 'y = yh * sensitivity G_245;

/Iy I=1000;

Il Iy *=9.81,;

1l

Il zh <<= 8;

/I zh |= zl,

/I z = zh * sensitivity_G_245;

/I z /=1000;

/I 1z *=9.81;

I

/I Serial.print(x);

/I Serial.print(",");

/I Serial.print(y);

/I Serial.print(",");

/I Serial.printin(z);

1

Page 73 of 123

I

/I Il read all the bytes from each mag register
/I Wire.beginTransmission(lsm_accmag);
/I Wire.write(OUT_X_L_M);

/I Wire.endTransmission();

/I Wire.requestFrom(lsm_accmag, 1);

/I X1 = Wire.read();

1

/I Wire.beginTransmission(lsm_accmag);
/I Wire.write(OUT_X_H_M);

/I Wire.endTransmission();

/I Wire.requestFrom(lsm_accmag, 1);

/I xh = Wire.read();

1

/I Wire.beginTransmission(lsm_accmag);
/I Wire.write(OUT_Y_L_M);

/I Wire.endTransmission();

/I Wire.requestFrom(lsm_accmag, 1);
/Iyl = Wire.read();

1l

/I Wire.beginTransmission(lsm_accmag);
/I Wire.write(OUT_Y_H_M);

/I Wire.endTransmission();

/I Wire.requestFrom(lsm_accmag, 1);

/I yh = Wire.read();

1l

/I Wire.beginTransmission(lsm_accmag);
/I Wire.write(OUT_Z_L_M);

/I Wire.endTransmission();

/I Wire.requestFrom(lsm_accmag, 1);

/I zI = Wire.read();

1

/I Wire.beginTransmission(lsm_accmag);
/I Wire.write(OUT_Z H_M);

/I Wire.endTransmission();

/I Wire.requestFrom(lsm_accmag, 1);
/I zh = Wire.read();

1l

/I /I form all the measurements from 2's complement
/I xh <<= 8;

/I xh|=xl,

/I x = xh * sensitivity_M_2G;

/I x /= 1000;

1

/I yh <<=8;

IIyhi=yl;

/Iy = yh * sensitivity M_2G;

/Iy I=1000;

1l

/l zh <<=8;

/I zh |= zl;

/I z = zh * sensitivity M_2G;

/I z /= 1000;

1

/I Serial.print(x);

Page 74 of 123

/I Serial.print(",");
/I Serial.print(y);

/I Serial.print(",");
/I Serial.printIn(z);

I
I

/I read all the bytes from each accel register
Wire.beginTransmission(lsm_accmag);
Wire.write(OUT_X_L_A);
Wire.endTransmission();
Wire.requestFrom(Ism_accmag, 1);

xI = Wire.read();

Wire.beginTransmission(Ism_accmag);
Wire.write(OUT_X_H_A);
Wire.endTransmission();
Wire.requestFrom(Ism_accmag, 1);

xh = Wire.read();

Wire.beginTransmission(lsm_accmag);
Wire.write(OUT_Y_L_A);
Wire.endTransmission();
Wire.requestFrom(lsm_accmag, 1);

yl = Wire.read();

Wire.beginTransmission(lsm_accmag);
Wire.write(OUT_Y_H_A);
Wire.endTransmission();
Wire.requestFrom(Ism_accmag, 1);

yh = Wire.read();

Wire.beginTransmission(lsm_accmag);
Wire.write(OUT_Z L_A);
Wire.endTransmission();
Wire.requestFrom(lsm_accmag, 1);

zl = Wire.read();

Wire.beginTransmission(lsm_accmag);
Wire.write(OUT_Z_H_A);
Wire.endTransmission();
Wire.requestFrom(Ism_accmag, 1);

zh = Wire.read();

/I form all the measurements from 2's complement
xh <<= 8;

xh |= xI;

X = xh * sensitivity_A_2G;

x /=1000;

X *=9.81;

yh <<= 8,

yh|=yl;

y = yh * sensitivity A_2G;
y /=1000;

Page 75 of 123

y *=9.81;

zh <<= 8§;

zh |= zl,

z = zh * sensitivity A 2G;
z /= 1000;

z*=9.81,;

Serial.print(x);
Serial.print(",");
Serial.print(y);
Serial.print(",");
Serial.printin(z);

/ldelay(10);
} // end loop

I
I

void initMAG(void) {

/I set default magnetometer settings
Wire.beginTransmission(lsm_accmag);
Wire.write(CTRL_REG7_XM);
Wire.write(0); // continuous conversion mode
Wire.endTransmission();

/I set magnetic sensitivity
Wire.beginTransmission(lsm_accmag);
Wire.write(CTRL_REG6_XM);
Wire.write(0); // 2g

/I Wire.write(0x20); // 49

/I Wire.write(0x40); // 8g

/I Wire.write(0x60); // 129
Wire.endTransmission();

/I set mag refresh rate
Wire.beginTransmission(lsm_accmag);
Wire.write(CTRL_REG5_XM);
Wire.write(0xC); // 25 Hz

/I Wire.write(0x10); // 50 Hz
Wire.endTransmission();

}

1
1

void initACCEL (void) {

/I set accelerometer to default use
Wire.beginTransmission(lsm_accmag);
Wire.write(CTRL_REGO0_XM);
Wire.write(0);
Wire.endTransmission();

Page 76 of 123

/I set accelerometer to output at 50 Hz
Wire.beginTransmission(lsm_accmag);
Wire.write(CTRL_REG1_XM);
Wire.write(0x57);
Wire.endTransmission();

/I set accelerometer to 2g scale
Wire.beginTransmission(Ism_accmag);
Wire.write(CTRL_REG2_XM);
Wire.write(0);
Wire.endTransmission();

}

I
I

void initGYRO(void) {

/I set gyro to default
Wire.beginTransmission(lsm_gyro);
Wire.write(CTRL_REG1_G);
Wire.write(OxOF); // 95 Hz
/IWire.write(0x67); // 190 Hz
Wire.endTransmission();

/I set gyro sensitivity
Wire.beginTransmission(lsm_gyro);
Wire.write(CTRL_REG4_G);
Wire.write(0); // 245 dps
//Wire.write(0x08); // 500 dps
/IWire.write(0x10); // 2K dps
Wire.endTransmission();

Bluetooth Arduino sketch test code (BL)

#include <SPI.h>
#include "Adafruit BLE_UART.h"

/I Connect CLK/MISO/MOSI to hardware SPI

// e.g. On UNO & compatible: CLK =13, MISO =12, MOSI =11
#define ADAFRUITBLE_REQ 9

#define ADAFRUITBLE_RDY 2 // This should be an interrupt pin
#define ADAFRUITBLE_RST 6

Adafruit_ BLE_UART BTLEserial = Adafruit. BLE_UART(ADAFRUITBLE_REQ,
ADAFRUITBLE_RDY, ADAFRUITBLE_RST);
/** /
[*!

Configure the Arduino and start advertising with the radio
*/

/**/

Page 77 of 123

void setup(void)

{
Serial.begin(9600);
while(!Serial); // Leonardo/Micro should wait for serial init
Serial.printin(F("Adafruit Bluefruit Low Energy nRF8001 Print echo demo"));

/ BTLEserial.setDeviceName("NEWNAME"); /* 7 characters max! */

BTLEserial.begin();
}

aci_evt_opcode _t laststatus = ACI_EVT_DISCONNECTED;
void loop()

/l Tell the nRF8001 to do whatever it should be working on.
BTLEserial.pollACI();

/I Ask what is our current status
aci_evt_opcode _t status = BTLEserial.getState();
/I If the status changed....
if (status != laststatus) {
/[print it out!
if (status == ACI_EVT_DEVICE_STARTED) {
Serial.printIn(F("* Advertising started"));
}
if (status == ACI_EVT_CONNECTED) {
Serial.printin(F("* Connected!"));
}
if (status == ACI_EVT_DISCONNECTED) {
Serial.printin(F(*"* Disconnected or advertising timed out"));
}
/I OK set the last status change to this one
laststatus = status;

by

if (status == ACI_EVT_CONNECTED) {
/I Lets see if there's any data for us!
if (BTLEserial.available()) {
Serial.print("* "); Serial.print(BTLEserial.available()); Serial.printin(F(" bytes available from
BTLE"));
}
/I OK while we still have something to read, get a character and print it out
while (BTLEserial.available()) {
char ¢ = BTLEserial.read();
Serial.print(c);

Page 78 of 123

¥

/I Next up, see if we have any data to get from the Serial console

if (Serial.available()) {
// Read a line from Serial
Serial.setTimeout(100); // 100 millisecond timeout
String s = Serial.readString();

/' We need to convert the line to bytes, no more than 20 at this time
uint8_t sendbuffer[20];

s.getBytes(sendbuffer, 20);

char sendbuffersize = min(20, s.length());

Serial.print(F("\n* Sending ->\"")); Serial.print((char *)sendbuffer); Serial.printIn("\""");

I/ write the data
BTLEserial.write(sendbuffer, sendbuffersize);

Final Project Arduino Sketch (CW, BL)

#include <Wire.h>

#include <SPI.h>

#include <EEPROM.h>

#include "Adafruit. BLE_UART.h"

