
The University of Akron
IdeaExchange@UAkron

Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2015

Electronic Learning Guitar
Justin Fiser
University of Akron Main Campus, jwf17@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects

Part of the Electrical and Electronics Commons

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of
IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

Recommended Citation
Fiser, Justin, "Electronic Learning Guitar" (2015). Honors Research Projects. 88.
http://ideaexchange.uakron.edu/honors_research_projects/88

http://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=http://ideaexchange.uakron.edu/honors_research_projects/88
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects/88?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Page 1 of 112

 The senior design project in which I was involved was through the Department of

Electrical and Computer Engineering. I was a member of a 4-person design team that was given

the task of creating a working project from an original idea. My design team had chosen to create

an electronic learning guitar, an instrument that would be able to display guitar chords on the

guitar neck through an LED grid. It would also be able to display chords regardless of how the

guitar was tuned and determine if a chord was played correctly or not.

 Before the design phase of the project began, it was my responsibility to perform

background research on existing products available on the market and explore patents that were

similar to our proposed project. This research provided a basis for how we could create a unique

project.

 I was designated as the team leader among my design team. This title meant I would be in

charge of deciding meeting times and locations. I was also in charge of managing the efforts of

the rest of the team in order to make sure deadlines were met.

 In the fall of 2014, the team started the design phase. I was predominately in charge of

the design of the LED Module, the portion of the project that decoded the signals from the main

microcontroller and displayed the guitar chords on the lighting array. This design process began

with a discussion as to how the LEDs could be illuminated. The solution was to use a series of

decoders into a commonly used common-cathode, common-anode LED grid circuit. It was also

determined that the best way to mounted the circuit board onto the guitar would be to use a

flexible circuit board (FCB), which would have a low enough profile to fit below the guitar

strings.

 I took all of the measurements on the guitar neck onto which the flexible circuit board

would be mounted. These measurements included the length of each fret, the width of the guitar

neck along each fret, and the spacing of the guitar strings in a given fret. The measurements were

necessary for the proper placement of the LEDs under the strings as well as for overall mounting

on the guitar neck. I was responsible for placing the order for the FCB and soldering the LEDs

on the board.

 The flexible circuit board needed a way to connect to the main guitar mounted circuit

board. I designed a PCB that attached the FCB to a ribbon cable. The ribbon cable then

connected to the main board. This was a very inexpensive solution to join the two modules of our

design.

 I also designed the power circuit for the project. The divided guitar pickup required +/- 7

volts and the LED module and microcontroller required 5 volts. I was able to successfully

implement the design of the power circuit using 2 fixed voltage regulators for +5V and +7V and

an inverter for -7V.

 Being the most familiar with guitar playing and music theory of the group, I checked the

software development of my peers to ensure that the program was working as intended. This

involved reviewing test outputs of code for their accuracy and providing recommendations

regarding how to improve or embellish the software.

Page 2 of 112

 In the attached report, I was responsible for the background section and the

engineering/marketing requirements for our design. I wrote the sections for the design of the

Power Module and LED Module as well as the operating instructions and testing procedures.

 Following the success of our design project over the past year, I will be taking the lead in

submitting a form for disclosure of invention. With the aid of the University, I am hopeful that

there are aspects to my team’s design that would be patentable.

Page 3 of 112

Electronic Learning Guitar

Final Design Report

Design Team #03

Jacob Barb
Mike Bolin
Justin Fiser

Kellen Reusser

Faculty Advisor: Dr. De Abreu-Garcia
April 22, 2015

Page 4 of 112

Table of Contents

List of Figures ... 7

List of Tables .. 9

Abstract ... 11

1. Problem Statement .. 11

1.1 Project Need .. 11

1.2 Project Objective ... 11

1.3 Background ... 11

2. Design Requirements Specification .. 13

2.1 Engineering-Marketing Tradeoff Matrix .. 13

2.2 Engineering Tradeoff Matrix .. 15

2.3 Objective Tree ... 16

3. Technical Design .. 17

3.1 Power ... 19

3.1.1 Voltage Requirements .. 19

3.1.2 Step-Down Voltage Regulators .. 20

3.1.3 LDO-1 Selection ... 22

3.1.4 LDO-2 Selection ... 22

3.1.5 DC/DC Inverter Selection .. 23

3.2 Pitch Detection Module ... 24

3.2.1 Level 1 Design .. 24

3.2.2 Level 2 Design .. 25

3.2.3 Level 3 Design .. 27

3.2.4 Components and Schematics .. 27

3.2.5 Layout ... 29

3.2.6 Firmware Level 1 Design ... 31

3.2.7 Firmware Level 2 Design ... 32

3.3 LED Module .. 34

3.3.1 Operation of the LED Control Module ... 36

3.3.2 LED Control Module Design ... 39

Page 5 of 112

3.3.3 LED Lighting Module Design .. 40

3.3.4 Interconnectivity with the Guitar-Mounted Circuit Board ... 44

3.4 Main Processor Module .. 46

3.4.1 Level 1 Design .. 46

3.4.2 Level 2 Design .. 46

3.4.3 Components and Schematics .. 47

3.4.4 Layout ... 48

3.4.5 Firmware Level 1 Design ... 50

3.4.6 Firmware Level 2 Design ... 51

3.4.7 Firmware Level 3 Design ... 52

3.5 Software (JB)... 54

3.5.1 Class Definitions... 56

3.5.1.1 User Interface .. 56

3.5.1.2 Guitar Class ... 57

3.5.1.3 Note Class ... 58

3.5.1.4 Voicing Class .. 58

3.5.1.5 Serial Class.. 58

3.5.2 Algorithms and Methods .. 58

3.5.2.1 User Input.. 59

3.5.2.2 Find Note by Frequency.. 60

3.5.2.3 Initialize Guitar or Confirm Chord ... 60

3.5.2.4 Chord Builder.. 63

3.5.2.5 Chord Voicings ... 64

3.5.2.6 Display Algorithm .. 70

3.5.2.7 Software LED Control .. 71

3.5.2.8 User Display.. 73

4. Operation Instructions ... 74

4.1 Guitar Setup... 74

4.2 Initialization and Tuning of Guitar.. 76

4.3 Chord Selection ... 77

4.4 Playing Chords and Feedback ... 79

Page 6 of 112

5. Testing Procedures .. 81

Testing procedures for the various hardware and software modules that make up the system

are given below. .. 81

5.1 Pickup Module .. 81

5.2 Pitch Detection Module ... 81

5.3 Software/LED Control Module Interfacing .. 82

5.4 Software/LED Module Interfacing.. 83

5.5 Software/Pitch Detection Interfacing .. 84

5.6 Software Feedback Testing ... 84

5.7 Full Integration Testing ... 86

6. Budget Information ... 87

7. Project Schedule.. 88

8. Design Team Information ... 91

9. Conclusions and Recommendations ... 91

9.1 Satisfying the Design Requirements ... 91

9.2 Recommendations Regarding Customization ... 92

10. References ... 93

Appendix A: Datasheets ... 94

Appendix B: Guitar Mounted Circuit Board Schematic ... 95

Appendix C: GUI Screenshots .. 99

Appendix D: Guitar Mounted Circuit Board Gerbers.. 103

Page 7 of 112

List of Figures

Figure 1. Level 0 block diagram of the LED Learning Guitar. ... 17

Figure 2. Level 1 block diagram of LED Learning Guitar. ... 17

Figure 3. Power Module Level 1 Block Diagram .. 19

Figure 4. Power Module Level 2 block diagram. .. 21

Figure 5. LM1117-N-5.0 schematic. .. 22

Figure 6. BD70GA3WEFJ-E2 schematic. ... 23

Figure 7. TPS6755 schematic. ... 24

Figure 8. Pitch Detection Module Level 1 block diagram. .. 24

Figure 9. Pitch Detection Module Level 2 block diagram. .. 26

Figure 10. Pitch Detection Module Level 3 block diagram, Pitch Detector Sub-Module. 27

Figure 11. Schematic for one of six Pitch Detectors. ... 28

Figure 12. Pitch Detection Module layout. .. 30

Figure 13. Pitch Detection Module populated PCB section. ... 31

Figure 14. Pitch Detector Firmware Level 1 block diagram.. 32

Figure 15. Sample waveform from one string on Roland GK-3. ... 33

Figure 16. Pitch Detector Firmware Level 2 block diagram.. 34

Figure 17. LED Module Level 2 block diagram. ... 34

Figure 18. LED Control Module Level 3 block diagram. .. 36

Figure 19. Sample LED matrix. ... 38

Figure 20. Lighting Control Module schematic. .. 40

Figure 21. LED Lighting Module Schematic... 41

Figure 22. LED Lighting Module circuit board outline (Dimensions are in inches). 42

Figure 23. LED Lighting Module PCB layout. .. 43

Figure 24. Post-production LED Lighting Module. ... 44

Figure 25. PCB layout for circuit board connector. ... 44

Figure 26. Post-production connector cable. ... 45

Figure 27. Main Processor Module Level 1 block diagram. .. 46

Figure 28. Main Processor Module Level 2 block diagram. .. 47

Figure 29. Schematic for Main Processor Module. ... 48

Figure 30. Main Processor Module Layout. .. 49

Figure 31. Main Processor Module populated PCB section. ... 50

Figure 32. Main Processor Module Firmware Level 1 block diagram. 51

Figure 33. Main Processor Module Firmware Level 2 block diagram. 52

Figure 34. Main Processor Module Firmware Level 3 block diagram. 54

Figure 35. Level 1 block diagram of the software module. ... 55

Figure 36. Level 2 block diagram showing classes within the software and their connections. . 56

Figure 37. Level 3 block diagram showing primary functions within the classes. 59

Figure 38. Level 4 block diagram of Find Note by Frequency module 60

Page 8 of 112

Figure 39. Level-4 block diagram of Initialize Guitar or Confirm Chord module 61

Figure 40. Mapping of notes in memory.. 62

Figure 41. Mapping of notes in memory.. 63

Figure 42. Level 4 block diagram for Chord Builder module ... 64

Figure 43. Chord Voicings Module Level 1 block diagram. ... 65

Figure 44. Chord Voicings Module Level 2 block Diagram. .. 65

Figure 45. Chord Voicings Module Level 3 validation checks block Diagram. 68

Figure 46. Display Module Level 1 block Diagram. ... 71

Figure 47. Software LED control. .. 72

Figure 48. Encoding for LED matrix for software control. ... 72

Figure 49. An example of Encoding for LED matrix skipping a position. 73

Figure 50. USB connection. ... 74

Figure 51. GK cable connection at the Roland GK-3 pickup. ... 74

Figure 52. GK cable connection at the GMCB. ... 75

Figure 53. Barrel jack power connection. .. 75

Figure 54. Tuning selection from drop-down menus. ... 76

Figure 55. User selection buttons and Master Status indicator. ... 76

Figure 56. Guitar frequency display for tuning purposes. ... 76

Figure 57. Root note of guitar chord selection drop-down menu. ... 77

Figure 58. Chord type selection drop-down menu. .. 77

Figure 59. Virtual guitar neck display showing an A major chord in open G tuning. 78

Figure 60. LED Lighting Module guitar chord display. .. 78

Figure 61. Virtual guitar neck display showing a new voicing for an A major chord in open G

tuning. ... 79

Figure 62. Guitar chord feedback display for correctly played chord. .. 80

Figure 63. Measured analog string signal. ... 81

Figure 64. Pitch detection breadboard testing. ... 82

Figure 65. Breadboarded decoders and LED array. ... 83

Figure 66. LED Lighting Module test output. ... 83

Figure 67. Guitar tuning initialization testing. ... 84

Figure 68. Software feedback testing example. ... 85

Figure 69. Idealistic Gantt chart. .. 88

Figure 70. Actual Gantt chart. .. 89

Page 9 of 112

List of Tables

Table 1. Electronic Learning Guitar Design Requirements ... 13

Table 2. Functional Requirements for Power Module ... 18

Table 3. Functional Requirements for Main Processor Module .. 18

Table 4. Functional Requirements for Pitch Detection Module ... 18

Table 5. Functional Requirements for Hexaphonic Pickup Module .. 18

Table 6. Functional Requirements for LED Module .. 18

Table 7. Functional Requirements for PC (Software) .. 19

Table 8. Functional Requirements for Power Module ... 19

Table 9. Functional Requirements for +9 V DC Voltage Rail ... 20

Table 10. Functional Requirements for LDO-1 ... 20

Table 11. Functional Requirements for LDO-2 ... 20

Table 12. Functional Requirements for DC/DC Inverter ... 20

Table 13. Functional Requirements for Pitch Detection Module ... 24

Table 14. Functional Requirements for Pitch Detector Sub-Module ... 26

Table 15. Functional Requirements for Pitch Detector Firmware ... 32

Table 16. Functional Requirements for LED Control Module .. 34

Table 17. Functional Requirements for LED Lighting Module ... 35

Table 18. Functional Requirements for Decoder U1 ... 36

Table 19. Functional Requirements for Decoder U2 ... 37

Table 20. Functional Requirements for Decoder U3 ... 37

Table 21. Functional Requirements for Main Processor Module .. 46

Table 22. Functional Requirements for Main Processor Module Firmware 51

Table 23. Functional Requirements for Frequency Communication Sub-Module 52

Table 24. Functional Requirements for Get LED Position Sub-Module 52

Table 25. Functional Requirements for LED Position Control Sub-Module 52

Table 26. Functional Requirements for PC (Software) .. 55

Table 27. Functional Requirements for User Interface .. 57

Table 28. Functional Requirements for Guitar Class ... 57

Table 29. Functional Requirements for Find Note by Frequency .. 60

Table 30. Functional Requirements for Initialize Guitar or Confirm Chord 61

Table 31. Functional Requirements for Chord Builder .. 64

Table 32. Functional Requirements for Chord Voicings Module .. 65

Table 33. Functional Requirements for the “Generate 4x6” module ... 66

Table 34. Functional Requirements for the “Find all combinations” module 66

Table 35. Functional Requirements for the “Find one combination” module 66

Table 36. Functional Requirements for the “Validate” module ... 66

Table 37. Functional Requirements for the “Determine store or discard” module 66

Table 38. Functional Requirements for the “Increment 4x6 offset” module 66

Page 10 of 112

Table 39. Functional Requirements for the “check combination length” module 68

Table 40. Functional Requirements for the “Reorder coordinates” module 68

Table 41. Functional Requirements for “Check duplicates” module ... 68

Table 42. Functional Requirements for the “Discard” module .. 69

Table 43. Functional Requirements for the “Store” module .. 69

Table 44. Functional Requirements for the “Display” module .. 71

Table 45. Functional Requirements for User Display .. 73

Table 46. Electronic Learning Guitar Engineering Requirements ... 91

Table 47. Electronic Learning Guitar Marketing Requirements .. 92

Page 11 of 112

Abstract: The goal of this project is to create an electric guitar that detects and displays

chords in different tunings for learning and exploration purposes. A hexaphonic pickup will

generate the required signals and a processor will detect the pitch. The computer software will

apply the pitch information to determine the tuning and the voicings of chords. LEDs mounted on

the fretboard of the guitar will indicate a note to be played.

1. Problem Statement

1.1 Project Need

Learning to play chords on a guitar can be difficult for beginner and intermediate players.

An understanding of the notes on the guitar neck and knowledge of music theory is needed to

play a chord. A guitar that is capable of displaying where to place one's fingers on the guitar

neck could be a useful tool for players of all skill levels.

1.2 Project Objective

The goal is to design a guitar that is capable of instructing a user in finger placement of

guitar chords. The guitar must be able to process six notes at a time, sensing the unique tuning of

the neck, and calculating the coinciding LEDs associated with the notes. The guitar will

recognize when it is improperly tuned, assist the user in the tuning process, and indicate when

the user has successfully played the desired chord.

1.3 Background

Learning how to play the guitar takes a profound amount of patience and motivation. The

structure of the notes on the guitar can be difficult to comprehend. As Eli Harrison explains in

his article Challenges Facing Guitar Education, “The guitar does not have white frets and black

frets the way a piano has white keys and black keys. Beginning guitarists must immediately

interpret the differences between half steps and whole steps, unlike beginning pianists, who can

rely on the consecutive white keys of C major. Second, the six strings of the guitar create a

condition where one pitch can have several fingerings. [1]” Musicians new to the guitar can

easily become discouraged, as the learning curve for the guitar is steep. Thanks to modern

technology, however, great strides are being made in flattening this learning curve to encourage

more people to try learning the instrument.

