
The University of Akron
IdeaExchange@UAkron

Mechanical Engineering Faculty Research Mechanical Engineering Department

2-24-2008

Implementing High-Speed String Matching
Hardware for Network Intrusion Detection
Systems
Ajay Mahajan
University of Akron, main campus

Benfano Soewito

Sai K. Parsi

Ning Weng

Haibo Wang

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/mechanical_ideas

Part of the Mechanical Engineering Commons

This Conference Proceeding is brought to you for free and open access by Mechanical Engineering Department at
IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio, USA. It has been
accepted for inclusion in Mechanical Engineering Faculty Research by an authorized administrator of
IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

Recommended Citation
Mahajan, Ajay; Soewito, Benfano; Parsi, Sai K.; Weng, Ning; and Wang, Haibo, "Implementing High-Speed String
Matching Hardware for Network Intrusion Detection Systems" (2008). Mechanical Engineering Faculty Research.
526.
http://ideaexchange.uakron.edu/mechanical_ideas/526

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Akron

https://core.ac.uk/display/232669413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fmechanical_ideas%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/mechanical_ideas?utm_source=ideaexchange.uakron.edu%2Fmechanical_ideas%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/uamechanical?utm_source=ideaexchange.uakron.edu%2Fmechanical_ideas%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=http://ideaexchange.uakron.edu/mechanical_ideas/526
http://ideaexchange.uakron.edu/mechanical_ideas?utm_source=ideaexchange.uakron.edu%2Fmechanical_ideas%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=ideaexchange.uakron.edu%2Fmechanical_ideas%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/mechanical_ideas/526?utm_source=ideaexchange.uakron.edu%2Fmechanical_ideas%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu


Implementing High-speed String Matching Hardware
for Network Intrusion Detection Systems

Atul Mahajan, Benfano Soewito, Sai K. Parsi, Ning Weng and Haibo Wang
Department of Electrical and Computer Engineering

Southern Illinois University
Carbondale, Illinois, USA

Abstract

This paper presents high-throughput techniques for im-
plementing FSM based string matching hardware on FP-
GAs. By taking advantage of the fact that string matching
operations for different packets are independent, a novel
multi-threading FSM design is presented, which dramati-
cally increases the FSM frequency and the throughput of
string matching operations. In addition, design techniques
for high-speed interconnect and interface circuits for the
proposed FSM are also presented. Experimental results
conducted on FPGA platforms are presented to study the
effectiveness of the proposed techniques and explore the
trade-offs between system performance, strings partition
granularity and hardware resource cost.

Keywords

Intrusion Detection System, Parallel Systems, Network
Systems, FPGA-based Design, and Performance Evaluation

1 Introduction

Network Intrusion Detection System (NIDS) [6, 11, 16]
is one of the most promising techniques to provide the lack-
ing security of the Internet. The heart of signature-based
NIDS is a string matching engine, which identifies suspi-
cious activities by comparing network packets with prede-
fined patterns, such as Snort rules. The design of string
matching engine for NIDS application is very challenging
due to the following reasons. First, the string matching en-
gine needs to compare Internet traffic, at the speed of tens of
Gigabits per second, with thousands of possible attack pat-
terns. Second, the string matching engine needs to be easily
updated to include new attack patterns. Currently, existing
software-based NIDS can be easily updated but barely keep
up with data rate at a few hundred Megabits per second.

Meanwhile, various hardware architectures for NIDS appli-
cations [3, 1, 5, 7, 10] have been proposed. However, most
of them are either lacking performance, scalability to traf-
fic rate and attack rules, or too complicated to design and
operate.

In this paper, we present a simple but efficient architec-
ture based on scalable classifiers and novel multi-threading
finite state machines (FSMs). Its block diagram is shown
in Figure 1. The classifier arranges incoming packets into
three categories: malicious, suspected or benign. Only sus-
pected packets are fed to FSMs (verifiers) for further verifi-
cation. In addition, classifiers confine the patterns that need
to be checked for each suspected packet. These two fea-
tures significantly improve the performance of the proposed
architecture. The soundness of this architecture is based on
the following observations from Snort 2.4, which is used in
our experiments: 329 unique header rules; 172 rules have
header string only; the maximal number of payload strings
for particular group header strings is 97; and most packets
(85%) are benign packets [2].

