
The University of Akron
IdeaExchange@UAkron

Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2015

Disc Golf Locator
Noah M. Sanor
University of Akron Main Campus, nsanor@gmail.com

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects

Part of the Computer Engineering Commons

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of
IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

Recommended Citation
Sanor, Noah M., "Disc Golf Locator" (2015). Honors Research Projects. 91.
http://ideaexchange.uakron.edu/honors_research_projects/91

http://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=http://ideaexchange.uakron.edu/honors_research_projects/91
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects/91?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Page 1 of 123

Disc Golf Locator

Final Design Report

Design Team 11

Shane Gamble, EE

Brandon Linhart, Cp.E

Noah Sanor, Cp.E

Christian Wallenfelsz, EE

Dr. Tsukerman, Faculty Adviser

4/21/2015

Page 2 of 123

Table of Contents
List of Figures ... 5

List of Tables .. 6

Abstract (CW) ... 7

1. Problem Statement .. 8

Need Statement (CW) ... 8

Objective Statement (CW) .. 8

Modification of Project Operation (CW) ... 9

Research (CW) ... 10

GPS .. 10

Micro Electromechanical Sensors ... 11

Accelerometers ... 12

Gyroscopes .. 12

Magnetometer .. 14

Android Application (NS) .. 14

Flora Microcontroller (NS) .. 15

Marketing Requirements (CW, NS, SG, BL) ... 17

Objective Tree (CW) .. 18

2. Design Requirements Specification (CW, NS, SG, BL) .. 19

3. Accepted Technical Design .. 20

Hardware - Level 0 Block Diagram (CW) ... 20

Hardware - Level 0 Functional Requirement Table (CW)... 20

Hardware - Level 1 Block Diagram (CW) ... 21

Hardware - Level 1 Functional Requirement Table (CW) ... 21

Hardware - Level 2 Block Diagram (CW) ... 23

Hardware - Level 2 Functional Requirement Table (CW & SG) ... 23

Tracking Device Schematic (CW & SG) .. 25

Battery (SG) ... 29

Off-board Battery Charger (SG) .. 29

Piezoelectric Buzzer (SG) ... 30

Power Calculations (SG) .. 32

Global Positioning System (GPS) (CW) .. 33

Page 3 of 123

Inertial Measurement Unit (IMU) (CW) .. 36

Hardware Mounting (SG) .. 38

Weight Experiment (CW) .. 40

MicroSD Card Breakout (BL) ... 41

Bluetooth (BL) ... 42

Software - Level 0 Block Diagram (CW) .. 42

Software - Level 0 Functional Requirement Table (NS) .. 42

Software – Level 1 Block Diagram (NS) ... 43

Software – Level 1 Functional Requirements Table (NS) .. 43

Software - Level 2 Block Diagram (NS) .. 46

Software - Level 2 Functional Requirement Table (NS) .. 46

Application Angle Calculation (NS) ... 50

Application Totals Data (NS) ... 50

Application Data Transfer Operation (NS) .. 50

Microcontroller Control Flow (CW) .. 52

4. Operation, Maintenance, and Repair Instructions... 54

Operation Instructions .. 54

Disc (CW): .. 54

Battery Charger (CW): ... 54

Android Application Installation (NS): .. 54

5. Testing Procedures .. 57

GPS and SD card (CW) ... 57

IMU (CW) .. 57

Bluetooth (BL) ... 58

Android Application (NS) .. 59

Disc (CW) ... 60

6. Financial Budget (SG & BL) .. 61

7. Project Schedules (BL) ... 62

Midterm Report Gantt Chart .. 62

Final Report Gantt Chart ... 64

Project Design Gantt Chart ... 65

8. Design Team Information (SG, BL, NS, CW).. 65

Page 4 of 123

9. Conclusions & Recommendations (CW, BL) ... 65

10. References ... 67

11. Appendices .. 68

GPS and SD card test Arduino sketch code (midterm_GPS_demo) (CW) ... 68

IMU Arduino sketch test code (midterm_IMU_demo) (CW) .. 70

Bluetooth Arduino sketch test code (BL) .. 77

Final Project Arduino Sketch (CW, BL) .. 79

Final Project App Code (NS) .. 87

Page 5 of 123

List of Figures

Figure 1: Cartesian Representation of an Earth-Centered Earth-Fixed Coordinate System 11
Figure 2: Precession of Rotating Object .. 13
Figure 3: Depiction of magnetic declination .. 14
Figure 4: I2C Interface and Data Format .. 16
Figure 5: Objective Tree for the Disc Golf Locator ... 18

Figure 6: Level 0 Hardware Block Diagram .. 20
Figure 7: Level 1 Hardware Block Diagram .. 21
Figure 8: Level 2 Hardware Block Diagram .. 23
Figure 9: Schematic for Disc Tracker .. 27
Figure 10: Schematic for battery connection ... 27

Figure 11: Schematic for off-board battery charger .. 27
Figure 12: Off-board battery charger mounted to proto board ... 30

Figure 13: NMEA RMC sentence structure .. 33
Figure 14: GPS coordinates plotted on a map ... 36
Figure 15: Top view of completed disc ... 39
Figure 16: Underside of disc with mounted components ... 40

Figure 17: Five quarters wrapped in duct tape serving as a weight .. 41
Figure 18: Level 0 Software Block Diagram .. 42

Figure 19: Level 1 Software Block Diagram .. 43
Figure 20: Level 2 Software Block Diagram .. 46
Figure 21: Microcontroller Control Flow .. 52

Figure 22: Raw GPS data logged on SD card .. 57
Figure 23: GPS test data sent over Bluetooth .. 59

Page 6 of 123

List of Tables

Table 1: Engineering Requirements Table ... 19
Table 2: Level 0 Hardware Functional Requirement Table ... 20
Table 3: Level 1 Hardware Functional Requirement Tables ... 21
Table 4: Level 2 Hardware Functional Requirement Tables ... 23
Table 5: Piezo Buzzer Data .. 31

Table 6: Component Power Ratings ... 32
Table 7: Battery Ratings ... 32
Table 8: NMEA RMC sentence description .. 33
Table 9: Coordinates from an Etrex GPS ... 34
Table 10: Level 0 Software Functional Requirement Table ... 42

Table 11: Level 1 Software Functional Requirement Tables.. 43
Table 12: Level 2 Software Functional Requirement Tables.. 46

Table 13: Table of Control Flow .. 53
Table 14: Proposed Parts List .. 61
Table 15: Parts Request 1 ... 62
Table 16: Parts Request 2 ... 62

Table 17: Master Budget .. 62
Table 18: Component Datasheet Links ... 68

Page 7 of 123

Abstract (CW)

Disc golf is a game similar to traditional golf where players throw small plastic discs into

chain-link nets. Disc golf courses cover several acres containing lakes, small wooded areas, large

bushes, and grassy fields. It is not uncommon to accidentally throw a golf disc into the woods or

bushes, so it is the goal of this project to create a device to locate the disc and make suggestions

for the player to improve performance. A small device will be attached the disc which will track

its location and flight characteristics. The device will contain a GPS receiver, an inertial

measurement unit (IMU), data storage device, wireless transfer device, and an audio alarm to

locate the disc. The GPS will record the flight path of the disc and the IMU will measure flight

characteristics which will be stored locally on the disc during flight. After the disc is thrown and

recovered, players will be able to use a smartphone app to retrieve the flight data from the

tracking device by wireless communication. The smartphone app will plot the flight path on a

map and analyze the inertial data to make suggestions for players to improve their throws.

Page 8 of 123

1. Problem Statement

Need Statement (CW)

 Disc golf is a game very similar to traditional golf. In disc golf, a player attempts to

throw a small plastic disc into a slightly elevated chain-link cage rather than using clubs to hit

balls into holes. Disc golf courses consist of numerous holes and can cover a respectably large

area similar to a traditional golf course. It is common for disc golf courses to run through

wooded areas with large amounts of foliage and brush. It is also common for a hole on the course

to not be visible from the throwing location due to buildings, trees, or even elevation (throwing

up a hill). These obstructions causes great difficulty in retrieving discs when they are

consequently thrown into bushes or other foliage because it may not always be possible to see

where the disc lands. Many hours can be spent searching through woods to find a lost disc and

players will usually get frustrated and give up searching. Lost discs and time wasted detract from

the player's enjoyment of the game. These unfortunate circumstances demonstrate a need to

develop a system a player can use to easily and quickly locate a disc after it is thrown.

Objective Statement (CW)

 The objective of this project is to create a system a disc golf player can use to track the

location of a golf disc after it is thrown. The system will consist of a small devices which can be

placed on the disc and software which can map the flight of the disc. The devices on the disc will

log the GPS position of the disc and sound an alarm after a short period of time once the disc has

been thrown. The alarm can be used to locate the disc audibly. The software will map the flight

path of the disc, log throwing statistics, and then display recommendations to adjust the throw

for players to improve their performance.

Page 9 of 123

Modification of Project Operation (CW)

 Initially, the project was based on RFID. The theory was to use a small passive RFID tag

and use multiple readers to calculate and display distance and direction of the tag from a master

control station. However, upon more research into RFID systems, passive RFID tags were

discovered to operate within a range of a few meters. So research shifted focus into active RFID

systems. In active systems, the tag contains a microchip, antenna, RF module, on-board power

(usually a battery), and any other electronics for various purposes, whereas a passive tag mainly

consists of a microchip (Lahiri). An active tag is capable of communicating over long distances

depending on the application. While the range for the project would be satisfied with an active

tag, it is not clear whether weight and size of active tag would allow the project to work.

Furthermore, the project is meant to locate an object thrown arbitrarily into a wooded area with

thick brush, weeds, bushes, etc… The presence of unknown physical objects ranging in size and

location could potentially hinder radio based location devices due to multipath, reflections, and

other potential interference. Therefore, it was decided to find an alternative method to locate a

golf disc. The changes throughout the entire proposal were to eliminate ideas based on an RF

device.

 The original concept of operation was to use the Friis equation to determine distance

from the tag on the disc. The Friis equation,

𝑃𝑅 =
𝑃𝑇𝐺𝑇𝐺𝑅𝜆2

(4𝜋)2𝑅2
,

(1)

can be used to determine the distance between the transmitter and receiver provided the gain of

the transmitting and receiving are known as well as the power transmitted and received (Levis, et

al). However, the Friis equation is valid for free-space unobstructed transmission with no noise

or interference. There are variations of the Friis formula to include noise, provided the noise

parameters are known. For this project, the noise parameters would not be known and estimating

distance based on received power would be larger because the power received would be smaller

from noise. Therefore, alternative ideas were researched in order to facilitate locating a disc.

Page 10 of 123

Research (CW)

GPS

 Today, Global Navigation Satellite Systems (GNSS) are ubiquitous throughout everyday

life. GNSS is used in everything from cell phones to cars. However, satellite navigation was

developed and used after ground based systems were used. Such ground based systems like the

British DECCA and US LORAN (long range navigation) systems were developed during WWII.

These early systems used LF radio signals from known locations to geo-locate the position of

receiver stations. LORAN receivers were open to public use after WWII and a modified version

of LORAN, standardized as LORAN-C, was used into the 1980s. Although, the cheaper and

more accurate system GPS took over the commercial market (Chen, et al).

 There are a few main satellite systems in use today. The Russian GLONASS

constellation consists of 20 working satellites from the late Soviet era. The European Union

operates the Galileo constellation and China has recently started to implement their BeiDou

constellation. The United States operates the oldest working GNSS which is the Global

Positioning System (GPS). The GPS constellation consists of 24 satellites which are in geo-

synchronous orbit to provide constant and even coverage across the globe. The GPS system is

based on a geo-location method called Time Delay Of Arrival (TDOA). TDOA works by

knowing the time and location of a transmitter. Then a hyperbola of possible locations can be

calculated from receiving one signal. GPS needs at least three different signals to provide

latitude, longitude, and a fourth signal to provide altitude (Petrovski).

 Unfortunately, the world is not a nice sphere. The world’s actual shape resembles an

oblong ellipsoid. The most accurate coordinates system to resemble the Earth is the World

Geodetic System of 1984 (WGS84). The reference frame of the WGS84 model is Earth-centered,

Earth-fixed (ECEF), meaning the xyz position of (0,0,0) is the center of mass of the Earth. The z-

axis points up through the North Pole. The x-axis points out through the prime meridian at 0˚

longitude. The y-axis points out through 90˚ E longitude. The axes rotate with the Earth as it

rotates, so coordinates are constant. The WGS84 ellipsoid has the semi-major axis defined at

6378137.0 m and the semi-minor axis defined at 6356752.3142 m. Other parameters are defined

for the WGS84 model regarding flattening and curvature. The GPS system uses the WGS84

model to describe latitude, longitude, and altitude (Acharya). In Figure 1, the relationship

Page 11 of 123

between ECEF xyz coordinates and latitude, longitude, and altitude are shown. The WGS84 is

geodetic, so the latitude is measured from the surface of the Earth.

