
The University of Akron
IdeaExchange@UAkron

College of Polymer Science and Polymer Engineering

11-1-1999

Helical Single-Lamellar Crystals Thermotropically
Formed in a Synthetic Nonracemic Chiral Main-
Chain Polyester
Christopher Y. Li
University of Akron Main Campus

Donghang Yan

Stephen Z. D. Cheng
University of Akron Main Campus, scheng@uakron.edu

Feng Bai
University of Akron Main Campus

Jason J. Ge

See next page for additional authors

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/polymer_ideas

Part of the Polymer Science Commons

This Article is brought to you for free and open access by IdeaExchange@UAkron, the institutional repository of
The University of Akron in Akron, Ohio, USA. It has been accepted for inclusion in College of Polymer Science and
Polymer Engineering by an authorized administrator of IdeaExchange@UAkron. For more information, please
contact mjon@uakron.edu, uapress@uakron.edu.

Recommended Citation
Li, Christopher Y.; Yan, Donghang; Cheng, Stephen Z. D.; Bai, Feng; Ge, Jason J.; Calhoun, Bret H.; He, Tianbai;
Chien, Liang-Chy; Harris, Frank W.; and Lotz, Bernard, "Helical Single-Lamellar Crystals Thermotropically
Formed in a Synthetic Nonracemic Chiral Main-Chain Polyester" (1999). College of Polymer Science and Polymer
Engineering. 12.
http://ideaexchange.uakron.edu/polymer_ideas/12

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Akron

https://core.ac.uk/display/232664826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fpolymer_ideas%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/polymer_ideas?utm_source=ideaexchange.uakron.edu%2Fpolymer_ideas%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=http://ideaexchange.uakron.edu/polymer_ideas/12
http://ideaexchange.uakron.edu/polymer_ideas?utm_source=ideaexchange.uakron.edu%2Fpolymer_ideas%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/246?utm_source=ideaexchange.uakron.edu%2Fpolymer_ideas%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/polymer_ideas/12?utm_source=ideaexchange.uakron.edu%2Fpolymer_ideas%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu


Authors
Christopher Y. Li, Donghang Yan, Stephen Z. D. Cheng, Feng Bai, Jason J. Ge, Bret H. Calhoun, Tianbai He,
Liang-Chy Chien, Frank W. Harris, and Bernard Lotz

This article is available at IdeaExchange@UAkron: http://ideaexchange.uakron.edu/polymer_ideas/12

http://ideaexchange.uakron.edu/polymer_ideas/12?utm_source=ideaexchange.uakron.edu%2Fpolymer_ideas%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages


Helical single-lamellar crystals thermotropically formed in a synthetic nonracemic chiral
main-chain polyester

Christopher Y. Li
The Maurice Morton Institute and Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909

Donghang Yan
Polymer Physics Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China

Stephen Z. D. Cheng,* Feng Bai, Jason J. Ge, and Bret H. Calhoun
The Maurice Morton Institute and Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909

Tianbai He
Polymer Physics Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China

Liang-Chy Chien
Liquid Crystal Institute, Kent State University, Kent, Ohio 44010-0001

Frank W. Harris
The Maurice Morton Institute and Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909

Bernard Lotz
Institute Charles Sadron, 6 Rue Boussingault, Strasbourg 67083, France

~Received 25 March 1999!

Phase structures and transformation mechanisms of nonracemic chiral biological and synthetic polymers are
fundamentally important topics in understanding their macroscopic responses in different environments. It has
been known for many years that helical structures and morphologies can exist in low-ordered chiral liquid
crystalline~LC! phases. However, when the chiral liquid crystals form highly ordered smectic liquid crystal
phases, the helical morphology is suppressed due to the crystallization process. A double-twisted morphology
has been observed in many liquid crystalline biopolymers such as dinoflaggellate chromosomes~in Prorocen-
trum micans! in an in vivo arrangement. Helical crystals grown from solution have been reported in the case of
Bombyx morisilk fibroin crystals having theb modification. This study describes a synthetic nonracemic chiral
main-chain LC polyester that is able to thermotropically form helical single lamellar crystals. Flat single
lamellar crystals can also be observed under the same crystallization condition. Moreover, flat and helical
lamellae can coexist in one single lamellar crystal, within which one form can smoothly transform to the other.
Both of these crystals possess the same structure, although translational symmetry is broken in the helical
crystals. The polymer chain folding direction in both flat and helical lamellar crystals is determined to be
identical, and it is always along the long axis of the lamellae. This finding provides an opportunity to study the
chirality effect on phase structure, morphology, and transformation in condensed states of chiral materials.
@S0163-1829~99!01042-5#