/INMEA command sentences

#define PMTK_SET_NMEA_ OUTPUT_RMCONLY "$PMTK314,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*29\r\n"
#define PMTK_SET_NMEA_UPDATE_5HZ "$PMTK220,200*2C\r\n"

#define PMTK_SET_NMEA_UPDATE_2HZ "$PMTK220,500*2B\r\n"

#define PMTK_SET_NMEA_UPDATE_1HZ "$PMTK220,1000*1F\r\n"

#define PMTK_SET_NMEA_BAUDRATE "$PMTK?251,115200*1F\r\n"

#define PMTK_API_SET _FIX_CTL_5HZ "$PMTK300,200,0,0,0,0*2F\r\n"

#define Ism_accmag (0x1D) // accelerometer and magnetometer have same address
#define Ism_gyro (0x6B) // gyro address
/I accelerometer registers

#define WHO_AM_I (0xOF)

#define CTRL_REGO_XM (0x1F)

#define CTRL_REG1_XM (0x20)

#define CTRL_REG2_XM (0x21)

#define OUT_X_L_A (0x28)

#define OUT_X_H_A (0x29)

#define OUT_Y_L_A (0x2A)

#define OUT_Y_H_A (0x2B)

#define OUT_Z L_A (0x2C)

Page 79 of 123

#define OUT_Z H_A (0x2D)
I gyro registers

#define CTRL_REG1_G (0x20)
#define CTRL_REG4_G (0x23)
#define OUT_X L G (0x28)
#define OUT_X_H_G (0x29)
#define OUT_Y L G (0x2A)
#define OUT_Y_H G (0x2B)
#define OUT_Z L G (0x2C)
#define OUT_Z H_G (0x2D)

/I prototypes for IMU init

void initGYRO(void);

void initACCEL(void);

void bluetooth(void);

float getValue(int device, int reg_low, int reg_high, float scale);

intled =7; // FLORA pin 7 is connected to LED (red)

/I sensitivity characteristics from Table 3 of LSM9DSO0 datasheet
float sensitivity_A_2G = 0.00059841; //0.061 /1000 * 9.81
/[float sensitivity A_4G = 0.00119682; //0.122 /1000 * 9.81
/[float sensitivity A_6G = 0.00179523; //0.183 /1000 * 9.81

/[float sensitivity G245 = 0.00875; // 8.75 / 1000
/[float sensitivity G 500 = 0.0175; //17.5/ 1000
float sensitivity G_2K =0.070; //70/1000

volatile char c;

volatile unsigned int loops = 0;
volatile float ax = 0;

volatile float ay = 0;

volatile float az = 0;

volatile float gx = 0;

volatile float gy = 0;

volatile float gz = 0;

volatile char gps[80];
volatile int limit;
volatile int done;
volatile int blue;
volatile int index;
volatile int datadone;

volatile int index2;
volatile int count;

/I Connect CLK/MISO/MOSI to hardware SPI

/[e.g. On UNO & compatible: CLK =13, MISO = 12, MOSI =11

#define ADAFRUITBLE_REQ 9

#define ADAFRUITBLE_RDY 2 // This should be an interrupt pin, on Uno thats #2 or #3

#define ADAFRUITBLE_RST 6

Adafruit BLE_UART BTLEserial = Adafruit BLE_ UART(ADAFRUITBLE_REQ, ADAFRUITBLE_RDY,
ADAFRUITBLE_RST);

Page 80 of 123

void setup() {

Serial.begin(115200);

delay(5000);

Seriall.begin(9600);

delay(5000);

done = 0;

/I configure GPS
Seriall.write(PMTK_SET_NMEA_OUTPUT_RMCONLY);

/I Serial.printIn("\nGPS set to RMC sentences only");
delay(4000);
Seriall.write(PMTK_SET_NMEA_BAUDRATE);

/I Serial.printIn("\nGPS baudrate set to 115200");
delay(4000);

Seriall.end();

delay(4000);

Seriall.begin(115200);

delay(5000);
Seriall.writePMTK_API_SET_FIX_CTL_5HZ);

/I Serial.printIn("*\nGPS Fix rate changed to 5 Hz");
delay(4000);
Seriall.write(PMTK_SET_NMEA_UPDATE_1HZ);

/I Serial.printIn("\nGPS set to send location at 2 Hz");
delay(4000);

/I configure IMU
delay(1000);
initACCELY();
/I Serial.printIn(“accelerometer initialized");
delay(1000);
initGYRO();
/I Serial.printIn("gyro initialized");
delay(1000);

delay(90000);

index=0;

blue=0;

datadone=0;

/I Serial.printin("Entering loop");

for(int i=0;i<3;i++)
analogWrite(12,250);
delay(100);
analogWrite(12,0);
delay(100);

}

/[digitalWrite(led, HIGH);

}

Page 81 of 123

void loop()
{

gz = getValue(lsm_gyro, OUT_Z L G, OUT_Z H_G, sensitivity_G_2K); // perpendicular axis

/[Serial.printin(gy);

if ((gz < -1000) || (gz > 1000))

{ /I trigger threshold

/I Serial.printin("Throwing");

Serial.flush();
index2 = 0;
while(index2 < 750)

if (Seriall.available())
¢ = Seriall.read();

if (c=="%)
{
loops++;
count =0;
while (count < 45)
{
gps[count] =c;
if (Seriall.available())
{
¢ = Seriall.read();
count++;
gps[count] =c;

¥
//Serial.printin(gps);

if (gps[0]=="$) && (gps[1]=='C") && (gps[2]=="P") && (gps[3]=='R") && (gps[4]=='M") && (gps[5]=="C)
&& (gps[18]=="'A"))
{

//Serial.printin(gps);

count = 20;

EEPROM.write(index2, gps[0]);

index2++;

while (count < 44)

{
EEPROM.write(index2,gps[count]);
/[Serial.print(gps[count]);
count++;
index2++;

}

}
else if ((gps[0]=="%") && (gps[1]=="G") && (gps[2]=="P") && (gps[3]=="R’') && (gps[4]=='M") &&
(gpS[S]T'C‘) && (gps[18]=="V"))

//Serial.println(gps);

count = 20;
EEPROM.write(index2, gps[0]);
index2++;

while (count < 44)

EEPROM.write(index2, gps[count]);
/[Serial.print(gps[count]);

Page 82 of 123

count++;

index2++;
}
}
I else
1 delay(1);

//Serial.printIn();
//Serial.printIn();

¥

Il else
1 Serial.printin(c);
i

}
delay(5000);

delay(100);
I Serial.printIn("Setting bluetoothRDY to true");
blue=1;

delay(100);

if(blue==1)
{
I Serial.printin("BluetoothRDY is true™);
bluetooth();
done=0;

} // continue to check trigger variable
1

1

index = 0;

}

1
1

void bluetooth(void)

{
analogWrite(12,250);
delay(1000);
analogWrite(12,0);
delay(1000);

/I Serial.printIn("Now in the Bluetooth function™);
String r=""";
aci_evt_opcode_t laststatus = ACI_EVT_DISCONNECTED;

delay(1000);
Serial.printIn("Starting the Bluetooth™);
delay(500);

/I Serial.flush();
BTLEserial.setDeviceName("WMD3.0");
BTLEserial.begin();

Page 83 of 123

while(true)

{

//Serial.printIn(""In while done==false stage");

BTLEserial.pollACI();
/I Ask what is our current status
aci_evt_opcode_t status = BTLEserial.getState();
/I If the status changed....
if (status != laststatus)
{
I/ print it out!
if (status == ACI_EVT_DEVICE_STARTED) {
1 Serial.printIn(F("* Advertising started"));
}
if (status == ACI_EVT_CONNECTED) {
I Serial.printin(F("* Connected!"));
}
if (status == ACI_EVT_DISCONNECTED) {
I Serial.printIn(F("* Disconnected or advertising timed out™));
}
/I OK set the last status change to this one
laststatus = status;

if (status == ACI_EVT_CONNECTED)
{

if(datadone==0)

{
for(int i=0;i<15;i++)

char w = char(EEPROM .read(index));
r=r+w;
index++;

¥
if(index>750)
{
datadone=1,
r="$FF"
}
Strings=r;
uint8_t sendbuffer[30];
s.getBytes(sendbuffer, 30);
char sendbuffersize = min(20, s.length());
1 Serial.print(F("\n* Sending ->\""));
1l Serial.print((char *)sendbuffer); Serial.printin("\"");
BTLEserial.write(sendbuffer, sendbuffersize);

if(datadone==1)
analogWrite(12,250);

Page 84 of 123

delay(200);
analogWrite(12,0);
delay(10000);

}

}

else

analogWrite(12,250);
delay(500);
analogWrite(12,0);
delay(500);

}

} /lend while(done==false)
} /lend bluetooth() function

void initACCEL (void) {

/I set accelerometer to default use
Wire.beginTransmission(lsm_accmag);
Wire.write(CTRL_REGO0_XM);
Wire.write(0);
Wire.endTransmission();

/I set accelerometer to output at 50 Hz
Wire.beginTransmission(lsm_accmag);
Wire.write(CTRL_REG1_XM);
Wire.write(0x57);
Wire.endTransmission();

/I set accelerometer to 2g scale
Wire.beginTransmission(lsm_accmag);
Wire.write(CTRL_REG2_XM);
Wire.write(0);
Wire.endTransmission();

