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Abstract Eight human test subjects attempted to track a
desired position trajectory with an instrumented
manipulandum (MN). The test subjects used the MN with
three different levels of stiffness. A transfer function was
developed to represent the human application of a
precision grip from the data when the test subjects
initially displaced the MN so as to learn the position
mapping from the MN onto the display. Another transfer
function was formed from the data of the remainder of
the experiments, after significant displacement of the MN
occurred. Both of these transfer functions accurately
modelled the system dynamics for a portion of the
experiments, but neither was accurate for the duration of
the experiments because the human grip dynamics
changed while learning the position mapping. Thus, an
adaptive system model was developed to describe the
learning process of the human test subjects as they
displaced the MN in order to gain knowledge of the
position mapping. The adaptive system model was
subsequently validated following comparison with the
human test subject data. An examination of the average
absolute error between the position predicted by the
adaptive model and the actual experimental data yielded
an overall average error of 0.34mm for all three levels of
stiffness.

www.intechopen.com

Keywords Cognition, Dynamic Systems And Control,
Human Factors, Haptics, Perception And Action

1. Introduction

Dexterous manipulation is a challenging task for
autonomous robots [1]. Some artificial hands, like the
Shadow Hand, the Gifu Hand and the Anatomically
Correct Testbed Hand, appear anthropomorphic and
have similar functionality to the human hand [2-5].
However, these manipulators lack the intellect that
humans possess for learning from and adapting to
variable parameters in an unstructured environment.
Human hand control strategies, however, are complex [6]
and clearly become more refined over time [7]. That
humans require many years to develop sophisticated
control of their hands is due to the many factors that
affect precision grip, such as environmental stiffness [8].
A better understanding of people’s learning processes
during different manipulation tasks could be beneficial in
imparting higher levels of autonomy to artificial hands.
This is important not only for autonomous artificial
hands but also for teleoperated manipulators, because
there will always be some level of position mapping
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discrepancy between the desired and actual positions of
teleoperated manipulators. It is thus important to
understand and quantify how people adapt to these
mapping errors [9-15], otherwise oscillations and position
errors can occur when navigating a manipulator through
a complex environment. This is especially important in
the area of robot-assisted surgery, where precise position
control is crucial [16, 17]. Accurate position mapping and
control is also important during teleoperated needle
insertion, as is the detection of tissue stiffness [18].

Stiffness detection is also important in the medical field in
identifying differences between various kinds of tissue
[19, 20]. One paper has shown that veterinarians have a
greater ability to detect the stiffness of objects than do
students who have less training [21], which implies that
stiffness identification is a skill that can be developed.
This is one reason why haptic feedback is useful in
medical training simulators and during laparoscopic and
robot-assisted surgery [22-24].

Another area of teleoperated robotics that could benefit
from a better understanding of position mapping and the
detection of environmental stiffness is upper limb
prosthetics [25-27]. Since amputees have no tactile
feedback about the grip force applied by the prosthesis,
grasped objects can be inadvertently crushed or dropped.
Different feedback strategies have been explored to
ameliorate these problems [28-30].

The main contribution of this paper is the development of
an adaptive dynamic model of human precision grip while
interacting with initially unknown environmental stiffness.
The ability of human test subjects to adapt to a mismatched
position mapping between a MN and a display is
investigated in [31]. As such, this research has applications
for teleoperated robotics, where the desired position
specified by the operator is often scaled in a manner that is
initially unknown. This occurs in robot-assisted surgery
and with upper limb prostheses [16, 17, 32].

There have been many descriptions of the kinematics of
the human hand [33-36]. Moreover, a musculoskeletal
dynamic model for multi-fingered hand movement has
been developed [37]. Of course, one simple model of the
human hand cannot accurately describe all the
physiological control systems. However, task-specific
models can be explored and developed which are
accurate in describing the dynamics of the human-
environment system in particular circumstances [38].