Figure 1: Cartesian Representation of an Earth-Centered Earth-Fixed Coordinate System

Micro Electromechanical Sensors

 There are many different electronic sensors. Smaller sensors have become prevalent in

many technologies used in everyday life such as phones, game controllers, medical devices, and

even car tires. Many of these sensors are based on mechanical principles. The application of

these principles in micro-electronics has introduced devices known as micro electromechanical

sensors (MEMS). These sensors often utilize silicon structures to replace larger mechanical

systems. In some modern MEMS devices, these silicon structures have been fabricated on the

scale of 500 microns (500 micrometers).

Page 12 of 123

Accelerometers

 Acceleration is defined is defined in Newton’s Second Law of Motion. The equation,

𝐹 = 𝑚𝑎 (2)

relates the force applied to an object by its mass and acceleration it experiences. If a known mass

is used, the acceleration of an object can be calculated my measuring the force applied to it.

Rather than using mechanical devices, MEMS technology generally measures a capacitance. By

allowing a conductor to move between two fixed parallel plates with a known distance between

them, the capacitance between the plates will produce a voltage which can be converted which

will proportionally relate to acceleration. The transfer function of a MEMS accelerometer

relating voltage to acceleration will take the general form,

𝐻(𝜔) = 𝐾
1

𝜔2
𝑉

𝑑𝐶

𝑑𝑥
 (3)

where K is a constant that will vary with each device and manufacturer, 𝜔 is the frequency, V is

the voltage produced as the capacitance changes with position of the free conductor (Jones and

Nenadic). The important element of Equation (3) is how the movement of the conductor will

change a capacitance which can relate to acceleration. The specific formulas for accelerometers

are often proprietary and differ with manufacturer.

Gyroscopes

 Angular velocity is the rate of change in an angle between two axes. Gyroscopes can

measure angular velocity based on torque and angular momentum. Torque is the measure of the

force which will cause an object to rotate around an axis. Torque is defined as,

𝜏 = 𝑟 × 𝐹, (4)

where r is the distance from a reference where the force F is being applied. When a force is

applied to an object, the resulting torque will rotate the object on a perpendicular axis to the force

and distance vectors. Torque will cause angular momentum.

 Angular momentum is measure of rotation of an object. It is defined as

𝐿 = 𝑟 × 𝑝 (5)

Page 13 of 123

where p is the momentum of an object a distance r from reference. Mathematically, angular

momentum is very similar to torque. For rotational motional, the angular momentum can be

simplified to,

𝐿 = 𝐼𝑜𝜔 (6)

where 𝐼𝑜 is the moment of inertia of the object and 𝜔 is the angular velocity.

 The final concept for a gyroscope is the rate of precession. As an object spins around its

axis, it will tend to rotate the axis. The rotation of the axis of the spinning object is called

precession as demonstrated in Figure 2.

Figure 2: Precession of Rotating Object

Since angular momentum moves with precession and since torque is produced in the same

direction as the rate of precession, the rate of precession can be related to angular momentum

and torque (Kloppner & Kolenkow). Thus, from Equation 5 and Equation 6, the rate of

precession Ω, is,

𝛺 =
𝑟𝐹

𝐼𝑜𝜔
. (7)

 These basic principles guide the operation of a gyroscope. Clearly, by measuring the

forces acting on the body, the angular velocity of the body can be determined. MEMS

gyroscopes use micro-structures which do not spin, but compress or expand which causes a

change in capacitance across the structure. Different manufactures relate this varying capacitance

to the angular velocity of an object.

Page 14 of 123

Magnetometer

 For navigation purposes, orientation and direction are crucial pieces of information.

Conveniently, the Earth produces a magnetic field which is mostly constant in direction.

However, as illustrated in Figure 3, Earth’s magnetic field does not directly align with

geographic north.

Figure 3: Depiction of magnetic declination

The angle of declination varies depending on the location of the measurement. A traditional

compass may use an iron or a magnetic dipole which will align with the field pointing to

magnetic north. MEMS magnetometers will measure the magnetic field intensity in different

directions which can be used to determine heading from magnetic north.

Android Application (NS)

 The Android platform was chosen to be used in this project because all of the team

members own an Android smartphone, so the project could be tested by any person on the team.

In addition, almost all Android smartphones contain a bluetooth antenna that can interface with

the disc tracker. There are various cross-platform interactive development environments (IDEs)

such as Android Studio and Eclipse to develop Android applications using an intuitive graphical

interface. Another positive factor of Android is that the applications are written in Java. This is a

benefit, because Java is one of the most commonly used programming languages around today.

The Java programming language is a high level, object oriented language that is used on

various devices such as desktop PCs and smartphones. Java code is compiled to bytecode that is

run on a java virtual machine (VM). Java is platform independent, because a VM can be installed

on a supported system to run some compiled bytecode. Like many other programming

Page 15 of 123

languages, there are many libraries written for Java to greatly expand upon the functionality of

the language (Lindholm, et al).

 Android is an operating system (OS) that is built and maintained by Google, Inc. Many

different types of devices can run Android, but it is most prevalently used as a mobile OS in

smartphones. Since Android is built on top of the linux kernel, many of the system level tools

available to desktop linux distributions are available to Android as well. Android runs a process

virtual machine called Dalvik that utilizes Just-In-Time (JIT) compilation of Java code. Many of

the wireless communication modules of the device are accessible through the use of built-in API

libraries provided by the Android Software Development Kit (Liu and Yu). One example of an

API that will be used in this project is the Bluetooth API that will be used to receive data from

the disc tracker and send a signal to the tracker to signal the buzzer to emit a sound.

Flora Microcontroller (NS)

 The Flora is an Arduino compatible microcontroller board that runs an Atmel

ATMega32u4 at its core. This microcontroller board was designed to be used in wearable

electronics. The Flora was chosen for this project for many different reasons. Since the Flora

uses an AVR chip that is Arduino compatible, there are many AVR and Arduino libraries

available for it. Additionally, this microcontroller is very small (4.445cm in diameter) and

lightweight (4.4g), both of which are big constraints for the project (Adafruit).

Serial Interfaces (NS)

 There are many different serial interfaces used in embedded systems today that all have

different advantages and disadvantages. Based on the modules chosen to be used in the disc

finder device, there are three serial interfaces that will be used in the project. The reason that

there will be three separate interfaces used in the project is because the modules that were

chosen, were primarily decided on based on power consumption, size and price. The serial

interface supported by the device was not a major deciding factor. The main features of these

interfaces are summarized in the sections below.

Universal Asynchronous Receiver Transmitter (NS)

 The Universal Asynchronous Receiver Transmitter (UART) interface is commonly used

in embedded systems to communicate between a single master and a single slave node

(Mikhaylov & Tervonen). This interface operates in full duplex mode by using two

communication lines. The transmit (Tx) pin of the master is connected to the receive (Rx) pin of

the slave, while the Rx pin of the master is connected to the Tx pin of the slave.

Page 16 of 123

Serial Peripheral Interface (NS)

 The Serial Peripheral Interface (SPI) is a single master, multiple slave interface that

provides full duplex communication between the master and a slave (Mikhaylov & Tervonen).

Three lines are used across all connected devices. These lines are the clock (SCLK), master input

slave output (MISO) and master output slave input (MOSI). Each slave node requires its own

separate chip select (CS) line. The CS line needs to be pulled down before communication with a

node commences. Since the chip select lines are active low, a pull-up resistor should be used to

set the lines high when the slave is not in use.

Inter-Integrated Circuit (NS)

 The Inter-Integrated Circuit (I2C) Interface was created by Philips Semiconductor in 1982

(Mikhaylov & Tervonen). I2C is a multiple master, multiple slave interface that uses two

common lines across all devices: the clock (SCLK) and the data (SDA). A pull-up resistor is

used on both of the lines. This interface uses a defined data format shown in Figure 4. An I2C

device first sends a start bit followed by a 7-bit address and then a read/write bit to specify the

direction of communication. Next, data is continually transmitted until a stop bit is sent.

Figure 4: I2C Interface and Data Format

Page 17 of 123

Marketing Requirements (CW, NS, SG, BL)

1. Minimally impact the disc's flight characteristics.

2. The system should be portable.

3. Operation in various temperatures.

4. The system should be simple to use.

5. Interfacing with a smartphone application.

6. The components should be attached directly to the golf disc.

7. The disc's motion should be trackable.

8. Audible within an average throwing range.

9. Electrical components should be very lightweight.

10. The flight path of the disc should be displayable on a virtual map.

11. Should provide recommendations to players for accurate throws.

Page 18 of 123

Objective Tree (CW)

Figure 5: Objective Tree for the Disc Golf Locator

Disc Golf
Detection

System

Reliable

Accurate

Minimal Game
Performance

Impact

Repeatable
Results

Durable

Impact Resistant

Water Resistant

Temperature
Resistant

Portable

Small

Lightweight

Easy to Use

Quick Detection

Long Battery Life

Limited User
Intervention

Page 19 of 123

2. Design Requirements Specification (CW, NS, SG, BL)

Table 1: Engineering Requirements Table

Marketing Requirements Engineering Specifications Justification

1,2
Tracker will be at most 15.24

centimeters in diameter

This is the maximum size to

reasonably fit on a golf disc

1,6,9
Tracker will weigh no more

than 100 grams

Device weight added to

weight of disc must allow it

to glide

1

Tracker components will be

mounted to evenly distribute

weight

An imbalance in weight of

the disc will alter its flight

path

3

Tracker must operate within

various outdoor temperatures

from 0˚C to 40˚C

People may play in cool

weather or high heat

5,10
Tracker will wirelessly send

data to a smartphone
Limits user interaction

2
Tracker must operate below

5W of power

Maximum power required for

sensors, data storage, wireless

transmission

7,10 Tracker will use GPS Record flight path of disc

8

Tracker will be able to

produce a sound that can be

heard from at least 10 meters

away

Player must be able to locate

the disc from a distance

where it may not be visible

4,5,10

Smartphone application must

be compatible with Android

4.3+ on all carriers

App will provide easy access

for users

5

Smartphone application must

be able to connect and

disconnect from the tracker

without crashing or disrupting

the operation of the tracker

The tracker and application

will be connecting and

disconnecting multiple times

throughout a game

4,11

Smartphone application will

process and display flight

data and make calculations

for improvement

Easily provide feedback

about throw to a user and

Page 20 of 123

3. Accepted Technical Design

 The system (shown in Figure 6) is centered around an Arduino-compatible

microcontroller which runs at 3.3V and is supplied by a battery at 3.7V. This device was chosen

for its capabilities in a very small, lightweight package. The controller takes in location and

motion data from a GPS unit and an Inertial Measurement Unit (IMU). That information is

filtered and parsed and stored in the microcontroller. After flight, the information is retrieved and

sent wirelessly to a smart phone application over Bluetooth using a Bluetooth LE breakout

module. The controller is also connected to a piezoelectric buzzer and triggers an audible alert

for location. Basic flow of hardware connections is shown in Figure 7.

Hardware - Level 0 Block Diagram (CW)

Figure 6: Level 0 Hardware Block Diagram

Hardware - Level 0 Functional Requirement Table (CW)

Table 2: Level 0 Hardware Functional Requirement Table

Module Microcontroller

Inputs

● Activation

● Power, DC

● GPS Coordinates

● Inertial Data

Page 21 of 123

Outputs
● Alert Sound

● IMU and GPS Data

Functionality

The device receives DC power from a battery. Upon activation,

after which the disc is thrown, the microcontroller logs inertial

data (acceleration, radial velocity, magnetic field intensity) and

GPS coordinates. The data is then used in a smartphone

application.

Hardware - Level 1 Block Diagram (CW)

Figure 7: Level 1 Hardware Block Diagram

Hardware - Level 1 Functional Requirement Table (CW)

Table 3: Level 1 Hardware Functional Requirement Tables

Module Battery

Inputs  Power, DC

Outputs  Power, 3.7 VDC

Functionality
The battery supplies power to the microcontroller and all on-

board devices. It is recharged by an off-board charger.

Module Sensors

Inputs

 Inertial Forces

 GPS signals

 Power, DC

Outputs
 GPS data

 Inertial metrics (IMU data)

Functionality
The sensors measure GPS location data, inertial data and supply

it to the microcontroller.

Page 22 of 123

Module Data Storage

Inputs

 IMU data

 GPS data

 Power, DC

Outputs
 IMU data

 GPS data

Functionality

The data storage was intended to log the IMU and GPS data in

real time during flight. The microcontroller could then retrieve

the data when needed.