}

I
I

void initGYRO(void) {

/I set gyro to default
Wire.beginTransmission(lsm_gyro);
Wire.write(CTRL_REG1_G);
Wire.write(0X0F); // 95 Hz
//Wire.write(0x67); // 190 Hz
Wire.endTransmission();

/I set gyro sensitivity
Wire.beginTransmission(lsm_gyro);
Wire.write(CTRL_REG4_G);
//Wire.write(0); // 245 dps
//Wire.write(0x08); // 500 dps
Wire.write(0x10); // 2K dps

Page 85 of 123

Wire.endTransmission();

}

I
I

float getValue(int device, int reg_low, int reg_high, float scale) {
unsigned int low = 0;
int high = 0;
float value = 0;

Wire.beginTransmission(device);
Wire.write(reg_low);
Wire.endTransmission();
Wire.requestFrom(device, 1);
low = Wire.read();

Wire.beginTransmission(device);
Wire.write(reg_high);
Wire.endTransmission();
Wire.requestFrom(device, 1);
high = Wire.read();

high <<= 8§;
high |= low;
value = high * scale;
return value;

Page 86 of 123

Final Project App Code (NS)

Page 87 of 123

CihUsersiBLinharf\Documants\GitHUbWMOWY MDapplsremainijavaicomtexamplaisdpl TwmdiDEHelper. java

package com.example sdpll.wmd:

import android.content.Context;

impart android.datahase.Cursor:

import android.database.sqlite.30LiteDatabase:;
impart android.datahase.sqlite.S0LiteOpenHelper;

Jf*.*
* Lreated by Student on /2772015,
=/
public class DBHelper extends S0Lite0penHelper {
public static final String TAELE_THROWS = "throws";

public static final String COLUMN_THROW 1D = "throw_id";

public static final String COLUMN_HOLE 1D = "hele_id";

public static final String COLUMN_GAME_ID = "game_id";

public static final String COLUMN_START LAT = “starting_latitude™

public static final String COLUMN_START_LONG = "starting_longitude™;

public static final String COLUMN_END _LAT = "ending_latitude™

public static final String COLUMN END LONG = "ending_langitude™:

public static final String COLUMN_START_ACCEL_X = "starting_x_acceleration™;
public static final String COLUMN START ACCEL Y = "starting_y_acceleration™
public static final String COLUMN _START TIME = "starting_time":

public static final String COLUMN END TIME = "ending_time":

public static final String COLUMN_SYNC_TIME = "sync_time":

public static final String TABLE_CALC = "calc_data";

public static final String COLUMN_INITIAL_DIRECTION = “initial_direction”;
public static final String COLUMN_FINAL_DIRECTION = *final_direction";
public static final String COLUMN_TOTAL DISTANCE = "total_distance”;
public static final String COLUMN_THROW _INTEGRITY = "throw_integrity";
public static final String COLUMN_TOTAL TIME = "total_time";

private static final String DATABASE_NAME = "throw_data.db™;
private static final int DATAEASE_VERSION =1

private static final String THROWSE _DATABASE _CREATE = "create table "
+ TABLE_THROWS + " ("
+ COLUMN_THROW _ID
+" integer primary key autoincrement, "
+ COLUMN HOLE 1D + " integer not null, "
+ COLUMN _GAME 10+ " integer not null,
+ COLUMN_START LAT + " double not null, "
+ COLUMN_START LONG + " double not null, ™
+ COLUMN_END_LAT + " double not null, "
+ COLUMN_END_LONG + " double not null, ™
+ COLUMN_START_ACCEL_X + " double not null, ™

Page 1

File - C:\Users\BLinhar\Documeants\GitHUb WMDWMDappisreimainijavalicomiexampletsdpl 1wmd\DEHelper.java

al
al
aZ
ad

+ COLUMN_START ACCEL Y + " double not null, "
+ COLUMN START TIME + " integer not null, "

+ COLLUMN _END TIME + " integer nat null, ™

+ COLUMN_SYNG TIME + " integer not null"

+ "

private static final String CALC_DATABASE CREATE = "create table "
+ TABLE CALC +" ("
+ GOLUMN_THROW D
+" integer primary key autoincrement, "
+ GOLUMN_INITIAL_DIRECTION + " integer not null, "
+ COLUMN_FINAL DIRECTION + " integer nat null, "
+ GOLUMN_TOTAL DISTANCE + " double not null, "
+ COLUMN_THROW INTEGRITY + " double not null, "
+ COLUMN TOTAL TIME + " double not null"
£y

public DBHelper(Context context) {
super(context, DATABASE NAME, null, DATABASE_VERSION):
}

@0verride

public void onCreate(S0LiteDatabase dhb) {
db.exec3AL("DROP TABLE IF EXISTS " + TABLE THROWS):
db.execSOL(THROWS DATABASE CREATE):
db.execSOL("DROP TABLE IF EXISTS " + TABLE CALC)
db.execSAL(CALC_DATABASE CREATE):

!

Elverride

public void onllpgrade(S(iLiteDatabase db, int oldVersion, int newVersion) {
db.execSOL("DROP TABLE IF EXISTS " + TABLE_THROWS);
onCreate(dh);

}

Page 2

File - C:\Users\BLinhar\Documeants\GitHubWMDW MDapplsreimainijavaicomiexamplaisdp1 1wmdi TotalsData java

| package com.example.sdpll.wmd:

3

3 /fn'-‘R

4 *Created by nsanor an 2/10/2015.
G

B public class TotalsData {
7 //dverage distance. angle. sync counter io differentiate throws, etc.
8 //lUsed as a global variable.

8 //lreate all as static variables.

I0 static private double averageDistance;

Il static private double averagedngle:

17 static private int synclount;

13

14 public static void loadTotalsData() {
5 averagelistance = [0

& }

17

18 public static double getAverageDistance() {
19 return averagelistance:

0 1}

il

77 public static void sethverageDistance(double averageDistance) {
Y TotalsData.averagelistance = averagelistance:

4}

Yl

26 public static double getAverageAngle() {
bil return averageAngle;

i

29

30 public static void setAverageAngle(double averagedngle) {
3l TotalsData.averagedngle = averagedngle;

3}

a3

34 public static int getSyncCount() {
35 return syncCount;
K-

38 public static void setSyncCount{int syncCount) {
3 TotalsData.syncCount = syncCount;

40}

4 1

Page 1

File - C:\Users\BLinhar\Documeants\GitHUbWMDWMDapplsreimainijavaicomiexamplaisdpl VwmdiMapFragment. java

package com.example sdpll.wmd:

|

?

3

4 import android Iocation Locatian:

3 import android.os Bundle;

B import android.app.Fragment;

T import android.util Log;

H import android view.Layoutinflater;

9 import android.view.View:;

|0 import android.view.ViewGroup;

Il import android.widget Button;

17 import android.widget. TextView:

i

14 import com.google.android gms.commaon.GooglePlayS ervicesNotAvailableExcaption:
15 import com.google.android. gms.maps.CamerallpdateFactory;
IE import com.google.android gms. maps.GoogleMap:

|7 import com.google.android gms maps MapView;

|8 import com.google.android gms. maps Maps|nitializer:

|3 import com.google.android gms.maps.model BitmapDescriptorFactary:
20 import com.google.android.gms.maps.model. CameraPosition;
2| impart com.google.android gms.maps model Dircle;

27 import com.google.android gms.maps.model CircleOptions:
23 import com.gongle.android gms.maps.model LatLng;

24 import com.google.android. gms.maps.model LatLngBounds:
75 import com.google.android. gms.maps.model Marker;

26 import com.google.android.gms.maps.model MarkerOptions:
i

28 import java.util Stack:

3l s

32 " A simple {{Elink fragment} subclass.

a s

34 public class MapFragment extends Fragment {

36 double latitude = 41.13747;

37 double longitude = -B1.47430700000001;
38 LatlngBounds bounds:

33 private Circle circle;

4 private MapView mapYiew:

47 private GoogleMap googleMap:
43 private CameraPosition cp:
44 private Button mode:

45 private Button undo:

46 private TextView label;

48 private boolean planning = false;

Page 1

File - C:\WUsers'BLinhariDocuments\GitHub W MDWMDlapplsreimainijavalcomiexample\sdp TwmdMapFragment java

al
al
a7
ad
4
ai

public MapFragment() {
// Required empty public constructor

}

[@lverride
public void onCreate(Bundle savedinstanceState) {
super.onCreate(savedinstanceState);

}

E0verride
public View onCreateView(Layoutinflater inflater, ViewlGroup container,
Bundle savedinstanceState) {

View view = inflater.inflate(R layout.fragment_map. container. false);
/7 Gets the MapView from the XML layout and creates it
mapiew = (MapView) view findViewByld(R.id. mapview);
mapView.onCreate(savedinstanceState);
mapView.onResumel);

final Stack<Marker> markerStack = new Stack<Marker=();

mode = (Buttan) view findViewByld(R.id button_mode);
undo = (Button) view.findViewByld(R.id button_undo):
label = (TextView) view findViewByld(R.id. mode_label):

if(planning) {
undo.setVisibility(View VISIBLE):
|abel.setText("Planning Mode");
}

mode.setnClickListener(new View.OnClickListener() {
Elverride
public void onClick(View view) {
if(Iplanning) {
undo.setVisibility(Yiew VISIBLE):
label.setText("Planning Mode");
planning = true;
}
else {
undo setVisibility(View INVISIBLE):
label.setText("Narmal Made™):
planning = false:
}
}
:

undo.setOnClicklistener(new View OnClicklistener() {
[E0verride
public void onClick(View view) {