Forwarder

Discarder

Incoming

Packet

Benign

Malicious

Suspected

FSM 1

FSM 2

FSM n

VERIFIER

CLASSIFIER

Figure 1. Proposed NIDS architecture.

The design of the scalable classifiers will be discussed
in another work. This paper focuses on techniques to im-
plement high-throughput FSMs, which can be used in the
proposed architecture as well as other string matching hard-
ware. We present a novel multi-threading FSM design,



which improves FSM clock frequency and allows multiple
packets to be examined by a single FSM simultaneously.
Techniques to implement high-speed interface circuits for
multi-threading FSMs and pipelined interconnects between
FSMs are also proposed. Experimental results on imple-
menting the proposed circuit techniques on an FPGA plat-
form are presented to demonstrate the proposed techniques
and to study the trade-offs between system performance,
strings partition granularity and hardware resource cost.

The rest of the paper is organized as follows. Related
work is reviewed in Section 2. Techniques for high-speed
verifier design are described in Section 3. Section 4 presents
experiment results and Section 5 concludes this paper.

2 Related Work

NIDS have been studied in different forms since Den-
ning’s classic statistical analysis of host intrusions [6]. Yet
the capabilities of current NIDS are lacking the scalability
with growing threats [16] and increasing packet rate. Vari-
ous hardware optimized techniques have been proposed for
string matching. These hardware-based techniques employ
commodity technologies such as Bloom Filter [8], Network
Processors [9], TCAM [18] and FPGAs [3, 13, 14, 7, 1].
Bloom Filter is a powerful technique to quickly isolate the
potential malicious packets. However, large fast on-chip
memory is required to implement these multiple Bloom Fil-
ters to reduce its well-known high false positive rate. Mean-
while, Network Processors (NPs), programming multipro-
cessors optimized for packet processing, have been eval-
uated for multiple string matching. These NPs-based ap-
proaches use a hardware hashing engine provided by most
NPs. However, its performance is not scalable due to its
general purpose for simple packet processing and relative
small on-chip memory. TCAM is very fast and particularly
suitable for wild card patterns, however, it suffers from ex-
cessive power consumption and high cost.

Recently, improved FSM based string matching hard-
ware architectures have been reported in literature. The bit-
split architecture presented in [15] focuses on minimizing
the size of memory used to store next state pointers. How-
ever, due to the concern of the partial match vector size,
an extremely large number of very small FSMs have to
be used, resulting in complicated interconnect design and
degraded hardware efficiency. The FSM presented in [4]
improves the throughput by taking multiple bytes at each
clock cycle. To combat the exponential increase of state
numbers, complicated alphabet encoding and transition ta-
ble compression have to be performed. Hence, during FSM
operations certain pre-computation has to be conducted be-
fore next state selection. Since the pre-computation is inde-
pendent of the FSM current state, the pre-computation and
next state selection can be performed at different clock cy-

cles, hence leading to a pipelined implementation. A major!
difference between our proposed multi-threading FSM and
the design in [4] is that in our design, pipeline registers can
be placed at any level and, thus, it supports deep pipeline
scheme. In the design of [4], pipeline registers must be be-
fore the next state selection circuit, consequently limiting
the number of pipeline stages in their design.

3 Techniques for high-throughput verifier
design

3.1 Multi-threading FSM

In conventional FSM-based string matching operations,
packets to be examined are fed to the FSM one by one in
a serial manner. However, the throughput of FSM-based
string matching operations can be improved if multiple
packets can be examined by the same FSM in parallel. In
this paper, the FSM that can process multiple packets at the
same time is referred to as a multi-threading FSM. Tech-
niques to implement multi-threading FSMs are described as
follows.

