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Parallel writing on zirconium nitride thin films by local oxidation
nanolithography

N. Farkas, J. R. Comer, G. Zhang, E. A. Evans, and R. D. Ramsiera)

Departments of Physics, Chemistry, and Chemical Engineering, The University of Akron, Akron,
Ohio 44325

S. Wight and J. A. Dagata
Surface and Microanalysis Science Division and Precision Engineering Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899

(Received 20 August 2004; accepted 16 October 2004)

Parallel pattern transfer of submicrometer-scale oxide features onto zirconium nitride thin films is
reported. The oxidation reaction was verified by Auger microprobe analysis and secondary ion mass
spectrometry. Oxide features of,70 nm in height can be formed and selectively etched in a dilute
aqueous hydrogen fluoride solution. This provides an interesting route to potential new applications
for high-melting point, biocompatible surfaces that possess small feature sizes with controlled
geometries. ©2004 American Institute of Physics. [DOI: 10.1063/1.1833569]

Nanoimprint technology is being intensively studied as
an alternative to traditional optical lithography, especially for
new applications outside the microelectronics field such as
optoelectronics and biomedical templating. There are a
growing number of methods involving pattern transfer by a
stamp, template, or master using resist layers, direct me-
chanical deformation, or electrical transfer methods.1–8

Recently, Cavalliniet al.7 and Yokoo8 have proposed a
method for parallel writing based on local oxidation
nanolithography.9 The concept emerges from kinetic studies
of scanning probe oxidation in which a voltage generates an
intense nonuniform electric field between the scanning probe
microscope(SPM) tip and a substrate.10,11This field creates a
water meniscus from the ambient water vapor and causes the
electrochemical generation of oxyanions, resulting in oxide
growth on a scale determined by the size and shape of the
meniscus.12 In their generalization of this view of the single-
tip case to the nanoimprinting case, which uses a stamp with
many morphological features, the water meniscus is a com-
pliant mediating material. Since the meniscus adjusts to
varying gaps across the stamp, narrow tolerances and good
reproducibility of feature sizes at the nanometer scale can be
achieved. This allows patterns to be transferred from the
stamp to the substrate simultaneously, or in other words, par-
allel writing.

These previous demonstrations7,8 used silicon as the sub-
strate onto which oxide pattern transfer occurred. This is
largely because most SPM oxidation kinetic studies have
been performed using this material. However, almost all ma-
terials can be oxidized under the extremely high fields,
,108 V/m, generated by an electrically biased SPM tip.
Many metallic, semiconducting, and insulating materials
have been patterned by scanning probe oxidation. In particu-
lar, the group IV metals and their nitrides exhibit remarkably
enhanced kinetics, as first reported by Gwoet al.13 and, more
recently, in our work.14 For example, oxide feature heights
for silicon tend to self-limit at 10 nm or less, whereas for
ZrN films, heights of several hundred nanometers have been
obtained. The motivation for the present study is to see if

these enhanced feature heights obtained with a single SPM
tip can be extended to the parallel writing case on group IV
nitride films using a stamp.

Thin films of zirconium nitride were sputter deposited
onto silicon substrates by rf-magnetron sputtering with 120
W power and a wide range of N2/Ar mixtures at The Uni-
versity of Akron. N2 flow rates varied from 0 up to 10 sccm,
as described previously.14 Film thicknesses were typically
200 nm in the present study. Characterization of the thin
films included x-ray diffraction, electrical resistivity, x-ray
photoelectron spectroscopy, and SPM oxidation kinetic stud-
ies. The films are metallic below about 0.5 sccm flow rates of
nitrogen and become increasingly dielectric above this value.
In this letter, we describe results for zirconium nitride films
with N2 flow rates above 4 sccm.

Master stamps were fabricated on silicon by standard
photolithography at NIST15 and coated with an
,100-nm-thick layer of PdAu. The 1 cm34 cm stamps con-
sist of sparse and dense arrays of isoareal geometrical fea-
tures in which the lengths and widths are varied systemati-
cally from 5 to 125µm. Shapes include rectangular features
with straight, inward/outward triangular, and inward/outward
hemispherical end caps and appear both in positive and nega-
tive relief, i.e., as posts and wells. Feature heights for two
sets of stamps were 550 and 730 nm, determined by silicon
etching and verified by SPM topographic imaging. An opti-
cal image of a portion of a stamp consisting of several arrays
is shown in Fig. 1(a). These stamps were used to generate
oxide patterns on the ZrN films. Pattern transfer was per-
formed with dc voltages between 70 and 300 V in the pres-
ence of isopropyl alcohol. An optical image of a ZrN film
following pattern transfer is shown in Fig. 1(b).