 A large number of guitar tablature and digital sheet music services are readily available

through the internet. Since 2000, automated transcription of music through the use of digital

signal processing has grown considerably and spurned the International Symposium on Music

Information Retrieval [2]. Consequently, a vast library of music is available to musicians of all

Page 12 of 112

disciplines; however users must still apply their own personal judgment to determine whether or

not a chord or melody was played correctly.

Different approaches have been made toward improving how an individual who is new to

the guitar can learn the instrument with relative ease. One approach was through the use of an

audio-visual system called Augmented Reality, which utilized web cameras to interpret cue cards

and applied a laptop screen to display where to place one’s fingers [3].

Other designs involve the use of an LED array placed directly on the fret-board. Patent

US 5408914 applies an LED layout and uses comparator circuits to determine accuracy of the

notes played on the guitar [4]. US 20110011241A1 contains a design for a guitar with

compatibility with a gaming console and television [5]. US 20060249008A1 features an

apparatus for the user’s fret hand (the hand that is placed on the neck of the guitar) that color

codes where the fingers are to be placed on the LED fret-board [6]. US 8395040B1 integrates

capacitive sensing to determine the location of finger placement. US 20120192700A1 uses a

visual animation of the lights on the guitar to indicate the timing of when the player is supposed

to pluck or strum the guitar when synchronized with music [7].

On occasion, a guitar player may wish to retune a guitar to create a different sound,

mood, or style. The typical or “standard” tuning of the guitar is EADGBE (from lowest to

highest). Common types of retuning are open G (DGDGBD), open D (DADF#AD), and open C

(CGCGBE). Once retuning is achieved, the layout of the notes on the neck of the guitar is

completely different. Learning how to play chords across different tunings is tedious, and

relearning the neck of the guitar could prove to be just as difficult as understanding the guitar in

standard tuning. Having a system that can think for the user and calculate where the chords have

“moved to” is the basis for this project, in addition to being a learning aid for beginner and

intermediate players.

The concept of the guitar tuner has not changed since the late 1970’s. Since sound

involves the oscillation of waves, its signal may be compared with that of an adjustable voltage

oscillator, wherein the voltage oscillator signal and pickup signal are compared to attain proper

tuning [8]. If the two notes differ in any way, the state and degree of the instrument’s sharpness

or flatness is communicated to the user (typically though indicator lights), who then readjusts

and assesses the status of the tuner following the adjustment.

The concept of the guitar in this design is to merge both the ideas of the lights on the

guitar neck with the guitar tuner to provide a guitar that not only teaches the user how to play in

one tuning, but also how to play in multiple tunings. While LED guitars are already available to

consumers today, a guitar with this level of versatility still remains to be seen in the marketplace.

Page 13 of 112

In the proposed guitar, the user decides how he or she would like to learn the guitar because the

computer will be able to process any tuning, be it standard, open, or completely uncommon.

2. Design Requirements Specification

An LED smart guitar should satisfy the expectations of consumers in terms of the device

capabilities and playability. Accordingly, the design requirements of the smart guitar project may

include those listed in Table 1.

Table 1. Electronic Learning Guitar Design Requirements

Marketing
Requirements

Engineering Requirements Justification

3,4
1. The pitch detection should be able to detect

frequencies ranging over B1 (61.7 Hz) to

G5 (784.0 Hz).

These frequencies are roughly
the physical tuning limitations of
the highest (thinnest) and lowest

(thickest) guitar strings.

3,4
2. The electronics will allow for 10 cents sharp

or flat as acceptable error range for notes

considered in tune.

Within the range of either 10
cents sharp or flat, most human
ears won’t be able to perceive

that the note(s) is/are out of tune.

3. The microcontroller should meet the size

requirements for I/O.

The microcontroller selected for
this project must be able to
accommodate all necessary

inputs and outputs.

3,4
4. The process of pitch detection and feedback

should execute in less than 2 seconds.
The system should provide
timely feedback to the user.

5. The system should be able to operate from a

source of 9V.

A cost-effective and
commercially available +9 V

wall adapter will provide power
to the guitar-mounted

equipment.

2,4
6. Chords will be displayed over frets 0

through 12 (first octave).

The inclusion of 12 frets covers
all possible notes under a single

octave on a given string.

Marketing Requirements
1. The guitar should be a real, playable electric guitar.
2. The guitar should display each note via lit LEDs.
3. The guitar should be able to process multiple notes simultaneously.
4. The guitar should be able to display and detect chords.
5. The guitar should work regardless of tuning and will inform user if guitar is out of tune.
6. The guitar should have an easy-to-read user interface to interact with the player.

2.1 Engineering-Marketing Tradeoff Matrix

Page 14 of 112

The below engineering-marketing tradeoff matrix illustrates the correlation among the two sets

of requirements.

C
o

st

S
y

st
e

m
 S

p
e

e
d

S
y

st
e

m
 S

e
n

si
ti

v
it

y

N
u

m
b

e
r

o
f

F
re

ts

M
ic

ro
co

n
tr

o
lle

r
S

iz
e

O
p

e
ra

te
 o

n
 +

9
 V

- - + + - -

Cost -

Hardware Interference -

Fast Response +

Tuning Extremes +

Concurrent Processing +

Strong Pos. Correlation

Positive Correlation

Negative Correlation

Strong Neg. Correlation

No Correlation

M
a

rk
e

ti
n

g

R
e

q
u

ir
e

m
e

n
ts

Engineering

Requirements

Page 15 of 112

2.2 Engineering Tradeoff Matrix

The chart below shows the correlation of the engineering requirements among themselves.

C
o

st

S
y

st
e

m
 S

p
e

e
d

S
y

st
e

m
 S

e
n

si
ti

v
it

y

N
u

m
b

e
r

o
f

F
re

ts

M
ic

ro
co

n
tr

o
lle

r
S

iz
e

O
p

e
ra

te
 o

n
 +

9
 V

- - + + - -

Cost -

System Speed -

System Sensitivity +

Number of Frets +

Microcontroller Size -

Positive Correlation

Negative Correlation

No Correlation

Page 16 of 112

2.3 Objective Tree

The Objective Tree below is an alternative way to show how the marketing requirements can be
broken down into different subcategories.

3. Technical Design

Figure 1 shows the Level

user input, the LED Learning Guitar will be able to display where the fingers need to be placed

in order to correctly play a chord, both on the LED array on the guitar fretboard and on the

Graphical User Interface (GUI). Two sources of power are needed, one for the software, which is

run on a PC, and the other for the guitar

Figure 1. Level 0 block diagram of the LED Learning Guitar.

Figure 2 shows the Level

that the design contains five guitar

Data signals are shown in black. The functional requirements tables are listed below.

Figure 2. Level 1 block diagram of LED Learning Guitar.

Page 17 of 112

3. Technical Design

shows the Level 0 block diagram of the LED Learning Guitar Design. Given a

user input, the LED Learning Guitar will be able to display where the fingers need to be placed

in order to correctly play a chord, both on the LED array on the guitar fretboard and on the

l User Interface (GUI). Two sources of power are needed, one for the software, which is

the guitar-mounted electronics.

Level 0 block diagram of the LED Learning Guitar.

hows the Level 1 block diagram of the LED Learning Guitar design. Notice

that the design contains five guitar-mounted modules and a PC. Power signals are shown in red.

Data signals are shown in black. The functional requirements tables are listed below.

. Level 1 block diagram of LED Learning Guitar.

0 block diagram of the LED Learning Guitar Design. Given a

user input, the LED Learning Guitar will be able to display where the fingers need to be placed

in order to correctly play a chord, both on the LED array on the guitar fretboard and on the

l User Interface (GUI). Two sources of power are needed, one for the software, which is

1 block diagram of the LED Learning Guitar design. Notice

mounted modules and a PC. Power signals are shown in red.

Data signals are shown in black. The functional requirements tables are listed below.

Page 18 of 112

Table 2. Functional Requirements for Power Module

Module Power

Input Wall Adapter: +9 V DC

Outputs Voltage Signals: +5 V DC and ±7 V DC

Functionality
Take +9 V DC, from an AC/DC wall adapter, to produce +5 V DC for the

Pitch Detector Module and ±7 V DC for the Hexaphonic Pickup Module.

Table 3. Functional Requirements for Main Processor Module

Module Main Processor

Input

Power Module: +5 V DC

Pitch Detection Module: Frequencies of guitar notes played

PC (Software): Coordinates of LEDs to be turned on

Outputs LED Module: Addresses for decoding and illuminations

Functionality
Relay note information to PC and receive chord information from PC to

export addresses that control which LEDs turn on.

Table 4. Functional Requirements for Pitch Detection Module

Module Pitch Detection

Input
Power Module: +5 V DC

Hexaphonic Pickup Module: Analog guitar signals

Outputs Main Processor Module: Frequencies of guitar notes played

Functionality

Take up to 6 analog signals produced by the Hexaphonic Pickup Module,

measure the frequency of each signal, and export that frequency to the

Main Processor Module.

Table 5. Functional Requirements for Hexaphonic Pickup Module

Module Hexaphonic Pickup

Input
Power Module: ±7 V DC

Excitation of guitar strings

Outputs Pitch Detection Module: Up to 6 analog signals, one from each string

Functionality Actuate when strings are strummed and produce up to 6 analog signals.

Table 6. Functional Requirements for LED Module

Module LED

Input
Power Module: +5 V DC

Main Processor Module: Addresses for decoding and illumination

Outputs LED illumination

Functionality
Decode the addresses from the Main Processor Module and light the

specified LEDs on the fretboard.

Table 7. Functional Requirements for PC (Software)

Module PC (Software)

Input

Power input from separate wall adapter

User input

Main Processor Module: Note information

Outputs Main Processor Module: Coordinates of LEDs to be turned on.

Functionality Determine guitar tuning and chord placement on guitar neck.

In the discussions that follow, each module in

3.1 Power (JF)

3.1.1 Voltage Requirements

The Level 1 functionality for the Power Module is shown in

a +9 V input from a barrel jack

and -7 V. The Power Module is responsible for supplying the voltage needs of all other design

modules and equipment. The following list describes the voltage requirements of each module:

1) The Hexaphonic Pickup Module requires ±7 V, and a ground connection.

2) The microcontroller, Pitch Detection Module, and LED Control Module require +5 V and

a ground connection, each.

3) The LED Lighting Module will operate on +5 V but is driven by the LED control

module, not the Power Module.

4) Software will be run on a PC that is powered separately from all other design modules.

Figure 3. Power Module Level 1 Block Diagram

Table 8. Functional Requirements for Power

Module Power

Input Wall Adapter: +9 V DC

Outputs Voltage Signals: +5 V DC and ±7 V DC

Functionality
Take +9 V DC, from an AC/DC wall adapter, to produce +5 V DC for the

Pitch Detector Module and ±7 V DC for the Hexaphonic Pickup Module.

Page 19 of 112

Functional Requirements for PC (Software)

PC (Software)

Power input from separate wall adapter

Main Processor Module: Note information

Main Processor Module: Coordinates of LEDs to be turned on.

Determine guitar tuning and chord placement on guitar neck.

In the discussions that follow, each module in Figure 2 above will be examined in detail.

3.1.1 Voltage Requirements

1 functionality for the Power Module is shown in Figure 3, which will receive

a +9 V input from a barrel jack connector and convert it to three voltage outputs: +7 V, +5 V,

7 V. The Power Module is responsible for supplying the voltage needs of all other design

modules and equipment. The following list describes the voltage requirements of each module:

Hexaphonic Pickup Module requires ±7 V, and a ground connection.

The microcontroller, Pitch Detection Module, and LED Control Module require +5 V and

a ground connection, each.

The LED Lighting Module will operate on +5 V but is driven by the LED control

odule, not the Power Module.

Software will be run on a PC that is powered separately from all other design modules.

Power Module Level 1 Block Diagram

Functional Requirements for Power Module

Wall Adapter: +9 V DC

Voltage Signals: +5 V DC and ±7 V DC

Take +9 V DC, from an AC/DC wall adapter, to produce +5 V DC for the

Pitch Detector Module and ±7 V DC for the Hexaphonic Pickup Module.

Main Processor Module: Coordinates of LEDs to be turned on.

Determine guitar tuning and chord placement on guitar neck.

above will be examined in detail.

, which will receive

connector and convert it to three voltage outputs: +7 V, +5 V,

7 V. The Power Module is responsible for supplying the voltage needs of all other design

modules and equipment. The following list describes the voltage requirements of each module:

Hexaphonic Pickup Module requires ±7 V, and a ground connection.

The microcontroller, Pitch Detection Module, and LED Control Module require +5 V and

The LED Lighting Module will operate on +5 V but is driven by the LED control

Software will be run on a PC that is powered separately from all other design modules.

Take +9 V DC, from an AC/DC wall adapter, to produce +5 V DC for the

Pitch Detector Module and ±7 V DC for the Hexaphonic Pickup Module.

Page 20 of 112

Thus, the Power Module must provide three voltage outputs: +7 V, +5 V, and -7 V. To

realize these voltages, a +9 V signal from an AC/DC wall adapter will be stepped down to +7 V

and +5 V. A DC/DC inverter can be used to invert +7 V to -7 V. A wall adapter was selected

with the following rationale:

1) It can be purchased at a relatively low cost.

2) Unlike batteries, it will not need to be replaced (except if it malfunctions or gets

damaged).

3) It plugs directly into the wall, providing continuous power so long as the electrical outlet

is energized.

4) Of reduced weight and bulk on the body of the guitar by selecting a wall adapter over a

battery.

3.1.2 Step-Down Voltage Regulators

The Level 1 functionality for the Power Module is shown in Figure 4. Notice that the

Power Module contains a +9 V rail, two voltage regulators, and a DC/DC inverter.

The functional requirements of these subsystems are detailed next in that which follows.

Table 9. Functional Requirements for +9 V DC Voltage Rail

Module +9 V DC Voltage Rail

Input Wall Adapter: +9 V DC

Outputs
Voltage Regulator LDO-1: +9 V DC

Voltage Regulator LDO-2: +9 V DC

Functionality
Take +9 V DC, from an AC/DC wall adapter, to provide +9V DC to the

voltage regulators.

Table 10. Functional Requirements for LDO-1

Module Fixed Voltage LDO-1 (A linear voltage regulator)

Input +9 V DC Voltage Rail: +9 V DC

Outputs LDO-1 Regulated Voltage: + 5 V DC

Functionality Provide +5 V DC to the Main Processor and Pitch Detection Modules.

Table 11. Functional Requirements for LDO-2

Module Fixed Voltage LDO-2 (A linear voltage regulator)

Input +9 V DC Voltage Rail: +9 V DC

Outputs LDO-1 Regulated Voltage: + 7 V DC

Functionality Provide +7 V DC to the Hexaphonic Pickup and DC/DC Inverter Modules.

Table 12. Functional Requirements for DC/DC Inverter

Module DC/DC Inverter

Input LDO-2 Regulated Voltage: +7 V DC

Outputs DC/DC Inverter Voltage:

Functionality Provide -7 V

The +9 V DC signal from the wall adapters feeds a voltage rail that serves both linear

voltage regulators. The first step in obtaining the required voltages is to step down +9 V. In

deciding how to accomplish this, the

type of buck converter and provides a constraint with the maximum current output of the

component. The following list outlines the circuit demands of the components that will be used

in the design:

1) LED Module: While the LED module contains 78 LEDs, only one LED is lit at a time

(refer to Section D for details). In other words, the load current of the LED Module is

equal to the amount of current drawn by one illuminated LED, that is, 10 mA. The

decoders used for lighting control require an insignificant amount of current (less than 1

µA).

2) Atmega328p: When active at 16 MHz and +5 V, the operational current draw is at most

10 mA. However, an additional 15 mA is needed to drive the power indicator L

3) Atmega2650: In the worse

V. As in 2) above, an additional 15 mA will be needed for the power indicator LED.

4) FT232RL: ICC, the supply current for the chip, requires 15 mA. The outputs will draw

mA.

The total current draw for the entire system is 240 mA. Because the current and power demands

of the design are very low, a cost

voltages is to use two linear, low dropout voltage regulators (LDO), as illustrated in

Figure 4. Power Module Level 2 block diagram.

