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Dielectric Properties of Graphite Nanocomposites

Shing-Chung Wong

Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325-3903

Erwin M. Wouterson

School of Materials Engineering, Nanyang Technological University, Singapore 639798
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Department of Mechanical Engineering, North Dakota State University, Fargo, North Dakota 58105

Polymer nanocomposites are an emerging class of mul-
tifunctional materials that have not been optimized for
their functional potential. In this study, the dielectric
properties of graphite polymer nanocomposites were
evaluated. The objective was to develop for composite
applications, an alternative cost-effective nanoscale
carbon material with properties comparable to those of
carbon nanotubes. J. VINYL ADDIT. TECHNOL., 12:127-130,
2006. © 2006 Society of Plastics Engineers

INTRODUCTION

Instead of trying to discover much-lower-cost processes
for carbon nanotubes (CNT), the research in our laboratory
makes use of a mass production processing technology and
formulates a distinct and cost-effective breed of nanoscale
reinforcements. These nanomaterials can be made available
at much lower cost and are tailorable for functional require-
ments. A graphene nanoplatelet is composed of naturally
occurring one or several layers of graphene plane (basal
plane). In a graphene plane, carbon atoms occupy a 2-D
hexagonal lattice. These carbon atoms are bonded together
through strong covalent bonds lying on this plane. In the
c-axis direction, several graphene planes may be weakly
bonded together through van der Waals forces (see Fig. 1).
The graphene nanoplatelet can be well dispersed and exfo-
liated in thermosetting and thermoplastic polymers. Al-
though graphene nanoplatelet and CNT are geometrically
different in architecture, some preliminary calculations have
indicated very similar mechanical properties (in-plane stiff-
ness and strength) and thermal and electrical conductivities.
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It is attractive to take advantage of the functional properties
of cost-effective graphene nanoplatelet imparted into poly-
mer matrices for composite applications. The weak van der
Waals forces between the graphene interlayers also provide
some attractive routes for ductility enhancement and tough-
ening behavior.

Recent studies on cost-effective polymer nanocompos-
ites have focused on the development of smectite clay
systems. Since there are no reactive ion groups on the
graphite layers, it is difficult to prepare the polymer/graphite
nanocomposites via ion exchange reactions in order to in-
tercalate the monomers into the graphite sublayers. The
expanded graphite (EG), however, contains abundant mul-
tipores ranging in size from 2 nm to 10 wm. Average size of
the pores is about 2 uwm. In graphite-based nanocomposites,
the monomer was first introduced into the pores of the EG
to be followed by polymerization. The graphite maintains
the layered structure similar to that of natural flake graphite
but with larger layer spacing [1-4]. It was reported that
markedly lower volume fractions of EG were able to reach
the percolation threshold for electrical conductivity in nylon
6, PS, and PMMA nanocomposites by in situ polymeriza-
tion of polymer matrices [5—8].

Enhancement in strength and stiffness for nanoscale re-
inforcement is well documented in the literature [9, 10].
Mechanical properties can be improved with proper surface
functionalization to promote interaction between the filler
and polymer molecules. Barrier properties in the nanocom-
posites derived from layered silicates, intercalated or exfo-
liated likewise, were investigated in recent years [11-14].
However, nanoclay-reinforced polymers do not possess
electrical conductivity and dielectric properties as good as
those of functional composites such as carbon black- [15,
16], metallic powder- [17-19], polyaniline- [20], and graph-
ite- [21] containing polymers. A nanocomposite that con-
tains a minimal filler concentration for reduced costs and
weight is lacking. In our research group, we aim to establish
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FIG. 1. A schematic showing the formation of EG from natural flake
graphite.

a paradigm such that cost-effective polymer nanocompos-
ites can be produced for functional and high toughness
applications. The concept is illustrated in Fig. 2. In this
article, we focus on some preliminary results for dielectric
properties of graphene-nanoplatelet-containing polymers.

EXPERIMENTAL

Acid-treated graphite (GRAFGuard® from Graftech
Inc.) was dried in a vacuum oven. Some preliminary studies
were conducted on the natural flake graphite supplied by
Beishu Graphite Co. in China. The graphite flakes were
mixed and saturated with acids consisting of concentrated
sulfuric acid and concentrated nitric acid, in order to form
the graphite-intercalated compound (GIC). Nitric acid
serves as an oxidizer and sulfuric acid is an intercalant. The
intercalant could be a solution of sulfuric acid or sulfuric
acid and phosphoric acid, and an oxidizing agent. The heat
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FIG. 3. Relative permittivity and loss factor of the graphite-nanoplatelet-
reinforced polymer coatings as a function of temperature.

treatment temperature and time could be varied to generate,
by design, various graphene nanoplatelet materials with a
wide range of nanoplatelet thickness, width, and length
values. The mixture was carefully washed and filtered with
deionized water until the pH level of the solution reached 6.
After being dried in an oven, the GIC was rapidly expanded
in a muffle furnace to form EG. The schematic illustrating
the preparation of EG from natural flake graphite is shown
in Fig. 1. Ball milling is a mass production process which
allows graphene nanoplatelets to be produced in large quan-
tities. The EG was pulverized by using a planetary ball mill
at high rotational speeds. The processing ease and the wide
property ranges render graphene nanoplatelets ideal for
nanomaterials formulation. The structures were examined
under a transmission electron microscope (TEM).