Along these lines, it was demonstrated in [39] that a
linear second-order transfer function can accurately
approximate the motor dynamics of voluntary human
grip force application. In a similar vein, two transfer
functions will be developed in this paper to approximate
the motor dynamics of human precision grip while
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grasping a MN in order to track a desired position signal.
The first transfer function will be developed based on the
data from the test subjects as they initially learn the
position mapping of the MN onto the position signal. The
second transfer function will be based on the system
dynamics after the test subjects have learned the position
mapping through the displacement of the MN. However,
neither of these system models is accurate over the whole
course of the experiment because the human grip
dynamics change as the position mapping is learned.
Thus, an adaptive system model will be proposed that
describes the learning process of the test subjects as they
displace the MN. The adaptive model will be compared
with the experimental results from the eight test subjects
with three different levels of environmental stiffness and
three different desired position trajectories.

Figure 1. a. The manipulandum is instrumented with a Hall
effect position sensor calibrated to indicate the displacement.
One side of the manipulandum is fixed while the other side is
free to rotate about the pin joint. Different springs can be placed
within the manipulandum to alter the stiffness. b. A test subject
attempting to make the position of the manipulandum match the
desired position trajectory.
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2. Manipulandum

The MN used in this paper has a slot inside which springs
of different stiffness can be placed to alter the mechanical
properties of the object (Figure 1a). Two flat plates are
mounted to the MN to accommodate the thumb and the
index finger. One of these plates is fixed while the other
plate is free to pivot about a pin joint at the base. The
maximum displacement of the MN is 25mm. There is an
A1321 Hall effect sensor (Allegro Micro Systems Inc.,
Worcester, USA) mounted at the base of the MN to
measure the displacement. This position sensor is
calibrated to indicate the displacement of the free side of
the MN. The displacement of the MN completely
depends upon the human test subject, since the MN has
no intrinsic actuator.

3. Experimental Methods

Eight human test subjects (seven males and one female)
participated in this study after giving informed consent in
accordance with the IRB protocol. Each test subject was
given the instrumented MN to hold in an orientation that
was comfortable with their left hands while grasping the
MN with their right thumb and index finger (Figure 1b).
The test subjects placed their thumbs on the fixed side of
the MN and used their index fingers to displace the free
side of the MN.

Next, a visual stimulus was displayed on a computer
monitor using MATLAB/Simulink. The position from the
MN was also simultaneously displayed on the screen
(Figure 1b). The Hall effect position sensor data was
sampled with a 1kHz frequency using the real-time
Windows target kernel. The position mapping was
implemented such that Imm of displacement at the
fingertips produced 3.54mm of displacement on the
display.

Three desired position trajectories were displayed for the
test subjects to track. The first visual stimulus was
comprised of a pyramidal trajectory of step inputs (Figure
1b). The second trajectory consisted of a sequence of step
inputs followed by ramps and then two sinusoids.
Immediately after the second trajectory, the third
trajectory was displayed to track. However, the third
trajectory was simply a repeat of the same step inputs
from the beginning of the second trajectory.

The task given to the eight test subjects was to minimize
the difference between the desired position trajectories
and the position signal from the MN through a change in
the applied grip force. Each test subject performed this
procedure with three different linear springs with
stiffnesses of K1 = 0.876N/mm, K2 = 3.33N/mm and Ks =
6.48N/mm. The order of the spring stiffness on the first
and second inputs was randomized for each test subject.

www.intechopen.com

The test subjects were not told which spring would be
used on any trial ahead of time. The chronological order
of the first and second inputs was also randomized
among test subjects. However, the same spring from the
second input was used on the third input, which occurred
shortly after the second input. This was done to ascertain
the extent that the subjects learned from their prior
experiences with the same trajectory and stiffness.

The percentage overshoot (OS) and peak time (tr) of each
individual for each of the first seven step inputs of the
pyramidal input was calculated in MATLAB. OS and te
data from the eighth and final step of the pyramidal input
was neglected because this occurs at a boundary
condition where the test subjects would have to remove
their hands from the MN if significant OS occurred. The
OS and te data was also calculated from the steps of the
second and third trajectories. The OS and tr data was then
used to calculate the pole locations of second-order
systems [40] which have been used in the past to model
the dynamics of human grip [39].

The OS is used to determine the pole locations of a
second-order transfer function because the OS is
calculated relative to the response data itself and is not
reliant on the magnitude of the input. Likewise, tr was
chosen because of its correlation with the maximum peak
used in the calculation of the OS [40]. The tr was
calculated to be the time from when the humans reacted
to the change in the desired position until the time when
they reached their maximum position value for each step.
The steady state value of the human response data
corresponding to each step input was taken to be the
average of the last ¥ second of data before the next
change in the desired position amplitude.