The circuit model of a conventional FSM and its oper-
ations are depicted in Figure 2 (I). In the diagram, we use
P [i] to represent the ith byte of the packet to be examined
by the FSM. S[i] denotes the state that FSM reaches after
reading the ith byte of the packet. In general, the maxi-
mum clock frequency fclk of the FSM is determined by
the longest propagation delay of its combinational circuit.
To increase fclk, re-timing techniques can be applied to di-
vide logic propagation paths of the combinational circuit
into sub-paths and inserting pipeline registers in between.
Although re-timing techniques have been widely applied
in designing high-speed data path circuits, the use of such
techniques in FSM design is rarely reported. This is mainly
because an FSM needs both current input and current state
to generate its next state. While adding pipeline stages in
the combinational circuit increases the clock frequency, it
postpones the generation of FSM current state. As a result,
the overall FSM performance is not improved. This is illus-
trated in the example shown in Figure 2 (II).

Assume that the combinational circuit of the FSM shown
in Figure 2 (I) is partitioned into two parts and pipeline reg-
isters are inserted between the partitioned circuits. The re-
sultant pipelined FSM and its operation are sketched in Fig-
ure 2 (II). Note that C1 and C2 are used to label the two par-
titioned circuits in the figure. At the ith clock cycle, P [i],
the ith byte of packet P , is fed to the FSM and the state
register stores state S[i− 1], which corresponds to FSM in-
put P [i − 1]. The C1 output, which is resulted from inputs
P [i − 1] and S[i − 1], is latched into the pipeline register
at the end of the ith clock cycle, and is further processed by



 

State Register 

Combinational 
Circuit 

Input, P 

P[i] P[i+1] P[i+2] P[i+3] P[i+4] Input 

clk 

S[i-1] S[i] S[i+1] S[i+2] S[i+3] State Reg. 

(a) Circuit model 

(b) Operation diagram 

 

(a) Circuit model 

(b) Operation diagram 

State Register 

Combinational 
Circuit 
(C1) 

Input, P 

Combinational 
Circuit 
(C2) 

 

Pipeline 
Register 

P[i] X P[i+1] X P[i+2] Input 

clk 

X OC[i] X OC[i+1] X Pipeline 
Reg. 

S[i-1] X S[i] X S[i+1] State Reg. 

 

(a) Circuit model 

(b) Operation diagram 

State Register 

Combinational 
 Circuit 

(C1) 

Input, P1  

Pipeline 
Register 

Input, P2 

S 

P1[i] P2[i] P1[i+1] P2[i+1] P1[i+2] Input 

clk 

OC1[P2(i-1)] OC1[P1(i)] OC1[P2(i)] OC1[P1(i+1)] OC1[P2(i+1)] 
Pipeline 

Reg. 

S1[i-1] S2[i-1] S1[i] S2[i] S1[(i+1] State Reg. 

Combinational 
 Circuit 

(C2) 

(I) Conventional FSM (II) Pipelined FSM (III) Multi-threading FSM

Figure 2. Different FSM implementation and timing diagram.

C2 during the (i + 1)th clock cycle. The FSM state corre-
sponding to input P [i] is latched to the state register at the
end of the (i + 1)th clock cycle. Therefore, the FSM has
to wait till the (i + 2)th clock cycle to take the next input
P [i+1]. Apparently, the pipelined design doubles the FSM
clock frequency but takes an input every two clock cycles.
Hence, the time to process a packet is still the same as that
of the conventional FSM.

During half of the operation cycles, the combinational
circuits and registers in the above design do not produce
or store valid data. For example, the data stored in the state
register during the (i+1)th clock cycle is useless for the op-
eration of the FSM (We use ”X” to label the useless data in
the timing diagram). In network processing domain, there
is virtually no dependency between packets, therefore, all
packets can be processed in parallel. By taking advantage
of this fact, we can feed another packet to the FSM when
its combinational circuit c1 is not used by the first packet.
Hence, two packets can be processed by a single FSM. Fig-
ure 2 (III) shows the two-threading FSM and its operations.
During the odd clock cycles, data from Packet P1 are fed to
the FSM. In an even clock cycle, the FSM takes input from
Packet P2. As a snapshot of its operation, we assume at the
ith clock cycle, where i is an odd number, data P1[i] (the
ith byte of P1) is fed to the FSM. Also, the FSM state reg-
ister stores state S1[i− 1], which corresponds to FSM input
P1[i − 1]. Thus, during the ith clock cycle, combinational
circuit C1 computes partial results, which will be used by
C2 to generate FSM state S1[i] in the (i + 1)th clock cy-
cle. Parallel with the computation for Packet P1, circuit C2

