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Motion of droplets along thin fibers with temperature gradient
Alexander L. Yarin
Faculty of Mechanical Engineering, Technion, Haifa 32000, Israel

Wenxia Liu and Darrell H. Reneker
Maurice Morton Institute of Polymer Science, The University of Akron, Ohio 44325-3909

~Received 7 June 2001; accepted for publication 21 January 2002!

Liquid n-decane,n-undecane,n-dodecane, andn-hexadecane formed tiny symmetrical droplets on
a partially wettable cylindrical fiber. When a temperature gradient was created along the fiber, the
droplets began to move along the fiber toward the cold region. An explanation of the phenomenon
is related to the thermocapillary motion. Other possible mechanisms were ruled out. The theoretical
results and experimental data agree reasonably well. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1459099#

I. INTRODUCTION

Small droplets deposited on a partially wettable cylindri-
cal fiber are axisymmetric.1 In the present experiments it was
found that when a temperature gradient was created along a
thin horizontal fiber, droplets moved toward the cold region.
Description of the experimental findings and theoretical
modeling are the main aims of the present work. Motion of
tiny droplets and bubbles driven by temperature gradients is
typically related to the thermocapillary Marangoni
convection.2,3 Thermal Marangoni effects result from surface
tension changes, typically reduction of surface tension as
temperature increases. In the experiments of Ref. 2, as well
as in a number of works discussed in Ref. 3, it was shown
that droplets and bubbles move toward thehotter regions. On
the other hand, motion of thin liquid films, which may be
considered as two-dimensional drops, toward thecolder re-
gions demonstrated in Refs. 4 and 5 was also attributed to
the thermocapillary Marangoni convection. The resolution of
this paradox is related, from our point of view, to the fact that
in Refs. 2 and 3 moving droplets or bubbles were fully sub-
merged in a confined solvent so that counterflows are signifi-
cant, whereas in Refs. 4 and 5 the moving films were actu-
ally free from counterflows. In all four cases thermocapillary
Marangoni stresses acting over the droplet or bubble inter-
face pulled liquid toward the cold region. In the case of thin
free liquid films4,5 these stresses pulled the entire film toward
the cold region. In the experiments of Ref. 2, when solvent
about a bubble was pulled toward the cold region, a counter-
flow must have occurred in the incompressible fluid due to
the effect of the confinement. The counterflow was actually
responsible for the bubble motion toward the hot region.
Confined and free are terms used to distinguish situations in
which the counterflow of a surrounding fluid is important
from those situations where counterflow does not occur or is
not important.

Given the fact that under different conditions the same
physical mechanism can cause a droplet or a bubble to move
in opposite directions, it is appropriate to subdivide the situ-
ations terminologically. The earlier observations of bubble
motion toward thehotter regionswere called thermal Ma-

rangoni convection. It is reasonable to describe such a mo-
tion as a confined Marangoni convection or thermocapillar-
ity. Motions toward thecolder regions4,5 can be described as
an unconfined Marangoni convection. The present work
deals with unconfined Marangoni convection.

This work demonstrates that small droplets are displaced
along a fiber if a temperature gradient is created along the
fiber. We show that the droplets move toward the cold region
of the fiber and therefore this phenomenon can be attributed
to the unconfined Marangoni convection according to the
terminology proposed above. Only one work treating a com-
parable situation is known to the authors~Ref. 6!. It consid-
ers two-dimensional drops in the framework of the lubrica-
tion approximation. The model of Ref. 6 assumes slip over
the whole contact area between the drop and a supporting
plane and neglects inertial effects. In Ref. 6 a detailed treat-
ment of the flow patterns near the moving contact lines was
given. A number of the assumptions adopted in Ref. 6 are
restrictive or questionable and do not apply to the case of a
single drop moving along a fiber. Also no experimental ob-
servation of the droplet motion was described there. Never-
theless, the general conclusion following from Ref. 6 is quite
instructive: droplets can move towards the cold region. Such
motion is supported by the present experiments and model-
ing of small droplets on nonuniformly heated fibers. We will
show that a satisfactory description of droplet motion is
based on the overall momentum balance. Details of the flow,
near the moving contact lines between the droplet and the
fiber, adjust themselves to the driving Marangoni stresses.
This will allow us to develop a physical model of the phe-
nomenon without detailed treatment of liquid motion inside a
moving droplet. We also rule out the possibility that vapor
recoil7 creates sufficient thrust to propel the droplet toward
the cold region of the fiber.

The mechanism of droplet motion revealed is of poten-
tial importance for a number of applications, in particular, for
draining filters that coalesce liquid droplets from a gas
stream.

