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ABSTRACT 

Ye, Chang. Ph.D., Purdue University, August 2011.  Investigation of the Stability of the 
Compressive Residual Stress Generated by Warm Laser Shock Peening.  Major Professor: 
Gary Cheng. 

 

Laser Shock Peening (LSP) has been successfully used to improve component 

fatigue performance by bringing beneficial compressive residual stress to material surface 

since the 1990s. However, it has been found that the compressive residual stress 

generated by room temperature LSP (RT-LSP) is not stable during cyclic loading. Thus, 

it is necessary to improve the stability of the compressive residual stress generated by 

RT-LSP. 

In this study, Warm Laser Shock Peening (WLSP) is proposed as a potential 

approach to improve the stability of the compressive residual stress. WLSP is to laser 

peen a component that is being heated to elevated temperatures. As a thermomechanical 

treatment (TMT) technique, WLSP integrates the advantages of LSP, dynamic strain 

aging (DSA) and dynamic precipitation (DP). Through DSA, more uniform and high 

density dislocations are generated. Through DP, highly dense nanoscale precipitates are 

generated. Experimentally, WLSP has been evaluated by AISI 4140 steel in terms of the 

microstructure, residual stress stability and fatigue performance. To investigate the effect 

of the precipitate particles generated by WLSP to crack propagation, an extended finite 

element method (XFEM)  model was employed. To investigate the effect of temperature 

to the residual stress distribution, WLSP simulation of copper, a pure metal not 

applicable to dynamic strain aging, was carried out by finite element model (FEM) and 

validated by experiments. 

Through these studies, it has been found that: (1) WLSP can generate high density 

nanoscale precipitate particles in alloy materials applicable to dynamic strain aging and 
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precipitate hardening; (2) the highly dense precipitate particles generated by WLSP leads 

to higher material strength than RT-LSP; (3) the pinning force exerted by the precipitate 

particles to the dislocations leads to higher stability of the compressive residual stress; (4) 

the highly dense nanoscale precipitate particles generated by WLSP can dissipate the 

stress concentration near the crack tip and thus decrease the crack propagation speed and 

improve component fatigue performance. 
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CHAPTER 1. INTRODUCTION 

1.1. Laser Shock Peening 

Laser shock peening (LSP) has been successfully used to improve metallic 

component fatigue performance for more than two decades [1]. In the current medium-

confined LSP setup (Figure 1.1), a sacrificial coating and a transparent overlay are put on 

top of the target component. During LSP, the pulsed laser penetrates through the 

transparent overlay and irradiates on the sacrificial coating, the surface temperature of 

which increases rapidly [2]. When the temperature reaches certain point (around 

10,000oC), plasma forms, which is confined between the target component and the 

confining medium. With the expansion of the high pressure plasma, shock wave 

propagates both in the target material and the confining media. In this way, the shock 

wave that goes into the material is stronger and lasts longer than free-expanding plasma 

in LSP without confining media. When the peak stress of the shock wave exceeds the 

Hugoniot elastic limit (HEL) of the material, plastic deformation occurs, which leads to 

the formation of compressive residual stress in component surface. 

After LSP, the surface hardness of the metallic component increases, which is 

attributed to the work hardening induced by the high-strain rate deformation. Surface 

strength improvement combined with the presence of the compressive residual stress 

leads to fatigue performance improvement. 
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Figure 1.1 Schematic Representation of the Laser Shock Peening Process 

1.2. Problem Statement 

For effective fatigue life improvement by generating compressive residual stress 

by any surface processing technique (including LSP), two aspects are most important. 

Firstly, the magnitude of the compressive residual stress and secondly, the residual stress 

stability against cyclic loading, especially for cyclic loading at elevated temperatures. 

The compressive residual stress magnitude generated by LSP is determined by the 

laser parameters and the material properties of the target component. The residual 

stresses generated by LSP are prone to decrease in magnitude during cyclic loading, 

especially at high loading temperatures [3]. If this happens, component fatigue 

performance cannot be effectively improved. Thus, it is very important to have stable 

compressive residual stresses. 

1.3. Scope of this Research 

Warm Laser Shock Peening (WLSP) is LSP while heating to target component to 

elevated temperatures, specifically the DSA temperature.  WLSP integrates the 

advantages of LSP, dynamic strain aging (DSA) and dynamic precipitation (DP).  By 

bringing compressive residual stress and nanostructures to component surface 
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simultaneously, it is expected that WLSP can stabilize the dislocations and thus improve 

the stability of the compressive residual stress.  The aim of this research is to investigate 

the stability of the compressive residual stress generated by WLSP and to study how 

WLSP affect component mechanical properties.   

In this study, aluminum alloys and carbon steels, both are applicable to DSA, 

were used to evaluate the WLSP process. To investigate how the microstructures 

generated by WLSP affect crack propagation behavior during cyclic loading, extended 

finite element method (XFEM) was used to model crack propagation under the influence 

of the precipitates generated by WLSP. To investigate the effect of temperature to 

residual stress generated by LSP, pure copper was used, since copper is not applicable to 

DSA or DP, its microstructure is relatively simple and it does not experience phase 

change during LSP at elevated temperatures.  