Page 21 of 112

DC/DC Inverter

2 Regulated Voltage: +7 V DC

DC/DC Inverter Voltage: -7 V DC

7 V DC to the Hexaphonic Pickup Module.

The +9 V DC signal from the wall adapters feeds a voltage rail that serves both linear

voltage regulators. The first step in obtaining the required voltages is to step down +9 V. In

deciding how to accomplish this, the current output is an important attribute that helps select the

type of buck converter and provides a constraint with the maximum current output of the

component. The following list outlines the circuit demands of the components that will be used

: While the LED module contains 78 LEDs, only one LED is lit at a time

(refer to Section D for details). In other words, the load current of the LED Module is

equal to the amount of current drawn by one illuminated LED, that is, 10 mA. The

decoders used for lighting control require an insignificant amount of current (less than 1

: When active at 16 MHz and +5 V, the operational current draw is at most

10 mA. However, an additional 15 mA is needed to drive the power indicator L

: In the worse-case scenario, this device will draw 25 mA at 16 MHz and +5

V. As in 2) above, an additional 15 mA will be needed for the power indicator LED.

, the supply current for the chip, requires 15 mA. The outputs will draw

The total current draw for the entire system is 240 mA. Because the current and power demands

of the design are very low, a cost-effective and efficient way to obtain the desir

linear, low dropout voltage regulators (LDO), as illustrated in

. Power Module Level 2 block diagram.

The +9 V DC signal from the wall adapters feeds a voltage rail that serves both linear

voltage regulators. The first step in obtaining the required voltages is to step down +9 V. In

current output is an important attribute that helps select the

type of buck converter and provides a constraint with the maximum current output of the

component. The following list outlines the circuit demands of the components that will be used

: While the LED module contains 78 LEDs, only one LED is lit at a time

(refer to Section D for details). In other words, the load current of the LED Module is

equal to the amount of current drawn by one illuminated LED, that is, 10 mA. The

decoders used for lighting control require an insignificant amount of current (less than 1

: When active at 16 MHz and +5 V, the operational current draw is at most

10 mA. However, an additional 15 mA is needed to drive the power indicator LED.

case scenario, this device will draw 25 mA at 16 MHz and +5

V. As in 2) above, an additional 15 mA will be needed for the power indicator LED.

, the supply current for the chip, requires 15 mA. The outputs will draw 25

The total current draw for the entire system is 240 mA. Because the current and power demands

effective and efficient way to obtain the desired positive

linear, low dropout voltage regulators (LDO), as illustrated in Figure 4.

Page 22 of 112

3.1.3 LDO-1 Selection

To reduce both cost and conserve space on the circuit board, LDO-1 will be a fixed-

output LDO. The Texas Instruments LM1117-N-5.0 (Refer to Appendix A) can convert up to

+20 V to +5 V. With a maximum current rating of 800 mA, this chip satisfies the constraint

imposed by the maximum currents calculated in 3.1.2. Figure 5 displays the schematic for the

LM1117. The chip has three pins, VIN, VOUT, and GND. The VIN pin will be tied to the +9 V

voltage rail. VOUT, at +5 V, will be tied to the LED and Pitch Detection modules as well as the

Main Processor Module. The GND pin will be connected to the ground plane of the guitar

mounted circuit board. On both VIN and VOUT, the data sheet requires a minimum of a 10 µF

shunt-to-ground tantalum capacitor to handle low frequency ripple of the input and output

voltages.

Figure 5. LM1117-N-5.0 schematic.

3.1.4 LDO-2 Selection

Similar to LDO-1, LDO-2 will also be a fixed-output LDO, the only difference being that

LDO-2 will provide a fixed output of +7 V. The chip that was selected to realize this voltage is

the Rohm Semiconductor BD70GA3WEFJ-E2 (Refer to Appendix A), shown in Figure 6. This

IC has 8 pins, 2 of which are NC. +9 V will be connected to the Vcc and EN (enable) pins.

Output pin Vo will yield the desired +7 V. Vo connects to Vo_s, the voltage monitor pin. GND

and FIN are tied to the ground plane of the guitar-mounted circuit board. Just like LDO-1, input

and output capacitors are used across Vcc and Vo, respectively.

Page 23 of 112

Figure 6. BD70GA3WEFJ-E2 schematic.

3.1.5 DC/DC Inverter Selection

The IC chosen for this task is the Texas Instruments TPS6755 (refer to Appendix A). The

general schematic of this chip can be seen in Figure 7 below. The data sheet for this inverting

DC/DC converter provides recommended operating conditions and values for many of the circuit

components. The only component values not provided are R39 and R36, the resistors responsible

for the voltage divider that dictates what the output voltage will be. The equation below shows

the relationship between the two resistors.

�39 � ���

�36

1.22

Selecting R36 to be 10.2 kΩ and the desired output voltage at -7V, R39 is determined to be 58.54

kΩ. A standard resistor value close to this is 59.0 kΩ. The enable input, pin 1, determines

whether or not the inverter is on or off, and it requires a minimum +2V signal in order to be on.

To achieve an always-on state, the enable will be tied to the input voltage, as shown in Figure 7.

Page 24 of 112

Figure 7. TPS6755 schematic.

3.2 Pitch Detection Module (KR)

3.2.1 Level 1 Design

The pitch detection module is responsible for determining the chord being played by the

user. To do this the module must be able to:

1.) Identify or quantify the chords being played.

2.) Convey the chord information to the user, or at least pass this information on to another

module for the same purpose.

These requirements are illustrated in the Pitch Detection Module Level 1 Block Diagram shown

in Figure 8.

Figure 8. Pitch Detection Module Level 1 block diagram.

Table 13. Functional Requirements for Pitch Detection Module
Module Pitch Detection

Input
Guitar: Mechanical Oscillations
Power Module: Power

Mechanical

Oscillations

Power

Pitch Detection

Module I
2
C

Page 25 of 112

Outputs I2C: I2C Communication

Functionality
Use the mechanical oscillations of the guitar strings to calculate the frequency of
each of the six strings and output them by I2C.

3.2.2 Level 2 Design

The original approach considered for detecting the chord being played was to process the

output waveform of the audio jack of an electric guitar. After further research and consideration,

it was determined that the signal processing of chords would be difficult and either hardware or

software intensive, or both. Rather than considering the audio output, a superposition of six

waveforms from the individual strings, it was decided that analyzing the contribution of each

string individually would be a more worthwhile pursuit.

 To separate the contributions of each string, a divided pickup was sourced. A traditional

electric guitar pickup uses six magnets, one under each string, and one large coil. Each magnet

contributes to the magnetic field experienced by the coil. When no strings are moving, the

magnetic field is relatively constant, so there is no current induced on the coil. When a string is

strummed, the string, a conductor, oscillates over the magnet, which causes a change in the

magnetic field experienced by the coil. It turns out that this change in magnetic field and the

oscillation of the string have the same frequency. Therefore, the current induced by this

changing magnetic field is a waveform with the same frequency. The waveforms induced by all

six of these strings oscillating are superimposed onto one another. This jumble of waveforms is

the audio signal output of the electric guitar. A divided pickup, on the other hand, uses six

smaller, separate coils, one under each string. Using this construction, each string generates its

own separate output signal. The contribution from the neighboring string and magnet are

negligible, meaning a clean and reliable signal can be measured from the output of each of these

pickups. For the purposes of this design, a Roland GK-3 divided pickup was chosen as it was

affordable and from a reliable guitar peripheral company.

 From this divided pickup, six clean, analog, electrical signals can be measured. The

designed pitch detector then must be able to measure these signals to deduce a frequency. It was

decided that using a multiple of simple pitch detectors would yield a simpler design in a

hardware sense. For this reason, one pitch detector is present on each string output from the

divided pickup. Furthermore, the type of communication used to pass information from these

pitch detectors to the next control block (the Main Processor Module) must minimize board real

estate while still being able to pass the necessary information. The Level 2 Block Diagram in

Figure 9 illustrates this aforementioned set of requirements.

Page 26 of 112

Figure 9. Pitch Detection Module Level 2 block diagram.

Table 14. Functional Requirements for Pitch Detector Sub-Module
Module Pitch Detector

Input Roland GK-3: Analog string signal

Outputs I2C: I2C Communication

Functionality Calculate the pitch of the note on string n and send this information out using I2C.

Mechanical

Oscillations
 Roland GK-3

Pitch

Detector

Pitch

Detector

Pitch

Detector

Pitch

Detector

 Pitch

Detector

Pitch

Detector

Analog

Signals

String 1

String 2

String 3

String 4

String 5

String 6

I
2

C

Power

Page 27 of 112

3.2.3 Level 3 Design

 The communication protocol chosen is inter-integrated circuits, or I2C. This was chosen

because it allows for a multitude of slaves to send information to a single master using only two

conductors. This was ideal for this design as the information from these six pitch detectors

needed to be passed to a single point while using limited board space.

 It was clear that our pitch detector needed to be able to read an analog signal, process the

signal to determine the frequency, and then use I2C to pass the frequency information to the next

module. Therefore, the pitch detector required:

1.) An analog to digital converter (ADC) to capture the analog waveform.

2.) A programmable processor to analyze the waveform and do calculations.

3.) A hardware I2C module to simplify communication with the master.

The most logical choice to fulfill these requirements is a microcontroller. It was also decided

that the chosen processors should be Arduino compatible in order to make firmware design a bit

simpler. The Level 3 Block Diagram shown in Figure 10 illustrates these requirements.

Figure 10. Pitch Detection Module Level 3 block diagram, Pitch Detector Sub-Module.

3.2.4 Components and Schematics

 The microcontroller chosen for the pitch detectors was the Atmega328P. This was

chosen for a number of reasons. First, it meets the above specifications: It has a 10-bit ADC, it is

Arduino compatible, and it has a hardware I2C interface. Second, the processor is relatively

inexpensive compared to other Arduino compatible microcontrollers. Third, it comes in a QFP

package, a good balance between easy to solder and small footprint. All of these justifications

are supported by the datasheet provided in Appendix A. Finally, the Arduino development board

for this microcontroller is affordable and comes in multiple different shapes and sizes, allowing

for easy prototyping and development before a finished printed circuit board is constructed.

 It was decided that a programmer header should be included for each microcontroller to

allow for easy debugging and reprogramming, should the need arise. Although this addition

requires a few extra components near the processor that will take up more real estate on the final

board, it adds invaluable functionality for the design process. Figure 11 shows the schematic for

 ADC Processing I
2

C

String Signal, n I
2

C

Pitch Detector, n

one pitch detector. In this schematic, JP1 is the program header and U1

The microcontroller runs on 5V. A 16MHz resonator, Y1, was chosen for the crystal

the microcontroller. Decoupling

the VCC net, represented as C3 and

the design as a first level of debugging. R3

to limit the current to 15mA. A pull

active-low reset pin high. A capacitor between the

the programmer being used and therefore was included as the 0.1µ

schematic of the Pitch Detector Module is also included in

Figure 11. Schematic for one of six Pitch Detectors.

Page 28 of 112

one pitch detector. In this schematic, JP1 is the program header and U1 is the microcontroller.

The microcontroller runs on 5V. A 16MHz resonator, Y1, was chosen for the crystal

. Decoupling capacitors of 0.1µF are used on the Analog Reference pin and

and C5 respectively. A power indicator LED was also added to

a first level of debugging. R3, the current limiting resistor, was chosen to be 330

limit the current to 15mA. A pull-up resistor of 10kΩ, represented as R1, was used to tie the

low reset pin high. A capacitor between the DTR_1 net and the Reset net was required by

the programmer being used and therefore was included as the 0.1µF capacitor

schematic of the Pitch Detector Module is also included in Appendix B.

Schematic for one of six Pitch Detectors.

is the microcontroller.

The microcontroller runs on 5V. A 16MHz resonator, Y1, was chosen for the crystal required by

capacitors of 0.1µF are used on the Analog Reference pin and

respectively. A power indicator LED was also added to

was chosen to be 330Ω

, was used to tie the

net was required by

F capacitor C1. The full

Page 29 of 112

3.2.5 Layout

 The Pitch Detection Module design was implemented as a section of the Guitar Mounted

Circuit Board. Because of the symmetry of the design of this module, the layout structure for all

six of the Pitch Detectors is near identical. The ADC0 pin of each microcontroller is connected

directly to the GK-3 connector. The traces from the GK-3 connector were run with careful

consideration. For example, the Pitch Detectors which handle strings of higher frequency have

traces that minimize the length of parallel sections between each other. This technique was used

in an attempt to minimize the amount of cross-talk due to these higher frequency signals. The

Layout structure is shown in Figure 12. The photo in Figure 13 shows the Pitch Detection

Module section of the PCB populated with components. The full set of Gerber files is given in

Appendix D.

Figure 12. Pitch Detection Module layout

Page 30 of 112

Pitch Detection Module layout.

Page 31 of 112

Figure 13. Pitch Detection Module populated PCB section.

3.2.6 Firmware Level 1 Design

 The actual process of calculating the frequency being detected by the pitch detector is

handled by the firmware with which the individual microcontrollers are programmed. As

outlined in the Level 1 Firmware Block Diagram in Figure 14, the firmware is needed to take the

analog signal provided by the Roland GK-3 as an input and pass a floating-point representation

of the frequency out using I2C. It should be noted that a floating-point representation of the

frequency was chosen because the frequencies that represent different pitches are not whole

numbers and the fractional component can be highly significant for lower pitch tones.

Page 32 of 112

Figure 14. Pitch Detector Firmware Level 1 block diagram.

Table 15. Functional Requirements for Pitch Detector Firmware
Module Pitch Detector Firmware

Input Roland GK-3: Analog string signal

Outputs I2C: I2C Communication

Functionality Calculate the pitch of the note on string n and send this information out using I2C.

3.2.7 Firmware Level 2 Design

Two different processes were considered to calculate the frequency from the analog

signal captured by the ADC. One involved using a Fast Fourier Transform (FFT) to find the

spectra component with the highest amplitude. After some research, however, it was determined

that this approach was processor intensive, which would make the overall design less time and

energy efficient compared to other methods. The method chosen for implementation was

essentially a zero-crossing calculation. This process was given additional constraints, though.

To ensure that the waveform’s zero crossing is measured at the same place for each period, the

slope of the signal is measured as well. Therefore, this process only measures the zero crossing

when it crosses with a positive slope. The crossing was also not measured exactly at zero, but

instead at a threshold slightly above zero. Doing this helps to eliminate the accumulation of

error in the calculations due to noise. The value for the threshold was experimentally found to be

120mV. This threshold was close enough to zero to not be influenced by the odd shape of the

waveform while still far enough from zero to not be affected by any underlying noise or

contributions from adjacent strings. A sample waveform is shown in Figure 15.

Pitch Detector

Firmware

String Signal I
2

C

Page 33 of 112

Figure 15. Sample waveform from one string on Roland GK-3.

This zero-crossing calculation also requires some measurement of time for it to have any

relevance to the frequency. To do this, a timer module within the microcontroller was set to be

roughly 40 kHz, thus defining the ADC sampling rate. This rate was chosen because it was

much higher than the maximum frequency to be detected, 784Hz, while still sampling

conservatively. It was also one of the timer rates easily obtained with a predefined pre-scaler.

When a positive slope crossing of the threshold is detected, the microcontroller notes the time at

which this occurs and stores that information. The next time it happens, it notes this time as

well. These two times are then subtracted to define the period of oscillation. From this time

difference, the frequency of oscillation is easily calculated. This frequency is the pitch of the

note currently being played. All six microcontrollers are performing these calculations on their

independent strings, gathering the pitch information for each. All six pass their calculated

pitches to the next module, the Main Processor, using I2C. From the pitches on each string, the

chord being played can be determined. Figure 16 shows the Level 2 Firmware Block Diagram

for the overall pitch detector firmware design.

Figure 16. Pitch Detector Firmware Level 2 block diagram.

3.3 LED Module (JF)

The Level 2 block diagram of the LED Module can be seen in

LED Module contains two sub

Module.

Figure 17. LED Module Level 2 block diagram.

The functional requirements are listed in the f

Table 16. Functional Requirements for LED Control Module

Module LED Control Module

Inputs Power Module: +5 V DC

String Signal

ADC

Slope/Threshold

Detect

Page 34 of 112

Pitch Detector Firmware Level 2 block diagram.

2 block diagram of the LED Module can be seen in Figure 17

sub-modules, the LED Control Module and the LED Lighting

2 block diagram.

The functional requirements are listed in the following tables:

Requirements for LED Control Module

LED Control Module

Power Module: +5 V DC

 ADC

Slope/Threshold

Detect

Time

Stamp

40kHz

Clock

Time

Difference

Frequency

Calculation

I
2

C

Figure 17. Notice that the

modules, the LED Control Module and the LED Lighting

I
2

C

Page 35 of 112

Main Processor Module: Microcontroller Addresses 1-9

Main Processor Module:Enable Bits 1-3 from microcontroller

Output Lighting Control Module: LED Control signal

Functionality
Receive Enable Bits and Microcontroller Addresses to decode which LED

will be turned on.