computes the FSM state S2[i − 1] for Packet P2 during the
ith clock cycle. Consequently, at the (i + 1)th clock cycle
the state register stores state S2[i − 1] and circuit C1 pro-
cesses input P2[i] from Packet P2. Note that for an FSM
with M pipeline stages, M packets can be processed simul-
taneously. Hence, we refer to it as a M -threading FSM.

If we ignore the performance penalty caused by the FSM
input multiplexer and pipeline stage registers, the through-

put of M -threading FSM is M times faster than a conven-
tional FSM (though the latencies of the two are the same).
To maximize the system throughput, M is preferred to be
as large as possible. On FPGA implementations, the value
of M can be maximized by adding a pipeline stage after
each look-up table (LUT). Modern FPGAs have abundant
DFFs to support this deep pipeline scheme. This observa-
tion is supported by our experimental results to be presented
in Section 4.

3.2 High-speed interface circuit design

During the operation of an M -threading FSM, data from
M different packets is alternately fed to the FSM. A simple
interface circuit for this function is a M−to−1 multiplexer.
However, if M is large, the M−to−1 multiplexer normally
has a large delay and potentially become the bottleneck that
limits the system performance.

In this paper, we present a fast interface circuit whose
schematic is shown in Figure 3. In this design, only Register
R1 communicates with the buffer circuit and FSMs. Thus,
it eliminates the use of large multiplexer and de-multiplexer.
The operation of the circuit is explained as follows. At
the beginning of the operation, the control input S of the
2 − to − 1 multiplexer is 0 and, thus, the data from the
buffer goes through the multiplexer. During the first clock
cycle, Packet P1 is loaded into R1 and no data is trans-
ferred to the FSMs. During the second clock cycle, the first
byte of P1 is fed to the FSMs. Meanwhile, Packet P2 is
loaded to R1 and P1 is transferred to Register R2. Note
that a one-bit cyclic right-shifting operation is taking place
when moving data from R1 to R2. However, no such right-
shifting operation is performed when moving packets in the
rest of the registers. Following the same manner, packets
PM , PM−1, · · ·P1 are loaded into registers R1, R2, · · ·Rm

during the first M clock cycles. After that, S switches to
1 and the packets stored in the registers start to circulate
along the register chain. During this process, proper bytes
from different packets are fed to the FSMs. Again, assume



each packet has N bytes. After M · N clock cycles, S be-
comes 0 and new packets start to fill the registers. Mean-
while, the packets that have been processed are transferred
to an exit queue, which consists of Registers B1, B2, · · ·Bk.
The exit queue introduces the same latency as that caused
by the pipeline registers inserted on FSM input and output
paths. Hence, the packet is aligned with its matching result
generated by the FSMs. According to the matching result,
the packet will be routed to the forwarding or discarding
hardware.

 

R1 

R2 

R3 

Rm 

FSMs 

From 
Buffer 

S 

Forward 

Discard 

Bk B2 B1 

0 

1 

Figure 3. A high-speed interface circuit.

3.3 Minimizing FSM interconnect delay

By using the multi-threading FSM design technique, the
signal propagation delay caused by logic components can
be minimized to the delay of a single LUT. As a result, the
signal delay between two adjacent pipeline stages is dom-
inated by interconnect delay. To reduce FSM interconnect
delay, long wires and global FPGA routing resources should
be avoided in FSM implementations. This implies that both
the area occupied by the FSM and the fan-out numbers of
FSM nets should be kept small. Both of the above con-
ditions can be satisfied if the number of states (number of
string patterns) encoded in the FSM is small. To achieve
this goal, after partitioning the entire Snort patterns into
different classes, we further divide the patterns of a class
into smaller subsets. Small FSMs are designed for the par-
titioned subsets to minimize FSM interconnect delay.