In this study, UV-curable urethane acrylate was prepared
by using a Dymax light source with a 200 EC silver lamp
(UV-A, 365 nm). The coating (~40 wm) mixed with the EG
was mounted on an aluminum panel and exposed to the UV
source. The intensity was 35 mW/cm?. Dielectric experi-
ments were conducted with a TA Instrument DEA 2970
Dielectric Analyzer in Ceramic Parallel Plate mode. The
sample dimensions were 25 X 25 X 0.5 mm’. Testing
temperature ranged from room temperature to 150°C. Ni-
trogen gas was used to provide an inert environment at a
flow rate of 500 mL/min. The ramping rate was 3°C/min
with multi frequencies of 1, 10, 100, 1000, 10,000 and
100,000 Hz. Particle size was analyzed by a Nicomp Par-
ticle Analyzer.

RESULTS AND DISCUSSION

Dielectric Properties of Graphene Nanocomposites

Figure 3 shows the relative permittivity and loss factor as
a function of temperature for the graphite-nanoplatelet-re-
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FIG. 4. Dielectric properties of graphite-nanoplatelet-containing acrylate
nanocomposites as a function of filler content.

inforced acrylate coatings. Figures 3a and 3b show the
reference samples with 0 wt% graphite. As expected, the
permittivity increases as temperature increases and de-
creases when the frequency increases. What is noteworthy,
however, is the jump in permittivity upon slight introduc-
tion of 0.5 wt% of graphite (Figs. 3c and 3d). Figure 4
compares the relative permittivity of highly expanded EG
samples in thermosetting acrylate under different tempera-
ture conditions. Note that in Fig. 4a, the relative permittivity
increases four- to five-fold between 0 and 1 wt% of graph-
ite. At higher graphite content, the permittivity slowly levels
off and reduces after 2 wt% graphite is added. Such an
increase was considered dramatic. It shows the effectiveness
of graphene nanoplatelet in altering the dipole moments and
thus the charge-storing capacity of the polymers. As antic-
ipated, at a lower frequency, the change in relative permit-
tivity is higher, whereas at higher frequencies, the variation
is more constrained. The increase in relative permittivity vs.
graphite content is more pronounced at higher temperatures
(Figs. 4b—4d). Note that the scales of the Y-axes have to be
varied in order to provide sufficient contrast for comparison
among different frequencies. The differentiation between
the low frequency permittivity and the high frequency per-
mittivity is most drastic at a high temperature of 150°C.

Morphology

Figure 5 shows the distribution of platelet size following
the ball milling process. It is noted that a bimodal distribu-
tion occurs. This result is attributed to two contributing
factors: (1) there are two dimensions (edge thickness and
platelet width) being targeted in the analyzer and (2) the
distribution of submicron-sized particles in addition to
nanoscale particles. It is clear that the edge thickness di-
mension is in the range of 100 nm, while the platelet width
is over 400 nm. The size distribution is generally consistent
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FIG. 5. Bimodal distribution of micron-sized and nano-sized dimensions
of nanoplatelets.

with the platelet shape. Figure 6 shows a TEM photograph
displaying the ball-milled graphite in a polymer coating.
The dispersion at this stage is not optimized. As a result, the
TEM micrograph shows aggregates of platelets in a thin
polymer section. Nevertheless, the nanoscale features of
graphite nanoplatelets are clearly evident in Fig. 6. The
optimization in the dispersion will be conducted by using
chaotic mixing techniques [22] and sonication in our future
work.

50 nm

FIG. 6. TEM photomicrograph of graphite-nanoplatelet-containing poly-
mer coating.
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CONCLUSIONS

Dielectric properties of graphite-based polymer nano-
composites were studied. It was shown that with as little as
0.5 wt% graphite, the relatively permittivity dramatically
increased. The charge-storing capacity changed upon inclu-
sion of graphite nanoplatelets. Then, a bimodal distribution
of platelet sizes was observed, a result which strongly
suggests the promise of graphite nanoplatelet materials for
nano reinforcements. The structure—dielectric property re-
lationships of such novel nanocomposites await future in-
vestigations.
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