I. INTRODUCTION

Natural and synthetic nonracemic chiral materials play
important roles in developing modern science and technol-
ogy. Knowledge of their phase structures and transformation
behaviors is critical to design and engineer molecular and
supramolecular packings to achieve macroscopic properties
desired for specific applications. In the past, two connected
research areas have been active in attempting to understand
the effect of chirality on phase behaviors in condensed mat-
ter physics. The first area is in biological polymers, while the
second is in chiral liquid crystals~LC’s!.

In considering biological polymers such as globular pro-
teins and silk fibroin, all of which are configurationally chiral
~primary structure!, the general understanding is that both the

a-helix and theb-pleated sheet are two common secondary
classes of structures that construct the tertiary structures of
these biological polymers. Theb-pleated sheet consists of
hydrogen bonding within the sheets, as first proposed by
Pauling and his colleagues and confirmed using wide angle
x-ray diffraction.1,2 It was found later that the neighboring
chiral chain packing of theseb sheets in some of the globular
proteins are twisted and deviate from a 21 symmetry along
the long axis of the sheet. Based on the local conformational
calculations, the twisted sheets show a lower free energy
than those possessing the 21 symmetry.3 When these twisted
b sheets pack together, another twist, which is perpendicular
to the b sheet’s helical axis is constructed and, therefore, a
double-twisted helical tertiary structure can be formed. A
direct morphological observation of a similar type of helical
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structure has been reported in dinoflagellate chromosomes
~in Prorocentrum micans! in an in vivo arrangement.4 It has
also been found thatBombyx morisilk fibroin can grow a
helical lamellar crystal of theb modification under solution
crystallization conditions.5

In the past two decades, the availability of synthetic non-
racemic chiral substances in LC’s has led to the discovery of
structures and related phase behaviors over a broad research
area, including ferroelectric, ferrielectric, antiferroelectric,
and other LC’s.6 Helical structures in molecular and su-
pramolecular levels induced by chirality are known in low-
ordered LC phases, such as in cholesteric~Ch! phases,7–9

blue phases,10,11 smectic C*(SC* ) phases,12 and twisted grain
boundary~TGB! phases.13–17The interesting feature in these
phases is that they contain a supramolecular helical morphol-
ogy, which is an intrinsic characteristic of the nonracemic
chiral LC’s. In a Ch phase, the long axes of the molecules lie
within each layer and are always perpendicular to the helical
axis. In aSC* phase, the smectic layer normal is parallel to the
helical axis, while the molecules keep the same angle yet
rotate in equal radian with respect to the helical axis. In TGB
phases, on the other hand, the smectic layer normal is always
perpendicular to the helical axis. Being well developed in
low-ordered chiral LC phases, helical morphology, however,
has not been observed in the highly ordered LC phases, such
as smectic crystalJ* , G* , H* , andK* phases. It is believed
that the helical morphology is suppressed by the crystalliza-
tion interactions.6

Another apparently related issue of the twisted lamellar
crystals is in the banded spherulitic morphology of synthetic
nonchiral polyethylene~PE! and other polymers.18,19 Both
nonracemic chiral enantiomorphism and chain tilt in lamellar
crystals may induce twisting.18,20 Chiral poly~epichlorohy-
drin!s with both antimorphs in their spherulitic formations
have also been reported.21,22 It has been found that the con-
figurational chirality~primary structure! determines the sense
of crystal rotation underlying the banded structure of
spherulites.22 Although the twist in polymer crystals has
been used to explain the optical behavior of the banded
structure of spherulites, helical single crystals have not been
observed. The reason may be associated with the fact that a
nonracemic chiral helical conformation~secondary structure!
may not be spontaneously extended to a nonracemic chiral
helical morphology~tertiary structure! since the morphology
is determined by molecular packing.