Module Audio Alarm

Inputs  Power, DC

Outputs  Sound

Functionality
The audio alarm is triggered when device is ready to be thrown

and after the device is thrown for the player to locate the device.

Module Wireless Transceiver

Inputs

 IMU data

 GPS data

 Power

 Wireless signal from smartphone

Outputs  Wireless signal with IMU and GPS data

Functionality
The wireless transceiver communicates with a smartphone to

transfer the IMU and GPS data stored on the disc.

Module Microcontroller

Inputs

 IMU data

 GPS data

 Power, DC

Outputs

 Power, DC

 IMU data

 GPS data

Functionality

The microcontroller controls every attached device. It directly

power each peripheral as well as send and receive data at

appropriate times.

Page 23 of 123

Hardware - Level 2 Block Diagram (CW)

Figure 8: Level 2 Hardware Block Diagram

Hardware - Level 2 Functional Requirement Table (CW & SG)

Table 4: Level 2 Hardware Functional Requirement Tables

Module Charger

Inputs
 Power, DC from supply

 Power, DC from USB

Outputs  Power, DC

Functionality
The off-board charger charges the battery when it is depleted and

disconnected from the golf disc.

Module Battery

Inputs  Power, DC

Outputs  Power, 3.7 VDC

Functionality
The battery supplies power to the microcontroller and all on-

board devices. It is recharged by an off-board charger.

Page 24 of 123

Module Gyroscope

Inputs
 Rotational Force

 Power, DC

Outputs  3-D Radial Velocity

Functionality

Measures the angular rate at which the device changed from its

last position. Angular velocities are measured around the 3

Cartesian axes relative to the device.

Module Accelerometer

Inputs
 Linear Force

 Power, DC

Outputs  3-D Linear Acceleration

Functionality
Measures acceleration of the device in three linear directions in

Cartesian space relative to the device.

Module Magnetometer

Inputs  Magnetic Field Intensity

Outputs  3-D Magnetic Field Intensity

Functionality
Measures the magnetic field intensity of Earth’s magnetic field in

three dimensions of Cartesian space relative to the device.

Module GPS

Inputs
 RF signals

 Power, DC

Outputs  GPS data

Functionality
The GPS receives signals from satellites to calculate coordinates

and other data such as translational speed.

Module Micro SD

Inputs

 Power, DC

 GPS data

 IMU data

Outputs
 GPS data

 IMU data

Functionality

Micro SD was intended to be used to store GPS information and

IMU data in flight. The information could be retrieved when it

needs to be sent to the smartphone.

Module Buzzer

Inputs  Power, DC

Outputs  Sound, ~95 dB

Functionality
The buzzer is powered on after the disc hits lands to produce a

loud audio signal for location.

Page 25 of 123

Module Bluetooth LE Transceiver

Inputs  Power, DC

Outputs  RF Bluetooth LE signal

Functionality

A Bluetooth LE (Low Energy) transceiver allows communication

between the Tracker and a smartphone. The data from the

microcontroller is sent to the smartphone via a bluteooth

connection.

Module Microcontroller

Inputs

 Power, DC

 GPS data

 IMU data

Outputs

 Power, DC

 GPS data

 IMU data

 Alarm Signal

Functionality

The microcontroller powers and communicates with each

peripheral when appropriate. It logs the GPS and IMU data

during flight, powers the buzzer after it lands, and then sends the

data to a smartphone through a Bluetooth LE connection.

Tracking Device Schematic (CW & SG)

The schematic for the tracking device attached to the golf disc is shown in Figure 9. The

schematic shows the pin connections between the Flora microcontroller and each module. The

connections for the battery to the microcontroller and to the off-board charger are shown in

Figure 10 and Figure 11, respectively. The rechargeable battery connects directly to the

microcontroller with a JST connecter. Each tracker module connects via appropriate serial

communication pins. Some of the modules support different serial communication protocols and

some can only connect with a particular protocol because of how the module was constructed.

The module operations and connections are explained below.

Page 26 of 123

Page 27 of 123

Figure 9: Schematic for Disc Tracker

Figure 10: Schematic for battery connection

Figure 11: Schematic for off-board battery charger

Page 28 of 123

Page 29 of 123

Battery (SG)

 A battery had to be chosen that could be small enough to attach to a golf disc while

having at least enough capacity to power the tracker for an average game length and not add an

enormous amount of weight. The battery used, therefore, is of lithium ion polymer (LiPoly)

construction with a capacity of 500 mAh and a weight of 10.5 grams. The package size was

small enough to be affixed to the underside of the golf disc and it was more than capable of

powering the tracking device for an average game length. The battery supplies power to the

microcontroller which regulates incoming voltage and distributes power to the peripheral

components with limited current. When depleted, the battery shuts off at 3 Volts and must be

disconnected from the system and connected to the off-board charger.

Off-board Battery Charger (SG)

 To charge the LiPoly battery properly and safely, a compatible charger was chosen.

Initially, a small solar panel was to be mounted to the golf disc to provide supplemental power

during game play. Thus, the charger is capable of accepting power from a solar panel in addition

to an external source and is small and light enough to fit on the golf disc. It became apparent that

for the additional weight to the disc, the marginal amount of power supplied by a 1 Watt solar

panel under best conditions was not enough to warrant mounting it on the disc.

 Since the charger is not used in such a fashion as previously mentioned, it simply uses

incoming power from a DC supply or USB connection to charge the battery at constant current

and constant voltage (CC/CV). To maintain health of the battery and avoid overheating, a

resistor was soldered in to set the charging current to a safe limit of 150 mA. Bypass capacitors

were also soldered in to stabilize the charging control loops in the absence of a connection. The

charger was assembled onto a small proto-board to increase its size for ease of handling as

shown in Figure 12. A yellow and a green LED with current-limiting resistors were soldered to

the board to increase visibility of "Charging" and "Charge Complete" indicators.

Page 30 of 123

Figure 12: Off-board battery charger mounted to proto board

Piezoelectric Buzzer (SG)

 To make an audible alert from the disc that is loud enough at a long distance, a low-

power, small buzzer was needed. The Mallory Sonalert MSO206NR piezoelectric buzzer is a

small device capable of producing a large amount of sound. It is a solid-state component that

requires only a small DC voltage. It works on the principles of piezoelectricity in which voltages

applied to materials with a crystalline structure cause deformations of the material and vice-

versa. This allows a loud, high frequency (3.5 kHz) sound to be produced using very little

electrical power. Within the rated 2 - 6 Volts DC it only draws up to 30 mA of current.

 It was decided that the buzzer should be audible at a maximum distance of 100 meters.

Based on typical sound pressure levels measured in decibels, dBSPL, the sound from the buzzer at

this distance needed to be a minimum of 40 dB. This is roughly the sound level of a quiet

conversation at normal talking distance. Since sound intensity follows the inverse square law, the

minimum sound pressure level the buzzer needed to produce was calculated working backwards

Page 31 of 123

from 40 dB at 100 meters. Considering a roughly 1 meter distance from a buzzer at ground level

to the listener's ear, that equates to a 100 times increase in distance. Applying the inverse square

law to these numbers yields the amount of change of intensity level,

𝐼1 =
40

[
1

100]2
= 400,000. (8)

Converting this to dBSPL yields

400,000

104
= 40 𝑑𝐵𝑆𝑃𝐿 . (9)

Therefore, the decrease in sound level across 100 meters is 40 dBSPL so the minimum required

level from the buzzer was set at 40 + 40 or 80 dBSPL, at 1 meter.

Table 5: Piezo Buzzer Data

Manufacturer: Mallory CUI Kingstate

Operating Voltage: 2 to 6 VDC 3 to 5 VDC 3 to 20 VDC

Max Current Draw: 30 mA 35 mA 10 mA

Loudness: 90 to 99 dB @ 1ft. 95 dB @ 10cm 95 @ 30cm

Normalized Loudness (1m): 79.68 to 88.68 dB 75 dB 85 dB

Weight: 3.5g 1.4g 7.0g

To ensure the minimum sound level of 40 dBSPL at 100 meters, the buzzer needed to be

able to produce a level of, at minimum, 80 dBSPL normalized at 1 meter. As power and weight

were also concerns, the device needed to be as sensitive as possible. From Table 5, Mallory

MSO206NLR in the first column was the best choice among piezoelectric buzzers. During tests,

a disc was thrown roughly 30 meters and the buzzer was audible well within that range.

Page 32 of 123

Power Calculations (SG)

Table 6: Component Power Ratings

Component Voltage (V) Current (mA) Power (mW)

Microcontroller 3.6 150 540

GPS 3.3 25 82.5

Piezo Buzzer 3.3 30 99

IMU 3.3 6.45 21.285

microSD Reader 3.3 150 495

Bluetooth LE 3.3 12.5 41.25

The maximum power consumption of the components necessary for this design under

continuous operating conditions are given in Table 6. Using these values, the worst-case power

consumption of the whole system was calculated. The maximum total power is:

540 + 82.5 + 99 + 21.285 + 495 + 41.25 = 1,279.04 𝑚𝑊, (10)

or

1.28 𝑊𝑎𝑡𝑡𝑠.

Since the microSD card breakout module was not able to be successfully integrated in the

tracker's operation, its power connection was cut. The worst-case power consumption was then

784.04 𝑚𝑖𝑙𝑖𝑤𝑎𝑡𝑡𝑠.

Table 7: Battery Ratings

Battery Voltage

(V)

Capacity

(mAh)

Weight

(g)

Cycle Life

(hrs)

Adafruit 258 3.7 1200 25 3.3

SparkFun PRT-00339 3.7 1000 22 2.7

Adafruit 1578 3.7 500 10.5 1.4

Adafruit 1317 3.7 150 4.65 0.4

Table 7 gives data for several of the considered choices of onboard energy storage. All

batteries listed are of Lithium Ion (Li-ion) or Lithium Ion Polymer (LiPo) construction. The

cycle life is the calculated amount of time that the battery is capable of supplying the system on

a full charge. This is based on the battery's capacity and the original 1.28 W system power draw.

To convert the battery's capacity rating to a power rating based on a system operating voltage of

3.5 Volts, the calculation is,

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑃𝑜𝑤𝑒𝑟 (𝑊𝑎𝑡𝑡 − 𝐻𝑜𝑢𝑟𝑠) = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑚𝐴ℎ) × 1000 × 3.5 (𝑉). (11)

Cycle life is,

Page 33 of 123

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐿𝑖𝑓𝑒 (𝐻𝑜𝑢𝑟𝑠) =
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐸𝑛𝑒𝑟𝑔𝑦(𝑊𝐻)

1.28 𝑊
. (12)

 Given that the actual power draw of the components during normal use is much less than

the worst case scenario, the battery life is actually much greater than the values given especially

considering the disconnected microSD breakout module.. Since weight was more of a limiting

factor, the 500 mAh Adafruit 1578 was the most appropriate choice of battery as it delivers more

than enough lifetime (>1.4 hrs) and adds only 10.5 grams to the disc. Even after several hours of

use, the battery was able to maintain sufficient charge.

Global Positioning System (GPS) (CW)

The GPS 3.3 V and GND pins are connected to the 3.3 V and GND output pins on the

Flora for power. The GPS is connected with two wires for UART serial communication. The TX

and RX pins on the Flora are connected to the RX and TX pins on the GPS, respectively. The

GPS will be used to track the location of the disc during its flight. It will be set to calculate a fix

at an update rate of 5 Hz. This is the maximum fix rate civilian GPS units can calculate their

position at. The baud rate for the UART connection will be set to the default 9600 baud rate for

the GPS. The project only needs latitude, longitude, and time to operate. Therefore, as defined by

National Marine Electronics Association (NMEA) standard 0183, the GPS will output NMEA

RMC sentences which provides the required position relative to the WGS84 ellipsoid. The RMC

sentence means the recommended minimum navigation information. The format of an NMEA

RMC sentence is shown in Figure 13.

Figure 13: NMEA RMC sentence structure

The definitions of each field are explained below in Table 8Error! Reference source not

found..

Table 8: NMEA RMC sentence description

Field Description

1 UTC Time

2 Status, A = Active, V = Void

Page 34 of 123

3 Latitude

4 North or South

5 Longitude

6 East or West

7 Ground Speed (knots)

8 Track Good (degrees)

9 Date (ddmmyy)

10 Magnetic Declination (degrees)

11 East or West

12 Checksum

The RMC sentences are provided in a CSV format where each different sentence is on a new

line. Since each location fix is calculated every 200 ms, an RMC sentence will be set to output

every 200 ms. The Flora will read each sentence from the GPS and then send it to the micro SD

card for storage until it is required for transmission over Bluetooth.