The use of multiple small FSMs to check if a packet
matches a string contained in the class is shown in Figure 4
(a). When a packet is sent from classifiers, it is fed to all

the FSMs to check if a match is found. The use of multiple
small FSMs, instead of a single large FSM, raises two major
design concerns. First, more hardware resources might be
needed in the multiple small FSMs (MSF) based approach
due to reduced opportunities of hardware sharing. Inter-
estingly, our experimental results show that the hardware
implementation cost will not significantly increase in the
MSF-based approach. This is partially due to the DFF du-
plication technique used in modern FPGA synthesis flows.
In large FSMs, many nets have large numbers of fan-outs.
To minimize the performance degradation caused by the
large fan-out nets, FPGA synthesis tools can automatically
perform DFF duplication to reduce the fan-out numbers for
DFFs in critical paths. Since nets in small FSMs normally
have small fan-out numbers, DFF duplication is less fre-
quently used in the MSF-based approach.

 

Inp 

FSM 1 

FSM 2 

FSM n 

FSM FSM 

FSM 

FSM 

FSM 

FSM 

(a) 
(b) 

 
FSM  

FSM 

 
FSM 

 
FSM 

 
FSM 

 
FSM 

 
 

W
R
A
P
P
E
R 

D 

D 

(c) 

D 

D 

D 

D 

D 

D 

D 

D 

D 

D 

Figure 4. Connecting multiple FSMs.

Another challenge in the MSF-based approach is to min-
imize the delay of the interconnect that routes the incoming
packets to all the FSMs. As shown in Figure 4 (b), the in-
put packet path not only has large fan-out but also travels
long distance. To prevent this path from becoming the bot-
tleneck that limits the system performance, two techniques,
pipelined interconnect and out-of-order execution, are used
in the design. As shown in Figure 4 (c), pipeline registers
are inserted to cut the tree-like input packet routing path
into multiple short paths. The throughput of the input inter-
connect can be improved by increasing the clock frequency.
Note that the registers are not evenly added on all of the



FSM input paths. For FSMs that are physically close to the
verifier input port, none or few registers are added to their
input paths. Meanwhile, for FSMs that are physically far
away from the input port, more registers are needed to bring
down the input interconnect delay.

Due to the latencies caused by the unbalanced pipelined
registers, incoming packets will reach different FSMs at dif-
ferent clock cycles. Thus, the same packet will be examined
by different FSMs at different times. We use the term out-
of-order execution to refer to this type of operation. The
out-of-order execution can be tolerated in string matching
applications if the matching results generated by different
FSMs at different time can be re-aligned to generate the fi-
nal matching decision. This can be done by adding registers
on FSM output paths. If we use Kin and Kout to represent
the number of registers added to the input and output path
of an FSM, the sum of Kin and Kout should be the same
for all the FSMs to achieve proper alignment for the FSM
outputs. Note that the registers on the FSM output paths not
only align the FSM outputs but also keep the delay of the
output path small. Finally, the wrapper circuit will combine
all the aligned FSM outputs to generate the matching result.

4 Experimental Results

Experiments have been conducted to study the effective-
ness of the proposed techniques. The FPGA hardware used
in our study is Xilinx Virtex 4 FX100 device [17]. String
matching rules from the Snort [12] are used to specify the
functionality of the FPGA FSMs. In the experiments, we
first convert the Snort rules into state transition tables and,
consequently, generate Verilog codes that describe FSM be-
haviors. The Verilog codes are given as input to an FPGA
design automation tool to perform logic synthesis, and cir-
cuit placement and routing (P&R). The circuit performance
and resource utilization are obtained from post-P&R re-
ports and static timing analysis. To implement the pro-
posed multi-threading FSMs, gate-level netlists of the syn-
thesized FSMs are fed to an in-house re-timing program to
add pipeline registers. The modified netlists are given as
the inputs of the FGPA P&R tool to implement the FSMs
on the target FPGA platforms. In the experiments, we also
vary the number of string matching rules to be encoded into
the FSMs to study how it affects the FSM performance. For
the convenience of discussion, the number of string match-
ing rules encoded in an FSM is also referred to as the size
of the FSM. For example, if 200 string matching rules are
implemented by an FSM, we call the FSM has a size of 200
in the following discussion.