This data from the step responses was used to develop
two linear second-order transfer functions of the human-
MN system. The first transfer function is based on the
dynamic response of the test subjects during the first step
of the input as they initially displaced the MN to learn the
position mapping and stiffness of the system. The second
transfer function is based on data from the subsequent
steps of the trajectories, after displacing the MN and
gaining knowledge of the position mapping and stiffness
setting. For the purposes of this paper, the transfer
function based on the data from the first step is referred
to as the uninformed system model, before significant
displacement of the MN occurs. The system model
created from the data of the subsequent steps is referred
to as the informed system model, because the test subjects
had already displaced the MN at this time to obtain
knowledge of the position mapping and stiffness.

The two linear transfer functions for the informed and

uninformed system models are then convolved with a
time delay. The delay time is calculated from the average
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amount of time between a change of the desired position
trajectory displayed on the monitor and the reactions of
the human test subjects.

As will be described, neither of the two linear transfer
functions accurately captures the dynamics of the human
data over the entire course of the experiments. Thus, an
adaptive system model will be developed to quantify the
dynamic way in which the test subjects altered their hand
control strategies as they displaced the MN.

A simulation of the two transfer functions and the
adaptive system model in response to the same three
inputs is compared to the experimental data in Simulink.

A two-way analysis of variance (ANOVA) is performed
on the OS and tr data from the test subject responses and
system models with the anova2 function in MATLAB.
The average absolute relative error between the three
different system models and the experimental data is also
calculated in MATLAB. Another two-way ANOVA test is
performed on the error data to determine if the models
are statistically different from each other.

4. Experimental Results from the Test Subjects

There was a marked similarity among the grip responses
of all eight test subjects at each level of stiffness with the
first input (Figure 2, Figure 3).
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Figure 2. The position tracking response from the eight test
subjects with a stiffness setting Kz. See Table 1 for the average OS
and tr data for this input and stiffness.
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Figure 3. The position tracking response from the eight test
subjects with a stiffness setting Ks. See Table 1 for the average OS
and tr data for this input and stiffness.
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Percent Overshoot, OS Peak Time, tr (s)
K1 K2 Ks Ki Ko Ks
Step 1 83.3 53.1 103.0 054 | 0.62 | 0.64
Step 2 3.86 7.40 14.7 0.77 | 0.84 | 0.80
Step 3 0.81 3.50 8.87 098 | 1.04 | 0.74
Step 4 3.95 18.7 20.6 1.14 | 097 | 093
Step 5 8.29 9.68 5.16 0.58 | 0.87 | 1.00
Step 6 0.58 23.5 3.51 0.82 | 0.76 | 0.60
Step 7 5.00 9.29 6.24 072 | 0.73 | 0.77

Table 1. Averaged percentage overshoot and peak time for each
step for each stiffness for the first input (Figures 2 and 3). The OS
and tr data is significantly different for the first step compared to
each subsequent step.

The OS and tr for all eight test subjects were averaged
together at each of the seven steps. The average tr and OS
were calculated from 168 cases produced from the eight
test subjects interacting with the three different springs at
each of the first seven steps of the pyramidal input
(Table 1).

Note that there was a consistent trend of a large OS and a
quick tr on the first step of the input compared to all the
subsequent steps. The results from the second and third
trajectories also displayed a similar trait of a large OS and
a quick tr on the first steps of the inputs. The average
response of all eight test subjects from the second and
third inputs for each stiffness level are shown in Figure 4
and Figure 5, respectively. The corresponding OS and tr
data from the second and third inputs are shown in Table
2 and Table 3, respectively. This data was formed from
384 step responses from the eight test subjects. On
average, there was much more OS and a quicker tr at the
beginning of each experiment when compared with the
end of the experiments.

The two-way ANOVA performed on the OS data from
the first input from Table 1 shows a statistically
significant difference between the OS that occurred on the
seven steps (p < 0.01). However, there was no statistically
significant difference between the OS and the stiffness of
the MN (p = 0.44). The two-way ANOVA performed on
the tr data from Table 1 also shows a statistically
significant difference between the te that occurred on the
seven steps (p = 0.03). Once again, there was no
statistically significant difference between the tr and the
stiffness of the MN (p = 0.74).