 A test was conducted to demonstrate relative accuracy of a commercial GPS. An Etrex

Venture HC handheld GPS was carried along a walk to emulate a disc throw. The path began in

the southwestern end of parking area for an apartment complex. The initial GPS coordinates

were recorded from the Etrex GPS as N 41˚ 04.55’ (latitude) and W 81˚ 29.832’ (longitude). The

beginning and end points recorded are the first and last points in Table 9.

Table 9: Coordinates from an Etrex GPS

Latitude Longitude

degrees minutes decimal degrees degrees minutes decimal degrees

41 4.543 41.075717 -81 29.833 -81.497217

41 4.543 41.075717 -81 29.832 -81.497200

41 4.543 41.075717 -81 29.831 -81.497183

41 4.543 41.075717 -81 29.83 -81.497167

41 4.543 41.075717 -81 29.829 -81.497150

41 4.543 41.075717 -81 29.828 -81.497133

41 4.543 41.075717 -81 29.827 -81.497117

41 4.543 41.075717 -81 29.826 -81.497100

41 4.543 41.075717 -81 29.825 -81.497083

41 4.543 41.075717 -81 29.824 -81.497067

41 4.543 41.075717 -81 29.823 -81.497050

41 4.543 41.075717 -81 29.822 -81.497033

41 4.543 41.075717 -81 29.821 -81.497017

41 4.543 41.075717 -81 29.82 -81.497000

41 4.543 41.075717 -81 29.819 -81.496983

Page 35 of 123

41 4.543 41.075717 -81 29.818 -81.496967

41 4.543 41.075717 -81 29.817 -81.496950

41 4.543 41.075717 -81 29.816 -81.496933

41 4.543 41.075717 -81 29.815 -81.496917

41 4.543 41.075717 -81 29.814 -81.496900

41 4.543 41.075717 -81 29.813 -81.496883

41 4.543 41.075717 -81 29.812 -81.496867

41 4.544 41.075733 -81 29.811 -81.496850

41 4.545 41.075750 -81 29.81 -81.496833

41 4.546 41.075767 -81 29.809 -81.496817

41 4.547 41.075783 -81 29.808 -81.496800

41 4.548 41.075800 -81 29.807 -81.496783

The data in Table 9 shows the GPS coordinates retrieved from walking an Etrex GPS through a

parking lot. The length of the walk is similar to a moderate golf disc throw. The points illustrate

the relatively good accuracy of civilian GPS. During this experiment, the horizontal dilution of

precision (HDOP) was recorded at ±13 ft. The HDOP value occurs from the large distance

between the unit and the GPS satellites. Perhaps more intuitively, HDOP is similar to the error

that occurs from the small angle approximation, or comparing arc length to straight distance

between two points separated by an angle. However, the received coordinates for this test were

confirmed accurate after the coordinates were converted into decimal degrees and plotted on a

map of the area in Figure 14.

Page 36 of 123

Figure 14: GPS coordinates plotted on a map

 The path can be clearly seen from the image. The image in Figure 14 is from a website

tool which plots multiple points onto Google Maps (www.darrinward.com). The tool requires

decimal degrees to plot the coordinates which is the reason for the column in Table 9.

Inertial Measurement Unit (IMU) (CW)

 The microcontroller will control the IMU and log the data it outputs. The IMU will

consist of a 9-DOF (degrees-of-freedom) chip composed of a 3-axis accelerometer, gyroscope,

and magnetometer. The accelerometer will provide values of acceleration in 𝑚/𝑠2 based on a

Cartesian coordinate system centered on the chip. The gyroscope will provide values of deg/s

around the axes defined in the Cartesian coordinate system for the accelerometer. Finally, the

magnetometer will provide measurements of the magnetic field intensity in gauss along the three

Cartesian axes of the accelerometer.

 The magnetometer can be used to determine orientation on the surface of the earth. The

magnetometer will provide the output of the magnetic field intensity in a horizontal and vertical

direction on the surface of the earth. Therefore, the heading can be calculated from the angle

between the two given vectors,

http://www.darrinward.com/lat-long/

Page 37 of 123

ℎ𝑒𝑎𝑑𝑖𝑛𝑔 = tan−1
𝐻𝑦

𝐻𝑥
 (13)

 where magnetic field intensities in the vertical and horizontal positions are given by 𝐻𝑦 and 𝐻𝑥,

respectively. Magnetic declination can be accounted for after the global position is known.

 The accelerometer can be used to determine distance traveled with the acceleration

measurements and the elapsed time. The accelerometer measures instantaneous acceleration at

given intervals. The time between intervals can be used to calculate distance traveled. Velocity

can be obtained from integrating acceleration,

𝑣(𝑡) = ∫ 𝑎𝑑𝑡

𝑡

0

= 𝑎𝑡, (14)

where a is the value of acceleration. Further, position can be calculated as,

𝑥(𝑡) = ∫ 𝑣𝑑𝑡
𝑡

0
= 𝑣𝑡. (15)

where v is the velocity. Considering initial position and combining Equation Error! Reference

source not found.(14) and Equation (15) yield a formula to calculate distance traveled,

𝑥(𝑡) = 𝑥𝑜 + 𝑣𝑡 +
1

2
𝑎𝑡2. (16)

 The basic kinematic equations can be used to calculate position by integrating the

acceleration measurement twice. This calculation can be implemented recursively to calculate

total distance traveled by adding the new distance to the previous distance.

 Since the gyroscope measures angular velocity, which is the derivative of the angular

position, the angle of change for each axis can be calculated. Therefore, the angle is

𝜃 = ∫ 𝜔𝑑𝑡
𝑡2

𝑡1

= 𝜔(𝑡2 − 𝑡1), (17)

where 𝜔 is the angular velocity output from the gyroscope. Since the angle can be calculated on

each axis, yaw, pitch, and roll can be defined for the device attached to the gyroscope.

Page 38 of 123

Hardware Mounting (SG)

 A critical part of the design was the mounting of all hardware to the golf disc. Ideally, the

hardware should be mounted such that the disc can sustain significant impact at any point which

is possible during game play. However, because of the constraints imposed by using separate,

interconnected modules, the system was designed to sustain only impact from the top and edge

of the disc. Fragile electronics were left exposed on the underside of the disc but since they did

not extend beyond the lip of the disc, it was possible for the disc to be dropped at all angles on

flat surfaces.

 Components were arranged on the disc according to weight distribution and sensor

orientation as well as routing of connections. The ideal balance of weight that was symmetric

around the center point of the disc was found and then a small compromise was made to

facilitate electrical connections by shifting some components to different points on the disc.

Though the disc ended up being slightly heavier on the side where the battery (the heaviest

component) was mounted, the overall balance was such that it did not noticeably impede the

flight characteristics of the disc.

 Several methods were utilized to secure components to the disc and make electrical

connections between components. Primarily, a clear RTV silicone sealant was used to bond

components to the disc. It was chosen for its flexible, adhesive properties. To mount the GPS

module, a square hole was cut in the center of the disc to allow the main chip to stick up on the

top of the disc so that the antenna could receive an un-attenuated satellite signal during flight, as

seen in Figure 15. The IMU chip was adhered to the back of the GPS so that it was aligned to the

rotational and mass centers of the disc. Remaining components were sewn to the disc or attached

with Velcro.

Page 39 of 123

Figure 15: Top view of completed disc

 Several connections, mainly those to the Bluetooth module, were made using a

conductive thread. The thread was a 3-ply thread made entirely of 316L stainless steel and

designed for wearable electronics. It was chosen for its size, tensile strength, and conductivity.

At 10 Ohms per foot, the thread served two purposes: make electrical connections, and hold

components to the golf disc. Using a standard sewing needle, the thread was sewn into the disc in

such a manner to create "traces" in which a majority of the thread was exposed on the underside

of the disc. Connections to the modules were made either by pulling the thread through the

contact holes and tying a large knot that pulled tight to the contact or by wrapping the thread

through the contact holes several times and securing with a knot. It was found that the best

connections were those with the thread that had been wrapped several times around the chip

contact. Since the thread had a slight tendency to fray, microscopic shorts appeared between a

few of the traces. This was rectified by coating each thread trace with a thin lacquer (i.e. clear

GPS

Page 40 of 123

finger nail polish). The lacquer also safeguarded against human contact and moisture. All

connections are mounted are visible in Figure 16.

Figure 16: Underside of disc with mounted components

Weight Experiment (CW)

Weight is a serious concern for this project. The final design connect to the disc must not

weigh too much or the disc will fall quickly to the ground when it is thrown. An (Saturday,

September 13, 2014) experiment was conducted at the Arboretum Disc Golf course in Canton,

OH to determine potential weights which may drastically hinder the disc’s performance. This

experiment was performed by duct taping five quarters into a thin weight shown in Figure 17.

Page 41 of 123

Figure 17: Five quarters wrapped in duct tape serving as a weight

The five quarters were then taped to the underside of a golf disc. The tape was wrapped all the

way around the disc in a cross pattern with the quarters at the underside cross section. The US

Mint indicates that quarters weigh 5.670 grams. So five quarters had an approximate weight of

28.4 grams. The disc was thrown multiple times with and without the quarters attached.

Two different people threw the disc with and without the weight attached. When the first

person threw the weighted disc, there was no discernable difference between flight path or

distance thrown from that of the un-weighted disc. Similarly, when the second person threw the

weighted it appeared to travel just as far as the un-weighted disc. The specific distances were not

measured because there was not a tool available during the test to accurately measure throw

distances. Since the theoretical weight of the current device design is estimated around 30 grams

and nearly 30 grams did not interfere with the performance of a disc, this test helped lead to the

idea this project would be successful.

MicroSD Card Breakout (BL)

 The FLORA microcontroller will maintain storage logs of sensor information using the

proposed MicroSD card breakout board+ (MicroSD reader) from Adafruit, in addition to a

standard MicroSD card formatted using FAT32. The MicroSD reader will be directly connected

to the microcontroller as portrayed in Figure 9 from Section 3 above. In this implementation, the

CS, CLK, DI, and DO pins of the MicroSD reader will be connected to the SS, SCK, MOSI, and

MISO pins of the microcontroller respectively. The DI and DO pins regulate the data inflow and

outflow to the slave node (MicroSD reader) from the master node (microcontroller). The

MicroSD card will contain disc information collected for each flight from the IMU and GPS

sensors. This data will then be transmitted to the smart phone application using the system’s

Bluetooth feature.

Page 42 of 123

Bluetooth (BL)

 As discussed previously, the FLORA microcontroller will communicate flight sensor data

stored on the MicroSD card to the smartphone application by means of Bluefruit LE - Bluetooth

Low Energy (BLE 4.0) (Bluetooth) device; produced by Adafruit. The smartphone application

will communicate with the microcontroller and determine what data to transmit back to the

smartphone to synchronize sensor characteristics of sequential flight attempts. This data will

then be stored on the smartphone’s internal storage for use by the application. Additionally, the

user may select data sets corresponding to individual flights and mark them for deletion,

removing them from both the phone and disc’s storage. The Bluetooth unit will be connected to

the microcontroller as depicted in Figure 9 from Section 3 above.

Software - Level 0 Block Diagram (CW)

Figure 18: Level 0 Software Block Diagram

Software - Level 0 Functional Requirement Table (NS)

Table 10: Level 0 Software Functional Requirement Table

Module Smartphone App

Inputs

 IMU Data

 GPS Data

 User Input

Outputs
 Flight Path

 Control Signals

Page 43 of 123

Functionality

The app will use the logged IMU and GPS

data to map the flight path of the disc onto a

map of the area. It will also plot the best case

next throw and send commands to the

microcontroller to change the operation of the

device.

Software – Level 1 Block Diagram (NS)

Figure 19: Level 1 Software Block Diagram

Software – Level 1 Functional Requirements Table (NS)

Table 11: Level 1 Software Functional Requirement Tables

Module Distance and Initial Release Calculations

Input(s)  IMU Data

 GPS Data

Output(s)  Distance

 Direction

Page 44 of 123

Function
This module calculates the distance traveled using the initial and final GPS

coordinates and calculates initial release data.

Module Historical Data

Input(s)

 GPS Data

 Flight Distance

 Direction.

Output(s)

 Distance traveled for previous throws

 Direction for previous throws

 GPS coordinates for previous throws

Function This module stores the flight information for every previous throw.

Module Best Throw Calculations

Input(s)

 Flight Distance

 Direction

 Historical Data.

Output(s)  Best available throw

Function

This module calculates the distance traveled using the initial and final GPS

coordinates and calculates the average speed of the throw using the distance

and the initial and final timestamps.

Module Microcontroller Command Logic

Input(s)  User input

Output(s)  Microcontroller Control Signals

Function
This module takes user input from the touch screen and sends commands to

the microcontroller to control the operation of the disc.