Page 2

File - C:\WUsers'BLinhariDocuments\GitHub W MDWMDlapplsreimainijavalcomiexample\sdp TwmdMapFragment java

1
oo
lif
102
in3
04
I0a
106
07
08
109
I

Il
12
113
114
I
116
7
i3
119
120
2
122
123
124
123
126
127
128
129
130
131
132
133
134
135
136
137
138
131
140
14
142
143
44
45
146
147

H
/
H
/

if (ImarkerStack empty()) {

//Remave last marker that was placed

Marker marker = markerStack.pop();

marker.remove():

//Remove the circle for that marker

if(circle = null) circle.removel);

/et the next to (ast marker and re-add circle

if (ImarkerStack.empty()) {
marker = markerStack.pop();
plotRadius(marker.getPosition(), TotalsOata.getAverageDistance()):
markerStack.push{marker);

}

}
}
i

try {
MapsInitializer.initialize(getActivity().getApplicationCantext():
} catch (Exceptione) {
e.printStackTrace():

}

googleMap = mapView.getMap();
Location mCurrentLocation = MainActivity.getmCurrentLacation();

A/ latitude and longitude

ifimCurrentlocation = null) {
latitude = mCurrentlocation.getlatitude!):
langitude = mCurrentlocation.getLongitudel):

}

//calculateBounds():
googleMap.setlnMapClickListener(new GoogleMap.OnMapClickListener() {

[@0verride
public void onMapClick(LatLng paint)
//lstlatlngs.add(point):
if(planning) {
Marker marker = plotUserPaint(point):
markerStack push(marker):
}
}
I

plotPoint(new Latlng(41 075850 -BL513317), false):
plotPoint(new Latlng(4(073867 -B15I3300), false);
plotPoint(new Lailng(4{ 075867, -8L513500). false):
plotPoint(new Latlng(41 075850 -8 513785), false):

Page 3

File - C:\WUsers'BLinhariDocuments\GitHub W MDWMDlapplsreimainijavalcomiexample\sdp TwmdMapFragment java

148 /7 piotPoint(new latlng(4/ 075867 -8 513267). false):
149 /7 plotPoint(new Lailng(4{ 075850 -BL515267). false):
a0 /4 plotPoint(new Latlng(4(075850 -BL5152500), false):
lal /7 plotPoint(new Latlng(4/ 075850, -8 515735). false):
102 4/ plotPoint{new Latlng(4L 075867, -81513233), false):
183 4/ plotPointinew Latlng(4L 075867 -B1513233) false):
[9d

93 4/ 4075850 -81513233

a6 /41075850 -81 513233

lal /4 4075867 -51513250

158 /4075850 -81513233

199 4/ 4075850 -81515250

60 7/ 41075867 81513250

I8l /4 41075867 -8 513250

62 7/ 41075867 81513250

83 4/ 41075887 81513250

B4 /7 4075887 -BL513250

85 // 41075867 -B1515250

66 // 41075867 -81515250

8T /7 4075887 -BL5I3250

188 // 41075887 -B1513250

89 // 4I075867 -BI5I3767

10 /7 4075887 -BLAI3Z67

M /7 41075887 -81 513283

172 /7 4075887 -BL5I3783

173 /7 4075867 -B1513300

174 £/ 4(075867 -B1513317

ITa /7 4075850 -Bi5I3317

6 /7 4075850 -8i513335

177 /7 41075850 -8BL513350

178 /7 4075850 -8l5I3367

719 47 4075850 -Bi513583

180 4/ 41075850 -8515383

81 2 41075850 -81L.513400

182 4/ 41075850 -81 513417

183 /7 41075835 -B1513438

184 A/ 4075833, -B1 513450

185 /41075850 -B1515487

B8 // 41075850 -BI 515487

187 /7 41075850 -81 515485

188 /7 41075850 -BL5I3500

189 // 41075850 -BLAI3517

B0 /4 41075850 -BL5I557

9 £ 41075850 -Bl5I5533

192 /7 41075850 -8l 513550

193 // 41075850 -BlL5I3550

94 4/ 4075850 -B1 513567

93 4/ 41075850 -8L513567

96 // 41075850 -8Bl 513583

Page 4

File - C:\WUsers'BLinhariDocuments\GitHub W MDWMDlapplsreimainijavalcomiexample\sdp TwmdMapFragment java

197 /7 41075833 -B1 513583

198 /7 41075850 -B1513600

83 A 4075850 -B1513600

200 /7 41075850 -81513617

0 /4 4075835, -B15I3617

mz A7 41075850 -BLAISE3S

08 A4 4075850 81515633

04 /7 4073850 -81513633

05 /7 41075850 81513653

206 4/ 41075867 -8L 513650

07 #/ 4L075850 -61.515650

208 47 41075850 -B1513667

08 /7 41075833, -BL515667

A0 27 4075817, -B1 513667

A7 41075817 -81 513667

22 /47 4075800 -81513667

A3 47 4075783, -BL5I3667

N4 A7 41075767 -B1513667

A5 A7 4075750, -8L5I15667

28 /7 41075750 -B1 515683

i1 27 4075738 -BLOISEES

28 /7 41075717 -B1 513683

29 /7 41075700 -8L5I15685

||

2 goagleMap.setMaplype(GoogleMap MAP TYPE_HYBRID):
127 //Camerallpdate cu = Camerallpdatefactory.newl atlngBounds(bounds, 0):
123 /7 LameraPosition cameraPosition = new CameraPosition. Builder()

Yy target{new Latlng{latitude, langitude)). zoom(14).build():

275 CameraPosition cameraPosition = new CameraPosition.Builder()

176 Aarget(new LatLng(41.075850, -81.513317)).z00m{googleMap.getMaxZoomlevel ()} build{);
277 googleMap.animateCamera(CamerallpdateFactory

278 .newlameraPosition(cameraPasition));

79

230 return view;

noy

232

233 @lverride
234 public void onResume() {

235

736 super.onfesume();

237 mapView.onResume():

238

738 Maps|nitializerinitialize(getActivity()):

240

24| if {cp != null) {

242 googleMap.moveCamera(CameralpdateFactory.newCameraPosition(cp));
243 ep = null;

244 1

745 else Log.e(", "Not saved");

Page 5

File - C:\WUsers'BLinhariDocuments\GitHub W MDWMDlapplsreimainijavalcomiexample\sdp TwmdMapFragment java

24B
247
248
249
250
2al
252
203
254
209
256
207
208
209
260
261
262
263
264
265
266
267
268
268
270
20
1
3
274
275
276
il
278
7
280
2
82
283
284
285
288
87
288
289
290
2
292
293
294

}

illverride
public void onSavelnstanceState(Bundle outState) {
super.ondavelnstanceState(outState);

}

Alverride

public void onPause() {
mapView.onPause();
super.onPausel);

cp = googleMap.getCameraPosition();
/7 googleMap = null

}

private void calculateBounds() {
//Add farmula to calculate distance between lat and lang lines at current location
S/ Want =& mile bounds (8.4 km)
//Abaut B3km hetween lines on average
A/ Abaut (2 degress for bounds, (L6 an either side
LatLng nartheast = new LatLng(latitude + 0.OB, longitude + 0.0B);
Latlng southwest = new LatLng(latitude - 0.08, longitude - 0.06);
LatlngBounds. Builder builder = new LatLngBounds Builder();
builder.include(northeast);
builder.include(sauthwest):
bounds = builder build():

}

private Marker plotPoint(LatLng point, boolean user) {
// create marker
Marker(ptions marker = new Marker(ptions().position(paint);

ifluser) {
/¥ Changing marker icon
marker.icon{BitmapDescriptorFactory
AdefaultMarker (BitmapDescriptorFactory HUE_BLUE)):

else marker.icon(BitmapDescriptorFactory defaultMarker(BitmapDescriptorFactory HUE_RED)):

Marker newMarker = googleMap addMarker(marker):
return newMarker:

}

private Marker plotlserPoint{LatLng point) {
Marker newMarker = plotPoint(point. true):

Page &

File - C:\WUsers'BLinhariDocuments\GitHub W MDWMDlapplsreimainijavalcomiexample\sdp TwmdMapFragment java

295 if(cirele = null) circle.remave():

296

97 plotRadius(point, TotalsData getAveragelistance()):
298

299 return newMarker;

o 3

30

302 private void plotRadius(LatLng point, double radius) {
308 // Instantiates a new Girclelptions object and defings the center and radius
304 CircleOptions circlelptions = new CircleOptions()
305 center{point)

306 radivs(radivs); // fn meters

an?