Figure 5 shows the maximum clock frequency versus
the thread numbers of multi-threading FSMs. Data col-
lected from FSMs with sizes of 20, 50, 100, and 200 are
displayed in the figure. The data points, whose horizontal-

axis coordinates (FSM thread numbers) are 1, correspond
to conventional FSM implementations. Clearly, the multi-
threading FSM design technique significantly increases the
FSM clock frequency. Since an FSM takes a byte of data at
a clock cycle, its throughput will be eight times of its clock
frequency. From the experimental results, we find that 50
is the optimal FSM size for the target hardware platform.
With the multi-threading technique, the maximum clock
frequency of the FSM with the size of 50 is above 500MHz
as shown in the figure. Thus, its maximum throughput is
above 4 Gbits/s.

0

100

200

300

400

500

600

1 3 5 7 9 11 13 15 17 19 21

No. of Threads (M)

M
ax

 F
re

q
. 

(M
H

z)

20 50 100 200
 

Figure 5. FSM clock frequency versus num-
ber of threads.

Note that for a M -threading FSM its realized clock fre-
quency is less than what is predicted (M times of the con-
ventional FSM clock frequency) in Section 3.1. This is
mainly because signal paths of FPGA FSMs are routed us-
ing fixed-length FPGA interconnect resources and their de-
lays are not always proportionally scaling down as the delay
of logic components when more pipeline stages are added.
For a given FSM design, the maximum number of threads
that can be implemented is determined by the logic depth
(the level of logic gates) of the FSM combinational circuit.
That’s why the maximum thread numbers for the reported
FSMs are slightly different. In the proposed system, the en-
tire Snort is first partitioned into classes and string matching
rules in each class are further divided into subsets with sizes
of 50. Hence, FSMs with sizes larger than 200 are rarely
used in the proposed system and their performance is not
include in the above figure.

Figure 5 also indicates that the maximum clock fre-
quency that can be achieved by multi-threading FSMs de-
grades with the sizes of FSMs. To illustrate the cause, inter-
connect delays on the critical paths of different-sized FSMs
are plotted in Figure 6. The results are consistent with our
previous analysis that large FSMs normally have large inter-
connect delays and, consequently, lower clock frequencies,
even with the use of multi-threading design techniques.

The hardware overhead caused by the multi-threading



 

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250

Size of FSM (patterns)

In
te

rc
o

n
n

ec
t 

D
el

ay
 (

n
s)

Figure 6. Interconnect delay with different
FSM sizes.

FSM design approach is also studied in our experiments.
Figure 7 shows that DFFs (in terms of the percentage of the
total DFFs on the Virtex 4 FX100 device) used in the de-
sign increase proportionally with the number of threads in
the FSMs. Note that the number of LUTs used in the design
will not be affected by the multi-threading technique and,
thus, is not reported in the figure. Because of the DFF-rich
architectures of FPGAs, the increased demand for DFFs in
multi-threading FSMs does not pose significant problems in
system implementations. Even if the maximum thread num-
ber is used in the FSM design, the required DFF resource is
not dramatically higher than that of LUTs (both are in terms
of percentages of the total available resources on the FPGA
platform). Thus, the use of multi-threading techniques will
not significantly affect the number of FSMs that can be im-
plemented on the FPGA platform.

 

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20 22

No. of Threads (M)

D
 F

F
's

 (
%

)

20 50 100 200

Figure 7. DFF utilization in multi-threading
FSMs.