Page 45 of 123

Module Google Maps API

Input(s)

 GPS Data

 Historical Data

 Best Throw Calculations

 User Input

Output(s)  Map of flight data

Function

This module uses the location data from all previous throws and puts the

flight paths on a map of the golf course. The best throw calculations are used

to show how far the disc can be thrown next. The module also takes user input

to place intended targets on the map.

Page 46 of 123

Software - Level 2 Block Diagram (NS)

Figure 20: Level 2 Software Block Diagram

Software - Level 2 Functional Requirement Table (NS)

Table 12: Level 2 Software Functional Requirement Tables

Module Plot Previous Throws

Inputs  GPS data

Outputs  Map of course highlighting all previous throws

Function
Plot the initial and final GPS coordinates of every prior throw onto a map of

the golf course.

Module Calculate Total Distance

Page 47 of 123

Inputs  GPS Data

Outputs  Distance of throw

Function Calculate the distance between the initial and final GPS coordinates.

Module Calculate Directional Error

Inputs  GPS Data

 Initial direction

Outputs  Directional error

Function
Calculate the difference between the direction of the initial release and the

direction the disc actually took using the GPS data.

Module Historical Data

Inputs

 GPS Data

 Distance

 Directional error

Outputs

 GPS Data

 Distance

 Directional error of previous throws

Function
Stores the flight data for every throw and outputs the data from all previous

throws.

Module Find Average Directional Error

Page 48 of 123

Inputs  Historical directional errors

Outputs  Average directional error

Function Calculate average directional error based on all previous directional errors

Module Find Average Distance

Inputs  Historical distances

 Directional errors

Outputs  Average distance

Function
Calculate the average distance based on all previous distances and their

corresponding directional errors.

Module Best Throw Calculations

Inputs  Average distance

 Average directional error

Outputs  Distance of best possible throw

Function Calculate the distance of the best possible throw using the average flight data.

Module Plot Distance for Best Throw

Inputs  Distance of best possible throw

 Map of previous throws

Outputs  Map of course with all previous throws and the distance of the best

possible throw

Page 49 of 123

Function
Plot a circle with a radius of the distance of the best possible throw on the map

created in the Plot Previous Throws block.

Module Plot Best Case for Throw

Inputs
 User input

 Map of course with all previous throws and the distance of the best

possible throw

Outputs  Map of flight data

Function

User input is used to select the direction of the throw and a line is plotted that

shows the best case scenario of the next throw (distance) and an indicator

showing any directional compensation that should be considered.

Module Get Microcontroller Command

Inputs  User input

Outputs  Microcontroller command

Function
User input is used to select a mode of operation for the disc and the

corresponding command is looked up from storage.

Module Send Command

Inputs  Microcontroller command

Outputs  Microcontroller control signals

Function Format and send the command over Bluetooth to the disc.

Page 50 of 123

Application Angle Calculation (NS)

 In the Android application, the total angle of difference is calculated and saved for every

throw. The angle from the starting GPS location to the user-plotted hole is referred to as the hole

angle. The angle from the starting GPS location to the final GPS location is referred to as the

actual angle. The total angle of difference describes the difference between the hole angle and

the actual angle. The angle calculation is shown below.

𝐻𝑜𝑙𝑒 𝐴𝑛𝑔𝑙𝑒 = 𝑎𝑡𝑎𝑛2(sin(𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒2 − 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒1) ∗ cos(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒2), cos(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒1) ∗

sin(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒2) − sin(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒1) ∗ cos(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒2) ∗ cos(𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒2 − 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒1)) (18)

Where latitude1/longitude1 are the coordinates of the starting GPS location and

latitude2/longitude2 are the coordinates of the hole.

𝐴𝑐𝑡𝑢𝑎𝑙 𝐴𝑛𝑔𝑙𝑒 = 𝑎𝑡𝑎𝑛2(sin(𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒2 − 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒1) ∗ cos(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒2), cos(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒1) ∗

sin(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒2) − sin(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒1) ∗ cos(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒2) ∗ cos(𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒2 − 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒1)) (19)

Where latitude1/longitude1 are the coordinates of the starting GPS location and

latitude2/longitude2 are the coordinates of the final GPS location.

𝐴𝑛𝑔𝑙𝑒 𝑜𝑓 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝐴𝑛𝑔𝑙𝑒 − 𝐻𝑜𝑙𝑒 𝐴𝑛𝑔𝑙𝑒 (20)

Application Totals Data (NS)

 The Android application keeps track of user data by holding the throw count, average

distance and average angle in a totals object that is accessible to the entire application. Every

time this object is changed, its data is written to a table in a SQLite database. The database

allows for nonvolatile storage of the data. When a new throw is transferred, the throw count gets

incremented and the average angle and distance are updated to include the new data.

Application Data Transfer Operation (NS)

 Data is transferred from the disc tracker device to the application in 20 byte increments.

When data is received it is buffered by saving it into a single string. The end of transmission is

signaled by the receipt of the string “$FF”. When the termination string is received, the buffered

Page 51 of 123

data string is split on the “$” character into a vector of strings. This vector is sent to a function

that parses the latitude/longitude pair out of each string and saves them into a file. The total

distance is found by using the built in distanceTo function found in the Google Maps API to

return the distance between the first and last GPS points that were transferred. The angle of

difference is calculated using the equations shown above. Once these parameters are calculated

the totals data is updated using the method described above.

Page 52 of 123

Microcontroller Control Flow (CW)

Figure 21: Microcontroller Control Flow1

1 The red line is used to indicate no intersection between flow options.

Page 53 of 123

Figure 21 shows the control flow of the device. The process starts when the

microcontroller is turned on. Table 13 below describes each control block in detail.

Table 13: Table of Control Flow

Control Step Function

Config GPS
Sets GPS to calculate a fix 5 Hz and send current fix 2 Hz to

FLORA over UART.

Init Accelerometer
Turns on the accelerometer to provide acceleration

measurements at 50 Hz with 2g sensitivity through I2C.

Init Gyroscope
Turns on gyro to provide radial velocity measurements at 95

Hz with 2000 dps sensitivity through I2C.

Ready alert The buzzer will sound to indicate disc can be thrown.

Read gyro Reads the radial velocity on the axis perpendicular to the disc.

Is Gyro > Threshold

If the radial velocity is greater than 1000 dps, the disc is

spinning and process continues to the next step. Otherwise, it

reads the radial velocity again.

Read GPS
Reads and parses the NMEA RMC string to attain latitude and

longitude in decimal-minute degrees.

Log GPS into EEPROM Logs the parsed GPS string into the EEPROM.

Is EEPROM full?
If the EEPROM is not full, read the next GPS string.

Otherwise, move to the next step.

Turn alarm on Turn the buzzer on.

Starts Bluetooth Starts the Bluetooth device.

Broadcast Connection Starts advertising available Bluetooth connection.

Is app connected?
If the app has connected to Bluetooth, move to the next state.

Otherwise, continue broadcasting Bluetooth connection.

Turn off alarm Turns buzzer off after app connects.

Read GPS data from

EEPROM
Reads the parsed GPS string from the EEPROM.

Send GPS data over

Bluetooth
Bluetooth sends the GPS string 20 characters per packet.

All GPS data sent?
If all the GPS data has been sent, start control process again.

Otherwise, read the next GPS string from EEPROM to send.

Page 54 of 123

4. Operation, Maintenance, and Repair Instructions

Operation Instructions

 Disc (CW):

1) Attach battery to Velcro slot on the disc.

2) Plug the male JST end of the battery cable into the JST female port on the disc.

3) On the disc, turn the power switch to the ON position.

4) Ensure the top of the disc has line-of-sight with the sky.

5) When the disc alarm is heard, it should be thrown.

6) The disc alarm will continue to sound once it lands until the disc connects to the

app.

Battery Charger (CW):

1) Plug the USB Type-A male end of the USB to mini-USB cable into a USB Type-

A female port on a computer.

2) Plug the mini-USB Type-B male end of the USB to mini-USB cable into the

mini-USB Type-B female connector on the charger.

a. If the red LED is on, the battery is charging.

b. If the green LED is on, the battery is fully charged and ready to use.

Android Application Installation (NS):

1) Enter into the security settings on the Android device and enable “Installation

from unknown sources”.

2) Download the app.apk file and open it.

3) Select “Ok” to accept the required permissions for the application. This will

install the application to the device and it will appear in the application drawer as

“Where’s My Disc”.

Android Application Operation (NS):

 The application has three tabs to separate the different operations. The tabs can be

navigated through by selecting each from the action bar at the top or by swiping in the

direction of the desired tab. There is also a menu that is accessible by selecting the three

dots at the top right of the action bar. The menu contains options for starting a new game,

Page 55 of 123

adding the demo throw, viewing the Bluetooth log, viewing the legend for the map,

clearing all of the saved data and viewing information about the design team.

 The Connect tab is a simple tab that facilitates connecting to the Bluetooth

adapter on the disc tracker device. Upon entering the application, if Bluetooth isn’t

enabled on the Android device, a prompt will appear to ask permission to enable it. Once

it is enabled, to search for the tracker device, select “Search for Devices”. This will

perform a Bluetooth LE scan for compatible adapters. Any devices found will appear in

the “Devices Found” list. The disc tracker device will appear as “WMD 4.0”. Select the

device from the list and the connection status will change from “Device Disconnected” to

“Device Connected”. To refresh the status of the connection, select “Refresh Connection

Status”. This will return the status to “Disconnected” if the disc tracker device is out of

range, or will remain unchanged if it is still connected.

 The Data tab consists of a list of throws. Each entry in the list represents a single

throw and displays the throw ID, angle of difference and total distance of the throw. The

throws are selectable and selecting a throw brings up a more detailed view of the

statistics of that throw. In addition to the three fields mentioned earlier, the game id and

the sync time of the throw are shown. To return to the data tab from the individual throw

details view, select the back arrow at the top of the screen or use the android system back

button. If new data is transferred, the list of throws can be refreshed by pulling down on

the list, until a white circle fully appears at the top, and then releasing.

 The final tab is the Map tab, which uses the Google Maps API to plot GPS

coordinates onto a map of the disc golf course. The map will automatically default to the

location of the user’s android device. When data is transferred from the disc tracker

device it is automatically parsed and plotted on the map. The GPS module on the tracker

device can sometimes collect a few bad GPS points. To remedy this issue, if a set of

coordinates is transferred the application checks if they are within 50 meters of the

Android device or 5 meters of the previous throw. If they are not, those points are not

plotted or processed. The map tab has a planning feature that allows a user to plot out the

path they will take to avoid obstacles and reach the hole in the most efficient way. First

the user will plot where the hole on the course is by pressing the “Plot Hole” button.

After pushing the button, a flag icon can be placed on the map where the actual hole is

Page 56 of 123

located. Next, the player icon will have a circle surrounding it that represents the

maximum distance that the user can throw the disc based on previous throws. The user

will select a spot within this hole for the first throw to land. Once the first spot has been

selected, the circle will move to surround this new point. This process repeats for all

subsequent selections, until the user has plotted a full path leading to the hole. There are

many different icons used on the map tab, and the all are defined on the map legend

shown below.

Figure 20: Android Application Map Legend

Page 57 of 123

5. Testing Procedures

GPS and SD card (CW)

 Arduino code was developed to use GPS and the SD card reader. Although, the SD card

reader was not implemented in the final design because of power issues, it was tested in the

development phase of the project since the intention was to use it. The Arduino sketch

midterm_GPS_demo was written to configure the GPS and write the GPS data into a file on the

SD card. The two devices were successfully implemented and tested together. The Arduino

sketch is located in the Appendix. A screenshot of the output file saved on the SD card is shown

in Figure 22: Raw GPS data logged on SD card. The specific GPS configuration is explained in

Table 13.

Figure 22: Raw GPS data logged on SD card

IMU (CW)

 Similarly, Arduino code was developed to use the IMU. While the accelerometer and

magnetometer were, also, not implemented the final process, they were tested along with the

gyroscope. The Arduino sketch midterm_IMU_demo was written to configure and test the IMU.

Page 58 of 123

The sketch displays the 3-D vector for each IMU device on the serial monitor. The gyroscope

configuration is explained in Table 13. The Arduino sketch is located in the Appendix.

Bluetooth (BL)

 The nRF8001 Bluetooth breakout was tested using an Arduino Uno board as

recommended by Adafuit’s “Getting Started with the nRF8001 Bluefruit LE Breakout”

instructions located on their website. For android users, a nRF UART v2.0 application is

available on the android marketplace for connecting to this device. The Bluetooth breakout’s

UUID is not supported by standard Bluetooth applications, so it must be included in the

application which will connect to it.