Table 17. Functional Requirements for LED Lighting Module

Module LED Lighting Module

Input LED Control Module: LED Control signal

Output Actuation of LEDs

Functionality Illuminates a particular LED.

The LED Module, mounted on the neck of the guitar, is the means by which the guitar

displays the notes that are required to complete the user-selected chord. Each illuminated LED

represents a single note and indicates where the user needs to place his or her fingers to correctly

play the chord. However, since for a given selection there is typically more than one way to play

that particular chord (referred to as "voicings"), a GUI provides the user the option to cycle

through different voicings. And so, for each toggle of the software interface, the appropriate

LEDs illuminate to display the new voicing. Once the user is satisfied with his or her chord

selection, the guitar strings are strummed and the software assesses if the chord was played

correctly. The LED Control Module decodes the Microcontroller addresses and excites a

particular LED in the LED Lighting Module.

3.3.1 Operation of the LED Control Module

Figure 18 shows the Level

of three 3-to-8 (also shown as “3

U2) while the third is active-HIGH (U3, details on the reasoning behind this selection is

discussed below).

Figure 18. LED Control Module Level

The functional requirement tables for the components in

Table 18. Functional Requirements for Decoder

Module 3-8 Bit Active

Input

Power Module: +5 V DC

Main Processor Module: Microcontroller Addresses 1

Main Processor Module: Enable 1 Bit (“EN1”)

Outputs Cathode control of LEDs in frets 0

Functionality
Changes the state of LED

HIGH to LOW.

Page 36 of 112

.1 Operation of the LED Control Module

shows the Level 3 block diagram of the LED Control Module, which consists

8 (also shown as “3-8”) decoders. Two of the decoders are active

HIGH (U3, details on the reasoning behind this selection is

LED Control Module Level 3 block diagram.

The functional requirement tables for the components in Figure 18 are listed below.

Functional Requirements for Decoder U1

8 Bit Active-LOW Decoder U1

Power Module: +5 V DC

Main Processor Module: Microcontroller Addresses 1-3

Main Processor Module: Enable 1 Bit (“EN1”)

Cathode control of LEDs in frets 0-8

Changes the state of LED cathodes along frets 0 to 8, inclusive, from

HIGH to LOW.

3 block diagram of the LED Control Module, which consists

8”) decoders. Two of the decoders are active-LOW (U1 and

HIGH (U3, details on the reasoning behind this selection is

are listed below.

cathodes along frets 0 to 8, inclusive, from

Page 37 of 112

Table 19. Functional Requirements for Decoder U2

Module 3-8 Bit Active-LOW Decoder U2

Input

Power Module: +5 V DC

Main Processor Module: Microcontroller Addresses 4-6

Main Processor Module: Enable 2 Bit (“EN2”)

Outputs Cathode control of LEDs in frets 9-12

Functionality
Changes the state of LED cathodes along frets 9 to 12, inclusive, from

HIGH to LOW.

Table 20. Functional Requirements for Decoder U3

Module 3-8 Bit Active-HIGH Decoder U3

Input

Power Module: +5 V DC

Main Processor Module: Microcontroller Addresses 7-9

Main Processor Module: Enable 3 Bit (“EN3”)

Outputs Anode control of LEDs on strings 1-6.

Functionality Changes the state of LED anodes along a string from LOW to HIGH.

The LED Control Module governs which LED in the LED Lighting Module is lit at a

particular moment in time. Because of the high clock speed, the appearance of simultaneous

illumination can be achieved by cycling the microcontroller addresses that represent a selected

chord. Each decoder receives three microcontroller address inputs for a total of nine address

signals from the microcontroller. Three additional microcontroller signals dictate the enable

input of the decoders (EN1 for U8, EN2 for U9, and EN3 for U10). All three decoders will

operate using +5V from the Power Module.

In order to fully understand how the LEDs in the LED Lighting Module are illuminated,

consider the simplified LED matrix shown in Figure 19. In this example, a 6 x 8 LED matrix is

controlled by two decoders, one active-LOW (“Fret” decoder) and the other active-HIGH

(“String” decoder). The six outputs of the String decoder are connected to the anodes of the

LEDs along a particular string. The eight outputs of the Fret decoder are connected to the

cathodes of the LEDs along a particular fret. In an inactive state, wherein all LEDs are off, the

outputs of the string decoder are all LOW and the outputs of the fret decoder are all HIGH.

Figure 19. Sample LED matrix.

To excite a single LED, for instance, LED D00, the String decoder output must change

from LOW to HIGH and the Fret decoder output must change from HIGH to LOW. These

changes are enacted by passing a 3

String 0 in the String decoder and Fret 0 of the Fret decoder. Each LED in the matrix has a

unique pair of addresses, as shown in the bottom left of

refers to the microcontroller address for the String decoder and the right set the address for the

Fret decoder. For LED D00, the inputs to the String and Fret decoders must be 000 in order to

light the LED.

Because guitar chords contain at least 3 notes, more th

a time to fully represent the chord. While it is impossible to achieve true simultaneous

illumination with this multi-decoder design, the appearance of multiple

by rapidly switching the microcontro

in the Main Processor Module. Consider the LEDs colored in red in

D03, D04, and D25). If these LEDs were selected to display a chord, the input addresses of the

decoders would have to cycle through each of the unique address combinations for a given LED

to display the whole chord. For instance, to change from lighting D20 to D11, the String decoder

input will need to change from 000 to 001 and the Fret decoder input wil

010 to 001.

Page 38 of 112

To excite a single LED, for instance, LED D00, the String decoder output must change

from LOW to HIGH and the Fret decoder output must change from HIGH to LOW. These

changes are enacted by passing a 3-bit address into each decoder, specifying the activation of

String 0 in the String decoder and Fret 0 of the Fret decoder. Each LED in the matrix has a

unique pair of addresses, as shown in the bottom left of Figure 19. The left set of three bits

o the microcontroller address for the String decoder and the right set the address for the

Fret decoder. For LED D00, the inputs to the String and Fret decoders must be 000 in order to

Because guitar chords contain at least 3 notes, more than one LED must be illuminated at

a time to fully represent the chord. While it is impossible to achieve true simultaneous

decoder design, the appearance of multiple-lit LEDs can be achieved

by rapidly switching the microcontroller address inputs, an action dictated by the microcontroller

in the Main Processor Module. Consider the LEDs colored in red in Figure 19

D03, D04, and D25). If these LEDs were selected to display a chord, the input addresses of the

rs would have to cycle through each of the unique address combinations for a given LED

to display the whole chord. For instance, to change from lighting D20 to D11, the String decoder

input will need to change from 000 to 001 and the Fret decoder input will need to change from

To excite a single LED, for instance, LED D00, the String decoder output must change

from LOW to HIGH and the Fret decoder output must change from HIGH to LOW. These

bit address into each decoder, specifying the activation of

String 0 in the String decoder and Fret 0 of the Fret decoder. Each LED in the matrix has a

. The left set of three bits

o the microcontroller address for the String decoder and the right set the address for the

Fret decoder. For LED D00, the inputs to the String and Fret decoders must be 000 in order to

an one LED must be illuminated at

a time to fully represent the chord. While it is impossible to achieve true simultaneous

lit LEDs can be achieved

ller address inputs, an action dictated by the microcontroller

 (D20, D11, D02,

D03, D04, and D25). If these LEDs were selected to display a chord, the input addresses of the

rs would have to cycle through each of the unique address combinations for a given LED

to display the whole chord. For instance, to change from lighting D20 to D11, the String decoder

l need to change from

Page 39 of 112

To accommodate thirteen frets, two fret decoders must be used; namely U8 and U9. The

enable inputs, EN1, EN2, and EN3, serve two purposes. First, EN1 and EN2 control which fret

decoder is active for chords that span across frets 8 and 9. Because both U8 and U9 cannot be

turned on at the same time (which would wrongfully display chords), the enable inputs allow for

proper illumination of the LEDs. Second, all three enables will be programmed to turn off the

decoders when switching between addresses.

3.3.2 LED Control Module Design

Figure 20 shows the schematic for the Lighting Control Module. The CD74HC138 decoders

(seen as the top two decoders in the figure) will be responsible for controlling the states of the

cathodes along the frets. The CD74HC238 decoder will manage the states of the anodes along

the strings. In series with each string output of the HC238 is a single 301-ohm resistor. These

resistors are used to control the amount of current flowing through the LEDs. This is further

discussed in the next section, 3.3.3, the LED Lighting Module Design.

Page 40 of 112

Figure 20. Lighting Control Module schematic.

3.3.3 LED Lighting Module Design

Figure 21 shows the full schematic for the LED Lighting Module. Every column of

LEDs represents a fret on the guitar, as indicated by the numbers below each fret. Fret 0 refers to

the fret closest to the headstock of the guitar.

Page 41 of 112

Figure 21. LED Lighting Module Schematic.

The LED Lighting Module was implemented as a flexible PCB (FCB), the board outline

shown in Figure 22. Dimensions shown in Figure 22 are in inches. The LED portion of the FCB

will be placed on the “fretboard”, the fretted fingerboard on the guitar neck. (Note that the FCB

are unique to the guitar being used in the project and thus measurements of the frets will vary

from guitar to guitar. Likewise, the string spacing also varies among guitars.) Note that at the top

of the drawing of Figure 22 there is the main spine that will be affixed to the back center of the

guitar neck using an adhesive. The odd numbered frets are shown along the spine, starting from

the bone nut on the left and proceeding toward the body of the guitar on the right.

from the spine there are thirteen

under the strings. Each tap will contain six

placed before the first fret, however

the guitar. The horizontal lines along each fret indicate the spacing of the strings

represents the approximate location of the string. These markings were used to determine the

placement of the pads for the LEDs.

Figure 22. LED Lighting Module circuit board outline (Dimensions are in inches).

The diodes that are to be used for this project are

Bright Surface Mounting Chip LEDs (Refer t

dampening, the LEDs were required to be shorter than the height

the fret that extends beyond the surface of the fingerboard. The standard size of the bead in a

Stratocaster guitar is approximately 1.15 mm

have a low enough profile to not interfere with

From the data sheet, the LEDs are rated at a forward voltage of 2.3V and a forward

current of 20mA. Based on the chart for luminous intensity, the upper range lies between 10mA

and 11mA. For the purposes of this design, a single current

each anode (string) branch such that it provides roughly 10mA of current. Assuming t

driven by 5V and the drop in potential across the LED is about 2V, the value of the resistance

can be approximated by the following relationship:

Here, the resistance R was found to be 300

301Ω. Since each output of the 74HC238 will require the

resistors will be of the same size and value.

Page 42 of 112

the bone nut on the left and proceeding toward the body of the guitar on the right.

he spine there are thirteen fret taps that will wrap around the neck to the fretboard and

strings. Each tap will contain six LEDs, one for each note along that fret. Fret 0 will

however, the tap is alongside the bone nut (as opposed to the fret) of

horizontal lines along each fret indicate the spacing of the strings

represents the approximate location of the string. These markings were used to determine the

pads for the LEDs.

LED Lighting Module circuit board outline (Dimensions are in inches).

The diodes that are to be used for this project are 0603 Panasonic LNJ237W82RA High

Chip LEDs (Refer to Appendix A). In order to prevent string buzz or

dampening, the LEDs were required to be shorter than the height of the fret’s bead, the portion of

the fret that extends beyond the surface of the fingerboard. The standard size of the bead in a

r guitar is approximately 1.15 mm. With an overall height of 0.2 mm, these LEDs

have a low enough profile to not interfere with normal guitar playing.

From the data sheet, the LEDs are rated at a forward voltage of 2.3V and a forward

d on the chart for luminous intensity, the upper range lies between 10mA

and 11mA. For the purposes of this design, a single current-limiting resistor will be placed along

each anode (string) branch such that it provides roughly 10mA of current. Assuming t

driven by 5V and the drop in potential across the LED is about 2V, the value of the resistance

can be approximated by the following relationship:

was found to be 300Ω. The nearest standard size for a

. Since each output of the 74HC238 will require the same amount of current, all six

resistors will be of the same size and value.

the bone nut on the left and proceeding toward the body of the guitar on the right. Stemming

fret taps that will wrap around the neck to the fretboard and

LEDs, one for each note along that fret. Fret 0 will be

alongside the bone nut (as opposed to the fret) of

horizontal lines along each fret indicate the spacing of the strings. Each mark

represents the approximate location of the string. These markings were used to determine the

LED Lighting Module circuit board outline (Dimensions are in inches).

Panasonic LNJ237W82RA High

In order to prevent string buzz or

of the fret’s bead, the portion of

the fret that extends beyond the surface of the fingerboard. The standard size of the bead in a

With an overall height of 0.2 mm, these LEDs

From the data sheet, the LEDs are rated at a forward voltage of 2.3V and a forward

d on the chart for luminous intensity, the upper range lies between 10mA

limiting resistor will be placed along

each anode (string) branch such that it provides roughly 10mA of current. Assuming the LED is

driven by 5V and the drop in potential across the LED is about 2V, the value of the resistance

size for a chip resistor is

same amount of current, all six chip

Figure 23 shows the FCB layout of the Lighting Control Module.
that was measured and drafted in
green lines represent the traces along the top layer. The red lines represent the traces along the
bottom layer. The trace width was uniformly set to 8
the top of Figure 23) is the pad for the connector that was selected for connection between the
LED Lighting Module and the Guitar
the Hirose DF40C(2.0)-20DS-0.4V(51). Rat
accommodate the 10 mA that the LED Lighting Module will draw.
in the following section.

The manufactured board is shown in
gold colored spots are the copper pads onto which the LEDs are soldered.

Figure 23. LED Lighting Module PCB layout.

Page 43 of 112

CB layout of the Lighting Control Module. The string spacing
was measured and drafted in Figure 22 was applied to the LED spacing in the layout. The

green lines represent the traces along the top layer. The red lines represent the traces along the
ce width was uniformly set to 8mil. At the body end of the guitar (shown as
) is the pad for the connector that was selected for connection between the

LED Lighting Module and the Guitar-Mounted Circuit Board. This receptacle connector will be
0.4V(51). Rated for 300 mA, this is more than sufficient to

accommodate the 10 mA that the LED Lighting Module will draw. Interconnectivity is addressed

The manufactured board is shown in Figure 24. Fret 0 can be seen as the leftmost fret tap
gold colored spots are the copper pads onto which the LEDs are soldered.

LED Lighting Module PCB layout.

The string spacing information
applied to the LED spacing in the layout. The

green lines represent the traces along the top layer. The red lines represent the traces along the
end of the guitar (shown as

) is the pad for the connector that was selected for connection between the
This receptacle connector will be

ed for 300 mA, this is more than sufficient to
Interconnectivity is addressed

. Fret 0 can be seen as the leftmost fret tap. The

Figure 24. Post-production LED Lighting Module.

3.3.4 Interconnectivity with the Guitar

A 20-conductor ribbon cable was the method chosen to connect the FCB to the Guitar

Mounted Circuit Board (GMBC)

stripped, and soldered to a small

is shown in Figure 25. Ten wires are soldered to the top

wires are soldered to the bottom layer of the board. This was done as a means to reduce the size

of the board. The traces on this board

receptacle connector, X1, on the FCB.

crimped to an insulation-displacement ribbon cable

on the main board. The post-production circuit board connector can be seen in

Figure 25. PCB layout for circuit board connector.

Page 44 of 112

production LED Lighting Module.

with the Guitar-Mounted Circuit Board

conductor ribbon cable was the method chosen to connect the FCB to the Guitar

Mounted Circuit Board (GMBC). On the FCB end of this ribbon cable, the wires were split,

stripped, and soldered to a small, two-layer printed circuit board. The PCB layout for this board

wires are soldered to the top layer of the board while

wires are soldered to the bottom layer of the board. This was done as a means to reduce the size

The traces on this board feed into the header, which in turn mates

on the FCB. On the GMBC end of the ribbon cable, the wires were

displacement ribbon cable connector that attached to t

production circuit board connector can be seen in Figure 26

PCB layout for circuit board connector.

conductor ribbon cable was the method chosen to connect the FCB to the Guitar-

the wires were split,

layer printed circuit board. The PCB layout for this board

while the other ten

wires are soldered to the bottom layer of the board. This was done as a means to reduce the size

feed into the header, which in turn mates with the

On the GMBC end of the ribbon cable, the wires were

the 20-pin header

Figure 26.

Figure 26. Post-production connector cable.

Page 45 of 112

production connector cable.

Page 46 of 112

3.4 Main Processor Module (KR)

3.4.1 Level 1 Design

The Main Processor Module has three major responsibilities:

1.) It communicates via I2C with the six microcontrollers that make up the Pitch Detection

Module to gather chord information.