Another two-way ANOVA was performed on the OS and
te data from steps 2-7 of the first input. When the data
from the first step is not included in the test, there is no
statistically significant difference in OS (p = 0.52) or tr (p =
0.17) and the step input. With respect to the stiffness of
the system in this case, there was, again, no statistically
significant difference in relation to the OS (p = 0.10) or to
tr (p=0.74).
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Figure 4. The average response of the eight test subjects for each of the three spring stiffness settings for the second input. Note the large
percentage overshoot on the first step, as the test subjects initially displaced the manipulandum to learn the position mapping of the

system. See Table 2 for the average OS and tr data for this input.

Displacement (mm)

Figure 5. The averaged position tracking response from the eight
test subjects with all three stiffness levels while tracking the third
input. Once again, there is a large OS and quick te on the first
step. See Table 3 for the average OS and tr data for this input.

A two-way ANOVA was also performed on the OS and tr
data from Table 2 and Table 3. There was, again, a
statistically significant difference in the OS and tr data with
respect to the step input when the data from all seven steps
is included in the ANOVA (p <0.01). As before, there was
no significant difference with respect to the stiffness of the
MN (p > 0.05). Once again, when the first step from the
second and third inputs is not included in the two-way
ANOVA tests, there is no significant difference in OS or tr
with respect to the step input (p > 0.05). The stiffness of the
MN did not have a significant impact on the OS or the te in
any of the experiments (p > 0.05).

What these results indicate is that the OS and tr data of
the human test subjects for the three inputs is
independent of stiffness (over the range of stiffness
values tested). This is consistent with a prior study that
reported that human cortical muscular coherence is
related to digit displacement, not object compliance [41].
However, the OS data from Table 1, Table 2 and Table 3 is
significantly different for the first step compared to the
subsequent steps. This is also visually obvious from the

www.intechopen.com

experimental data in Figures 2-5, where there is
substantially and consistently more OS and a quicker tr
for the first steps relative to the subsequent steps. This
indicates that the human grip dynamics changed with
increasing MN displacement.

Because the test subjects exhibited statistically significant
differences among their responses for the first step
compared to the subsequent steps, the average data from
the first step of the three inputs will be used to formulate
a second-order transfer function so as to model the
dynamics of the test subjects before learning the mapping
of their fingertip positions with respect to the displayed
position signal (the uninformed human model). The
average of the tr and OS data from the subsequent steps
will be used to create a different second-order transfer
function to model the data from the eight test subjects
after the first step, when more knowledge of the position
mapping has been obtained (the informed human model).
These two different system models are required to
accurately describe the dynamics of the test subjects
before and after learning the position mapping of the MN
to the monitor.

Percent Overshoot, OS Peak Time, tr (s)
Ki Ko Ks Ki Ko Ks
Step 1 155.6 52.2 90.19 043 | 039 | 054
Step 2 6.31 9.12 4.86 1.08 | 1.13 | 1.21
Step 3 10.56 7.64 14.46 087 | 1.16 | 1.15
Step 4 6.89 0.60 2.37 093 | 1.15 | 1.36
Step 5 0.54 3.19 791 1.19 | 1.06 | 1.20
Step 6 11.98 12.0 15.19 099 | 095 | 093
Step 7 1.50 3.68 22.90 097 | 094 | 096

Table 2. Averaged percentage overshoot and peak time for each
step for each stiffness for the second input (Figure 4). The OS and
te data is significantly different for the first step compared to
each subsequent step.

Erik D. Engeberg: Adaptive Human Control Gains During Precision Grip



Percent Overshoot, OS Peak Time, tr (s)
K1 Ko Ks K1 K2 Ks
Step 1 38.1 105.8 90.40 |049 |0.38 0.46
Step 2 0.18 1.17 9.65 126 |0.89 0.92
Step 3 10.55 9.82 4.76 0.83 ]0.82 1.23
Step 4 2.44 0.83 447 10.82 1.38 0.91
Step 5 2.94 1.71 2.60 091 1.10 1.06
Step 6 7.53 6.27 18.15 |0.82 |0.80 0.77
Step 7 1.03 7.99 2893 |0.72 |0.61 0.67

Table 3. Averaged percentage overshoot and peak time for each
step for each stiffness for the third input (Figure 5). The OS and
te data is significantly different for the first step compared to
each subsequent step.