 Adafruit has provided an “Adafruit_BLE_UART” library with sample code “echoDemo,”

which has been included at the conclusion of this report. The echoDemo provides the capability

of sending and receiving hex characters over the Bluetooth connection, translating the data to

readable text upon arrival. Once tested, the nRF UART application was used to receive GPS data

from the disc, which is portrayed in Figure 23 below. The final implementation of the project

immediately sends the GPS data, saved in EEPROM, to developed Android Application, which

will be discussed later.

Page 59 of 123

Figure 23: GPS test data sent over Bluetooth

Android Application (NS)

 The application was tested thoroughly using GPS data that was collected from the disc

tracking device. Once the GPS data string format was decided on, we gathered data from test

throws on the device. That data was saved into a text document so it could be tested in the

application. The data was split into separate, twenty character long, strings as this length was a

limitation of the Bluetooth module. The shortened strings were run through the data parsing

functions and the resulting latitude/longitude pairs were examined for accuracy.

 In addition to the data transfer and parsing tests, functional testing was performed

extensively. The operation of each tab was explored and tested for cosmetic and functional

issues. The map tab was the most complex tab, and therefore endured the most thorough testing.

The route planning feature, plotting transferred points, and saving the hole location were all

inspected in code and in operation.

Page 60 of 123

Disc (CW)

 When everything was assembled on the disc, it was tested by throwing it outside on the

east side of the Student Union. The assembled disc is shown in <insert figure of disc>. The disc

was tested multiple times. The first test resulted in the buzzer breaking off, but everything else

worked and data was sent to the app. The buzzer was reattached and the disc was tested again.

Everything worked and parts remained on the disc. The app would parse data when it reads an

end of transmission string “FF” which was accidentally left out of the Arduino code. The ending

code was added into the Arduino sketch and the disc was tested again. When it landed, the

battery cable broke. A replacement battery was obtained and the parts on the disc were

reinforced by tying steel thread around components into the disc. The disc was tested again and it

successfully landed, transferred data, and plotted the GPS data.

Page 61 of 123

6. Financial Budget (SG & BL)

Table 14: Proposed Parts List

Ref.
Des.

Part
Name Manufacturer

Part
Number Price Weight Qty Website

U1 Controller Adafruit 659 $24.95 4.40 g 1 http://www.adafruit.com/product/659

U2 GPS Chip Adafruit 1059 $39.95 5.43 g 1 http://www.adafruit.com/product/1059

U3 IMU Chip Adafruit 2020 $19.95 2.00 g 1 http://www.adafruit.com/product/2020

P1
Piezo

Buzzer
Mallory MSO206NR $8.75 3.50 g 1

http://www.digikey.com/product-
detail/en/MSO206NR/458-1163-
ND/2442606

U4
microSD
Reader

Adafruit 254 $14.95 3.43 g 1 http://www.adafruit.com/product/254

U5
Bluetooth

LE Chip
Adafruit 1697 $19.95 1.80 g 1 http://www.adafruit.com/product/1697

Solar
Panel

Adafruit 1485 $24.95 - 1 http://www.adafruit.com/product/1485

U6
Battery
Charger

Adafruit 390 $17.50 n/a 1 http://www.adafruit.com/products/390

B1 Battery Adafruit 1578 $7.95 10.5 g 1 http://www.adafruit.com/product/1578

 TOTAL $178.90 31.06 g

Page 62 of 123

Table 15: Parts Request 1

Qty. Part Num. Description Cost Cost

1 659 FLORA Microcontroller $19.95 $19.95

1 1059 Flora GPS Module 39.95 39.95

1 2020 Flora Accelerometer/Gyroscope/Magnetometer 19.95 19.95

1 MSO206NR BUZZ PIEZO CIRC 23MM RADIAL 8.75 8.75

1 254 MicroSD card breakout board+ 14.95 14.95

1 1697 Bluefruit LE - Bluetooth Low Energy (BLE 4.0) 19.95 19.95

1 1485 Flexible 6V 1W Solar Panel 24.95 24.95

1 390 USB / DC / Solar Lithium Ion/Polymer charger - v2 17.50 17.50

1 1578 Lithium Ion Polymer Battery - 3.7v 500mAh 7.95 7.95

Table 16: Parts Request 2

Qty. Part Num. Description Cost Cost

2 MSO206NR BUZZ PIEZO CIRC 23MM RADIAL $8.75 $17.50

2 102 SD / MicroSD Memory Card 7.95 15.90

1 254 MicroSD card breakout board+ 14.95 14.95

1 1697 Bluefruit LE - Bluetooth Low Energy (BLE 4.0) 19.95 19.95

1 1578 Lithium Ion Polymer Battery - 3.7v 500mAh 7.95 7.95

1 641 Conductive Thread 6.95 6.95

2 O-135 Blizzard Champion Disc Golf - Orange, weight 135 13.99 27.98

Table 17: Master Budget

Date Item Amount

11/17/2014 Initial Team Budget of $400 $ 400.00

11/18/2014 Parts Request Form 1 $ (173.90)

1/20/2015 Parts Request Form 2 $ (111.18)

 Remaining balance: $ 114.92

7. Project Schedules (BL)

Midterm Report Gantt Chart

Page 63 of 123

Page 64 of 123

Final Report Gantt Chart

Page 65 of 123

Project Design Gantt Chart

8. Design Team Information (SG, BL, NS, CW)

 Team Member Position Major

 Shane Gamble Hardware Manager Electrical Engineering

 Brandon Linhart Archivist Computer Engineering

 Noah Sanor Software Manager Computer Engineering

 Christian Wallenfelsz Project Leader Electrical Engineering

9. Conclusions & Recommendations (CW, BL)

 The goal of the project was to design a device which could be attached to a disc and help

locate it after it was thrown. The final implementation could locate the disc and it could display

the flight path of the disc on the app. The project was a complete success. There were power

issues which did not allow every component to be powered, write to the SD card, and read from

the GPS. The power issue limited the amount of data which could be recorded during a flight.

Therefore, metrics about a throw were trimmed down to determine total throw distance and angle

of throw relative to the hole.

Page 66 of 123

 The team members involved in this project have decided on few recommendations which

could improve on implementation; given additional budget or desire to market this product. For

instance, the electrical components could have been eliminated and replaced with a custom

designed component containing each of their required functions. This would help in eliminating

cost, as well as the need to distribute the weight evenly over the disc. Additionally, this would

eliminate the exposed wires between components on the underside of the disc. Further, the

single component could be enclosed under a protective layer, which would increase durability

from landing shock and defend against moisture.

Page 67 of 123

10. References

Acharya, R. (2014). 1.3. Referencing A Position. In Understanding Satellite Navigation.

Academic Press.

Adafruit Industries, “Getting Started with FLORA,” Adafruit Flora datasheet, June 2014.

Bartlett, D. (2013). Essentials of Positioning and Location Technology. Cambride University

Press.

Chen, X., Parini, C., Collins, B., Yao, Y., & Rehmen, M. (2012). History of GNSS. In Antennas

for Global Navigation Satellite Systems. John Wiley & Sons.

J. Liu and J. Yu, "Research on Development of Android Applications," in Intelligent

Jones, T., & Nenadic, N. (2013). Electromechanics and MEMS. Cambride University Press.

Kleppner, D., & Kolenkow, R. (2013). 8.3 Gyroscopes. In An Introduction to Mechanics (2nd

ed.). Cambride University Press.

Networks and Intelligent Systems (ICINIS), 2011 4th International Conference on, pp.69-

72, 1-3 Nov. 2011. doi: 10.1109/ICINIS.2011.40

T. Lindholm, F. Yellin, G. Bracha and A. Buckley, The Java® Virtual Machine

Specification, 7th ed., Redwood City, California: Oracle America, Inc., 2013, p. 1-2.

Petrovski, I. (2014). GNSS ground and space segments. In GPS, GLONASS, Galileo, and

BeiDou for Mobile Devices. Cambride University Press.

Untitled diagram of ECEF coordinate system. Retrieved October 1, 2014 from

http://upload.wikimedia.org/wikipedia/commons/6/6b/ECEF.png

http://upload.wikimedia.org/wikipedia/commons/6/6b/ECEF.png

Page 68 of 123

11. Appendices

Table 18: Component Datasheet Links

Ref.
Des.

Part
Name Datasheet Link

U1 Controller
https://learn.adafruit.com/downloads/pdf/getting-started-with-
flora.pdf

U2 GPS Chip
http://www.adafruit.com/datasheets/GlobalTop-FGPMMOPA6H-
Datasheet-V0A.pdf

U3 IMU Chip http://www.adafruit.com/datasheets/LSM9DS0.pdf

P1
Piezo

Buzzer
http://www.mallory-sonalert.com/specifications/MSO206NR.PDF

U6
Battery
Charger

http://www.adafruit.com/datasheets/MCP73871.pdf

B1 Battery
https://www.adafruit.com/images/product-
files/1578/C1854%20PKCell%20Datasheet%20Li-
Polymer%20503035%20500mAh%203.7V%20with%20PCM.pdf

GPS and SD card test Arduino sketch code (midterm_GPS_demo) (CW)

#include <SD.h>

#include <SPI.h>

#include <Wire.h>

void notify(void);

//NMEA command sentences

#define PMTK_SET_NMEA_OUTPUT_RMCONLY "$PMTK314,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*29\r\n"

#define PMTK_SET_NMEA_UPDATE_5HZ "$PMTK220,200*2C\r\n"

#define PMTK_SET_NMEA_BAUDRATE "$PMTK251,115200*1F\r\n"

#define PMTK_API_SET_FIX_CTL_5HZ "$PMTK300,200,0,0,0,0*2F\r\n"

// SD card utilities

Sd2Card card;

SdVolume volume;

SdFile root;

const int CS = 10; // use 10 for Adafruit product

File fp;

volatile unsigned int loops = 0;

void setup()

{

 // NOTE: RECONNECT GPS EACH test time.

 // the baudrate needs to reset on the GPS

 pinMode(7,OUTPUT);

Page 69 of 123

 digitalWrite(7,LOW);

 char c; // this char is for reading GPS

 Serial.begin(115200);

 delay(5000);

 Serial1.begin(9600);

 delay(5000);

 // Delay 120 seconds for GPS to get a fix

 delay(120000);

 // configure the GPS

 Serial1.write(PMTK_SET_NMEA_OUTPUT_RMCONLY);

 Serial.println("\nGPS set to RMC sentences only");

 delay(4000);

 Serial1.write(PMTK_SET_NMEA_BAUDRATE);

 Serial.println("\nGPS baudrate set to 115200");

 delay(4000);

 Serial1.end();

 delay(4000);

 Serial1.begin(115200);

 delay(5000);

 Serial1.write(PMTK_API_SET_FIX_CTL_5HZ);

 Serial.println("\nGPS Fix rate changed to 5 Hz");

 delay(4000);

 Serial1.write(PMTK_SET_NMEA_UPDATE_5HZ);

 Serial.println("\nGPS set to send location at 5 Hz");

 delay(4000);

 notify();

// SD.begin(CS); ---

// //create GPS log on the SD card

// if (!SD.begin(CS))

// Serial.println("\nSD card init failure");

// else

// Serial.println("\nSD card init success");

 delay(3000);

// // checks for GPS log, removes and creates new if it exists

// if (SD.exists("GPS_LOG.txt"))

// {

// SD.remove("GPS_LOG.txt");

// Serial.println("\nremoved old GPS_LOG.txt");

// delay(100);

// fp = SD.open("GPS_LOG.txt", FILE_WRITE);

// }

// else

// fp = SD.open("GPS_LOG.txt", FILE_WRITE);

//

// delay(100);

// Serial.println("\ncreated GPS_LOG.txt");

//

Page 70 of 123

// delay(1000);

 // writes 8000 characters to SD card

 //Serial.println("\nabout to read GPS...");

 while(loops < 30000)

 {

 if (Serial1.available())

 {

 c = Serial1.read();

 //fp.write(c);

 loops++;

 Serial.write(c);

 }

 }

 delay(100);

 //fp.close();

 Serial.println("\ndone reading GPS");

 digitalWrite(7,HIGH);

} // end setup

void loop()

{

}

void notify(void)

{

 int limit = 0;

 while(limit < 6)

 {

 digitalWrite(7,HIGH);

 delay(300);

 digitalWrite(7,LOW);

 delay(300);

 limit++;

 }

}

IMU Arduino sketch test code (midterm_IMU_demo) (CW)

#include <Wire.h>

#define lsm_accmag (0x1D) // accelerometer and magnetometer have same address

#define lsm_gyro (0x6B) // gyro address

// accelerometer registers

#define WHO_AM_I (0x0F)

#define CTRL_REG0_XM (0x1F)

#define CTRL_REG1_XM (0x20)

#define CTRL_REG2_XM (0x21)

Page 71 of 123

#define OUT_X_L_A (0x28)

#define OUT_X_H_A (0x29)

#define OUT_Y_L_A (0x2A)