The structure of this article is as follows. Section II con-
tains a simplified model of droplet motion along a fiber due
to unconfined Marangoni convection; Sec. III describes the
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temperature distribution in the fiber and droplet. Experimen-
tal observations are presented in Sec. IV, and are compared
with the theory in Sec. V. The discussion is given in Sec. VI
and the results are summarized in Sec. VII.

II. THERMALLY DRIVEN DROPLET MOTION

Consider a spherical droplet on a horizontal fiber shown
in Fig. 1. At timet,0, we assume the fiber temperature, the
temperature of the liquid, and that of the surrounding gas to
beTC . At time t50 the fiber end atx50 is instantaneously
heated up to a higher temperatureTH.TC . As a result, a
transient temperature field along the fiber and in the droplet
is established. LetG5ds/dT be the temperature coefficient
of surface tension, withs being the surface tension,T being
temperature, andG,0. Then the local surface stress acting
along the surface resulting from the Marangoni effect is
given by (G/l)]T/]x as shown in Fig. 1. Temperature dis-
tribution over the droplet surface is discussed in detail in
Sec. III; l51/sinu is the geometric factor, and the angleu is
the meridional angular spherical coordinate. The surface
stress pulls liquid toward the cold end~Fig. 1!, since bothG
and]T/]x are negative, whereasl is always positive.

The projection of the pulling stress along the fiber axis is
given by

f 5G
]T

]x
sin2 u. ~1!

Integrating over the droplet surface, we obtain the total
pulling force as

F152pa2G
]T

]x
, ~2!

wherea is the volume-equivalent droplet radius, and

]T

]x
5E

0

p

sin3 u
]T

]x
du ~3!

is calculated in Sec. III.
To calculate the friction force acting on the moving

droplet, we assume, as the first approximation, that the flow
field in the droplet is similar to that in a cylindrical layer
pulled by the fiber@Fig. 1~b!#. This means that we assume
that the flow is locally almost parallel to the fiber and satis-
fies the no-slip boundary conditionvx5U at R5af and vx

50 at R5a. Here,vx is the velocity of liquid motion along
the fiber,R is the radial coordinate in the plane normal to the
fiber axis,a is the volume-equivalent droplet radius,af is the
fiber cross-sectional radius, andU is the velocity of the drop-
let center. The velocity profile is found as a solution of the
Navier–Stokes equations in cylindrical coordinates subject
to these boundary conditions, which yields the shear stress as

m
dvx

dR
52

mU

Rln~a/af !
, ~4!

wherem is the liquid viscosity. The shear stress acts over the
fiber surface 4pafa, which yields a friction force of the
order of

F2524pma
U

ln~a/af !
. ~5!

It is emphasized that in the derivation of Eqs.~4! and ~5! it
was assumed that the shear stress at the fiber surface remains
constant throughout the diameter of the drop. This assump-
tion definitely does not hold in the vicinity of the moving
contact lines at the leading and trailing edges of the drop. It
is well known6,8–11 that the long-range van der Waals inter-
actions and local hydrodynamic effects result in the Navier–
Maxwell slip boundary condition. In the vicinity of the con-
tact lines, the slip condition replaces the one used to derive
Eqs. ~4! and ~5! ~vx5U at R5af!. The slip eliminates a
singularity at the moving contact lines at the edges of the
drop. The size of the regions near the contact lines is of the
order ofea, wheree521/ln(l̄/a)!1 ~l̄ is a molecular slip
coefficient,l̄!a!. Since the shear stress at the edges is finite,
whereas the corresponding area isO(e)!1, the difference
between the total shear force from the fiber acting on the
drop, andF2 of Eq. ~5! is much smaller thanF2 . As a result,
F2 presents a plausible estimate of the total shear force based
on the observed velocity.

Combining the forces of Eqs.~2! and~5! in the equation
of droplet motion, we obtain

4

3
pa3r l

dU

dt
52pa2G

]T

]x
24pma

U

ln~a/af !
, ~6!

wherer l is the liquid density, andt is time.
The latter equation is transformed to the form

dU

dt
5

3

2

G

r la

]T

]x
2

3

ln~a/af !

n

a2 U, ~7!

where kinematic viscosity of liquid is denoted byn5m/r l .

FIG. 1. Sketch of a spherical droplet on a fiber.~a! The flow field as per-
ceived by an observer attached to the fiber.~b! The flow field as perceived
by an observer moving with the center of the droplet.
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Slight variation of the droplet volume-equivalent radius,
a, due to evaporation is accounted for via the mass balance
equation

da

dt
52E, ~8!

where the evaporation rateE is calculated in the Appendix
@Eq. ~A25!#.