2.) It communicates this chord information to the software running on the PC, via USB.

3.) It controls the LED Module, where the finger placement of the chord is displayed on the

neck of the guitar.

These responsibilities are shown in the Level 1 Block Diagram in Figure 27.

Figure 27. Main Processor Module Level 1 block diagram.

Table 21. Functional Requirements for Main Processor Module

Module Main Processor

Input
I2C: I2C communication from Pitch Detection Module
Power: Power from Power Module

Outputs
USB: USB communication to Software
LED Module Control: Control signals to LED Module

Functionality
Communicates frequency information from Pitch Detection Module to Software.
Receives LED lighting information from Software and controls the LED Module.

3.4.2 Level 2 Design

 To fulfill the responsibilities outlined in the Level 1 Block Diagram, there are certain

peripherals that the Main Processor Module must have. These peripherals are:

1.) A hardware I2C module

2.) Means for USB communication

3.) GPIO to control the LED Module

4.) A processor to handle controlling all of these peripherals.

LED Module Control

I
2

C

Power

USB

Main Processor

Module

Page 47 of 112

These requirements are shown in the Level 2 Block Diagram in Figure 28.

Figure 28. Main Processor Module Level 2 block diagram.

3.4.3 Components and Schematics

From the requirements outlined in the Level 2 design, it is clear that a microcontroller is

needed. To this end, an Arduino compatible microcontroller, the Atmega2560, was chosen.

This microcontroller has multiple hardware I2C modules, 256kB of memory, and an abundance

of GPIO. And even though it exceeds the needs for this application, Arduino compatibility was

an important factor in selecting this microcontroller. Also important was the availability of a

development board featuring this microcontroller, the Arduino Mega board, which would allow

for firmware development before the final printed circuit board is constructed. This

microcontroller does not feature a USB communication module, however.

To compliment this microcontroller and add USB communication capability, a Serial to

USB IC was sourced. The chosen component for this is the FT232RL, an integrated circuit

interfaced using UART, which enables serial communication over USB. As the Atmega2560

has multiple free UART modules, this was the most convenient option.

The full schematic for the Main Processor Module is shown in Figure 29. The

Atmega2560 is designated as U7 and the FT232RL IC is designated as U14. Both of these ICs

require a few other components to work. The Atmega2560 uses a 16MHz resonator denoted as

Y7. It also has two 10kΩ pull-up resistors, R14 and R16, on the I2C lines. A power indicator

LED and current limiting resistor R15 of 330Ω are also used. The reset pin, like the I2C lines,

LED Module Control

I
2

C

Power

USB

I
2

C USB

GPIO Processor

has a 10kΩ pull-up resistor R13. There is also 0.1µF capacitor, C20, separating the Reset net

from the DTR net associated with the FT232RL. Doing this allows the A

reprogrammed using the USB connection, making debugging much easier. Multiple 0.1µF

capacitors are used on the many V

Atmega2560. The FT232RL also has one of these 0.1µF coupling capacitors on its VCC pin, as

well as a 47µF tantalum capacitor to facilitate higher current usage when needed. There are also

LEDs on the TXLED and RXLED pins of the FT23

another feature included for debugging purposes, making transmit and receive actions visible to

help troubleshoot communication issues.

Figure 29. Schematic for Main Processor Module.

3.4.4 Layout

 The layout for the Main Processor Module was straight forward. The FT232RL chip is

placed near the Mini-USB connector and the Atmega256 is placed almost directly under it. The

supporting passive components are placed near these components. This layout s

chosen in an attempt to make the design as compact as possible. This also serves to reduce the

trace length on the communication lines, making the design less susceptible to electromagnetic

Page 48 of 112

up resistor R13. There is also 0.1µF capacitor, C20, separating the Reset net

e DTR net associated with the FT232RL. Doing this allows the Atmega

reprogrammed using the USB connection, making debugging much easier. Multiple 0.1µF

capacitors are used on the many VCC pins scattered across the 100-pin QFP package of the

2560. The FT232RL also has one of these 0.1µF coupling capacitors on its VCC pin, as

well as a 47µF tantalum capacitor to facilitate higher current usage when needed. There are also

LEDs on the TXLED and RXLED pins of the FT232RL with pull-up resistors of 1k

another feature included for debugging purposes, making transmit and receive actions visible to

help troubleshoot communication issues.

Schematic for Main Processor Module.

The layout for the Main Processor Module was straight forward. The FT232RL chip is

USB connector and the Atmega256 is placed almost directly under it. The

supporting passive components are placed near these components. This layout s

chosen in an attempt to make the design as compact as possible. This also serves to reduce the

trace length on the communication lines, making the design less susceptible to electromagnetic

up resistor R13. There is also 0.1µF capacitor, C20, separating the Reset net

tmega2560 to be

reprogrammed using the USB connection, making debugging much easier. Multiple 0.1µF

pin QFP package of the

2560. The FT232RL also has one of these 0.1µF coupling capacitors on its VCC pin, as

well as a 47µF tantalum capacitor to facilitate higher current usage when needed. There are also

s of 1kΩ. This is

another feature included for debugging purposes, making transmit and receive actions visible to

The layout for the Main Processor Module was straight forward. The FT232RL chip is

USB connector and the Atmega256 is placed almost directly under it. The

supporting passive components are placed near these components. This layout structure was

chosen in an attempt to make the design as compact as possible. This also serves to reduce the

trace length on the communication lines, making the design less susceptible to electromagnetic

interference (EMI). The layout for the Main Process

of the this section of the populated circuit board is shown in

files is given in Appendix D.

Figure 30. Main Processor Module

Page 49 of 112

interference (EMI). The layout for the Main Processor Module is shown in Figure 30

of the this section of the populated circuit board is shown in Figure 31. The full set of Gerber

Main Processor Module Layout.

Figure 30. A photo

. The full set of Gerber

Page 50 of 112

Figure 31. Main Processor Module populated PCB section.

3.4.5 Firmware Level 1 Design

 As described in the hardware Level 1 Design, the Main Processor Module must be able to

communicate by I2C with the Pitch Detection Module, communicate with the software using

USB, and control the LED Module using GPIO. While the hardware components to do this are

already present in the design, they must be controlled by the programmed Firmware. For this

reason, the Level 1 Firmware Block Diagram shown in Figure 32 has these same input and

output requirements.

Page 51 of 112

Figure 32. Main Processor Module Firmware Level 1 block diagram.

Table 22. Functional Requirements for Main Processor Module Firmware

Module Main Processor

Input I2C: I2C communication from Pitch Detection Module

Outputs
USB: USB communication to Software
GPIO: Configured GPIO to control the LED Module.

Functionality
Communicates frequency information from Pitch Detection Module to Software.
Receives LED lighting information from Software and controls the LED Module.

3.4.6 Firmware Level 2 Design

 The Level 2 Firmware Block Diagram shown in Figure 33 outlines how this is

implemented in the firmware of this module. The Frequency Communication Sub-Module takes

the I2C communication from the Pitch Detection Module as an input and outputs the Software’s

required information using UART, which is translated to USB for the Software Module by the

FT232RL hardware. The Get LED Position Sub-Module receives LED lighting information

from the Software by USB to UART. It then outputs this lighting information to the LED

Position Control Sub-Module. This module then manipulates the GPIO to control the LED

Module.

GPIO

I
2

C USB

Main Processor

Firmware

Page 52 of 112

Figure 33. Main Processor Module Firmware Level 2 block diagram.

Table 23. Functional Requirements for Frequency Communication Sub-Module

Module Frequency Communication

Input I2C: I2C communication from Pitch Detection Module

Outputs USB: USB communication to Software

Functionality
Communicates frequency information from Pitch Detection Module to Software
in the form of an array of floating-point values.

Table 24. Functional Requirements for Get LED Position Sub-Module
Module Get LED Position

Input USB: USB communication from Software

Outputs LED Position Control: Sends interpreted coordinates to LED Module.

Functionality
Receives LED lighting information from Software by USB, interprets the given
coordinates, then passes the information to the LED Position Control Module for
further use.

Table 25. Functional Requirements for LED Position Control Sub-Module

Module LED Position Control

Input Get LED Position: Receives interpreted coordinates from the previous module.

Outputs GPIO: Sets the states of the GPIO.

Functionality
Receives coordinates from Get LED Position, then sets the GPIO accordingly—
first the string pins, then the fret pins.

3.4.7 Firmware Level 3 Design

 The functional requirements outlined in the Level 2 Firmware Design are implemented in

the Level 3 Firmware Design shown in Figure 34. The Frequency Control Sub-Module is

realized in a straight-forward manner. First, the Main Processor acquires all six floating-point

frequencies from the Pitch Detection Module. It builds an array of the relevant information and

waits for the Software to request this information. When prompted, it sends it to the Software

using UART to USB starting with String 1, the lowest string on the guitar, and ending with

GPIO

I
2

C USB

Frequency

Communication

Get LED

Position

LED Position

Control

USB

Page 53 of 112

String 6, the highest. After the data has been acknowledged and processed by the software, the

module discards the gathered information and waits for the next request for frequency

information.

 The Get LED Position Sub-Module is also a simple design. The Software communicates

to the Main Processor Module that it will be sending the LED lighting position information and

the Main Processor Module begins to read in this information. This information will contain

only a fret number, but will be transmitted in a pre-defined order, from String 1 to String 6. This

order helps to limit the amount of information that needs to be passed, as the string number is

already known by the module. For example, if the third number read by the Main Processor

Module is seven, then the Main Processor Module knows to turn on the LED corresponding to

String 3, Fret 7. This position information is then passed to the LED Position Control Sub-

Module for handling.

 The LED Position Control Sub-Module is the simplest component of the firmware

design. It receives the position information from the Get LED Position Sub-Module and then

configures the GPIO accordingly by pulling the fret pin on the decoder HIGH and the string pin

on the decoder LOW. To give the illusion that multiple LEDs are on at once, these states must

be cycled, though. To do this, an intermediary state with all of the string pins pulled HIGH is

used. This way, there is no potential difference that can cause current to flow through the LEDs

as the GPIO that control the fret pins are being configured.

Page 54 of 112

Figure 34. Main Processor Module Firmware Level 3 block diagram.

 The Main Processor Module receives lighting information and frequency request

information from the software using serial communication. This information is sent as six bytes

in the form of ASCII characters. The order these bytes are received corresponds to string the

byte carries information for. The lighting information is given using a hexadecimal numbering

scheme where the character ‘0’ is an open string, ‘1’ is Fret 1, ‘A’ is Fret 10, and so on. To

denote that a string should not be played, the character ‘X’ is sent for that string. For example, if

the six bytes sent were ‘0230XX’, the LEDs corresponding to open strings would illuminate on

String 1 and String 4, Fret 2 would illuminate on String 2, Fret 3 would illuminate on String 3,

and nothing would illuminate on String 5 and 6. To prompt the Main Processor unit to send

frequency information, the software sends the six bytes ‘JJJJJJ’. The main processor responds

with six floating point numbers with a new-line character between each.

3.5 Software (JB)

The software is programmed in C++ and is represented by the block diagram shown in

Figure 35. The overall functionality of the software is to determine what LEDs should be

GPIO

I
2

C USB

USB

GPIO

Set Frequency

Array
UART

UART

Interpret LED

Coordinates
Set String Pins

Set Fret Pins

Page 55 of 112

illuminated on the LED Module and pass this information to the Main Processor Module. The

software also provides the user with a way to tune the guitar while giving feedback during the

tuning process, allows the user to select a chord to be displayed by the LED Module, and

determines if a chord has been played correctly while again providing feedback to the user.

There are three basic steps in the software flow. The first step is initialization, in which

the classes and data structures needed to drive the system are instantiated and initialized. User

input will be disabled until initialization has completed. The second step is tuning, in which the

functionality is to provide the user with a way to select the desired tuning, tune the guitar to that

tuning, and create a mapping of the notes on the guitar. The third step of operation is playing, in

which the functionality is to allow the user to select a chord to play via a user interface, to

determine where the notes that compose the selected chord are on the neck of the guitar, and to

confirm if the user correctly played the selected chord via notifications on the user interface.

These three steps or modes of operation will be referred to throughout section 3.5 to illustrate

different roles the modules play during different stages in the application flow. The

functionalities are summarized in Table 26.

Figure 35. Level 1 block diagram of the software module.

Table 26. Functional Requirements for PC (Software)

Module PC (Software)

Inputs
User input

Main Processor Module: Note information

Outputs Main Processor Module: Coordinates of LEDs to be turned on.

Functionality Determine guitar tuning and chord placement on guitar neck.

Page 56 of 112

3.5.1 Class Definitions (JB)

The functionality of Table 26 will be achieved by five software classes: the Graphical

User Interface (GUI), the Guitar class, the Note class, the Voicing class, and the Serial class. The

User Interface and Guitar class are shown in Figure 36. Instances of the other three classes are

used within the Guitar class but have been omitted from the diagram for simplicity.

The User Interface, designed using Qt Creator, provides the user with control of the

software and feedback when playing. The Guitar class is responsible for establishing a

connection to the Main Processor Module (via an instance of the Serial class) and for providing

all the methods needed to drive the system (including those of the Voicing class). One instance

of the Guitar class is created when the user starts the application. The Note class is simply a

container for information of notes. Many instances of the Note class are created during run time,

all of which are created and managed by the Guitar class.

Figure 36. Level 2 block diagram showing classes within the software and their connections.

3.5.1.1 User Interface

The User Interface provides the user with control of the software and with feedback when

the guitar is strummed. A screenshot of an example interface is shown in Appendix C. Control is

provided by combo boxes (dropdown boxes) and buttons on the left of the interface. Feedback is

Page 57 of 112

provided by status messages on the right of the interface which display the expected and detected

frequencies, along with an image of a guitar on the bottom of the interface which emulates the

LED Module. The functionality of the User Interface is discussed in further detail in sections

3.5.2.1 and 3.5.2.8.

Table 27. Functional Requirements for User Interface

Module User Interface

Inputs User Input: Mode selection and chord selection

Outputs
Guitar Object: Forward mode & chord selection information for processing

User Display: Display emulation of LEDs

Functionality Provide the user with control of the software.

3.5.1.2 Guitar Class

The Guitar class contains a majority of the data processing methods needed to control the

system. On initialization of the software, a single Guitar object is instantiated (a single instance

of the Guitar class is created in memory) on the PC which is responsible for establishing the

USB connection to the Main Processor Module. This USB connection is a two way connection;

note information (in the form of floating point frequency) comes from the Main Processor

Module to the Guitar object, and coordinate information indicating what LEDs should be

illuminated is sent back to the Main Processor Module from the Guitar object. To determine

what lights should be illuminated, the Guitar object takes chord selection input from the User

Interface and computes where the notes composing the selected chord are on the neck of the

guitar.

Table 28. Functional Requirements for Guitar Class

Module Guitar Class

Inputs
User Interface: Mode and chord selection

Main Processor Module: Note information

Outputs
User Interface: Display information (coordinates)

Main Processor Module: Coordinates of LEDs to be turned on

Functionality
Establish connection, process information, provide information to Main

Processor Module and User Display

Page 58 of 112

3.5.1.3 Note Class

The Note class is a container for information of each note relevant to the Guitar class.

The Note class is used by the guitar class to determine if a note is in tune, map the notes that are

available on the guitar, and determine if a chord was played correctly. On initialization of the

Guitar object, an array of Note objects is created within the Guitar object by reading in the

information for the notes from a text file. One line of the text file contains the information for a

single note (separated by spaces), and every possible note is represented by exactly one Note

object in the array. This exhaustive list of notes will be referred to in future sections as the

allNotes array. The information in these Note objects includes:

• Note full name (e.g C#4)

• Note name (e.g. C#)

• Integer representation of the note (e.g. 1)

• Exact floating point frequency (e.g. 277.2)

• Minimum and maximum frequency for note to be considered in tune

• Minimum and maximum frequency that is considered within the threshold of this note
(e.g. the frequency range that represents C#4, the cutoff frequencies between C#4 and C4
on the low end and between C#4 and D4 on the high end)

3.5.1.4 Voicing Class

The Voicing class is required to find all the different ways a single selected chord could

be played given the tuning of the guitar. These permutations of a chord are known as voicings,

and there can be as many as 30 or more for any given chord. A single instance of the Voicing

class is used within the Guitar class to compute all the voicings for the currently selected chord.

The Voicing class is discussed in more detail in section 3.5.2.5.