#define OUT_Y_H_A (0x2B)

#define OUT_Z_L_A (0x2C)

#define OUT_Z_H_A (0x2D)

// magnetometer registers

#define CTRL_REG5_XM (0x24)

#define CTRL_REG6_XM (0x25)

#define CTRL_REG7_XM (0x26)

#define OUT_X_L_M (0x08)

#define OUT_X_H_M (0x09)

#define OUT_Y_L_M (0x0A)

#define OUT_Y_H_M (0x0B)

#define OUT_Z_L_M (0x0C)

#define OUT_Z_H_M (0x0D)

// gyro registers

#define CTRL_REG1_G (0x20)

#define CTRL_REG4_G (0x23)

#define OUT_X_L_G (0x28)

#define OUT_X_H_G (0x29)

#define OUT_Y_L_G (0x2A)

#define OUT_Y_H_G (0x2B)

#define OUT_Z_L_G (0x2C)

#define OUT_Z_H_G (0x2D)

// prototypes for IMU init

void initGYRO(void);

void initACCEL(void);

void initMAG(void);

int led = 7; // FLORA pin 7 is connected to LED (red)

// sensitivity characteristics from Table 3 of LSM9DS0 datasheet

float sensitivity_A_2G = 0.061;

float sensitivity_A_4G = 0.122;

float sensitivity_A_6G = 0.183;

float sensitivity_M_2G = 0.08;

float sensitivity_M_4G = 0.16;

float sensitivity_M_8G = 0.32;

float sensitivity_M_12G = 0.48;

float sensitivity_G_245 = 8.75;

float sensitivity_G_500 = 17.5;

float sensitivity_G_2K = 70;

//--

//--

void setup() {

 Serial.begin(115200);

Page 72 of 123

 initACCEL();

 delay(1000);

 initMAG();

 delay(1000);

 initGYRO();

 delay(1000);

 // confirm successful init

 pinMode(led, OUTPUT);

 for (int i=0;i<10;i++) {

 digitalWrite(led, HIGH);

 delay(100);

 digitalWrite(led, LOW);

 delay(100);

 }

 // identify device

 unsigned int who = 0;

 Wire.beginTransmission(lsm_gyro);

 Wire.write(WHO_AM_I);

 Wire.endTransmission();

 Wire.requestFrom(lsm_gyro, 1);

 who = Wire.read();

 Serial.println(who);

 digitalWrite(led, HIGH);

 delay(2000);

} // end setup ------------------------------------

//--

//--

void loop() {

 unsigned int xl = 0;

 int xh = 0;

 unsigned int yl = 0;

 int yh = 0;

 unsigned int zl = 0;

 int zh = 0;

 float x = 0;

 float y = 0;

 float z = 0;

// // read all the bytes from each accel register

// Wire.beginTransmission(lsm_gyro);

// Wire.write(OUT_X_L_G);

// Wire.endTransmission();

// Wire.requestFrom(lsm_gyro, 1);

// xl = Wire.read();

// //Serial.println(xl);

//

// Wire.beginTransmission(lsm_gyro);

Page 73 of 123

// Wire.write(OUT_X_H_G);

// Wire.endTransmission();

// Wire.requestFrom(lsm_gyro, 1);

// xh = Wire.read();

// //Serial.println(xh);

//

// Wire.beginTransmission(lsm_gyro);

// Wire.write(OUT_Y_L_G);

// Wire.endTransmission();

// Wire.requestFrom(lsm_gyro, 1);

// yl = Wire.read();

//

// Wire.beginTransmission(lsm_gyro);

// Wire.write(OUT_Y_H_G);

// Wire.endTransmission();

// Wire.requestFrom(lsm_gyro, 1);

// yh = Wire.read();

//

// Wire.beginTransmission(lsm_gyro);

// Wire.write(OUT_Z_L_G);

// Wire.endTransmission();

// Wire.requestFrom(lsm_gyro, 1);

// zl = Wire.read();

//

// Wire.beginTransmission(lsm_gyro);

// Wire.write(OUT_Z_H_G);

// Wire.endTransmission();

// Wire.requestFrom(lsm_gyro, 1);

// zh = Wire.read();

//

// // form all the measurements from 2's complement

// xh <<= 8;

// xh |= xl;

// x = xh * sensitivity_G_245;

// x /= 1000;

// //x *= 9.81;

//

// yh <<= 8;

// yh |= yl;

// y = yh * sensitivity_G_245;

// y /= 1000;

// //y *= 9.81;

//

// zh <<= 8;

// zh |= zl;

// z = zh * sensitivity_G_245;

// z /= 1000;

// //z *= 9.81;

//

// Serial.print(x);

// Serial.print(",");

// Serial.print(y);

// Serial.print(",");

// Serial.println(z);

//--

Page 74 of 123

//--

// // read all the bytes from each mag register

// Wire.beginTransmission(lsm_accmag);

// Wire.write(OUT_X_L_M);

// Wire.endTransmission();

// Wire.requestFrom(lsm_accmag, 1);

// xl = Wire.read();

//

// Wire.beginTransmission(lsm_accmag);

// Wire.write(OUT_X_H_M);

// Wire.endTransmission();

// Wire.requestFrom(lsm_accmag, 1);

// xh = Wire.read();

//

// Wire.beginTransmission(lsm_accmag);

// Wire.write(OUT_Y_L_M);

// Wire.endTransmission();

// Wire.requestFrom(lsm_accmag, 1);

// yl = Wire.read();

//

// Wire.beginTransmission(lsm_accmag);

// Wire.write(OUT_Y_H_M);

// Wire.endTransmission();

// Wire.requestFrom(lsm_accmag, 1);

// yh = Wire.read();

//

// Wire.beginTransmission(lsm_accmag);

// Wire.write(OUT_Z_L_M);

// Wire.endTransmission();

// Wire.requestFrom(lsm_accmag, 1);

// zl = Wire.read();

//

// Wire.beginTransmission(lsm_accmag);

// Wire.write(OUT_Z_H_M);

// Wire.endTransmission();

// Wire.requestFrom(lsm_accmag, 1);

// zh = Wire.read();

//

// // form all the measurements from 2's complement

// xh <<= 8;

// xh |= xl;

// x = xh * sensitivity_M_2G;

// x /= 1000;

//

// yh <<= 8;

// yh |= yl;

// y = yh * sensitivity_M_2G;

// y /= 1000;

//

// zh <<= 8;

// zh |= zl;

// z = zh * sensitivity_M_2G;

// z /= 1000;

//

// Serial.print(x);

Page 75 of 123

// Serial.print(",");

// Serial.print(y);

// Serial.print(",");

// Serial.println(z);

//--

//--

 // read all the bytes from each accel register

 Wire.beginTransmission(lsm_accmag);

 Wire.write(OUT_X_L_A);

 Wire.endTransmission();

 Wire.requestFrom(lsm_accmag, 1);

 xl = Wire.read();

 Wire.beginTransmission(lsm_accmag);

 Wire.write(OUT_X_H_A);

 Wire.endTransmission();

 Wire.requestFrom(lsm_accmag, 1);

 xh = Wire.read();

 Wire.beginTransmission(lsm_accmag);

 Wire.write(OUT_Y_L_A);

 Wire.endTransmission();

 Wire.requestFrom(lsm_accmag, 1);

 yl = Wire.read();

 Wire.beginTransmission(lsm_accmag);

 Wire.write(OUT_Y_H_A);

 Wire.endTransmission();

 Wire.requestFrom(lsm_accmag, 1);

 yh = Wire.read();

 Wire.beginTransmission(lsm_accmag);

 Wire.write(OUT_Z_L_A);

 Wire.endTransmission();

 Wire.requestFrom(lsm_accmag, 1);

 zl = Wire.read();

 Wire.beginTransmission(lsm_accmag);

 Wire.write(OUT_Z_H_A);

 Wire.endTransmission();

 Wire.requestFrom(lsm_accmag, 1);

 zh = Wire.read();

 // form all the measurements from 2's complement

 xh <<= 8;

 xh |= xl;

 x = xh * sensitivity_A_2G;

 x /= 1000;

 x *= 9.81;

 yh <<= 8;

 yh |= yl;

 y = yh * sensitivity_A_2G;

 y /= 1000;

Page 76 of 123

 y *= 9.81;

 zh <<= 8;

 zh |= zl;

 z = zh * sensitivity_A_2G;

 z /= 1000;

 z *= 9.81;

 Serial.print(x);

 Serial.print(",");

 Serial.print(y);

 Serial.print(",");

 Serial.println(z);

 //delay(10);

} // end loop -------------------------------------

//--

//--

void initMAG(void) {

 // set default magnetometer settings

 Wire.beginTransmission(lsm_accmag);

 Wire.write(CTRL_REG7_XM);

 Wire.write(0); // continuous conversion mode

 Wire.endTransmission();

 // set magnetic sensitivity

 Wire.beginTransmission(lsm_accmag);

 Wire.write(CTRL_REG6_XM);

 Wire.write(0); // 2g

 // Wire.write(0x20); // 4g

 // Wire.write(0x40); // 8g

 // Wire.write(0x60); // 12g

 Wire.endTransmission();

 // set mag refresh rate

 Wire.beginTransmission(lsm_accmag);

 Wire.write(CTRL_REG5_XM);

 Wire.write(0xC); // 25 Hz

 // Wire.write(0x10); // 50 Hz

 Wire.endTransmission();

}

//--

//--

void initACCEL(void) {

 // set accelerometer to default use

 Wire.beginTransmission(lsm_accmag);

 Wire.write(CTRL_REG0_XM);

 Wire.write(0);

 Wire.endTransmission();

Page 77 of 123

 // set accelerometer to output at 50 Hz

 Wire.beginTransmission(lsm_accmag);

 Wire.write(CTRL_REG1_XM);

 Wire.write(0x57);

 Wire.endTransmission();

 // set accelerometer to 2g scale

 Wire.beginTransmission(lsm_accmag);

 Wire.write(CTRL_REG2_XM);

 Wire.write(0);

 Wire.endTransmission();

}

//--

//--

void initGYRO(void) {

 // set gyro to default

 Wire.beginTransmission(lsm_gyro);

 Wire.write(CTRL_REG1_G);

 Wire.write(0x0F); // 95 Hz

 //Wire.write(0x67); // 190 Hz

 Wire.endTransmission();

 // set gyro sensitivity

 Wire.beginTransmission(lsm_gyro);

 Wire.write(CTRL_REG4_G);

 Wire.write(0); // 245 dps

 //Wire.write(0x08); // 500 dps

 //Wire.write(0x10); // 2K dps

 Wire.endTransmission();

}

Bluetooth Arduino sketch test code (BL)

#include <SPI.h>

#include "Adafruit_BLE_UART.h"

// Connect CLK/MISO/MOSI to hardware SPI

// e.g. On UNO & compatible: CLK = 13, MISO = 12, MOSI = 11

#define ADAFRUITBLE_REQ 9

#define ADAFRUITBLE_RDY 2 // This should be an interrupt pin

#define ADAFRUITBLE_RST 6

Adafruit_BLE_UART BTLEserial = Adafruit_BLE_UART(ADAFRUITBLE_REQ,

ADAFRUITBLE_RDY, ADAFRUITBLE_RST);

/**/

/*!

 Configure the Arduino and start advertising with the radio

*/

/**/

Page 78 of 123

void setup(void)

{

 Serial.begin(9600);

 while(!Serial); // Leonardo/Micro should wait for serial init

 Serial.println(F("Adafruit Bluefruit Low Energy nRF8001 Print echo demo"));

 // BTLEserial.setDeviceName("NEWNAME"); /* 7 characters max! */

 BTLEserial.begin();

}

aci_evt_opcode_t laststatus = ACI_EVT_DISCONNECTED;

void loop()

{

 // Tell the nRF8001 to do whatever it should be working on.