308 // Get back the mutable Circle
309 circle = googleMap.addCircle(circleOptions);
a0
a3
a7

Page 7

CiUsers\BLinhartDocuments\GitHUb W MDVWMD\apptsreimainijavaicomiexampletsdp1 1wmd\DataFragment. java

package com.example sdpll.wmd:

import android.os Bundle;

import android.app Fragment;
import android.view.Layoutinflater;
import android.view.View;

import android.view. ViewGroup;
import android.widget. ArrayA dapter;
import android.widget ListView;

import java.util List;

public class DataFragment extends Fragment {

View view:
ThrowsDataSource dataSource;
ArrayAdapter adapter:

public DataFragment() {
/" Required empty public constructor

}

[@0verride
public void onCreate(Bundle savedinstanceState) {
super.onCreate(savedinstanceState);

!
@0verride

public View onlreateView (Layoutinflater inflater, ViewGroup container,
Bundle savedinstanceState) {
view = inflater.inflate(R layout.fragment_data, container, false);

dataSource = new ThrowsOataSource(getActivity());

dataSource.open():

dataSource.deletedlThrows();

for (int i = 0: i< 75: i++) dataSource.createThrow(l. 2. 3. 4. 5.6.7.8. 5. 10}
A4 dataSource createlhrow(4, 5. 6. 01 11 1)
AF dataSource.createTheow(7 8 8 L1 L1 I

ListView lis = (ListView)view findViewByld(id list):

List<RawThrowData> values = dataSource gethllThrows():

adapter = new ArrayAdapter<RawThrowData>(getActivity(),
android.R layout simple_list_item 1, values);

lis.setAdapter(adapter);
return view:

Page 1

File - C:\Users\BLinhar\Documeants\GitHub WMDWMDappisreimainijavaicomiexamplatsdp1 1wmd\DataFragment. java

al 1}

al

22 [@lverride

a3 public void onResume() {
ad dataSource.open();

aa super.onfesume();
af)

a8 Elverride

99 public void onPause() {
R0 dataSource close():
Bl super.onPause();

62 }

Page 2

File - C:\Users\BLinhar\Documeants\GitHUbWMDWMDappisreimainijavaicomiexamplatsdp1 1wmdiGPSDataPoint java

| package com.example.sdpll.wmd:

?

3 /fﬂ'-‘ﬂ

4 *Created by nsanor an 2/10/2015.

a v

B public class GPS0ataPnint {

A/ lmplement using throw id, lat, long, time, etc.

7
8}
9

Page 1

File - C:\Users\BLinhar\Documeants\GitHubWMDWMDapplsreimainijavaicomiexamplatsdp 1 wmdilMU DataPaint. java

| package com.example.sdpll.wmd:

?

3 /fﬂ'-‘ﬂ

4 *Created by nsanor an 2/10/2015.

a v

G public class IMUDataPaint {

A/ implement using throw id. and 8 necessary parameters

7
8}
9

Page 1

File - C:\Users\BLinhar\Documeants\GitHub WMDWMDappisreimainijavaicomiexamplatsdpl 1wmdiMainActivity java

package com.example sdpll.wmd:

|

?

3 import java.text DateFormat;
4 impart java.util Date;

3 import java.util Locale;
B
7
i

import android.app.Activity;
import android.app.ActionBar;
9 import android.app.Fragment;
I0 import android.app.FragmentManager;
Il import android.app.FragmentTransaction;
17 import android Iocation.Location;
13 import android.Iocation.LocationListener;
14 import android.support.vl3.app.FragmentPagerAdapter;
I§ import android.os Bundle;
IE import android.support.vd.view ViewPager:
17 impart android util Log;
18 import android.view Menu:;
|3 import android.view Menultem:
20 import android widget Toast:
2l
27 import com.google.android gms.common ConnectionResult;
23 import com.gongle.android gms.comman.api BangleApiClient:
24 import com.google.android. gms.location. LocationRequest;
15 import com.google.android gms location.LocationServices:;

28

28 public class MainActivity extends Activity implements ActionBar.Tablistener GoogleApiClient.
ConnectionCallbacks, GoogleApiClient. OnConnectionFailedlistener, Locationlistener {

30 SectionsPagerfdapter mSectionsPagerd dapter;
3 ViewPager mViewPager;

32 GoogleApiClient mGoogledpiClient;

33 static Location mCurrentLocation;

34 String mLastUpdateTime;

35 Boolean mRequestinglocationUpdates = true;
36 locationRequest mLocationRequest;

39 @0verride
40 protected void onCreate(Bundle savedinstanceState) {

4 super.onCreate(savedinstanceState);
42 setContentView(R.Jayout.activity_main);
43

& /7 iff savedinstanceState = null){

45 47 qetActionBar().selectTab(savedinstanceState.getint{tabState)):
4 S5)

47

48 buildGoogleApiClient();

Page 1

File - C:\Users\BLinhar\Documeants\GitHub WMDWMDappisreimainijavaicomiexamplatsdpl 1wmdiMainActivity java

49 createlocationRequest():

a0

al TotalsData loadTotalsData():

L,

ad final ActionBar actionBar = getActionBar();

54 actionBar setNavigationMode(ActionBar NAVIGATION_MODE_TABS);
a3

ab mbectionsPagerAdapter = new SectionsPagerd dapter(getFragmentManager());

a8 mViewPager = (ViewPager) findViewByld(R.id.pager);
a9 mViewPager.setAdapter(mSectionsPagerAdapter);

Bl /7 When swiping between different sections, select the corresponding

G2 // tab. We can also use ActionBar. Tab#sefect() to do this if we have

63 // a reference to the Tab,

B4 mViewPager.setlnPageChangelistener(new ViewPager.SimpleOnPageChangelistener() {
3] [@0verride

B6 public void onPagedelected(int position) {

B7 actionBar setSelectedNavigationltem(position):
B8 }

B3 1

10

n // Far each of the sections in the app, add a tab to the action bar.
72 for (int i = 0: i < m3ectionsPagerAdapter. getCount(); i++) {

73 // Create a tab with text correspanding to the page title defined by
T4 /7 the adapter. Also specify this Activity object. which implements
73 /7 the Tablistener interface, as the callback (listener) for when

bl /7 this tah is selected

77 actionBar.addTab(

T8 actionBar.newTab()

74 setlext(mSectionsPagerddapter.getPageTitle(i))
a0 setlablistener(this)):

43 1

a5 [@0verride

85 protected void onStart() {

a7 super.onStart(};

a8 /A oge("Connected?’, String value0fimGoogled pillient isConnected())):
a9 mbaagledpiClient cannect():

o 1}

i

92 4/ public int getSelectedTab() {

93 /7 return getdctionBar() getSelectedlab() getPosition()

94 /7]

95 4/

98 #/

97 /7 private void updateValuesfromBundie(Bundle savedinstanceState) {

Page 2

File - C:\Users\BLinhar\Documeants\GitHub WMDWMDappisreimainijavaicomiexamplatsdpl 1wmdiMainActivity java

Rk
1
oo
lif
102
03
04
05
106
07
108
109
I

Ml
12
113
114
15
Ii6
7
Ii3
I3
120
121
122
123
124
125
126
127
128
179
130
131
132
133
134
135
136
137
133
13
140
14
142
143
|44
145
146

A7 if (savedinstanceState I= null) {
N/ if (savedlnstanceState keySet().contains("tabState”)) {
v A/ getActionBar() set(savedinstanceStaie getint{ tabState")):
7 }
V4
7
v Aupdatell():
Y/
/|
/4 Bllverride
/7 protected void anPause() {
/4 super.onPause();
/¢ stoplocationlipdates();
a
@Dverride

public void onResume() {

1

super.onfesume():
if (mBoogleApiClientisConnected() G5 !mRequestinglacationlpdates) {
startLocationllpdates():

}

protected void stoplocationllpdates() {

}

LocationServices. FusedLocationApiremovelocationlpdates(
mbGoogleApiClient. (com.google.android.gme location Locationlistener) this):

public void onSavelnstanceState(Bundle savedinstanceState)

}

super.onSavelnstanceState(savedinstancestate);
//savedinstanceState putint(“tabState", getSeleciedlab()):

[@0verride
public void onConnectionfailed(ConnectionResult connectionResult) {

}

[@lverride
public void anlocationChanged(Location locatian) {

}

mCurrentLocation = location;
mlastlpdateTime = DateFormat.getTimelnstance() format(new Date(}):

[#0verride
public void onStatusChanged(String <, int i, Bundle bundle) {

Page 3

File - C:\WUsers'BLinhar\Documents\GitHub W MDWMDlapplsrelmainijavalcomiexampla\sdp TiwmdMainActivity java

147
|48
149
H1
L&l
132
Iad
lad
155
136
57
158
159
160
16l
162
163
I64
I65
IBG
157
I68
153
i}
7l
17
73
74
75
76
1
78
73
180
18l
182
183
184
185
IB6
187
188
181
140
[
182
133
194
133

}

[Elverride
public void anProviderEnabled(String s) {

}

[@0verride
public void onProviderDisabled(String s) {

}
public class SectionsPagerddapter extends FragmentPagerAdapter {

public SectionsPagerAdapter(FragmentManager fm) {
super(fm);
}

@0verride

public Fragment qetltem(int position) {
// getltem is called to instantiate the fragment far the given page.
Fragment fragment = null;
if(position==0) fragment = new ConnectFragment();
if(position==I) fragment = new DataFragment();
if(position==2) fragment = new MapFragment();
return fragment;

}

@0verride
public int getCount() {
/7 Setup and Map tabs

return 3;