3.5.1.5 Serial Class

The Serial class contains the code needed to read from and write to the Main Processor

Module. One instance of this class is created within the Guitar class to provide the Guitar class

with a communication channel to the microcontroller. The hardware is controlled by writing

specific sequences of characters to the Main Processor Module which are detected to determine

the correct action. For example, a specific control string is written to the Main Processor Module

to update the sampled frequencies, and other control strings correspond to lighting patterns for

the LED Module. The character sequences for controlling the LED Module are discussed in

more detail in section 3.5.2.7.

3.5.2 Algorithms and Methods (JB)

The primary software modules/algorithms required to provide the software functionality

are shown in the Level 3 block diagram in Figure 37. The operation of each of these modules is

Page 59 of 112

discussed in the following subsections. Specific methods are described as needed to provide a

clear understanding of exactly how each of the functionalities is achieved.

Figure 37. Level 3 block diagram showing primary functions within the classes.

3.5.2.1 User Input

There are three sets of controls which the User Interface provides. The first set of controls

is a set of six combo boxes (one for each string) beside each of the string status text boxes on the

right side of the interface. These combo boxes allow the user to select the desired tuning of the

guitar. This information is passed to the Guitar object so that a mapping of notes can be created.

After the user selects their desired tuning, the second set of controls can be used for

tuning the guitar and confirming if chords are play correctly. This second set of controls consists

of a panel of four buttons at the top left of the interface. The tuning button is used to sample the

frequencies detected and provide tuning feedback, and the clear tuning button simply clears the

sampled frequencies. The confirmation button is used to sample frequencies detected and

provide feedback as to whether or not the samples detected match those expected for the selected

chord to be considered correct. The clear button is used to clear the sampled chord confirmation

frequencies. The user can use these controls at any time to seamlessly tune/re-tune the guitar and

confirm chords

Page 60 of 112

The final set of controls provides the user with a way to select chords to be displayed and

confirmed. These controls consist of dropdown boxes to specify a chord to display and buttons to

cycle the previous/next voicing of the selected chord. When the voicing selection changes, the

emulator at the bottom of the interface is adjusted to reflect the newly selected voicing and the

information is also passed to the LED module to drive the display on the guitar.

3.5.2.2 Find Note by Frequency

The Find Note by Frequency Module identifies what notes are represented by the floating

point data being passed in from the Main Processor Module. This is done by iterating through the

allNotes array of the Guitar object. For each note, the frequency passed in is compared with the

minimum and maximum frequency information stored in the Note class to determine if the

frequency represents the current note. If the frequency passed in is not within the range of the

note, the software iterates to check the next note. This information is then passed to the Initialize

Guitar or Confirm Chord module so that the mapping of notes on the guitar can be initialized and

statuses can be sent to the User Interface.

Figure 38. Level 4 block diagram of Find Note by Frequency module

Table 29. Functional Requirements for Find Note by Frequency

Module Find Note by Frequency

Inputs Main Processor Module: Floating point representation of note frequency

Outputs Initialize Guitar or Confirm Chord: Note identification

Functionality
Given a frequency from the Main Processor Module, identify the note and

determine if it is in tune

3.5.2.3 Initialize Guitar or Confirm Chord

The functionality of this module depends on the mode of operation. When tuning, this
module creates a mapping of the notes on the guitar. When the software is in playing mode, this
module confirms whether or not the selected chord has been played correctly.

The mapping of notes on the guitar is achieved by the Tuning Table, a two dimensional
array of Note objects with dimensions 6x13 (6 strings x 12 frets + open string). The tuning
process starts with six floating point frequencies coming from the Main Processor Module, one

Page 61 of 112

frequency from each of the six strings. These frequencies come from the user strumming the
guitar’s open strings (i.e. not holding down any of the frets) and represent how the guitar is
tuned. The notes represented by the frequencies are compared to what they should be given the
selected tuning, and the information is used to set the first note in each of the six arrays
representing the separate strings on the guitar. An example is illustrated in Figure 40, where the
second string of the mapping is being initialized.

Figure 39. Level-4 block diagram of Initialize Guitar or Confirm Chord module

Table 30. Functional Requirements for Initialize Guitar or Confirm Chord

Module Initialize Guitar or Confirm Chord

Input
Find Note by Frequency: Note identification

User Input: Mode selection

Outputs
Chord Voicings: Mapping of notes on neck of guitar

User Display: Tuning status or confirmation of chord

Functionality

In tuning mode, this module creates a mapping of notes on the guitar to be

used by the Chord Voicings module. In playing mode, this module

provides statuses to the User Interface indicating if the chord was played

correctly.

Page 62 of 112

Figure 40. Mapping of notes in memory

Once the first note of the mapping has been determined for a given string, the rest of the

mapping for that string can be initialized by iterating through the all notes array, setting each

consecutive note of the Tuning Table to the next note in the allNotes array. This process is

illustrated in Figure 41.

Page 63 of 112

Figure 41. Mapping of notes in memory

Once the mapping of notes has been created successfully and the user switches to playing

mode, this module simply determines if the selected chord has been played correctly. This is

done using the same frequency information passed from the Main Processor Module through the

Find Note by Frequency module. However, rather than using the information to initialize the

mapping, the notes identified by the Find Note by Frequency module are matched to the notes

which compose the selected chord to confirm if the chord was played correctly. The

confirmation status is sent back to the User Interface to provide feedback. A status of chord

correct is reported if the notes represented by these frequencies are an exact match to the notes of

the selected voicing. A status of chord partially correct is reported if not all the notes match, but

all there is at least detected note which corresponds to each of the notes that make up the selected

chord. Examples of chords being confirmed as correct or partially correct are shown in Appendix

C.

3.5.2.4 Chord Builder

The Chord Builder determines what notes compose the chord selected by the user. The

chord selection information is translated into information that the Chord Voicing module can

interpret and use. An array representing the selected chord is created; the array contains an

integer representation of each note in the selected chord. (The integer representation of the notes

Page 64 of 112

is used for comparison efficiency since many comparisons are needed, and integers can be

compared faster than strings.)

The combo boxes on the User Interface have an integer associated with them which

represents what option is currently selected. The integer from the chord type selection dropdown

box is passed to a master chord builder method, which then calls the correct chord builder

method (e.g. chordBuilder_minor will be called if the user has selected a minor chord). These

separate Chord Builder methods take the integer from the scale selection dropdown box to

determine the first note of the chord and then determine the rest of the notes that compose the

chord. The integer representation of the notes that compose the selected chord is stored in an

array and passed to the Chord Voicings algorithm to determine where the notes are on the neck

of the guitar.

Figure 42. Level 4 block diagram for Chord Builder module

Table 31. Functional Requirements for Chord Builder

Module Chord Builder

Inputs User Input: Chord selection

Outputs
Chord Voicings: Integer representation of notes that compose the selected

chord

Functionality
Turn the chord selection information from User Input into a representation

that can be understood and used by the Chord Voicings algorithm

3.5.2.5 Chord Voicings (MB)

The Chord Voicings Module is comprised primarily of the chord voicings algorithm.

This algorithm processes the many different tunings to which a guitar may be set, as well as the

many different chords that can be voiced to that particular tuning. This algorithm also accounts

for the fact that the human hand limits how far across the frets a chord may be played.

The Level 1 block diagram for the Chord Voicings Module is shown in Figure 43.

Figure 43. Chord Voicings Module

Table 32. Functional Requirements for Chord Voicings Module

Module Chord Voicings

Inputs Input Chord, Tuning Table

Outputs Vector of coordinate pairs

Functionality
Processes all possible chord combinations, given an input chord and a tunin
table. Each combination is sent through a validation process.

The goal of the chord voicings algorithm is to determine all possible “playable” combinations for

an input chord of variable size, for a particular tuning. A state

process 4x6 sub states of the tuning table. 4x6 is used to r

four frets because of the length of the human fingers. A sliding 4x6 window is iterated through

the tuning table which is 13x6. For each 4x6 within the 13x6, the program generates a sub state

of the tuning table. This allows the program to search for combinations within four frets. The

Level 2 block diagram for the Chord Voicings Module is shown in

Figure 44. Chord Voicings Module

Page 65 of 112

Chord Voicings Module Level 1 block diagram.

Functional Requirements for Chord Voicings Module

Chord Voicings

Input Chord, Tuning Table

Vector of coordinate pairs – Playable Combinations

Processes all possible chord combinations, given an input chord and a tunin
table. Each combination is sent through a validation process.

The goal of the chord voicings algorithm is to determine all possible “playable” combinations for

an input chord of variable size, for a particular tuning. A state-space representation is used to

process 4x6 sub states of the tuning table. 4x6 is used to remove any combinations farther than

four frets because of the length of the human fingers. A sliding 4x6 window is iterated through

the tuning table which is 13x6. For each 4x6 within the 13x6, the program generates a sub state

lows the program to search for combinations within four frets. The

Level 2 block diagram for the Chord Voicings Module is shown in Figure 44.

Chord Voicings Module Level 2 block Diagram.

Processes all possible chord combinations, given an input chord and a tuning

The goal of the chord voicings algorithm is to determine all possible “playable” combinations for

space representation is used to

emove any combinations farther than

four frets because of the length of the human fingers. A sliding 4x6 window is iterated through

the tuning table which is 13x6. For each 4x6 within the 13x6, the program generates a sub state

lows the program to search for combinations within four frets. The

Page 66 of 112

Table 33. Functional Requirements for the “Generate 4x6” module

Module Generate 4x6

Input Tuning table, Input chord

Output 4x6 offset

Functionality Generates a 4x6 offset of the 13x6 tuning table

Table 34. Functional Requirements for the “Find all combinations” module

Module Find all combinations

Input The current 4x6 state

Output All chord combinations to be validated

Functionality Nested loops to determine the sets of combinations

Table 35. Functional Requirements for the “Find one combination” module

Module Find one combination

Input Current combination being processed by the nested loops

Output One combination that has not been validated

Functionality
Iteratively validate the combinations within the 4x6, one combination at a
time.

Table 36. Functional Requirements for the “Validate” module

Module Validate

Input One combination

Output True or False

Functionality The output determines whether to store, or discard a combination.

Table 37. Functional Requirements for the “Determine store or discard” module

Module Determine Store or Discard

Input True or False

Output A stored or discarded combination

Functionality
The execution of the validation module. This decides whether or not to place
the combination in question into the vector.

Table 38. Functional Requirements for the “Increment 4x6 offset” module

Module Increment 4x6 offset

Input There really isn’t an input.

Output Offset variable +1

Functionality
Increases the offset by one as long as there still is a 4x6 sub state to process.
Otherwise it the processing algorithm for that tuning and input is completed.

This module will use the information of the notes held within the current 4x6 offset, which will
be used to process the data. A six-nested for-loop is used to process every single combination of
4x6. Each time a combination is found, it is sent to the validation module.

The nested six-loop must be re-arranged so that combinations are not missed. Each of the
six loops corresponds to one of the six strings. Counters for each row are used to store how many

Page 67 of 112

notes are in that row. Each of the loops is rearranged in ascending order so that the largest loop is
on top. The program stores which loop corresponds to what string so that if the chord is
validated, it can be stored in order. This is done so that when the Main Processor Module
processes the coordinates, it only has to recognize the X coordinate. Since they are sent in order,
the Y coordinate would be known.

The “Generate 4x6” Module of Figure 44 generates a 4x6 portion of the tuning table.
Only the positions of the tuning table that match the input chord are used to process the
combinations. If a position does not match the tuning table, a -1 is stored to indicate that position
did not match the input chord.

The “Find all combinations” Module of Figure 44 uses six nested for loops to process the
entire set of combinations for the current 4x6 offset. Each of the six loops corresponds to a string
on the guitar. The rows, or strings, are arranged in descending order. A counter stores the number
of notes that match the input chord on each row. The row with the largest counter is arranged on
top.

The “Find one combination” Module of Figure 44 cycles through the combinations
found one at a time. This single combination is then passed to the “Validate” Module to verify
that it is a desired combination.

The “Validate” Module of Figure 44 produces the validation checks that determine
whether one combination is considered to be a playable combination. Its output is a true or false
variable that is taken into the “Store combinations” Module of Figure 45. The true or false will
determine whether the one combination is stored or discarded. The criteria for storing and
discarding are explained in Figure 45.

From the “Determine store or discard” Module of Figure 44, the validation checks for

the one combination chord are true or false. True combination values are stored into the
combinations vector, which is an exhaustive list of all the playable combinations. False
combination values are discarded and simply not placed on the vector. If there is another
combination, the program continues to execute for each combination, otherwise it increments the
4x6 offset. The process is then repeated so that all possible combinations for every 4x6 state
have been processed and validated.

The “Increment 4x6 offset” Module of Figure 44 is a logical incremental increase in the
4x6. The next 4x6 portion will contain the same three out of the four columns from the previous
4x6. This is done for every 4x6 subset of the 13x6 tuning table. This is the “sliding window”
analogy used to describe the algorithm. Each time the offset is increased, the window has moved
by one fret. Figure 45 shows the Level 3 block diagram for the Chord Voicings Module. This
diagram shows the “Validate” Module seen in Figure 44. These are the validation checks that
determine if a chord is playable.

Page 68 of 112

Figure 45. Chord Voicings Module Level 3 validation checks block Diagram.

Table 39. Functional Requirements for the “check combination length” module

Module Check combination length

Input One combination

Output Discard or reorder

Functionality
Determines whether the combination to be validated is the superset size. If
the combination contains values that are less than maximum size chord
within that 4x6, then immediately they are discarded.

Table 40. Functional Requirements for the “Reorder coordinates” module

Module Reorder coordinates

Input One combination

Output Ordered combination starting at fret 0

Functionality

Place the current combination in order. The nested for loops that are used to
find all of the combinations are placed out of order, and also the
combinations in the array are placed out of order. The functionality of this
module is to reorder them, so that when they are placed in the final vector,
they appear in order.

Table 41. Functional Requirements for “Check duplicates” module

Module Check duplicates

Input One combination

Output True or False

Page 69 of 112

Functionality
Determines if the chord being validated has already been found. If the chord
has already been found by another 4x6, then the vector should only store one
copy, so the duplicate is discarded.

Table 42. Functional Requirements for the “Discard” module

Module Discard

Input One combination

Output Discard

Functionality

Discards a chord based upon the checks from “Check duplicates” and
“Check combination length” modules. After the chord is discarded, the 6-
nested for loop will continue to find new combinations, or the 4x6 will be
incremented.

Table 43. Functional Requirements for the “Store” module

Module Increment 4x6

Input One combination

Output Store

Functionality
Stores a chord that has passed all validation checks. This chord is the
maximum size, guaranteeing that is a superset combination. Also the chord
has not already been placed upon the playable combinations vector.

The “Check combination length” Module in Figure 45 is the first of two validating

checks. This one determines if the combination length matches the desired length. Each 4x6

offset has a maximum combination size. A counter is used to implement this. If a row contains a

note that matches the input chord, then the maximum size is increased. It is important to note that

the maximum feasible size in each row contains a matching note, so six is the maximum possible

size. For example, if one row did not contain any notes, then the maximum size would be five. If

the chord, or one combination that is being validated, matches the maximum size, then it will

continue to be ordered and checked for further validation. If the chord size is less than the

maximum combination then this is considered a subset of another combination and must be

discarded.

The “Reorder coordinates” Module in Figure 45 rearranges the coordinates into

descending order based on row size. This module simply looks at the set and places them so that

the first fret is the first coordinate and the last fret is the last coordinate pair. It should be noted

that the Y-coordinate will always tell which row or string the coordinate corresponds to, but for

ease of use they always follow a specific order. This will also allow the Y-coordinate to be

ignored when sending coordinates to the display Module. Only the x coordinate will matter, the

Y coordinate will be known based upon the order.

The “Check duplicates” Module in Figure 45 is the second of two validating checks.

Since 4x6 states are processed, duplicate combinations can appear within multiple stages. The

“Check duplicates” Module examines the vector, and determines if that combination has already

Page 70 of 112

been added. If it does not appear, then the combination corresponding to the chord is stored. If

the combination already appears, there is no point in storing the value twice, so the information

is discarded.

The “Discard” Module in Figure 45 discards the chord information if it has failed either

of the two validity checks. The program then returns to where it was executing and continues.

Usually this will be at some point within the nested six loops which are processing the

combinations. If it happens to be the last combination, the 4x6 offset will be increased and

another 4x6 set will be processed. If it was the last combination then this becomes the end of the

module, as all data has been processed.

If the chord passes both of the validation checks, then it is sent to the “Store” Module in

Figure 45, which writes the combination onto the playable combinations vector. The program

will follow the same flow described in the “Discard” module description shown above. The

algorithm will find a new combination to process, end if all of the 4x6 states have been

processed, or, provided another state exists, increase the 4x6 offset and process the new state.