Since there is no statistically significant difference in any of
the human data pertaining to system stiffness, the OS and
tp data are averaged together for the three stiffness levels
on each step to form the two transfer functions. For the first
step, the average tr and OS were 0.499s and 85.74%,
respectively. For steps 2-7, the average tr and OS were
0.934s and 7.15%, respectively. These overall averages
further illustrate that the test subjects consistently had
significantly more OS and a quicker tr for the first steps of
each input compared to the subsequent steps.

The average delay time between the change of the desired
input and the responses of the human test subjects is
198ms. The tr calculations do not include the delay time,
since that would inaccurately alter the pole locations of
the linear second-order transfer functions.

5. Development and Simulation of Transfer Functions
to Model Human Data

The use of the aforementioned values of OS allowed the
calculation of the damping ratio (C) of the second-order
system transfer function's approximations of the data
from the first step (for the uninformed human model)
and another damping ratio from the average of the
subsequent steps (for the informed human model) via:

—{m

0S = 100eV"™ 1)

This enabled the calculation of C for the uninformed and
informed system models before and after the test subjects
effected significant MN displacement, respectively.
Knowledge of ( and te then permitted the natural
frequency (wn) of the uninformed and informed human
models to be calculated through:

i

e @)

Wn

Equations (1) and (2) are found in [40].
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5.1 Uniformed Human Model

The second-order system transfer function that best
describes the step response of the uninformed human test
subjects for the first step input (before they have gained
appreciable knowledge of the position mapping) is:

x 39.75¢70:1988
v _°775¢ 3)
Xp  S240.625+39.75

when convolved with the time delay of 198ms caused by
the reaction time of the test subjects to the visual
stimulus. xp is the desired position trajectory displayed
on the monitor. xu is the position response of the
uninformed system model. This transfer function is based
on the calculated values of C = 0.049, wn = 6.30rad/s from
(1) and (2) with tr = 0.499s and OS = 85.74%.

5.2 Informed Human Model

In a similar fashion, the model of the human test subjects
after they have learned the position mapping of the
system can be expressed as:

x; _ 19.31e701988
Xp  S%+5.655+19.31

4)
where xi1 is the position response of the informed test
subject, after displacing the MN and gaining knowledge
of the position mapping. This transfer function is based
on the calculated values of = 0.643 and wn = 4.40rad/s
(using (1) and (2)) with ter=0.934s and OS =7.15%.

mm)
(8] 02

o

N

Displacement {

Time (s)

Figure 6. The uninformed system model (3) response (xu) to the
desired pyramidical input (xp) matches the OS from test subject
responses for the first step but is highly oscillatory for the
remainder of the experiment. In contrast, the informed system
model (4) response x1 matches the test subject data during the
remainder of the experiment but does not accurately capture the
system dynamics as the test subjects initially learned the position
mapping by displacing the manipulandum on the first step.
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5.3 Simulation of the Uninformed and Informed Models

The response of each system model ((3) and (4)) xu and xt
to the first input is shown in Figure 6. From this plot, the
limitations and benefits of each model are clear. The
uninformed model closely matches the OS of the human
data for the first step but is highly oscillatory on each
subsequent step. In contrast, the informed human model
does not capture the large amount of OS seen on the first
step well while the test subjects are adapting to the
position mapping. However, the informed human model
offers a good approximation of the human data during
the remainder of the experiments, as will be subsequently
demonstrated.