In the proposed system, string matching rules belonging
to a class are further divided into subsets and small FSMs
are designed for each subset. To study how hardware im-
plementation cost is affected by the MSF-based approach,
different FSM sizes are used to design the verifier hardware

for a group of 200 string matching rules from the Snort. The
design approaches used in the study are: (a) a single FSM
with the size of 200, (b) two FSMs of the size 100, and (c)
four FSMs of the size 50. The required LUTs and DFFs (in
terms of the percentage of the total resources on the Virtex
4 FX100 device) in the three different approaches are com-
pared in Figure 8. The X-axis of the figure indicates the
number of FSMs used in the design. Thus, the data points
with X-axis coordinates of 1, 2, and 4 correspond to the
design approaches a, b and c, respectively. Note that all
the FSMs used in this study are multi-threading FSMs with
their maximum thread numbers. It shows that the hardware
implementation cost will not be significantly increased by
using the MSF-based design approach. For this particular
case, the amount of LUTs and DFFs are slightly reduced
when using four smaller FSMs. This is mainly contributed
by the following two factors. First, the FPGA synthesis tool
can more efficiently minimize the combinational logic when
the circuit size is small. Second, there are less number of
nets that have large fan-outs in small circuits than that in
large circuits. Thus, DFF duplication techniques are less
intensively used in small circuits. 

0

3

6

9

12

15

0 1 2 3 4 5

No. of Small FSM's

R
es

ou
rc

e 
U

til
iz

at
io

n 
(%

)

LUT DFF

Figure 8. FPGA resource utilization for differ-
ent FSM design.

The above data also indicates about 12% of DFF and
8% of LUT resources (on the Virtex 4 FX100 device)
are needed to implement a verifier that covers 200 string
matching rules. There are about 1500 unique strings in
the current Snort. (Although a much larger number of
strings in the Snort is often referred, that number includes
many duplicated rules.) Thus, if we can partition the 1500
unique strings into eight classes and each contains about
200 strings, then all the eight verifiers can be implemented
into a single Virtex 4 FX100 device.

Finally, experiments are conducted to show that the de-
lay of the input packet path which connects to multiple FSM
inputs will not become the factor limiting the system perfor-
mance. In the experiments, we assume the input intercon-
nect needs to route the incoming packets from the verifier
input port to 10 FSMs. First, the FSMs are synthesized and
implemented as modules. At the floor-planning phase, FSM



modules are placed such that some spaces between FSM
modules are reserved for routing. After floor planning, an
iterative design process is used to manually place intercon-
nect pipeline stages into the reserved routing space. Our
experiments indicate that the design goals can be quickly
achieved after two or three design iterations. As shown
in Figure 9, after four pipeline stages are added to some
input path branches, the delay of partitioned interconnect
segments can be quickly reduced to less than 2ns, which is
small enough to support the FSMs operation at the clock
frequency of 500MHz. The numbers of pipelined registers
added to the design are also plotted in the figure. It shows
that the number of additional DFFs required in the pipelined
interconnect design is very small. 

0

1

2

3

4

1 2 3 4

No. of Pipeline Stages

D
el

ay
 (

ns
)

0

4

8

12

16

N
o.

 o
f D

 F
/F

's
 a

dd
ed

Delay D F/F's

Figure 9. Delay of FSM input path.

5 Concluding Remarks

In this work, techniques, including multi-threading FSM
design, high-speed FSM interface circuit, FSM partition
and pipelined interconnected are developed to improve the
performance of FSM based string matching operation on
FPGA platforms. Experimental results demonstrate that the
system throughput can be significantly improved by the pro-
posed FSM design. In addition, our experiments show that
after applying the multi-threading (deep pipeline) scheme,
FPGA interconnect delay starts to dominate the system per-
formance. Partitioning large FSMs into smaller FSM and
the use of pipelined interconnects are effective techniques
to combat FPGA interconnect delay. Another interesting
finding from our experiments is that FSM partitions do not
cause significant hardware overhead, which may suggest
that smaller FSMs are always preferred on FPGA platforms.

References

[1] M. Aldwairi, T. Conte, and P. Franzon. Configurable
string matching hardware for speeding up intrusion detec-
tion. SIGARCH Comput. Archit. News, 33(1):99–107, 2005.