Consistent with oxidation being the chemical process re-
sponsible for the observed pattern transfers, etching studies
using a dilute 2%–5% HF solution show that zirconium ox-
ide can be removed with good selectivity relative to zirco-
nium nitride. This leads to the following pattern transfer
scheme: A SPM topograph of a portion of a stamp appears in
Fig. 2(a). The patterned features in this case are negative
relief, i.e., wells. The resulting oxide pattern formed on the
surface of a zirconium nitride film is shown in the SPMa)Electronic mail: rex@uakron.edu
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image in Fig. 2(b). Here the raised oxide features, appearing
bright in the image, correspond to the upper surface plane.
After etching in a dilute HF solution, the SPM image appears
reversed, as shown in Fig. 2(c). The right-hand side portion
of Fig. 2 illustrates each step in the fabrication.

SPM topographic images of more of these oxide patterns
are shown in Fig. 3. Rectangular features are shown in the
left-hand column, features with inward triangular end caps
are shown in the middle column, and those with outward
hemispherical end caps are shown in the right-hand column.
The top row of images(a) shows posts, with cross sections of
these features shown in row(b). Row (c) shows cross sec-
tions of corresponding wells formed by the etching proce-
dure, which are taken from the images shown in row(d). The
size and shape of the transferred patterns are well-maintained
during the etching process. Cross-sectional analysis indicates
that the height/depth reversal is close to 70 nm. Secondary
ion mass spectrometry(SIMS) depth profiling of the oxygen
ion signal(not shown) confirms that the oxide-patterned re-
gions continue well below the surface of the unpatterned
films. Our conclusion is that the total oxide thickness is
roughly twice the oxide height, in good agreement with our
height-to-depth ratios obtained from single-tip SPM oxida-
tion and HF etching studies of ZrN films.

An explanation of our use of isopropyl alcohol is re-
quired: In their work with silicon substrates, Cavalliniet al.7

used water as the source of oxidizing species. However, oxy-
gen is present in these ZrN films already, which reduces the
need for an external supply of oxidizing species. Neverthe-
less, a coupling medium capable of ionic breakdown is still
necessary. In fact, our initial attempts to use water, while
producing the desired patterns, caused considerable damage
to the entire film. A search for a less-reactive medium led us
to isopropyl alcohol, prompted by the recent work of Tello
and Garcia.16

FIG. 1. Optical micrographs of(a) feature arrays on the reference stamp and
(b) oxide patterns formed by the stamp on a zirconium nitride film. Feature
heights of the etched silicon stamp are 550 nm.

FIG. 2. Scanning probe topographic images of(a) a portion of the stamp,(b)
oxide features patterned on a zirconium nitride thin film, and(c) features as
they appear after etching in dilute HF. A schematic of the sequence is de-
picted on the right.

FIG. 3. Scanning probe topographic images of three types of oxide features
patterned on a zirconium nitride thin film before(a), (b), and after(c), (d),
etching. The height difference from dark to bright is,70 nm, as seen in the
cross sections.
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Finally, chemical analysis by Auger microprobe of the
patterned features and unpatterned areas of the films con-
firms the conversion of ZrNx→ZrOy at stamp-substrate con-
tact locations, as shown in Fig. 4. These data are important,
since they clearly identify the replacement of metal–nitrogen
bonds by metal–oxygen bonds, and oxidation as the primary
mechanism responsible for these patterns. Previously we
have argued that this conversion takes place, enhancing the
height of the nanostructures as compared to other materials
system.14

Group IV metal thin films and their oxides and nitrides
have many unique properties including hardness, dielectric
constant, corrosion resistance, high melting temperatures,
biocompatibility, and biocatalytic activity. Although coating
technology for these films is mature, the difficulty of struc-
turing these materials, especially on the nanoscale, has thus
far limited their application. The results reported here enable
promising applications for patterned group IV films for the
fabrication of templates for directed cell growth studies.17

For example, Galliet al.18 have investigated protein ordering
of actin filaments by SPM oxide lines patterned on titanium
films, and we have reported that zirconium oxide layers may
mitigate bacterial growth.19 The ability to produce oxide pat-
terns on ZrN surfaces by local oxidation nanolithography
with a stamp will allow us to fabricate large-area biotem-
plates on the order of 100 cm2. In addition, the process re-
ported here is quick, simple and robust. These qualities
should dramatically accelerate progress in the bioattachment
and biotemplating research areas.

In this work, we have demonstrated an emerging
nanoimprint technology that is a promising approach to pat-
terning group IV thin films. Although important issues such
as ultimate resolution, alignment method, and exposure uni-
formity across centimeters remain to be addressed, these are
challenges which are largely generic to most nanoimprint
schemes. Furthermore, a detailed understanding of local oxi-
dation kinetics has provided considerable guidance in estab-
lishing the optimal conditions for parallel writing, as Caval-
lini has shown for silicon,7 and as we have shown here for
ZrN.
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FIG. 4. Scanning Auger microprobe(JEOL 7830F) analysis of three areas of
a zirconium nitride film, as indicated in the inset. Nitrogen is replaced by
oxygen at stamp-substrate contact locations during pattern transfer. The sur-
face was etched for 90 s with a 3 keV Ar+ ion beam to remove surface
contamination before these spectra were recorded.
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