Our objective is to enhance the rigidity of the nonracemic
chiral polymers to strengthen the chirality in order to achieve
highly ordered chiral helical morphology. In this publication,
we report our first observation on both flat and helical single
lamellar crystals formed thermotropically in a synthetic non-
racemic chiral main-chain polyester. The crystal structure
and chain-folding direction are determined. Possible forma-
tion mechanisms are discussed.

II. EXPERIMENTAL SECTION

A. Materials and sample preparation

The polymer reported here was synthesized from~R!-
~-! -4’- $v- @2-~p-hydroxy-o-nitrophenyloxy!-1-propyloxy#-1-
nonyloxy%-4-biphenyl carboxylic acid. The number of meth-
ylene units is nine, and this nonracemic chiral polymer is

abbreviated as PET~R* !-9.23 In brief, the monomer was syn-
thesized starting from ethyl-~S!-~2! lactate utilizing the Fin-
klestein reaction, alkylation, Baeyer-Villiger oxidation, Mit-
sunobu reaction, and then hydrolysis of the corresponding
precursor afforded the desired monomer. The polymerization
was directly conducted from this monomer via an A-B–type
condensation using the catalyst 4-~dimethylamino! pyri-
dinium 4-toluenesulfonate under mild conditions. The poly-
mer chemical structure is shown in Fig. 1. Note that in this
polyester, there is no hydrogen bonding involved in the mo-
lecular packing. The polymer possesses right-hand chiral
centers~* ! along the main-chain backbone. The specific ro-
tation of the monomer is@a#D5228.5°. The molecular
weight of PET~R* !-9 is around 16,000 g/mol with a polydis-
persity of approximately 2, as measured by gel permeation
chromatography based on polystyrene standards.

Polymer thin films~with a thickness of around 50–100
nm! were prepared via a solution casting method from a
0.05% tetrahydrofuran solution on carbon-coated glass sur-
faces. After the solvent was evaporated, the films were
heated in a Mettler FP-90 heating stage to above its highest
endothermic transition temperature as measured by differen-
tial scanning calorimetry. The films were subsequently
quenched to preset temperatures and held isothermally for
various times ranging from several minutes to a few days.
The samples were then quenched in liquid nitrogen and al-
lowed to return to room temperature, which is below the
glass transition temperature of the polymer (Tg537 °C).

B. Equipment and experiments

The thin film samples prepared for transmission electron
microscopy~TEM! observations were first examined under
both polarized light and phase-contrast microscopes before
they were shadowed by Pt and coated with carbon for TEM
observations~this is because the size of the single crystals
lies in a range of a fewmm to over 50mm!. The TEM
experiments were carried out in a JEOL~1200 EX II! TEM
using an accelerating voltage of 120 kV. Electron diffraction
~ED! patterns of the samples having different zones were
also obtained using a TEM tilting stage~660°! in order to
determine the three-dimensional crystalline unit cells. Cali-
bration of the ED spacing was done using TlCl in a
d-spacing range smaller than 0.384 nm, which is the largest
spacing for TlCl. Spacing values larger than 0.384 nm were
calibrated by doubling thed spacing of those reflections
based on their first-order reflections.

In order to examine the chain-folding direction, low mo-
lecular weight polyethylene~PE! decoration was utilized fol-
lowing a procedure previously reported.24,25 In brief, a linear
PE fraction obtained from Phillips Petroleum Company was
used as the decoration material. Its number-average molecu-
lar weight was 17,300 g/mol and polydispersity was 1.11.
During the decoration, an optimal 10 cm distance between
the sample and the basket was chosen in the vacuum evapo-

FIG. 1. Polymer PET~R* !-9 chemical structure.
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rator where PE was degraded and evaporated. The samples
were then treated following the standard procedure as de-
scribed previously.24,25

III. RESULTS AND DISCUSSION

A. Flat and twisted helical lamellar crystals

PET~R* !-9 has demonstrated that upon cooling, high-
temperature chiral smectic LC phase transitions occur in the
vicinity of 189 °C, followed by further ordering processes
and crystallization above theTg .23,26 Figure 2~a! shows a
TEM micrograph of a flat lamellar crystal grown via quench-
ing from the isotropic melt to 160 °C and isothermally crys-
tallized for one day. An elongated shape of the crystal can be
found with a large aspect ratio between the long and short
lamellar axes. By using the metal shadowing technique, the
lamellar thickness is found to be around 20 nm.