6. Adaptive Human Model Development

People use adaptive motor control gains when interacting
with the environment [42]. Also, it has also been reported
that human cortical muscular coherence is related to digit
displacement, not the compliance of the grasped object
[41]. Based on these observations and the previously
presented step response data, an adaptive model is
developed that merges the uninformed model (3) with the
informed model (4). Adaptive system gains are described
as a function of MN displacement (A) so that the
uninformed model (3) approaches the informed human
model (4) as the MN is displaced through the force fields. It
is convenient to express the adaptive control system,
excluding the time delay, in state space form:

X=X, )
X = f1(D) (xp — x1) — f(D)x, (6)

x1 is the position, x2 is the velocity and %, is the acceleration.
A = x1 — xo, where xo is the initial condition of the position
state. The piecewise linear adaptive gains fi(A) and f2(A) are
depicted in Figure 7. These adaptive gains cause the
uninformed human system model (3) to approach the
informed system model (4) as the MN is displaced. Ax is
constant and scales the slope of the linear gains. The

A
39.75
fi(A)
1931
5.65
0.62 — A

A

Figure 7. The adaptive gains fi(A) and f2(A) change as

displacement of the manipulandum occurs. This is used to
explain the change in human grip dynamics and drives the
uninformed model (3) to approach the informed model (4).

www.intechopen.com

adaptive gain functions fi(A) and f2(A) are defined as zero
when A < 0 because the test subjects would have to open
their hands wider than the width of the MN, resulting in x1 =
0. The models are invalid in this scenario because the test
subjects would no longer be in contact with the MN. The
adaptive feedback model is depicted as a double integrator
system with the 198ms time delay (Figure 8).

7. Simulation Results

The response of the adaptive model (Figure 8) to the
pyramidal trajectory is shown in Figure 9 (top), as are the
variable feedback gains fi(A) and f2(A). A brute force
examination revealed that Ak = 1.87mm produces the least
error in the adaptive model. This is also true because
1.87mm is slightly larger in amplitude than the first step
input of the trajectory. After the first step, the dynamics
of the test subjects showed no significant difference for
the subsequent steps.

Xp
—>

A A |+ Xo
=

A

()]

Figure 8. Adaptive system model. Gains fi(A) and f2(A) change as
system displacement occurs, modeling the change in human

system dynamics as the position mapping is learned by
displacing the manipulandum.

Displacement {(mm})
o N + (o] o)

40-
_ 30t
20
10 5 10 15
5
5 10 15
Time (s)

Figure 9. The adaptive system model response to the
pyramidical input. Note that the large percentage overshoot on
the first step is created through the adaptive gain terms fi(A) and
f2(A) which vary with system displacement.
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Figure 10. The position tracking response of the adaptive system
model from (5) and (6) with the first input. The average of the
test subject responses for each of the three stiffness settings are
also plotted. The large overshoot from the adaptive model for
the first step closely matches the experimental data. The adaptive
model also closely predicts the system response for the
remainder of the experiment.

The effect of the adaptive gains is apparent because of the
large OS on the first step compared with the other steps.
In Figure 10, the adaptive model is also plotted with the
average of the eight test subject responses for each of the
three stiffness settings for the first input.

The adaptive model matches the experimental data well,
significantly better than either the
uninformed transfer functions. This is evident from the
error plots between the three system models and the
average of the test subject data on each of the three
stiffness levels (Figure 11). The adaptive model has
significantly less error with the first input (Figures 2, 3,
and 10) than either the informed or uninformed models
(p < 0.05) throughout the simulations (Table 4).

informed or
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Figure 11. (Top) The position tracking error of the uninformed
system model to the pyramidical input for stiffness Ki (eu1), Kz
(ev2) and K3 (eus). (Middle) The position tracking error of the
informed system model to the pyramidical input for stiffness Ki
(en), Kz (er) and Ks (en). (Bottom) The position tracking error of
the adaptive system model to the pyramidical input for stiffness
Ki (ea1), K2 (ea2) and Ks (eas) is significantly lower than the errors
for the informed and uninformed system models.

The response of the adaptive model is also shown with
respect to the individual test subject response data from
the second and third inputs with spring stiffness Ko
(Figure 12, Figure 13). The adaptive model again captures
the trait of a large OS and quick tr on the first step of
these two trajectories well. The OS is substantially less for
the subsequent steps in order to model how the test
subjects learned the position mapping of the MN. The
response of the adaptive model also tracks the human
data well during the sinusoidal and ramp portions of the
second trajectory. The average absolute relative error for
each model with the three stiffness levels is shown in
Table 5 for the second input (Figures 4 and 12) and Table
6 for the third input (Figures 5 and 13).