1.4. Structure of this Thesis 

This thesis is structured as follows. In Chapter two, a literature review is carried 

out on LSP and the related research work. Chapter three reviews the material 

characterization methods used in this study. Chapter four presents the WLSP work of 

aluminum alloy 6061. Chapter five presents the WLSP work on AISI 4140 steel. Chapter 

six presents an XFEM study of the crack propagation behavior under the influence of the 

microstructure generated by WLSP. Chapter seven presents the WLSP work of copper. 

Chapter eight draws the conclusion of this thesis. 
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CHAPTER 2. LITERATURE REVIEW 

In Chapter one, the motivation of WLSP has been discussed and the scope of this 

research has been identified. In this chapter, a literature review is conducted on issues 

related to this research. This literature review includes, the generation of the compressive 

residual stress by LSP, how LSP affects component properties, the residual stress relief 

modes, the fundamental mechanisms of dynamic strain aging and dynamic precipitation, 

and the related work on high temperature surface processing in the literature. 

2.1. From High Energy Pulsed Laser to Shock Wave 

In LSP, the pulsed laser that is used to generate the high pressure plasma usually 

has high intensity (greater than 1 GW/cm2) and short duration (a few to 10s of 

nanoseconds). When a high power pulsed laser irradiates on to a material surface, the first 

atomic layer of the target material is vaporized into a high temperature (10,000oC) and 

high pressure (1-10 GPa) plasma. By performing a physical and mechanical study of the 

laser-induced plasma, Fabbro [4] described the relationship between the shock pressure 

P(t) and plasma thickness L(t) by: 

Z
tP

dt
tdL )(2)(

=  Eq. 2.1 

)]()([
2
3)()()( tLtP

dt
d

dt
tdLtPtI

α
+=  Eq. 2.2 

Assume constant laser power density, I0, the scaling law for the pulse pressure can be 

estimated by: 

)/()/(
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Eq. 2.3 
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where P is the peak pressure and α (empirically value [4], typically, α=0.1~0.2) is the 

portion of absorbed energy contributed to the thermal energy of the plasma; Z is the 

reduced shock impedance between the material and the confining media, which is 

governed by Eq. 2.4: 

21

112
ZZZ

+=  
Eq. 2.4 

where Z1 and Z2 are the shock impedance of the confining media and the target 

component respectively. The shock impedances of common materials are shown in Table 

2.1. Figure 2.1 shows an example of laser power temporal profile and the generated 

plasma pressure temporal profile with BK7 glass (Borosilicate crown glass) as the 

confinement material.  

Table 2.1 Shock Impedance of Common Materials 

Material Water Aluminum BK7 

Glass 

NiTi Copper Steel 

4140 

Stainless 

Steel 304 

Shock 

Impedance 

(106g.cm-2s-1) 

0.165 

[5] 

1.5* 1.44[6] 3.8* 4.18* 3.96* 3.94* 

* Estimated by equation Z=ρ*D [7], where ρ is material density and D is shock wave 

propagation speed in material.  
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Figure 2.1 Time history of laser intensity temporal profile and the resulting plasma 

pressure temporal profile (Laser Intensity 4.1 GW/cm2, Laser pulse width 5 ns, target 

material: copper, confining media: BK7 glass (Borosilicate crown glass), plasma peak 

pressure 7.8 GPa.) 

2.2. Generation of Compressive Residual Stress by LSP 

When a high pressure is suddenly applied to a metallic target, the pressure is 

accumulated in the wave front, since it cannot disperse away within such a short time. 

Thus, a discontinuous jump of pressure, density, and internal energy is formed across the 

wave front [8]. In this way, the shock wave is formed.  

When the shock wave that propagates into the material exceeds the dynamic yield 

stress of the material, plastic deformation occurs, which induces compressive residual 

stress in the material and change the near-surface microstructure and properties. The 

generation of residual stress consists of two steps [9, 10] : step (1) the rapid expansion 

creates sudden uniaxial compression (Figure 2.2a) on the irradiated area and dilation of 

the surface layer and step (2) the surrounding material reacts (Figure 2.2b) to the 

deformed area, generating a compressive stress field.  
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Figure 2.2 Generation of compressive residual stress by LSP, adopted from Peyre [9], 

reuse with permission from Elsevier 

To evaluate the compressive residual stress, it is necessary to evaluate the plastic 

strain first. Figure 2.3 shows the material stress and strain behavior during LSP. In the 

loading process, the material stress increase linearly with the strain until the material 

yield point is reached. After that, the material work hardens and plastic strain occurs. In 

the unloading process, the stress-strain curve goes back to zero stress following a curve 

parallel to the elastic stress-strain line. At the end of the deformation process, some the 

elastic strain is recovered. The retained elastic strain corresponds to the residual stress 

after LSP. Ballard [11] analyzed the LSP process and proposed the relationship between 

the surface plastic strain and the peak plasma pressure as shown in Figure 2.4. The 

residual stress magnitude can be calculated by knowledge of the plastic strain, plastic 

affected depth and the material properties. 

 

Figure 2.3 Stress and strain behavior of the material during LSP 
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