Figure 2~b! shows a twisted single helical lamellar crystal
of a PET~R* !-9 sample observed in TEM. The sample was
isothermally crystallized at 145 °C for one day. Based on the
metal shadowing, one can estimate the lamellar thickness to
be 15 nm. The crystal surfaces observed at this resolution
appear smooth with a continuous and periodically changing
curvature. In all of our observations, the twisted helix is al-
ways right-handed~note that the chiral center is right-
handed! with a pitch length of approximately 1.5–5.0mm,
depending upon crystallization temperatures (Tcs). A higher
Tc leads to a longer pitch length. This indicates that with
increasingTc , the chirality effect on the twisted molecular
packing decreases and the parallel chain packing becomes
increasingly dominant. The correspondence of two different
structural hierarchies, the primary configurational chirality

~chiral center! and tertiary morphological chirality~helical
lamella!, depends upon the secondary conformational chiral-
ity, since this secondary structure determines the molecular
packing scheme. Computer simulations of the chain confor-
mation and packing are necessary to understand this corre-
spondence.

It is intriguing that in our observations both flat and heli-
cal lamellar crystals can be found under the same crystalli-
zation condition. The first impression is that these two crys-
tals may grow based on film thickness restrictions. A
relatively thin film develops the flat crystals and a relatively
thick film provides the material and space for the helical
crystal growth. However, careful examination indicates that
this geometrical factor is not the only reason, since multiple-
layer flat lamellar crystals can also form even in a quite thick
film. Furthermore, at most of theTcs the flat and helical
crystals may also be molecularly joined together as shown in
Fig. 2~c!, suggesting that these crystals can be converted
from one to another. This coexistence can be either along the
long lamellar axis or along the short lamellar axis to form the
side-by-side flat and helical crystal@the lower left of Fig.
2~c!#. The conversion appears to occur on a scale of molecu-
lar packing. This observation suggests that the free energies
of forming the flat and helical molecular packing may be
comparable, and therefore, both of the morphologies can be
observed. Detailed free-energy calculations in the crystal
structures are required in order to quantitatively analyze this
speculation.

B. Determination of the flat lamellar crystal lattice

A @001# zone ED pattern of the flat lamellar crystal of Fig.
2~a! is shown in Fig. 3~a!. The ED pattern represents an
a* b* two-dimensional lattice with theb* axis parallel to the
long axis of the lamellar crystal. The basic unit-cell dimen-
sions can be determined asa51.07 nm andb50.48 nm. The
c-axis dimension can be obtained through the ED patterns of
different zones using the tilting stage, also shown in Fig. 4. It
is evident that614°, 618°, and622° rotations along thea*
axis lead to the@031̄#, @041̄#, and @051̄# zones, and simi-
larly, 65°, 619°, and635° rotations along theb* axis lead
to the@ 1̄02#, @ 2̄01#, and@ 4̄01#. Hence, thec dimension can
be calculated to be 5.96 nm. This value represents the repeat-
ing distance of a 21-helical conformation along the chain
direction in the crystals.

One can observe that in the@001# zone ED pattern@Fig.
3~a!# the ~h10! layer intensities are strong. However, there is
another parallel diffraction layer@the arrow in Fig. 3~a!#
above the~h10! layer. The distance between this layer and
the ~h10! layer is one third of that between the~h00! and the
~h10! layers. Comparing the~h10! layer with the~h00! layer

FIG. 2. A flat lamellar crystal grown from the melt at 160 °C for
24 h and observed under TEM~a!. A twisted helical lamellar crystal
grown from the melt at 145 °C for 24 h and observed under TEM
~b!. A lamellar crystal grown from the melt at 145 °C for 24 h
showing the coexistence of flat and helical crystals, the lower left
side showing the microfibers in the crack of the crystal~c!.