[2] M. Attig and J. Lockwood. Sift: Snort intrusion filter for tcp.
In Proceedings of 13th Symposium on High Performance In-
terconnects, pages 121–127, 2005.

[3] Z. K. Baker and V. K. Prasanna. Time and area efficient
pattern matching on fpgas. In FPGA ’04: Proceedings of the
2004 ACM/SIGDA 12th international symposium on Field
programmable gate arrays, pages 223–232, New York, NY,
USA, 2004. ACM Press.

[4] B. Brodie, R. Cytron, and D. Taylor. A scalable architecture
for high-throughput regular-expression pattern matching. In
Proc. 33rd International Symposium on Computer Architec-
ture, 2006.

[5] L. Bu and J. A. Chandy. FPGA based network intrusion
detection using content addressable memories. In FCCM
’04: Proceedings of the 12th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, pages
316–317, Washington, DC, USA, 2004. IEEE Computer So-
ciety.

[6] D. Denning. An intrusion–detection model. IEEE Transac-
tions on Software Engineering, 13(2):222–232, Feb. 1987.

[7] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and
J. Lockwood. Deep packet inspection using parallel bloom
filters. IEEE Micro, 24(1):52–61, Jan. 2004.

[8] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, and J. W.
Lockwood. Deep packet inspection using parallel Bloom
filters. IEEE Micro, 24(1):52–61, Jan. 2004.

[9] R.-T. Liu, N.-F. Huang, C.-H. Chen, and C.-N. Kao. A fast
string-matching algorithm for network processor-based in-
trusion detection system. Trans. on Embedded Computing
Sys., 3(3):614–633, 2004.

[10] P. Piyachon and Y. Luo. Efficient memory utilization on net-
work processors for deep packet inspection. In ANCS ’06:
Proceedings of the 2006 ACM/IEEE symposium on Archi-
tecture for networking and communications systems, pages
71–80, New York, NY, USA, 2006. ACM Press.

[11] M. Roesch. Snort – lightweight intrusion detection for net-
works. In Proc. of the 13th Systems Administration Confer-
ence, 1999.

[12] Snort, Inc. The Open Source Network Instrusion Detection
System, 2004. http://www.snort.org.

[13] H. Song and J. W. Lockwood. Efficient packet classification
for network intrusion detection using fpga. In FPGA ’05:
Proceedings of the 2005 ACM/SIGDA 13th international
symposium on Field-programmable gate arrays, pages 238–
245, New York, NY, USA, 2005. ACM Press.

[14] Y. Sugawara, M. Inaba, , and K. Hiraki. Over 10gbps string
matching mechanism for multi-stream packet scanning sys-
tems. In Lecture Notes in Computer Science, volume 3203,
pages 484–493. Springer-Verlag, 2004.

[15] L. Tan and T. Sherwood. Architectures for bit-split string
scanning in intrusion detection. IEEE Micro, (1):2–9, 2006.

[16] G. Varghese. Network Algorithmics: An Interdisciplinary
Approach to Designing Fast Networked Devices. Morgan
Kaufmann, 1st edition, 2005.

[17] Xilinx, Inc. Virtex-IV Pro and Virtex-IV Pro X Platform FP-
GAs: Complete Data Sheet, 2004. http://www.xilinx.com.

[18] F. Yu, R. H. Katz, and T. V. Lakshman. Gigabit rate packet
pattern-matching using tcam. In ICNP ’04: Proceedings
of the Network Protocols, 12th IEEE International Confer-
ence on (ICNP’04), pages 174–183, Washington, DC, USA,
2004. IEEE Computer Society.


	The University of Akron
	IdeaExchange@UAkron
	2-24-2008

	Implementing High-Speed String Matching Hardware for Network Intrusion Detection Systems
	Ajay Mahajan
	Benfano Soewito
	Sai K. Parsi
	Ning Weng
	Haibo Wang
	Recommended Citation


	tmp.1428081101.pdf.0q6li