3.5.2.6 Display Algorithm (MB)

The display algorithm is a visual representation of the “Chord Voicings” Module seen in

section 3.5.2.5. From the exhaustive list of the playable combinations found, one is displayed to

the user through the GUI. The 13x6 array, which corresponds to the guitar’s fretboard has a

visual representation for the corresponding lighting arrangement. The primary goal of the

Display Algorithm is to allow a beginning guitar player to view which permutation of the chord

they are trying to master. The Level 1 block diagram for the Display Algorithm Module is

shown in Figure 46.

Figure 46. Display Module Level

Table 44. Functional Requirements for the “Display” module

Module Display

Input Playable combinations, Selected arrangement

Output One combination displayed inside of the GUI.

Functionality
Determines the user selected combination, and displays where on the guitar
that would be within the GUI. A nice visual representation of where the
coordinate locations are.

The purpose of the “Display” Module is to

combination of string depressions that make the desired chord

possible combinations to choose the

combinations are found using the “Chord Voicings” Module explained

3.5.2.7 Software LED Control

Once the guitar has been tuned, chords with known positions can be built by the software,

as shown in Figure 47. The user is then able to select the desired chord from a drop

The different voicings of the selected chord are displayed in the lighting sequence. The lighting

sequence is a six byte serial communication between the software and the microcontroller which

contains encoded information about which fret and string combination correspo

placement. These finger placements are then illuminated on the LED matrix.

Page 71 of 112

evel 1 block Diagram.

Functional Requirements for the “Display” module

combinations, Selected arrangement

One combination displayed inside of the GUI.

Determines the user selected combination, and displays where on the guitar
that would be within the GUI. A nice visual representation of where the
coordinate locations are.

The purpose of the “Display” Module is to provide the user the ability to visual

of string depressions that make the desired chord and cycle through all

to choose the permutation they would like to use.

the “Chord Voicings” Module explained in section

Once the guitar has been tuned, chords with known positions can be built by the software,

. The user is then able to select the desired chord from a drop

voicings of the selected chord are displayed in the lighting sequence. The lighting

sequence is a six byte serial communication between the software and the microcontroller which

contains encoded information about which fret and string combination correspo

placement. These finger placements are then illuminated on the LED matrix.

Determines the user selected combination, and displays where on the guitar
that would be within the GUI. A nice visual representation of where the

the user the ability to visually see one

cycle through all of these

. The playable

in section 3.5.2.5.

Once the guitar has been tuned, chords with known positions can be built by the software,

. The user is then able to select the desired chord from a drop-down menu.

voicings of the selected chord are displayed in the lighting sequence. The lighting

sequence is a six byte serial communication between the software and the microcontroller which

contains encoded information about which fret and string combination corresponds to a finger

Figure 47. Software LED control.

Figure 48 shows the encoding scheme used to control the LED matrix. The positions of the

coordinate to be illuminated are sent as six ASCII bytes in string order. The ASCII bytes

represent the fret to be illuminated while the actual order the bytes are received corresponds to

the string this fret should be illuminated (e.g. the first byte in the sequence

number of the fret on the first string that should be illuminated). This information is sent to the

Main Processor module from the GUI software. For example, the lighting se

Figure 48 would be represented by a serial comm

 Fret1 Fret

2

Fret

3

Fret

4

String 1 0 1 2 3

String 2 0 1 2 3

String 3 0 1 2 3

String 4 0 1 2 3

String 5 0 1 2 3

String 6 0 1 2 3

Figure 48. Encoding for LED matrix for software control.

If nothing is to be displayed on a string, the ASCII character “X” is sent for that string’s fret

information. Figure 49, for example, shows almost every position in Fret 1 illuminated. The

lighting sequence that would be sent to the Main Processor module

is visible in Figure 49 as the un-

String

Page 72 of 112

Software LED control.

shows the encoding scheme used to control the LED matrix. The positions of the

be illuminated are sent as six ASCII bytes in string order. The ASCII bytes

represent the fret to be illuminated while the actual order the bytes are received corresponds to

the string this fret should be illuminated (e.g. the first byte in the sequence corresponds to the

number of the fret on the first string that should be illuminated). This information is sent to the

Main Processor module from the GUI software. For example, the lighting sequence shown in

would be represented by a serial communication of “012345”.

Fret

Fret

5

Fret

6

Fret

7

Fret

8

Fret

9

Fret

10

Fret

11

 4 5 6 7 8 9 A

 4 5 6 7 8 9 A

 4 5 6 7 8 9 A

 4 5 6 7 8 9 A

 4 5 6 7 8 9 A

 4 5 6 7 8 9 A

Encoding for LED matrix for software control.

If nothing is to be displayed on a string, the ASCII character “X” is sent for that string’s fret

, for example, shows almost every position in Fret 1 illuminated. The

lighting sequence that would be sent to the Main Processor module is “000X00”. This “X” byte

-highlighted fret position on String 4.

Fret1 Fret

2

Fret

3

Fret

4

Fret

5

Fret

6

0 1 2 3 4 5

shows the encoding scheme used to control the LED matrix. The positions of the

be illuminated are sent as six ASCII bytes in string order. The ASCII bytes

represent the fret to be illuminated while the actual order the bytes are received corresponds to

corresponds to the

number of the fret on the first string that should be illuminated). This information is sent to the

quence shown in

Fret

Fret

12

Fret

13

B C

B C

B C

B C

B C

B C

If nothing is to be displayed on a string, the ASCII character “X” is sent for that string’s fret

, for example, shows almost every position in Fret 1 illuminated. The

is “000X00”. This “X” byte

Page 73 of 112

1

String
2

0 1 2 3 4 5

String
3

0 1 2 3 4 5

String
4

0 1 2 3 4 5

String
5

0 1 2 3 4 5

String
6

0 1 2 3 4 5

Figure 49. An example of Encoding for LED matrix skipping a position.

Once the user presses the button to display the next chord in the GUI, the proper lighting

sequence for that particular chord is determined and the six bytes corresponding to this lighting

sequence are sent to the Main Processor module.

3.5.2.8 User Display

The User Display consists of a two dimensional array of images which represent the

strings and frets on the guitar. The display emulates the LED module on the screen of the PC,

showing which LEDs should light up based on the coordinate information passed in from the

display algorithm. A screenshot of this display is shown in Appendix C. The User Display also

has several status messages. These statuses include a tuning/confirmation status for each of the

six strings which shows the expected ideal frequency and the detected frequency for each string,

as well as a master status which shows the overall state of the software (including overall

tuning/confirmation statuses when appropriate).

Table 45. Functional Requirements for User Display

Module User Display

Inputs Initialize Guitar or Confirm Chord: tuning or chord confirmation status

Display Algorithm: Coordinates specifying which LEDs to turn on

Outputs User Interface: Status information and emulation of LED Module

Functionality The User Display emulates the LED Module on the screen of the PC, using

the same coordinate information that is passed to the Main Processor

Module to drive the LEDs.

4. Operation Instructions

4.1 Guitar Setup

In order to get started using the LED Learning Guitar, the user must follow the steps

outlined below.

Step 1: Open the RockYa program on the PC

Step 2: Connect the guitar mounted circuit board (GMCB), located on the back of the

guitar, to the USB port on the computer with the provided cable

Figure 50. USB connection.

Step 3: Connect the 13

hexaphonic pickup (shown in Figure 51

Figure 51. GK cable connection at the Roland GK

Page 74 of 112

4. Operation Instructions (JF)

In order to get started using the LED Learning Guitar, the user must follow the steps

pen the RockYa program on the PC.

onnect the guitar mounted circuit board (GMCB), located on the back of the

the USB port on the computer with the provided cable, as shown in Figure 50

13-pin GK connector cable must be from the Roland GK

Figure 51) to the port on the GMBC (shown in Figure 52

. GK cable connection at the Roland GK-3 pickup.

In order to get started using the LED Learning Guitar, the user must follow the steps

onnect the guitar mounted circuit board (GMCB), located on the back of the

Figure 50.

from the Roland GK-3

Figure 52).

Figure 52. GK cable connection at the GMCB.

Step 4: Plug the power cable into the barrel jack, which is located on the GMCB

Figure 53 below). Blue LEDs on the GMBC should illuminate to indicate power. If there is no

illumination, check the barrel jack connection and

The user should also see the power indicator light on the Roland GK

indicator light is out, reexamine t

Figure 53. Barrel jack power connection.

Page 75 of 112

le connection at the GMCB.

lug the power cable into the barrel jack, which is located on the GMCB

. Blue LEDs on the GMBC should illuminate to indicate power. If there is no

illumination, check the barrel jack connection and examine the board for any potential shorts

see the power indicator light on the Roland GK-3 illuminate. If the

the GK cable connection.

connection.

lug the power cable into the barrel jack, which is located on the GMCB (see

. Blue LEDs on the GMBC should illuminate to indicate power. If there is no

examine the board for any potential shorts.

3 illuminate. If the

4.2 Initialization and Tuning of Guitar

 Step 5: Use the graphical user interface (GUI) to select the desired tuning from the drop

down menus on the screen, as shown in

Figure 54. Tuning selection from drop

Step 6: Tune the guitar.
clicking the “Tune” button on the GUI
button several times between strums
will display when a note is flat or sharp on the right portion of the screen

Figure 55. User selection buttons and Master Status indicator.

Figure 56. Guitar frequency display for tuning purposes.

Page 76 of 112

4.2 Initialization and Tuning of Guitar

the graphical user interface (GUI) to select the desired tuning from the drop

, as shown in Figure 54 below.

Tuning selection from drop-down menus.

. Start the tuning process by strumming the strings an
the GUI. Strumming the guitar and clicking the “Tune Guitar”

between strums increases the accuracy of the frequencies read. The software
will display when a note is flat or sharp on the right portion of the screen, as shown in

User selection buttons and Master Status indicator.

Guitar frequency display for tuning purposes.

the graphical user interface (GUI) to select the desired tuning from the drop-

the strings and then
. Strumming the guitar and clicking the “Tune Guitar”

the accuracy of the frequencies read. The software
, as shown in Figure 56.

4.3 Chord Selection

 Step 7: Select a chord using the two

for the selection of the root note of the chord

type of chord, as shown in Figure 58

Figure 57. Root note of guitar chord selection drop

Figure 58. Chord type selection drop

Step 8: Select a voicing.

a voicing of the guitar chord like that shown in

on the guitar neck will also display the chord voicing

Lighting Module is not illuminated

connection points of the ribbon cable at the GMBC and the Lighting Module are tight and

secured. The user can click “Previous Voicing” and “Next Vo

voicing of the guitar chord. Figure 61

shown in Figure 59.

Page 77 of 112

lect a chord using the two left drop-down menus on the GUI. The first menu is

for the selection of the root note of the chord, as shown in Figure 57. The second menu is for the

Figure 58.

ote of guitar chord selection drop-down menu.

Chord type selection drop-down menu.

Select a voicing. At the bottom of the screen, there is a virtual display that

like that shown in Figure 59. In addition, the LED Lighting Module

on the guitar neck will also display the chord voicing, as shown in Figure

Lighting Module is not illuminated when the chord is displayed on screen, make sure

connection points of the ribbon cable at the GMBC and the Lighting Module are tight and

“Previous Voicing” and “Next Voicing” buttons

Figure 61 shows a different voicing for the same chord as the one

the GUI. The first menu is

. The second menu is for the

At the bottom of the screen, there is a virtual display that shows

. In addition, the LED Lighting Module

 60. If the LED

on screen, make sure that the

connection points of the ribbon cable at the GMBC and the Lighting Module are tight and

icing” buttons to change the

shows a different voicing for the same chord as the one

Figure 59. Virtual guitar neck display showing an A major chord in open G tuning.

Figure 60. LED Lighting Module guitar chord display.

Page 78 of 112

Virtual guitar neck display showing an A major chord in open G tuning.

LED Lighting Module guitar chord display.

Virtual guitar neck display showing an A major chord in open G tuning.

Figure 61. Virtual guitar neck display showing a new voicing for an A major chord in open G
tuning.

4.4 Playing Chords and Feedback

 Step 9: Play the chord. Once

be placed on the notes where indicated by the virtual guitar display and the LED Lighting

Module. In some cases, the user might find that a voicing is uncomfortable or nearly impo

For these cases, the use of a capo on the lowest illuminated fret is encouraged. After the user

strums the guitar and clicks the “Confirm” button

user if the chord was played correctly or if the notes

is played correctly either partially (meaning the minimum notes required to make the desired

chord are detected) or fully (all the right notes displayed on the guitar neck were detected) results

in a color change of the GUI backdrop and a “Chord partially correct” or “CHORD

CONFIRMED” message in the Master Status box at the top of the screen.

“CHORD CONFIRMED” status, for example.

simple click of the “Reset” button and a

will accomplish this.

Page 79 of 112

Virtual guitar neck display showing a new voicing for an A major chord in open G

4.4 Playing Chords and Feedback

Once the user has settled on the desired chord, the fingers are to

be placed on the notes where indicated by the virtual guitar display and the LED Lighting

Module. In some cases, the user might find that a voicing is uncomfortable or nearly impo

For these cases, the use of a capo on the lowest illuminated fret is encouraged. After the user

and clicks the “Confirm” button, the GUI will provide feedback to inform the

user if the chord was played correctly or if the notes played were out of tune. A guitar chord that

is played correctly either partially (meaning the minimum notes required to make the desired

chord are detected) or fully (all the right notes displayed on the guitar neck were detected) results

e of the GUI backdrop and a “Chord partially correct” or “CHORD

CONFIRMED” message in the Master Status box at the top of the screen. Figure 62

“CHORD CONFIRMED” status, for example. If the user wishes to try a different chord, a

the “Reset” button and a toggle of chord selection through the drop down menus

Virtual guitar neck display showing a new voicing for an A major chord in open G

desired chord, the fingers are to

be placed on the notes where indicated by the virtual guitar display and the LED Lighting

Module. In some cases, the user might find that a voicing is uncomfortable or nearly impossible.

For these cases, the use of a capo on the lowest illuminated fret is encouraged. After the user

, the GUI will provide feedback to inform the

A guitar chord that

is played correctly either partially (meaning the minimum notes required to make the desired

chord are detected) or fully (all the right notes displayed on the guitar neck were detected) results

e of the GUI backdrop and a “Chord partially correct” or “CHORD

Figure 62 shows a

If the user wishes to try a different chord, a

toggle of chord selection through the drop down menus

Figure 62. Guitar chord feedback display for correctl

Page 80 of 112

Guitar chord feedback display for correctly played chord.

Page 81 of 112

5. Testing Procedures (JF)

 Testing procedures for the various hardware and software modules that make up the
system are given below.

5.1 Pickup Module

 The pickup module was tested to measure the strength and frequency of the signals

created by the excitation of the guitar strings. A test cable was constructed using a 13-pin male

connector onto which wires were soldered to each pin. These wires were connected to a

breadboard. Two power supplies provided the necessary +/- 7 volts to the power pins. The six

analog audio outputs for the guitar strings were measured using the oscilloscope, as shown in

Figure 63. The amplitude of the signal, as expected, was dependent upon the intensity of the

strum. The peak amplitudes of these waveforms were taken into consideration when choosing the

thresholds for the pitch detection module.

Figure 63. Measured analog string signal.

5.2 Pitch Detection Module

 Initial testing for the pitch detection module started with the Atmega 328P

Microcontroller Circuit Board Module. The 328P was placed on a

audio output of the hexaphonic pickup served as the signal to be analyzed, as can be seen in

Figure 64. Thresholds for measuring the frequency of the audio signal were set according to the

measurements taken with the oscilloscop

determined frequencies to a serial monitor on the PC.

Figure 64. Pitch detection breadboard testing.

 Once the Guitar-Mounted Circuit Board (GMCB) was completed, each of the

detector chips on the board was programmed to detect frequencies on a given string. Each string

was found to have slightly different voltage thresholds, given that the thicker strings were

capable of producing higher amplitude

hexaphonic pickup into the 13-pin port on the GMCB. Communicating once again via USB, the

measured frequencies were displayed on the serial monitor for the six strings. The measured

frequencies were compared with the id

accuracy of the pitch detection.

5.3 Software/LED Control Module Interfacing

 The chord builder software was programmed to display chord voicings on the virtual

guitar display as well as on the LED

the lighting display for the guitar neck, testing was performed to check the interfacing of the

software with DIP decoders on the breadboard. The outputs of the decoders were connected to a

4-by-6 array of breadboard-mounted LEDs, as shown in

via USB to the Atmega 2560 test board, out of which jumper wires connected to the decoders on

the breadboard. Lighting test sequences and guitar chords were passed to the bread

decoded, and displayed. These tests would later evolve into full scale testing with the LED

Lighting Module once the FCB was produced.