FIG. 3. ED patterns taken from the flat lamel-
lar crystal shown in Fig. 2~a! ~a!; the helical
lamellar crystals shown in Fig. 2~b! ~b!; and oc-
casionally, a sharp ED pattern taken from helical
lamellar crystals can be obtained~c!.

PRB 60 12 677HELICAL SINGLE-LAMELLAR CRYSTAL S . . .



in the ED pattern having the@001# zone in Fig. 3~a!, the
diffractions of the~h10! layer are five times denser than that
of the a* axis of the basic unit given by the~h00! layer
diffractions. This may indicate that commensurate structures
exist and they are superimposed on the basic unit cell along
the a axis with a periodicity five times larger than thea
dimension of the unit cell.

Figure 5 shows an ED pattern obtained from a sheared
sample, which is along the@010# zone. This is consistent
with the previous unit-cell symmetry and dimension determi-
nations, and more importantly, a five-times larger unit cell
along thea* axis cannot be observed in this ED pattern,
suggesting that the commensurate structures are not essential
in the lattice of thea* c* plane and may be destroyed by
mechanical shearing.

C. Determination of helical lamellar crystal lattice

The ED pattern obtained from the circular area of the
helical lamellar crystal@Fig. 2~c!# is shown in Fig. 3~b!. The
diffraction pattern is fairly diffused, since the crystal lattice
is continuously twisted in the helical lamellar crystal. It is
difficult to calculate the crystal structure based on this dif-
fused ED pattern. On some occasions, however, sharp ED
patterns can also be obtained in the twisted helical lamellar

crystals as shown in Fig. 3~c! depending on the pitch length
and the orientation of the chains in the crystal with respect to
the electron beam. It is evident that the helical lamellar crys-
tals possess the same crystal structure as the flat ones by
comparing Fig. 3~c! with Fig. 3~a! which possesses the@001#
zone. In particular, the ED result in Fig. 3~c! gives two su-
perimposed ED patterns with a rotation angle of 6° along the
substrate normal. The reciprocal lattice calculation shows
that these two ED patterns possess the@131̄# and @362̄#
zones, respectively, suggesting that they arise from two dif-
ferent orientations of the same crystal lattice. It should be
noted that within the lattice of a completely flat crystal with
the chain orientation parallel to the lamellar surface normal,
the @131̄# and @362̄# zones should be 7.88° apart from each
other. However, in Fig. 3~c! both zones are aligned with the
electron beam direction. As a result, these two orientations
deviate from those in the lattice of the flat crystals, providing
a characteristic of the twisted helical crystals. Furthermore,
the 6° rotation between these two ED patterns demonstrates
that there is a 6° angle between the intersections of the two
b* c* planes with the substrate surface. The ED pattern in
Fig. 3~c! thus suggests that the chain molecules in this lamel-
lar crystal are possibly double twisted, although this experi-
mental observation alone is not sufficient to uniquely prove
this arrangement. Further experiments such as dark field
TEM studies are necessary.

It is interesting that the flat and helical lamellar crystals
possess the same crystal structures. Crystallographically, it is
impossible to use translation symmetry to transfer a
smoothly twisted~curved! lattice into a flat~linear! one in a
three-dimensional space. Therefore, the Euclidean symmetry
groups represented in a linear coordination must undergo a
transformation to a curved coordination in the three-
dimensional space. From a structural point of view, defects
must play a role. This may be formed in two possible ways.

First, the twisted helical crystals may be constructed
through a continuous but slight rotation of neighboring
packed molecules in the crystal unit cells~a continuous
model!. The rotational angle between adjacent layers along
the long helical axis can be roughly estimated by calculating
the ratio between the pitch length and the thickness of one
molecular layer. The pitch length of PET~R* !-9 ranges from
1.5 to 5.0mm with b50.48 nm. This approximation leads to
an angle between 0.02° and 0.06° per molecular layer along
the long helical axis depending upon theTcs.