}

@lverride
public CharSequence getPagelitle(int position) {
Locale | = Locale.getDefault():
switch (position) {
case [
return getString(R.string title_sectionl).tollpperCasell):
case [:
return get3tring{R string title_section?) tallpperCase(]);
case -
return getString(Rstringtitle_section3) toUpperCase(]):
}
return null
}
1

Page 4

File - C:\WUsers'BLinhar\Documents\GitHub W MDWMDlapplsrelmainijavalcomiexampla\sdp TiwmdMainActivity java

136
197
138
199
200
20
202
203
204
205
208
207
208
209
20

2
22
23
214
215
216
27
218
219
220
il
1
223
224
225
226
mn
128
re)
230
2
132
233
134
235
238
m
238
239
240
24
247
243
244

ilverride

public boolean onCreatelptionsMenu(Menu menu) {
/7 Inflate the menu; this adds items to the actian bar if it is present.
getMenulnflater().inflate(R.menu.menu_main, menu);
return true;

}

Alverride
public boolean anlptionsltemSelected(Menultem item) {
// Handle action bar item clicks here. The action bar will
// automatically handle clicks toggle the Home/Up button, so long
// a5 you specify a parent activity in AndroidManifest.xml
int id = item.getltemld();

switch (id){
case [Lid.action_settings:
Toast.makeText{getApplicationContext(), "Settings”,
Toast LENGTH_SHORT).shaw():
return true;
case [id about:
Toast.makeText{getApplicationContext(). "About Us".
Toast. LENGTH_SHORT).show():
return true;
default:
return super.onlptionsltem3elected(item);
}
}

Alverride

public void onTabSelected(ActionBar.Tab tab, FragmentTransaction fragmentTransaction) {
// When the given tab is selected, switch to the corresponding page in
// the ViewPager.
mViewPager.setCurrentltem(tab.getPosition());

}

Alverride
public void onTablnselectad(ActionBar Tab tab. FragmentTransaction fragmentTransaction) {

}

Alverride
public void onTabReselected(ActionBar Tab tab. FragmentTransaction fragmentTransaction) {

}

protected synchronized vaid buildGoogleApiClient() {
mboogleApiClient = new Googled piClient Builder(this)
.addConnectionCallbacks((BoagleApiClient ConnectionCallbacks) this)
.add0nConnectionFailedlistener((GongleApiClient OnConnectionFailedlistener) this)
.addhpi{locationServices AP)
build();

Page 5

File - C:\WUsers'BLinhar\Documents\GitHub W MDWMDlapplsrelmainijavalcomiexampla\sdp TiwmdMainActivity java

45}

248

247 @lverride

248 public void onConnected(Bundle bundle) {

249 mCurrentlocation = Locationdervices FusedlocationApi getlastlocation|
2a0 mbGoogledpiClient):

al }

292

253 public static Location getmCurrentLocation() {

254 return mCurrentlocation;

85)

206

257 @0verride

208 public void onConnectionSuspended(int i) {
208

260)

261

767 protected void createlocationRequest() {

263 mlocationReguest = new LocationReguest():
764 mlocationRequest setinterval(I0000):

265 mlocationRequest. setFastestinterval(5000):
266 mlocationRequest setPriority{LocationReguest PRIOATY BALANCED POWER_ACCLRACY)
87}

768

769 protected void startLocationlpdates() {

google.android.gms location.LocationListener) this);
il
77}
m

70 LocationServices.Fusedlocationd pi.requestlocationlpdates(mGoogleApiClient, mLocationRequest, (com.

Page &

File - C:\Wsers\BLinhariDocuments\GitHub WMDWMDlapplsreimainijavalcomiexample\sdp Tiwmd\RawThrowData java

| package com.example sdpll.wmd;
Z
4 import java.text DateFormat:
4 import java.text.SimpleDateFormat;
a import java.util.Date;
B import java.util.TimeZone;
7
B fmm
8 *Greated by Student on 1727/ 20013,
o "/
Il public class RawThrowData
2 private long throwld;
I3 private long holeld;
14 private long gameld:
|5 private double startlat;
I private double startlong;
[T private double endlat;
18 private double endlong:
I3 private double start¥Accel:
20 private double start¥Accel:
21 private lang startTime:
17 private long endTime;
23 private long syncTime:

75 public RawThrowDatal() {}

27 public RawThrowData(long throwld, long holeld, long gameld, double startlat, double startLong. double
endlat, double endlong, double startXAccel, double startYAccel, long startTime, long endTime, long syncTime
3

18 this.throwld = throwld;

yh this.holeld = holeld:

a0 this.gameld = gameld;

3l this.startlat = startlat;

32 this.startLong = startlong:

33 this.endlat = endlat;

34 this.endLong = endlLong:

30 this start¥Accel = startXAccel:

36 this.startYAccel = start¥Accel:

a1 this startlime = startTime:

38 this.endTime = endTime;

34 this.syncTime = syncTime:

43 public lang getEndTime() {
4 return endlime;
45}

47 public void setEndTime(long endTime) {

Page 1

File - C:\Wsers\BLinhariDocuments\GitHub WMDWMDlapplsreimainijavalcomiexample\sdp Tiwmd\RawThrowData java

48 this.endTime = endTime;
49 3}

al

al public long getstartTime() {
al return startlTime;
o}

90 public void setStartTime(long startTime) {
ab this.startlime = startTime;
al o}

99 public long getThrowld() {
A return throwld;
B}

63 public void setThrowld{long throw_id) {
B4 this.throwld = throw _id:
B}

67 public long getHoleld() {
B8 return holeld:
B8}

T public void setHaoleld(long hole_id) {
72 this.haleld = hole_id:
I

73 public long getGameld() {
16 return gameld:
mod

79 public void setGameld(long game_id) {
a0 this.gameld = game_id:
B}

83 public double getStartlat() {
B4 return startlat;
g}

87 public void setStartlat(double start_lat) {
dd this.startlat = start_lat;
il 3

g1 public double getStartLong() {
92 return startlong;
93 1

93 public void setStartLong(double start long) {
96 this.startLong = start_long;

Page 2

File - C:\Wsers\BLinhariDocuments\GitHub WMDWMDlapplsreimainijavalcomiexample\sdp Tiwmd\RawThrowData java

97 3
18
99 public double getEndlat() {
100 return endlat;
m 3
102
03 public void setEndlat(double end lat) {
|04 this.endlat = end_lat;
s 3}
1]}
07 public double getEndLong() {
08 return endlong;
ng 3
1]
il public void setEndLong(double end_lang) {
2 this.endLong = end_long;

3 3

114

15 public double getStartXAccel() {
I return startXAccel:

| VI

18

I public void setStartXAccel(double start_x_accel) {
120 this.startXAccel = start x accel:

o}

172

123 public double getStartYAccel() {
124 return startYAccel:

173}

126

127 public void setStartYAccel(double start y accel) {
178 this.startYAccel = start_y_accel;
79 1}
130

13 public long getSyncTime() {
182 return synclime;
33

[34
135 public void setSyncTime(lang syncTime) {
136 this syncTime = syncTime;

37 1

138

139 //Convert from epach to string

(40 public String convertDate(lang d) {

141 Date date = new Date(d):

147 Dateformat format = new SimpleDateFormat{"MM/dd/yyyy HH:mm:ss"):
[43 format.zetTimeZone(TimeZone getTimeZone("America/New_York")):
144 String formatted = format.formatidate);

143 return formatted:

Page 3

File - C:\Users\BLinhar\Documeants\GitHUb WMDWMDappisreimainijavaicomiexampletsdpl 1wmd RawThrowDala.java

146 1}

147

(48 public String getAllFizlds() {

149 return String.value0f(syncTime) + ", " + convertDate(syncTime).//throwld + . " + holeld + *, " + gamald
+ " "+ startlat + " "+ starilong + ", "+ starikAceel + " "+ startYAccel + " "+ endlat + " "+ endlong:

a0 3

al

152 //Will be used by the ArrayAdapter in the ListVizw
153 E0verride

34 public String toString() {

155 return getAllFields();

56}

a7

158 }

159

Page 4

File - C:\Users\BLinhar\Documeants\GitHubWMDWMDapplsreimainijavaicomiexamplatsdp1 Vwmdi ThrowAdapter java

package com.example sdpll.wmd:

|

?

3 import android content. Context;

4 import android.view Layoutnflater;

3 import android view.View;

B import android.view.ViewGraup;

7 import android.widget. ArrayAdapter;

H import android widget. TextView:

g

|0 import java.util Arraylist;

Il

2/

13 " Created by nsanor on 271072015,

4 =/

15 public class Throwldapter extends Arrayldapter<CalculatedThrowData> {
|6 private Arraylist<CalculatedThrowData> items:
|7 private Context context:

18

13 public ThrowAdapter(Context context, int textViewResourceld, Arraylist<CalculatedThrowData> items) {
20 super(cantext, textViewResourceld, items):

2 this.items = items:

7 1

n

24 @lverride
25 public View getView(int position, View convertYiew, ViewGroup parent) {

28 View v = convertView:

n if (v == null) {

28 Layoutinflater vi = (Layoutinflater)context.getSystemService (Context. LAYOUT INFLATER SERVICE):
yh v = viinflate(R Jayaut.row, null);

a0

3l CalculatedThrowlata ctd = items.get(position);

32 if (ctd = null) {

a3 TextView id = (TextView) v.findViewByld(R.id.throw_id);

34 TextView dist = (TextView) v.findViewByld{R.id.total_distance);

a3 TextView tintegrity = (TextView) v.findViewByld(R.id.thraw_integrity);
36 if (id '= null) {

Kl id.setText(String.value0f(ctd.get Throw!d())):

8 }

29 if(dist 1= null){

40 dist.setText(String. valueOfictd getTotalDistance())):
4 }

47 ifitintegrity 1= null){

43 dist.setText(String.valueOf(ctd.getThrowlntegrity())):
44 }

43 1

48 return v;

47}

48

49 }

Page 1

File - C:\Users\BLinhar\Documeants\GitHub WMDWMDappisreimainijavaicomiexampletsdp1 1wmd\ConnectFragment.java

package com.example sdpll.wmd:

|

?