 BTLEserial.pollACI();

 // Ask what is our current status

 aci_evt_opcode_t status = BTLEserial.getState();

 // If the status changed....

 if (status != laststatus) {

 // print it out!

 if (status == ACI_EVT_DEVICE_STARTED) {

 Serial.println(F("* Advertising started"));

 }

 if (status == ACI_EVT_CONNECTED) {

 Serial.println(F("* Connected!"));

 }

 if (status == ACI_EVT_DISCONNECTED) {

 Serial.println(F("* Disconnected or advertising timed out"));

 }

 // OK set the last status change to this one

 laststatus = status;

 }

 if (status == ACI_EVT_CONNECTED) {

 // Lets see if there's any data for us!

 if (BTLEserial.available()) {

 Serial.print("* "); Serial.print(BTLEserial.available()); Serial.println(F(" bytes available from

BTLE"));

 }

 // OK while we still have something to read, get a character and print it out

 while (BTLEserial.available()) {

 char c = BTLEserial.read();

 Serial.print(c);

Page 79 of 123

 }

 // Next up, see if we have any data to get from the Serial console

 if (Serial.available()) {

 // Read a line from Serial

 Serial.setTimeout(100); // 100 millisecond timeout

 String s = Serial.readString();

 // We need to convert the line to bytes, no more than 20 at this time

 uint8_t sendbuffer[20];

 s.getBytes(sendbuffer, 20);

 char sendbuffersize = min(20, s.length());

 Serial.print(F("\n* Sending -> \"")); Serial.print((char *)sendbuffer); Serial.println("\"");

 // write the data

 BTLEserial.write(sendbuffer, sendbuffersize);

 }

 }

}

Final Project Arduino Sketch (CW, BL)

#include <Wire.h>

#include <SPI.h>

#include <EEPROM.h>

#include "Adafruit_BLE_UART.h"

//NMEA command sentences

#define PMTK_SET_NMEA_OUTPUT_RMCONLY "$PMTK314,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*29\r\n"

#define PMTK_SET_NMEA_UPDATE_5HZ "$PMTK220,200*2C\r\n"

#define PMTK_SET_NMEA_UPDATE_2HZ "$PMTK220,500*2B\r\n"

#define PMTK_SET_NMEA_UPDATE_1HZ "$PMTK220,1000*1F\r\n"

#define PMTK_SET_NMEA_BAUDRATE "$PMTK251,115200*1F\r\n"

#define PMTK_API_SET_FIX_CTL_5HZ "$PMTK300,200,0,0,0,0*2F\r\n"

#define lsm_accmag (0x1D) // accelerometer and magnetometer have same address

#define lsm_gyro (0x6B) // gyro address

// accelerometer registers

#define WHO_AM_I (0x0F)

#define CTRL_REG0_XM (0x1F)

#define CTRL_REG1_XM (0x20)

#define CTRL_REG2_XM (0x21)

#define OUT_X_L_A (0x28)

#define OUT_X_H_A (0x29)

#define OUT_Y_L_A (0x2A)

#define OUT_Y_H_A (0x2B)

#define OUT_Z_L_A (0x2C)

Page 80 of 123

#define OUT_Z_H_A (0x2D)

// gyro registers

#define CTRL_REG1_G (0x20)

#define CTRL_REG4_G (0x23)

#define OUT_X_L_G (0x28)

#define OUT_X_H_G (0x29)

#define OUT_Y_L_G (0x2A)

#define OUT_Y_H_G (0x2B)

#define OUT_Z_L_G (0x2C)

#define OUT_Z_H_G (0x2D)

// prototypes for IMU init

void initGYRO(void);

void initACCEL(void);

void bluetooth(void);

float getValue(int device, int reg_low, int reg_high, float scale);

int led = 7; // FLORA pin 7 is connected to LED (red)

// sensitivity characteristics from Table 3 of LSM9DS0 datasheet

float sensitivity_A_2G = 0.00059841; // 0.061 / 1000 * 9.81

//float sensitivity_A_4G = 0.00119682; // 0.122 / 1000 * 9.81

//float sensitivity_A_6G = 0.00179523; // 0.183 / 1000 * 9.81

//float sensitivity_G_245 = 0.00875; // 8.75 / 1000

//float sensitivity_G_500 = 0.0175; // 17.5 / 1000

float sensitivity_G_2K = 0.070; // 70 / 1000

volatile char c;

volatile unsigned int loops = 0;

volatile float ax = 0;

volatile float ay = 0;

volatile float az = 0;

volatile float gx = 0;

volatile float gy = 0;

volatile float gz = 0;

volatile char gps[80];

volatile int limit;

volatile int done;

volatile int blue;

volatile int index;

volatile int datadone;

volatile int index2;

volatile int count;

// Connect CLK/MISO/MOSI to hardware SPI

// e.g. On UNO & compatible: CLK = 13, MISO = 12, MOSI = 11

#define ADAFRUITBLE_REQ 9

#define ADAFRUITBLE_RDY 2 // This should be an interrupt pin, on Uno thats #2 or #3

#define ADAFRUITBLE_RST 6

Adafruit_BLE_UART BTLEserial = Adafruit_BLE_UART(ADAFRUITBLE_REQ, ADAFRUITBLE_RDY,

ADAFRUITBLE_RST);

Page 81 of 123

void setup() {

 Serial.begin(115200);

 delay(5000);

 Serial1.begin(9600);

 delay(5000);

 done = 0;

 // configure GPS

 Serial1.write(PMTK_SET_NMEA_OUTPUT_RMCONLY);

// Serial.println("\nGPS set to RMC sentences only");

 delay(4000);

 Serial1.write(PMTK_SET_NMEA_BAUDRATE);

// Serial.println("\nGPS baudrate set to 115200");

 delay(4000);

 Serial1.end();

 delay(4000);

 Serial1.begin(115200);

 delay(5000);

 Serial1.write(PMTK_API_SET_FIX_CTL_5HZ);

// Serial.println("\nGPS Fix rate changed to 5 Hz");

 delay(4000);

 Serial1.write(PMTK_SET_NMEA_UPDATE_1HZ);

// Serial.println("\nGPS set to send location at 2 Hz");

 delay(4000);

 // configure IMU

 delay(1000);

 initACCEL();

// Serial.println("accelerometer initialized");

 delay(1000);

 initGYRO();

// Serial.println("gyro initialized");

 delay(1000);

 delay(90000);

 index=0;

 blue=0;

 datadone=0;

// Serial.println("Entering loop");

 for(int i=0;i<3;i++)

 {

 analogWrite(12,250);

 delay(100);

 analogWrite(12,0);

 delay(100);

 }

//digitalWrite(led, HIGH);

}

Page 82 of 123

void loop()

{

 gz = getValue(lsm_gyro, OUT_Z_L_G, OUT_Z_H_G, sensitivity_G_2K); // perpendicular axis

 //Serial.println(gy);

 if ((gz < -1000) || (gz > 1000))

 { // trigger threshold

// Serial.println("Throwing");

 Serial.flush();

 index2 = 0;

 while(index2 < 750)

 {

 if (Serial1.available())

 {

 c = Serial1.read();

 if (c == '$')

 {

 loops++;

 count = 0;

 while (count < 45)

 {

 gps[count] = c;

 if (Serial1.available())

 {

 c = Serial1.read();

 count++;

 gps[count] = c;

 }

 }

 //Serial.println(gps);

 if ((gps[0]=='$') && (gps[1]=='G') && (gps[2]=='P') && (gps[3]=='R') && (gps[4]=='M') && (gps[5]=='C')

&& (gps[18]=='A'))

 {

 //Serial.println(gps);

 count = 20;

 EEPROM.write(index2, gps[0]);

 index2++;

 while (count < 44)

 {

 EEPROM.write(index2,gps[count]);

 //Serial.print(gps[count]);

 count++;

 index2++;

 }

 }

 else if ((gps[0]=='$') && (gps[1]=='G') && (gps[2]=='P') && (gps[3]=='R') && (gps[4]=='M') &&

(gps[5]=='C') && (gps[18]=='V'))

 {

 //Serial.println(gps);

 count = 20;

 EEPROM.write(index2, gps[0]);

 index2++;

 while (count < 44)

 {

 EEPROM.write(index2, gps[count]);

 //Serial.print(gps[count]);

Page 83 of 123

 count++;

 index2++;

 }

 }

// else

// delay(1);

 //Serial.println();

 //Serial.println();

 }

 // else

 // Serial.println(c);

 }//---

 }

 delay(5000);

 delay(100);

// Serial.println("Setting bluetoothRDY to true");

 blue=1;

 delay(100);

 if(blue==1)

 {

// Serial.println("BluetoothRDY is true");

 bluetooth();

 done=0;

 }

 } // continue to check trigger variable

 //

 //

 index = 0;

}

//--

//--

void bluetooth(void)

{

 analogWrite(12,250);

 delay(1000);

 analogWrite(12,0);

 delay(1000);

// Serial.println("Now in the Bluetooth function");

 String r="";

 aci_evt_opcode_t laststatus = ACI_EVT_DISCONNECTED;

 delay(1000);

 Serial.println("Starting the Bluetooth");

 delay(500);

// Serial.flush();

 BTLEserial.setDeviceName("WMD3.0");

 BTLEserial.begin();

Page 84 of 123

 while(true)

 {

 //Serial.println("In while done==false stage");

 BTLEserial.pollACI();

 // Ask what is our current status

 aci_evt_opcode_t status = BTLEserial.getState();

 // If the status changed....

 if (status != laststatus)

 {

 // print it out!

 if (status == ACI_EVT_DEVICE_STARTED) {

// Serial.println(F("* Advertising started"));

 }

 if (status == ACI_EVT_CONNECTED) {

// Serial.println(F("* Connected!"));

 }

 if (status == ACI_EVT_DISCONNECTED) {

// Serial.println(F("* Disconnected or advertising timed out"));

 }

 // OK set the last status change to this one

 laststatus = status;

 }

 if (status == ACI_EVT_CONNECTED)

 {

 if(datadone==0)

 {

 for(int i=0;i<15;i++)

 {

 char w = char(EEPROM.read(index));

 r = r+w;

 index++;

 }

 if(index>750)

 {

 datadone=1;

 r = "$FF";

 }

 String s = r;

 uint8_t sendbuffer[30];

 s.getBytes(sendbuffer, 30);

 char sendbuffersize = min(20, s.length());

// Serial.print(F("\n* Sending -> \""));

// Serial.print((char *)sendbuffer); Serial.println("\"");

 BTLEserial.write(sendbuffer, sendbuffersize);

 r="";

 }

 if(datadone==1)

 {

 analogWrite(12,250);

Page 85 of 123

 delay(200);

 analogWrite(12,0);

 delay(10000);

 }

 }

 else

 {

 analogWrite(12,250);

 delay(500);

 analogWrite(12,0);

 delay(500);

 }

 } //end while(done==false)

} //end bluetooth() function

void initACCEL(void) {

 // set accelerometer to default use

 Wire.beginTransmission(lsm_accmag);

 Wire.write(CTRL_REG0_XM);

 Wire.write(0);

 Wire.endTransmission();

 // set accelerometer to output at 50 Hz

 Wire.beginTransmission(lsm_accmag);

 Wire.write(CTRL_REG1_XM);

 Wire.write(0x57);

 Wire.endTransmission();

 // set accelerometer to 2g scale

 Wire.beginTransmission(lsm_accmag);

 Wire.write(CTRL_REG2_XM);

 Wire.write(0);

 Wire.endTransmission();

}

//--

//--

void initGYRO(void) {

 // set gyro to default

 Wire.beginTransmission(lsm_gyro);

 Wire.write(CTRL_REG1_G);

 Wire.write(0x0F); // 95 Hz

 //Wire.write(0x67); // 190 Hz

 Wire.endTransmission();

 // set gyro sensitivity

 Wire.beginTransmission(lsm_gyro);

 Wire.write(CTRL_REG4_G);

 //Wire.write(0); // 245 dps

 //Wire.write(0x08); // 500 dps

 Wire.write(0x10); // 2K dps

Page 86 of 123

 Wire.endTransmission();

}

//--

//--

float getValue(int device, int reg_low, int reg_high, float scale) {

 unsigned int low = 0;

 int high = 0;

 float value = 0;

 Wire.beginTransmission(device);

 Wire.write(reg_low);

 Wire.endTransmission();

 Wire.requestFrom(device, 1);

 low = Wire.read();

 Wire.beginTransmission(device);

 Wire.write(reg_high);

 Wire.endTransmission();

 Wire.requestFrom(device, 1);

 high = Wire.read();

 high <<= 8;

 high |= low;

 value = high * scale;

 return value;

}

Page 87 of 123

Final Project App Code (NS)

Page 88 of 123

Page 89 of 123

Page 90 of 123

Page 91 of 123

Page 92 of 123

Page 93 of 123

Page 94 of 123

Page 95 of 123

Page 96 of 123

Page 97 of 123

Page 98 of 123

Page 99 of 123

Page 100 of 123

Page 101 of 123

Page 102 of 123

Page 103 of 123

Page 104 of 123

Page 105 of 123

Page 106 of 123

Page 107 of 123

Page 108 of 123

Page 109 of 123

Page 110 of 123

Page 111 of 123

Page 112 of 123

Page 113 of 123

Page 114 of 123

Page 115 of 123

Page 116 of 123

Page 117 of 123

Page 118 of 123

Page 119 of 123

Page 120 of 123

Page 121 of 123

Page 122 of 123

Page 123 of 123

	The University of Akron
	IdeaExchange@UAkron
	Spring 2015

	Disc Golf Locator
	Noah M. Sanor
	Recommended Citation

	DT11MidtermReport.docx.docx