——-Xy

—X, from Adaptive Model
—.—-Test Subject Data with K2

25 30 35 40 45 50
Time (s)

Figure 12. The individual position tracking responses of the eight test subjects and the response of the adaptive system model for the

second input and the Ko stiffness level.
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Figure 13. The individual test subject responses while tracking
the third input with the Ko stiffness setting.

The adaptive and informed system models have
significantly less error than the uninformed system model
for the second input (p < 0.01). However, the adaptive
and informed system models are nearly identical in terms
of average error for the second input. This is because the
learning process of the test subjects occurs over a very
short percentage of time for the second input, which
lasted 49s in total.

However, the adaptive model has significantly less error
with the first and third inputs because the learning
process of the test subjects occupies a greater overall
percentage of time of the experiment. Moreover, when
the data from Table 4, Table 5 and Table 6 are averaged
together, the adaptive controller predicts the human data
better than the informed and uninformed models with
high significance (p < 0.01). In addition, the overall
average errors from Table 4-6 have no significant
difference with respect to the MN stiffness (p > 0.05).

Ki K2 Ks Mean
Uninformed 1.05 1.04 0.97 1.02
Informed 036 |0.35 |0.37 ]0.36
Adaptive 027 1023 |0.25 |0.25

Table 4. Average absolute relative error between the three system
models and the average responses of the eight test subjects at each
of the three stiffness settings on the first input (Figures 2, 3, and
10). The adaptive system model has significantly less error than the
other models. Units of millimetres.

Ki Ko Ks Mean
Uninformed 1.51 1.50 (1.49 |1.50
Informed 051 |0.56 [0.70 |0.59
Adaptive 051 [0.55 [0.69 |0.59

Table 5. Average absolute relative error between the three
system models and the average responses of the eight test
subjects at each of the three stiffness settings for the second input
(Figures 4 and 12). Units of millimetres.

www.intechopen.com

Ki K2 Ks Mean
Uninformed 046 (045 (046 [0.46
Informed 036 |0.18 [0.26 |0.27
Adaptive 024 |0.14 [0.19 ]0.19

Table 6. Average absolute relative error between the three
system models and the average responses of the eight test
subjects at each of the three stiffness settings for the third input
(Figures 5 and 13). Units of millimetres.

The overall average error from the three inputs of the
uninformed and informed system models are 0.83mm
and 0.41mm, respectively. The absolute error of the
adaptive model is 0.34mm when the error data from the
three inputs is averaged together. This is significantly less
error than is produced by either the informed or the
uninformed system models (p < 0.01).

The reason why the adaptive system model more
accurately represents the dynamics of the human data
can be demonstrated by a three-dimensional root locus
(Figure 14) [40]. The real components of the adaptive
system poles become larger in magnitude while the
imaginary components become smaller as displacement
increases, signifying that the informed system model is
less oscillatory and slower in response. Furthermore, the
real and imaginary components of the adaptive system
poles do not change once A > Ax. This is consistent with the
experimental data from the test subjects, which showed no
significant differences in the transient responses after
significant displacement of the MN.

8. Discussion

One past study has indicated that there is a significant
correlation between cortical muscular coherence and the
compliance of a grasped object [43]. However, it has also
been reported that cortical muscular coherence is directly
related to digit movement rather than to object
compliance [41]. The results presented in this paper
clearly indicate that people’s grip responses had no
statistical significance with respect to MN stiffness over
the range of 0.876N/mm to 6.48N/mm.

One possible way to reconcile the discrepancy between
[43] and [41] is to note that the appropriate motor
response may initially be carried out under tight cortical
control. Once the object parameters are appropriately
learned,
remainder of the grasp task [44]. This can be achieved
through a probing strategy similar to that mentioned in
[8] so as to learn the environmental stiffness. This is
consistent with the observation in [45] that humans
cannot ascertain the stiffness of the environment while

subcortical mechanisms can dictate the

maintaining a static posture. After the MN stiffness is
detected, motor control strategies are altered.
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Figure 14. The root locus of the adaptive system model as
displacement occurs during the first input. The thick line
shows how the system pole locations and, thus, the dynamics
of the system, do not change once A > Ax. The thin line shows
the projection of the root locus into the real-imaginary plane.
The uninformed system poles move farther from the imaginary
axis and closer to the real axis, approaching the informed
system model as displacement occurs.