3

4 import android bluetoath BluetoothA dapter;
a3 import android blugtooth BlugtoothDevice;
B import android bluetooth BluetoothGatt:

T import android.bluetooth.BluetoothGattCallback;
H import android bluetonth BluetoothManager;
9 import android bluetooth BluetoothProfile:
|0 import android.content. Context;

Il import android.content.Intent;

17 import android.os. Aundle;

13 import android.app.Fragment;

14 import android.os Handler;

15 import android.support.vd.content LocalBroadcastManager;
IE import android.util Log:

|7 import android.view Layoutinflater;

18 import android.view.View:

13 import android.view ViewGroup:
20 import android widget ArrayAdapter:

2| impart android.widget Buttan:
27 import android widget ListView:
23 import android widget Toast;
24
25 import java.util Arraylist:
26 import java.util List;
27 import java.util Set;

28

2

an

3l * A simple {&link Fragment} subclass.

3

33 public class Connectfragment extends Fragment{
34

35 private Button on. off. search. paired:
J6 View view:

d8 private Bluetoothddapter BA:

39 private ListView lv;

40 private ArrayAdapter listhdapter:
4 private List values:

43 private boolean m3canning;
44 private Handler mHandler:

48 /7 Stops scanning after 10 seconds.
47 private static final long SCAN_PERIOD = 10000

49 public ConnectFragment() {

Page 1

File - C:\Users\BLinhar\Documeants\GitHub WMDWMDappisreimainijavaicomiexampletsdp1 1wmd\ConnectFragment.java

al
al
aZ
ad

// Required empty public constructor

}

[@0verride
public View onCreateView(Layoutinflater inflater, ViewGroup container,
Bundle savedinstancestate) {
view = inflater.inflate(R layout fragment_cannect, container, false);
final BluetoothManager bluetoothManager =
(BluetoothManager) getActivity().getSystemService(Context.BLUETOOTH_SERVICE);
BA = bluetoothManager.getAdapter();

on = (Button)view.findViewByld(R.id.Toggle);
on.setOnClicklistener(new View. OnClickListener() {
E0verride
public vaid onllick(View view) {
toggle(view);
}
B

paired = (Buttan)view findViewByld(R.id Paired):
paired setOnClickListener(new View OnClicklistener() {
@0verride

public void anClick{View view) {
if(BA.getState() == BluetoothAdapter STATE_ON) scanleDevice (true):

3

v = (ListView)view.findViewByld(R.id.devices);
/784 startleScan(mScanlallback):

listAdapter = new ArrayAdapter<3tring>(getdctivity() android R layout.simple_list_item |, 0);
Iv.sethdapter(listAdapter);

return view:

}

private void scanleDevice(final boalean enable) {
if (enable) {
/7 Stops scanning after a pre-defined scan period
mHandler = new Handler():
mHandler postDelayed(new Runnable() {
illverride
public vaid run(} {
macanning = false;
BA.stopleScan(mScanCallback);
Log.e("™, "Stop Scanning™);
}

Page 2

File - C:\Users\BLinhar\Documeants\GitHub WMDWMDappisreimainijavaicomiexampletsdp1 1wmd\ConnectFragment.java

1
100
lif
102
03
04
I0a
106
07
08
109
0

I
12
113
114
Il
116
7
I3
113
120
12l
122
123
124
173
126
127
128
129
130
13l
132
133
134
135
136
137
138
13
140
14
142
143
|44
43
148
147

}. SCAN_PERIOD):

Log.e("". "Now Scanning"):

micanning = true;

BA startLeScan(mScanCallback);
telse {

m3canning = false;

BA stopleScanimScanCallback);
}

}

private BluetoothAdapter LeScanCallback mScanCallback = new BluetoothAdapter.LeScanCallback() {
@lverride
public void onleScan(final BluetoothDevice device. int rssi, byte(] scanfRecord) {
gethctivity().runOnliThread(new Runnable() {
Elverride
public vaid run() {
listhdapter.add(device.getName());
listAdapter.notifyDataSetChanged():
Log.e(™, device getName()):
}
H
}
T

A/ private BluetoothGattCalback mBattCallback = new BluetoothGatiCaltback() {

/4 @lverride

/7 public void anfonnectionStateChange(Bluetonthbatt gatt, int status. int newState) {
7 //Connection established

7 if (status == Bluetoothliatt GATT_SUCCESS

7 G5 newState == BluetoothProfile. STATE CONNECTED) {
4

/7 //Discover services

g gatt.discoverServices():

/

7 Jelse if (status == BluetoothBatt. GATT SUCCESS

/ 65 newState == BluetoothProfile. STATE DISCONNECTED) {
i

7 //Handle a disconnect event

7

Vi }

V/a

A

£ Whverride

A/ public void onServicesDiscovered(Bluetoathbatt gatt. int status) {
v if (status == BluetoothGatt GATT SUCCESS) {

V4

s Log.i{"Connectfragment”, "Connected to: " + gatt getlevice()):

Page 3

File - C:\Users\BLinhar\Documeants\GitHub WMDWMDappisreimainijavaicomiexampletsdp1 1wmd\ConnectFragment.java

148 /7 }

49 A}

a0 2~

Ial

1a?

153

a4

1559 public void toggle(View view){

156 if(1BA.isEnabled)){

a7 //Intent Turnln = new Intent(Bluetoothddapter ACTION_REQUEST ENABLE):
158 //startActivityForResult(Turnln, 0):

159 BA.enable();

160 while (BA.getState() = BluetoothAdapter STATE_ON);

16l Toast.makeText(getActivity(), "Bluetooth is now onl”, ToastLENGTH_SHORT).show();
162 }
163 else {
64 S Intent Turnln = new Intent(Bluetoothddapter ACTION J:
165 A/startdetivityForResult(Turnln, 0):

166 BA disable():
|67 while (BA.getState() = BluetoothAdapter STATE_DFF):
168 Toast.makeText(getActivity(), "Bluetooth is now offl", Toast LENGTH_SHORT).show():
169 }
m 1
7}
177

Page 4

File -

CiUsers\BLinhafiDocuments\GitHUb WY MDVW MD\applsrcimainyjavalcomiexample'sdp 1 wmdi ThrowsDataSource java

|
i
d
4
3
B
li
E

f
10

I
12
13
4
15
I6
7
18
13
20
2l
n
23
24

package com.example sdpll.wmd:

impaort android content. ContentValues:

import android content.Context;

import android database.Cursor;

import android.database. S 0LException;

import android.database.sqlite.S0LiteDatahase;
import android.util.Log;

import java.util ArrayList;
import java.util List:

""*.
* Creatad by Student on 1/27/2015.
*
public class ThrowsDataSource {
private SlliteDatabase database:
private 0BHelper doHelper:
private String[] allColumns = { DBHelper, COLUMN_THROW |0,
0BHelper.COLUMN_HOLE D,
0BHelper COLUMN_GAME_ID.
0BHelper COLUMN_START LAT,
0BHelper COLUMN_START LONG.,
DBHelper. COLLUMN END (AT,
OBHelper.COLLUMN _END LONG.
DBHelper.COLLIMN_START ACCEL X,
OBHelper.COLLUMN_START ACCEL Y,
DBHelper.COLLUMN_START TIME,
OBHelper.COLLIMN_END TIME,
DBHelper.COLLIMN_SYNC_TIME};

private String(] mainColumns = { DBHelper COLUMN_THROW |0,
DBHelper.COLUMN _INITIAL_DIRECTION,
DBHelper.COLUMN_FINAL_DIRECTION,
0BHelper.COLUMN _TOTAL DISTANCE,
DBHelper.COLUMN_THROW_INTEGRITY,
0BHelper.COLLMN TOTAL TIME}:

public ThrowsDataSource(Context context) {
dbHelper = new DBHelper(context):
}

public void open() throws SOLException {
database = dbHelper getWritableDatabase():
}

public void close() {
dbHelper.close();
}

Page 1

File - C:\WUsers\BLinhariDocuments\GitHub WMDWMDlapplsreimainijavalcomiexample\sdp Tiwmd\ ThrowsDataSource java

a0

al public void createThrow(long hole id. long game id. double start |at, double start long, double end lat.
double end_long, double start_x_accel double start y accel, long startTime, long endlime) {

a2

a3 ContentValues values = new ContentValues():

24 values.put({0BHelper COLUMN_HOLE 1D, 1);

ag values.put((BHelper COLUMN_GAME 1D, 1);

ab values.put{(BHelper COLUMN_START LAT, start_lat);

al values.put(0BHelper COLUMN_START_LONG, start_long);

a8 values.put({(BHelper. COLUMN _END_LAT, end lat);

a9 values.put(DBHelper. COLUMN_END_LONG, end_long):

G0 values.put(0BHelper. COLUMN_START ACCEL X, start x_accel);

B values.put(DBHelper. COLUMMN_START ACCEL Y, start y_accel);

52 values.put(0BHelper. COLUMN_START TIME, startTime):

A3 values.put(0BHelper. COLUMN_END_TIME. endTime);

B4

b //Lalculate unix time from current fime

A6 long now = System.currentTimeMillis();

87 values.put(DBHelper COLUMN_SYNC_TIME. now);

BH

| long insertld = database.insert{DBHelper. TABLE_THROWS. null values):
70

il //Need to gat new max throw id to create calc data

72 /7 loge("TEST" database.taString()):

13 /7 loge("l0 Test”. String.valuelf(geiMaxThrowld{database))):

T4 //Create new entry in Lalculated ThrowData here.