Page 82 of 112

Initial testing for the pitch detection module started with the Atmega 328P

Microcontroller Circuit Board Module. The 328P was placed on a breadboard. A

audio output of the hexaphonic pickup served as the signal to be analyzed, as can be seen in

. Thresholds for measuring the frequency of the audio signal were set according to the

measurements taken with the oscilloscope. The Atmega, which was connected via USB

determined frequencies to a serial monitor on the PC.

Pitch detection breadboard testing.

Mounted Circuit Board (GMCB) was completed, each of the

detector chips on the board was programmed to detect frequencies on a given string. Each string

was found to have slightly different voltage thresholds, given that the thicker strings were

capable of producing higher amplitudes. The GK connector cable was run from the output of the

pin port on the GMCB. Communicating once again via USB, the

measured frequencies were displayed on the serial monitor for the six strings. The measured

frequencies were compared with the ideal values for a particular note played to determine the

5.3 Software/LED Control Module Interfacing

The chord builder software was programmed to display chord voicings on the virtual

guitar display as well as on the LED Lighting Module. Since the LED Control Module manages

the lighting display for the guitar neck, testing was performed to check the interfacing of the

software with DIP decoders on the breadboard. The outputs of the decoders were connected to a

mounted LEDs, as shown in Figure 65. The software was connected

via USB to the Atmega 2560 test board, out of which jumper wires connected to the decoders on

the breadboard. Lighting test sequences and guitar chords were passed to the bread

decoded, and displayed. These tests would later evolve into full scale testing with the LED

Lighting Module once the FCB was produced.

Initial testing for the pitch detection module started with the Atmega 328P

. A single analog

audio output of the hexaphonic pickup served as the signal to be analyzed, as can be seen in

. Thresholds for measuring the frequency of the audio signal were set according to the

was connected via USB, sent the

Mounted Circuit Board (GMCB) was completed, each of the six pitch

detector chips on the board was programmed to detect frequencies on a given string. Each string

was found to have slightly different voltage thresholds, given that the thicker strings were

cable was run from the output of the

pin port on the GMCB. Communicating once again via USB, the

measured frequencies were displayed on the serial monitor for the six strings. The measured

eal values for a particular note played to determine the

The chord builder software was programmed to display chord voicings on the virtual

Lighting Module. Since the LED Control Module manages

the lighting display for the guitar neck, testing was performed to check the interfacing of the

software with DIP decoders on the breadboard. The outputs of the decoders were connected to a

. The software was connected

via USB to the Atmega 2560 test board, out of which jumper wires connected to the decoders on

the breadboard. Lighting test sequences and guitar chords were passed to the breadboard,

decoded, and displayed. These tests would later evolve into full scale testing with the LED

Figure 65. Breadboarded decoders and LED array.

5.4 Software/LED Module Interfacing

 After the LED Lighting Module was received and populated, testing with the whole LED

Module could take place. The PC w

decoders of the Lighting Control Module. The GM

cable to the LED Lighting Module,

verified the condition and orientation of the LEDs. The

all of the LEDs were functional and to ensure good connecti

Figure 66. LED Lighting Module test output.

Page 83 of 112

Breadboarded decoders and LED array.

5.4 Software/LED Module Interfacing

After the LED Lighting Module was received and populated, testing with the whole LED

Module could take place. The PC was connected to the GMCB-housed Atmega 2560 and

ntrol Module. The GMCB sent its lighting signals through the r

cable to the LED Lighting Module, as seen in Figure 66. Sending test sequences to the decoders

verified the condition and orientation of the LEDs. These sequences were used to make sure

all of the LEDs were functional and to ensure good connections through the ribbon cable.

LED Lighting Module test output.

After the LED Lighting Module was received and populated, testing with the whole LED

housed Atmega 2560 and

sent its lighting signals through the ribbon

. Sending test sequences to the decoders

sequences were used to make sure that

ons through the ribbon cable.

5.5 Software/Pitch Detection Interfacing

 The goal of these tests was to establish the connection from the GK

software. As a follow-up to the testing in 5.2, the values of frequency that were detected and

displayed in the serial monitor were passed to the software via I

between the pitch detectors and the software would result in the display of the frequencies of the

notes played on the right half of the GUI, as shown in

opportunity to remedy the pitch detect

be read (can be seen in the box that reads “invalid” in

incorrect frequency would be displayed.

Figure 67. Guitar tuning initialization

5.6 Software Feedback Testing

 The software was designed to be able to interpret whether or not a note was played

correctly. It was also designed to detect if a note was out of tune. To test the feedback

Page 84 of 112

5.5 Software/Pitch Detection Interfacing

The goal of these tests was to establish the connection from the GK

to the testing in 5.2, the values of frequency that were detected and

displayed in the serial monitor were passed to the software via I2C. Successful communication

between the pitch detectors and the software would result in the display of the frequencies of the

notes played on the right half of the GUI, as shown in Figure 67. These tests also provided an

opportunity to remedy the pitch detection issue, wherein only a portion of the frequencies could

be read (can be seen in the box that reads “invalid” in Figure 67 below) or sometimes an

incorrect frequency would be displayed.

Guitar tuning initialization testing.

5.6 Software Feedback Testing

The software was designed to be able to interpret whether or not a note was played

correctly. It was also designed to detect if a note was out of tune. To test the feedback

The goal of these tests was to establish the connection from the GK-3 pickup to the

to the testing in 5.2, the values of frequency that were detected and

uccessful communication

between the pitch detectors and the software would result in the display of the frequencies of the

These tests also provided an

ion issue, wherein only a portion of the frequencies could

below) or sometimes an

The software was designed to be able to interpret whether or not a note was played

correctly. It was also designed to detect if a note was out of tune. To test the feedback

capabilities of the guitar, notes that ma

Successful interpretation by the software would

was indeed the case. Second, a chord was played incorrectly to see if the software would be able

to tell which note in the chord was wrong.

tuning, but later intentionally reconfigured to be slightly out of tune while playing a chord. A

successful test would result in the software seeing which guitar not

playing the note. In Figure 68 below, it can be seen that an incorrect chord was played due to

incorrect frequencies detected (the values in the middle column) when compared to the ideal

frequencies (the values in the right column

Figure 68. Software feedback testing example.

Page 85 of 112

capabilities of the guitar, notes that make a desired chord of an in-tune guitar were played.

Successful interpretation by the software would indicate that the notes were played correctly

. Second, a chord was played incorrectly to see if the software would be able

which note in the chord was wrong. Further, the guitar would be initialized in the correct

tuning, but later intentionally reconfigured to be slightly out of tune while playing a chord. A

successful test would result in the software seeing which guitar notes were out of tune while

below, it can be seen that an incorrect chord was played due to

incorrect frequencies detected (the values in the middle column) when compared to the ideal

frequencies (the values in the right column).

Software feedback testing example.

tune guitar were played.

that the notes were played correctly, as

. Second, a chord was played incorrectly to see if the software would be able

he guitar would be initialized in the correct

tuning, but later intentionally reconfigured to be slightly out of tune while playing a chord. A

es were out of tune while

below, it can be seen that an incorrect chord was played due to

incorrect frequencies detected (the values in the middle column) when compared to the ideal

Page 86 of 112

5.7 Full Integration Testing

 Once the previous 6 tests have produced successful results, all components of the design
could be brought together. These tests involve using the guitar as it was intended, as outlined in
the Operating Instructions in Section 4. The project meets all of the engineering and marketing
requirements discussed in detail in Section 9.1, as well as full functionality.

Page 87 of 112

6. Budget Information (KR/JF)

Goal Budget
Squier Stratocaster (Guitar Center) $200

Roland GK-3 Pickup (Amazon) $170

Parts Request Order #1 $99.77

Flexible Circuit Board $240.00

Main Circuit Board $100.00

Total $809.77

Actual Budget
Squier Stratocaster (Guitar Center) $200

Roland GK-3 Pickup (Amazon) $170

Roland GK Connector (Amazon) $30

Parts Request Order #1 $99.77

Parts Request Order #2 $1.58

Flexible Circuit Board (MyroPCB) $177.00

Guitar-Mounted Circuit Board PCB (Oshpark) $137.30

Connector Cable PCB (Oshpark) $2.30

Total $817.95

 The estimated budget in the fall turned out to be close to the actual expenses in the
spring. The total expenses in the project amounted to be $8.18 over budget. Most notably, the
largest difference in cost was that of the flex PCB, whose initial cost was estimated to be $240.
Once a new quote from a different manufacturer was obtained, the cost for 3 flex PCBs was
reduced to $177. An addition to the actual budget was the Roland GK cable.

Page 88 of 112

7. Project Schedule (KR/JF)

Figure 69. Idealistic Gantt chart.

Page 89 of 112

Figure 70. Actual Gantt chart.

Page 90 of 112

 From a broad perspective, all tasks were finished before the hard deadline on April 17.
The differences between the estimated project timeline and the actual timeline include the longer
development time of the graphical user interface, the lead time of the flexible printed circuit
board (due to the Chinese New Year), and the lead time for the Guitar-Mounted Circuit Board.
All other tasks were completed as scheduled.

Page 91 of 112

8. Design Team Information

Jacob Barb, Computer Engineering, Hardware Manager

Mike Bolin, Computer Engineering, Software Manager

Justin Fiser, Electrical Engineering, Project Manager

Kellen Reusser, Electrical Engineering, Archivist

Dr. De Abreu-Garcia, Faculty Advisor

9. Conclusions and Recommendations

9.1 Satisfying the Design Requirements

Table 46 below shows how the design meets the engineering requirements listed in the

Design Requirements Specification.

Table 46. Electronic Learning Guitar Engineering Requirements

Engineering Requirements Implementation that satisfies requirement

7. The pitch detection should be able to

detect frequencies ranging over B1 (61.7

Hz) to G5 (784.0 Hz).

The Atmega328P is more than capable of

detecting this range of frequencies.

8. The electronics will allow for 10 cents

sharp or 10 cents flat as acceptable

error range for notes considered in tune.

For a particular note, the software has a band of

allowable frequencies associated with 10 cents

sharp/flat.

9. The microcontroller should meet the size

requirements for I/O.

With 86 pins that can be used for I/O, the

Atmega2560 was enough to accommodate the 16

pins required by the design.

10. The process of pitch detection and

feedback should execute in less than 2

seconds.

Processing from the strum of the guitar to display

of feedback can be executed in under 300ms.

11. The system should be able to operate

from a source of 9V.

All components in the design operate at ±7 V or

+5 V.

12. Chords will be displayed over frets 0

through 12 (first octave).

The LED Lighting Module was designed to

display notes over frets 0 through 12.

Page 92 of 112

Table 47 below shows how the design meets the marketing requirements listed in the

Design Requirements Specification.

Table 47. Electronic Learning Guitar Marketing Requirements

Engineering Requirements Implementation that satisfies requirement

1. The guitar should be a real, playable

electric guitar.
A commercially available electric guitar was

purchased and modified accordingly.

2. The guitar should display each note via

lit LEDs.
The LED Lighting Module contains an array of

LEDs that fits under the guitar strings.

3. The guitar should be able to process

multiple notes simultaneously.
The Hexaphonic Pickup Module and Pitch

Detection Module process 6 notes at once.

4. The guitar should be able to display and

detect chords.
The overall system design, as described in the

Technical Design section, accomplishes both of

these tasks.

5. The guitar should work regardless of

tuning and will inform user if guitar is

out of tune.

Software-based tuning calculation and note

verification determines how the guitar is tuned

and if a note is not at the right pitch.

6. The guitar should have an easy-to-read

user interface to interact with the player.

The PC includes a GUI to accept inputs from and

provide feedback to the user.

9.2 Recommendations Regarding Customization

Many aspects of the design can be reproduced to work on a different guitar. For instance,

the Roland GK-3 hexaphonic pickup is designed to be universal for electric guitars, provided that

the strings are wound with a metal to excite the windings within the pickup. For guitars with a

curved body, adapter kits are available online to assist in mounting the pickup. The guitar-

mounted circuit board (GMCB) can also be placed on the guitar in a location comfortable to the

user. However, the cable that connects the GMCB to the LED Lighting Module must be resized

to reach both circuit boards. The flexible circuit board for the LED Lighting Module was

designed to fit the guitar used in this project. Because fret sizes and string spacing vary among

guitars, the LED Lighting Module would not need to be modified accordingly.

Page 93 of 112

10. References

[1] Harrison, E. (2010). Challenges facing guitar education. Music Educators Journal, 97(1), 50-

55.

[2] Müller, M., Ellis, D. P. W., Klapuri, A., & Richard, G. (2011). Signal processing for music

analysis. IEEE Journal of Selected Topics in Signal Processing, 5(6), 1088.

[3] Liarokapis, F. (2005). Augmented reality scenarios for guitar learning. EG UK Theory and

Practice of Computer Graphics

[4] Breitweiser, F. W., Jr., & Weeks, P. F., Jr. (1995). Brietweiser Music Technology Inc.,
Musical instrument training system having Displays To identify fingering, playing and

Instructional Information (84/477 R; 84/464 A; 84/455 ed.). New Jersey, United States:
G10G 1/02.

[5] Bartos, J. (2011). Heslin Rothenberg Farley & Mesiti, Self-teaching and entertainment guitar

systems (84/485 R). New Jersey: G09B 15/06.

[6] Luther, M. (2006). Jacobson Holman PLLC, Training system for musical instruments

(84/602 ed.). Washington, D.C.: G10H 7/00.

[7] Hardy, D. (Aug 12, 2012). Starplayit Pty Ltd, Music display system (84/485 R). Australia:

G09B 15/00.

[8] Kyozo, Ota. (1978). Keio Giken Kogyo Kabushiki Kaisha, (84/454; 84/1.01). Tokyo, Japan:

G10G 7/02.

Page 94 of 112

Appendix A: Datasheets

Reference

Designator

Manufacturer

Part Number
Datasheet Link

J0, J1
DF40C(2.0)-20DS-
0.4V(51)

http://www.hirose.co.jp/cataloge_hp/ed_DF40_20140305.pdf

J2 SDF-130J
http://www.cui.com/product/resource/sdf-xxj.pdf

Y1, Y2, Y3,
Y4, Y5, Y6,
Y7

CSTCE16M0V53-
R0

http://www.murata.com/~/media/webrenewal/support/library/cata
log/products/timingdevice/ceralock/p16e.ashx

U1, U2, U3,
U4, U5, U6

ATMEGA328P-
AU

http://www.atmel.com/images/Atmel-8271-8-bit-AVR-
Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-
328-328P_datasheet_Complete.pdf

U7
ATMEGA2560-
16AU

http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-
Microcontroller-ATmega640-1280-1281-2560-
2561_datasheet.pdf

U14 FT232RL-REEL
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS
_FT232R.pdf

U11
BD70GA3WEFJ-
E2

http://rohmfs.rohm.com/en/products/databook/datasheet/ic/power/
linear_regulator/bdxxga3wefj-e.pdf

U13 LM1117-N-5.0
http://www.ti.com/lit/ds/symlink/lm1117-n.pdf

U8, U9, U10 CD74HC138/238
http://www.ti.com/lit/ds/symlink/cd74hc238.pdf

U12 TPS6755
http://www.ti.com.cn/cn/lit/ds/symlink/tps6755.pdf

D0 – D75 LNJ237W82RA
http://www.semicon.panasonic.co.jp/ds4/LNJ237W82RA_E.pdf

Page 95 of 112

Appendix B:

Guitar Mounted Circuit Board Schematic

(See following pages)

Page 96 of 112

Page 97 of 112

Page 98 of 112

Page 99 of 112

Appendix C: GUI Screenshots

The application window on successful tuning

The application window on successful confirmation

Page 100 of 112

The application window on partial confirmation

Selection of root note

Page 101 of 112

Selection of scale

Page 102 of 112

Selection of desired tuning

Page 103 of 112

Appendix D:

Guitar Mounted Circuit Board Gerbers

(See following pages)

Page 104 of 112

Page 105 of 112

Page 106 of 112

Page 107 of 112

Page 108 of 112

Page 109 of 112

Page 110 of 112

Page 111 of 112

Page 112 of 112

	The University of Akron
	IdeaExchange@UAkron
	Spring 2015

	Electronic Learning Guitar
	Justin Fiser
	Recommended Citation

	Microsoft Word - 439708-convertdoc.input.427376.iYLGV.docx