The second possible way involves the crystal being di-
vided into small, discrete domains with a certain size, and
within each of these domains the flat crystal exists. The
boundary between two domains acts as defects~a discrete
model!. These defect boundaries must be small enough in
size in order to maintain a relatively low overall free energy
and still retain a stable helical crystal. Therefore, the overall
twisted structure consists of a number of flat domains con-
nected by defects.27,28This has been observed in low-ordered
LC’s where this type of structure is necessary to construct
twisted morphology and the defects are related to the discli-
nations ~for example, the TGB phases13–17!. In the crystal
case, it is the dislocations to which the defects are attributed.
It can be expected that when the domain size in the discrete
model decreases towards the size of molecular layer, the con-
tinuous rotation may gradually replace the defect boundaries
and, therefore, the discrete model will eventually become

FIG. 4. Set of ED patterns without and with rotations of thea* -
andb* axes at different angles obtained from a flat lamellar crystal
as shown in Fig. 2~a!.

FIG. 5. A @010# zone single crystal ED pattern obtained from a
sheared sample. Note that the commensurate structure is not found
in this pattern.
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indistinguishable from the continuous one. We believe that
these helical lamellar crystals follow the first twisting
mechanism since, based on our observations, the twist sur-
faces seem to be smooth and continuous down to a size reso-
lution of 5 nm in the TEM observations.

D. Chain folding directions in both types of lamellar crystals

The question pertaining to the mechanism of the helical
crystal formation of the long chain isochiral molecules is
also essential to resolve. One must first know if the chain
molecules are folded, and if so, what the folding direction is.
The low molecular weight PE decoration method was
utilized23,24 in our experiments. Figure 6 shows the PE-
decorated lamellar crystal. The crystal consists of both flat
and helical parts. It is clear that the elongated direction of the
PE crystal rods on the flat part of the crystal is perpendicular
to theb axis ~the crystal long axis! and thec axis of the PE
crystals is parallel to theb axis of the crystal. Therefore, the
chain-folding direction is along theb axis ~the crystal long
axis!. On the other hand, the helical part of the PE-decorated
crystal in Fig. 6 also shows that the elongated direction of

the PE crystals is more or less perpendicular to the helical
long axis. Therefore, thec axis of the elongated PE crystals
should be globally parallel to the helical axis. One can thus
conclude that in the helical lamellar crystals, the chain-
folding direction is also along the long helical axis. This
indicates that the helical structure does not fundamentally
change the molecular chain-folding behavior. These observa-
tions are similar to the cases ofb sheets in globular proteins
and other biological polymers in which the protein folding is
along the advancing direction~the long helical axis direc-
tion! of the sheets. Moreover, in Fig. 6, the decorated PE
crystal shows that both the top and bottom of the helical
crystal surfaces exhibit identical folding behavior.

The conclusion of the chain-folding direction in the deco-
ration experiment can also be indirectly supported in Fig.
2~c!. When a crack develops across the direction perpendicu-
lar to the long lamellar crystal axis as shown in Fig. 2~c!,
microfibers along the long crystal axis can be observed. This
indicates that during the crack formation the chain molecules
are pulled out from the crystal to recrystallize into the mi-
crofiber form due to the molecular continuity. Note that the
microfiber can only be observed when the chain-folding di-
rection is not parallel to the crack direction.

IV. CONCLUSION

From this study of flat and helical lamellar crystals, it has
been found that, with the exception of the crystallization
from the thermotropically less ordered LC state, this nonra-
cemic chiral main-chain polyester has exhibited remarkable
similarity to biological polymers in both phase formation and
morphology. Two important observations should be empha-
sized. First, the single helical lamellar crystals possess a
regular orthorhombic unit-cell structure, identical to that of
the flat lamellar crystals. Second, the molecular chain folding
is along the long lamellar axis in both of the flat and helical
lamellar crystals, indicating that the chain folding is directly
towards the less-ordered LC state. These observations are
essential for understanding and further discussing the forma-
tion mechanisms of both the flat and helical lamellar crystals
in this chiral polymer.
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