This is a feasible explanation having examined the step
response data in this paper, which shows a large amount
of OS for the first step input and much less OS for the
subsequent steps. Note that the stiffness was varied
among three substantially different levels (Ks = 7.40Ki1 =
1.95Kz), yet the stiffness consistently had no significant
impact upon the human response data. Thus, it is likely
that stiffness variation has little effect on human system
dynamics (over the range of stiffnesses used by the test
subjects in this paper). The discrepancy between the
position mapping from the MN to the displayed desired
position is thus the most likely explanation for the
adaptive variation in the dynamic response of the human
test subjects. That there was a large OS for the first step is
likely because Imm of displacement at the fingertips
produced 3.54mm of displacement on the monitor.
Because the ratios of the position mappings of control
interfaces to teleoperated manipulators are usually less
than one [10, 13], this was a reasonable case to evaluate.
For example, the “wrist” of the da Vinci robot [17] can
pronate and supinate 1.5 revolutions, while the human
wrist can only pronate/supinate roughly %2 a revolution
[46], which is approximately the same position mapping
ratio examined in this paper.

The stiffness of the MN was varied by as much as 740%
without significantly impacting the human system
dynamics. Thus, the experimental data also suggests the
presence of an adaptive grip force control strategy that is
based on the detected stiffness of the MN. This adaptive
grip control strategy produces a comparable system
dynamic response over a wide range of system
stiffnesses. While it has been known for some time that
people can discern the compliance of the environment
[47] and that the mechanical impedance of humans can be
controlled through a coactivation of antagonistic muscle

10 IntJ Adv Robotic Sy, 2013, Vol. 10, 159:2013

groups [48]; the experimental results presented herein
also suggest that these capabilities are incorporated into
the closed loop feedback system in order to achieve
position control.

Also of interest is the fact that the data from the third
input exhibits very similar trends compared with the
second and first inputs: the tr and OS data was
significantly different for the first step compared with the
subsequent steps. However, the third input (Figure 13)
immediately followed the second input (Figure 12)
without a change of the system stiffness and was a simple
repetition of the first series of steps from the beginning of
the second input. In other words, the position mapping
information gained by the test subjects was forgotten for
the next series of steps at the beginning of the third input.
However, there was once again no significant difference
in the human response with respect to the stiffness of the
system.

9. Conclusion

Two transfer functions have been developed to model
human precision grip while tracking a position trajectory
for three different system settings. The
uninformed transfer function was developed to capture
the dynamics of the test subjects as they initially learned
the position mapping from the MN to the display. The
informed transfer function was developed to model the
responses of the test subjects after significant MN
displacement had been effected. Since neither transfer
function adequately modelled the human data for the
entire experiment, an adaptive model was developed that
merged the uninformed human model with the informed
human model. This adaptive system model accurately
captured both the initial portion of the experiments while
the test subjects initially displaced the MN to learn the
position mapping, and also the remainder of the
experiments after the test subjects had gained knowledge
of the mapping. The adaptive system model predicted the
human dynamic response of the test subjects with high
accuracy while tracking step inputs, sinusoids and ramps.

stiffness

The adaptive model presented in this paper has
applications in the neurophysiology, robotics and control
communities. The ability to adaptively vary the system
gains of a prosthetic hand relative to the detected object
stiffness has been shown to be useful for prosthetic hands
[25]. These concepts can be extended to dexterous robotic
hands for control strategies and object recognition
applications as well. This research could also be used to
simulate how amputees will use their prosthetic hands to
interact with the environment as well as to provide a
baseline of comparison for better-than-biology
manipulators. Furthermore, the adaptive model could be
useful for medical simulation trainers and laparoscopic
instrument design. Robot-assisted surgery is another
application that would benefit from this research, as the

www.intechopen.com



surgeon often only has visual feedback concerning the
force applied to the grasped tissue. The hand motion of
the surgeons is then mapped to the motion of the robotic
manipulators in a manner that is not immediately
intuitive, because the dexterity of the robotic arms
exceeds that which is possible for the human arm. During
laparoscopic surgery, the hand motions of surgeons also
have a different position mapping relative to the opening
and closing motions of the instruments. These kinds of
position mapping discrepancies are analogous to the
position mapping mismatch investigated in this paper.
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