Ta //LalcvlatedThrowlata calc = new CalculatedThrowData{throwld, start lat, double start long. double
end_lat, double end_lang, double start x_accel double start y_accel long startlime, long endlime):

i //Update globals in Totals0ata here.

18 /7 Lursor cursor = database.query(08Helper. TABLE_THROWS,
an 4/ allfolumns, DBHelper COLUMN 10 + "= "+ insert!d. null
g s mull oo, mel]);

82 /7 cursor.movelofirst():

a3 #/ Throw newlhrow = cursorToRaw Throw(cursor):

B4 /4 cursorclose()

a5 /7 return newlhrow:

g1 public void deleteThrow(RawThrowData t) {

97 lang id = t.getThrowld():

93 System.out.println{"Comment deleted with id: " + id):

94 database. delete(DBHelper. TABLE_THROWS, DBHelper.COLUMN_THROW 10
g5 +"="+id, null):

9B 3}

Page 2

File - C:\WUsers\BLinhariDocuments\GitHub WMDWMDlapplsreimainijavalcomiexample\sdp Tiwmd\ ThrowsDataSource java

a7
2k
1
00
lif
102
03
104
05
106
07
108
109
I

fil
112
113
114
Ifa
Il
7
I3
113
120
121
22
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
131
140
14
142
143
|44
45

public void deleteAllThrows() {
//database.rawluery("delete from sqlite_sequence where name = throws"™", null);
datahase.delete(0BHelper TABLE THROWS. null.null);

1

public List<RawThrowData> getAllThrows () {
List<RawThrowData> ts = new Arraylist<RawThrowDatas();

Cursor cursor = database.query(0BHelper TABLE THROWS,
allColumns, null, null, null, null, null);

cursor.mavelofirst();

while (lcursor.isAfterlast() {
RawThrowData t = cursorToRawThrow(cursor);
ts.add(t);
cursor.moveToNext();

}

// make sure to close the cursor

cursarclose():

return ts:

1

public List<CalculatedThrowData> getAllThrowsShart() {
List<CalculatedThrowData> ts = new Arraylist<CalculatedThrowDatas();

Cursor cursor = database.query(DBHelper. TABLE_CALL.
mainColumns, null, null, null, null, null):

cursor.maveToFirst();

while (lcursor.isAfterlast() {
CalculatedThrowData t = cursorToThrow(cursor);
ts.add(t);
cursor.move ToNext();

}

// make sure to close the cursor

cursor.cloge();

return ts;

}

private RawThrowData cursorToRawThrow(Cursor cursor) {
RawThrowData t = new RawThrowData():
tsetThrowld{cursar.getlong(0)):
t.setHoleld{cursor.getlong(l):
t.setbameld(cursor.getlong(Z)):
t.setStartlat{cursor.getDouble(d)):
t.setStartLong(cursor.qetOouble(4)):
t.setEndlat(cursor.getDouble(3)):
tsettndLong(cursor.getlouble(h)):

Page 3

File - C:\WUsers\BLinhariDocuments\GitHub WMDWMDlapplsreimainijavalcomiexample\sdp Tiwmd\ ThrowsDataSource java

|46 tsetStart¥Accel(cursor.getDauble(7)):

147 tsetStartfAccel{cursor.getDouble(B)):

|48 t.setStartTime(cursor getlong(3)):

[49 t.setEndlime(cursor.getlong(10)):

150 t.setSyncTime(cursor.getLong(il));

3l return t;

n? 1}

153

|54 private CalculatedThrowData cursorTaThrow(Cursor cursor) {
155 CalculatedThrowData t = new CalculatedThrowData():
156 t.setThrowld(cursar.getlong(0));

a7 t.setlnitiallirection{cursor.getDouble(1));

158 t.setfinalDirection(cursor.getDouble(2));

159 t.setThrowIntegrity(cursor.getDouble(3));

160 t.setlotallistance(cursor.getDouble(4);

|6l t.setTotalTime(cursor.getint(5)):

162 return t;

B3}

164
IB5 public long getMaxThrowld(SOLiteDatabase db) {
|66 Cursor ¢ = db.rawluery("SELECT MAX(?) FROM " + DBHelper. TABLE_THROWS. new String(] {"throw_id"

1

|67 c.moveToFirst();
168 AYint index = c.getlolumnindex("thraw id"):
169 /7 Lag.e("TEST", String.value0findex)):

170 return c.qetint{0);

[}

177 3

173

Page 4

File - C:\WWsars\BLinhaf\Documents\GitHUbWYMDW MDiappisrcimainijavaicomiexample\sdp1 widiCalculaled ThrowData. jaw

| package com.example sdpll.wmd;

~3

3 ;‘**

4 [reated by Student on 275/ 2015,
a v

B public class CalculatedThrowData {
7 private long throwld;

§ private double initialDirection;

§ private double finalDirection;

0 private double throwlntegrity;

I private double totalDistance;

I2 private double totallime;

13

14 public CalculatedThrowData() {
15

6}

17

18 public CalculatedThrowData(long throwld, double start lat, double start_long, double end_lat. double
end long, double start_x_accel, double start_y_accel. long startTime, lang endTime) {
19 this throwld =thrawld;

20 this.totallistance = calculateDistance(start_lat, start_long, end_lat. end_long):
2l this totalTime = endTime - startTime;

17 this.throwIntegrity = 1:

3}

24

25 public CalculatedThrowData(Raw ThrowData t) {

16 this.throwld = t.getThrowld{);

27 this.totalDistance = calculatelistance(t.getStartLat(), toetStartlong(), t.getEndlat(), t.getEndLong());
78 this.totalTime = t.getEndTime() - t.getStartlime();

29 this.throwlntegrity = I;

o 1

32 public long getThrowld() {
33 return throwld:
34}

36 public void setThrowld{long throw!d) {
37 this.throwld = throwld:

|/ 3

RE|

40 public double getlnitialDirection() {

4 return initialDirection;

42 1

43

44 public vaid setinitialDirection(double initialdirection) {
43 this.initialDirection = initialDirection;

4}

47

48 public double getFinalDirection() {

Page 1

File - C:\WWsars\BLinhaf\Documents\GitHUbWYMDW MDiappisrcimainijavaicomiexample\sdp1 widiCalculaled ThrowData. jaw
43 raturn finalOirection;

al 1}

al

37 public void setFinallirection{double finalDirection) {
ad this.finalDirection = finaldirection;

3}

aa

a6 public double getTotalDistance() {

al return totallistance;

a8 1

ad

60 public void setTotallistance(double totalDistance) {
Bl this.totallistance = totalDistance;
B2}

B4 public double getTotalTime() {
f5 return totallime;
BB}

68 public void setTatallime(double totalTime) {
i this.totalTime = totallime;
m o}

77 public double getThrawlntegrity() {

13 return throwlntegrity;
T}

76 public void setThrowintegrity(double throwlntegrity) {
7 this.throwlntegrity = throwIntegrity:

|}

19

80 public String getMainFields() {

Bl return throwld + ™| " + totalDistance + " | " + throwlntegrity;
2 3

a3

B4 double degreesToRadians(double dzgrees) {
a5 return degrees*(Math.P1/180):
g8}

d8 private double calculateDistance(double latl. double Ingl. double latZ, double Ing?) {

ad double r = 3963191

a0 double latlrad = degreesToRadians{latl):

] double latZrad = degreesToRadians(lat2);

92 double longlrad = degreesToRadians(Ingl):

93 double longZrad = degreesToRadians(Ing2);

34 double difflang = longZrad - longlrad;

95 double e = Math.acos{Math.sin{latirad)*Math.sin(latZrad) + Math.cos(latlrad)*Math.cos(lat?rad) *Math.
cos(diffLong));

96 return ¥ &

Page 2

File - C:\Users\BLinhar\Documanis\GilHUBWYMOWMDlappisreimainjavacomiedamplaisdpl TwmidCalculated ThrowData, jaw

7 1

93

99 /Wil be used by the Arrayddapter in the ListView
00 @lverride

[0l public String toString() {

02 return getMainfields();

s}

04 3}

103

Page 3

	The University of Akron
	IdeaExchange@UAkron
	Spring 2015

	Disc Golf Locator
	Noah M. Sanor
	Recommended Citation

	DT11MidtermReport.docx.docx