Equations~7! and~8! are supplemented by the kinematic
relation

dX

dt
5U, ~9!

with X being thex coordinate of the droplet center.
Equations~7!–~9! form a closed system describing drop-

let motion, given a known temperature gradient. The initial
conditions are given by

t50: U50, ~10a!

a5a0 , ~10b!

X5X0 , ~10c!

where a0 and X0 are the initial radius and position of the
droplet. The initial condition for the temperature will be dis-
cussed@Eqs.~12! and ~A27!#.

III. TEMPERATURE DISTRIBUTION IN THE FIBER AND
DROPLET

For a tiny droplet we assume that the temperature of
liquid at a positionx5constant is that of the fiber at this
cross section. This assumption is plausible for smaller drop-
lets. For bigger ones it will definitely be less accurate. Tran-
sient temperature distribution in a thin fiber is governed by
the equation

]Tf

]t
5a f

]2Tf

]x2 2
2h

r fcfaf
~Tf2TC!, ~11!

where Tf is the fiber temperature,r f , cf , and a f are the
density, specific heat, and thermal diffusivity of the fiber,
respectively. Alsoh is the heat transfer coefficient at the
lateral surface of the fiber.

The solution of Eq.~11! is subject to the following initial
and boundary conditions:

t50: Tf5TC , ~12a!

t.0: H x50, Tf5TH

x5L f ,
]Tf

]x
50,

~12b!

where L f is the fiber length. Equation~12a! assumes that
initially the fiber has a uniform temperatureTC .

A solution of Eqs.~11! and ~12! is given in Ref. 12. In
the present notation it reads

Tf2TC

TH2TC
5

cosh~Bi1/2x1 /b!

cosh~Bi1/2L f /b!

2 (
n51

`

~21!n11
2mn

mn
21Bi~L f /b!2

3cosS mn

x1

L f
Dexp@2~mn

21Bi L f
2/b2!Fo#,

~13!

where

mn5
~2n21!

2
p, ~14a!

x15L f2x, ~14b!

b5af /2, ~14c!

and the Biot and Fourier numbers are given by

Bi5
hb

kf
, ~15a!

Fo5
a f t

L f
2 , ~15b!

where the thermal conductivity of the fiber is denoted bykf .
The temperature distribution Eq.~13! is used in Eq.~7!

~with T5Tf2DT! to calculate the temperature gradient
]T/]x. Note thatDT expresses the effect of the evaporative
cooling calculated in the Appendix@Eq. ~A27!#.

From Eq.~13! we find

]T

]x
52~TH2TC!H Bi1/2M1

b cosh~Bi1/2L f /b!

1 (
n51

`

~21!n11
2mn

mn
21Bi L f

2/b2 S mn

L f
DNn

3expF2S mn
21Bi

L f
2

b2DFoG J , ~16!

where

M15E
0

p

sin3 u sinhFBi1/2
x1~u!

b Gdu, ~17a!

Nn5E
0

p

sin3 u sinFmn

x1~u!

L f
Gdu,

~17b!
n51,2,... .

x1~u!5L f2X2a cosu. ~17c!

Lateral cooling of the fiber is due to the natural convection in
air. For a fiber ofaf50.0060 cm and the temperature differ-
ence TH2TC560 °C the corresponding product of the
Grashof~Gr! and Prandtl~Pr!, numbers~needed to calculate
the Nusselt number and the heat transfer coefficient! is
Gr Pr'1022. For such a value of the product, the Nusselt
number Nu5h2af /ka is about 1020.2 for the natural convec-
tion from a horizontal cylinder, whereka is the thermal con-
ductivity of air ~Ref. 13!. Therefore,
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h50.631
ka

2af
, ~18!

where 0.63151020.2.

IV. EXPERIMENTAL OBSERVATIONS

Generatrices of the droplets seen on the photographs~for
example, Fig. 2! are more nearly parabolic than circular. The
apparent static and dynamic contact angles seen in the im-
ages are of the order of 60°. In the present case of a glass
fiber, we are dealing with the case of partial wettability, with
the London–van der Waals forces strong enough to stretch
an initially spherical droplet into a paraboloidal body. Since
the contact angles were significantly larger than zero, there is
no question of perfect wettability, and no precursor film
ahead of the liquid drop was assumed.

To estimate droplet sizes from the photographs, we ap-
proximated their shapes by a paraboloidal body of revolu-
tion:

r 52
4

l 2 ~am2af !j
21am , ~19!

where the droplet surface meets the fiber atj56 l /2. The
maximal droplet radius isam , and l is the length of the
droplet along the fiber.

The droplet volume-equivalent radiusa is defined as

4

3
pa35E

2 l /2

l /2

pr 2dj2paf
2l , ~20!

which yields using Eq.~19!:

a5@ l ~am2af !~2am13af !/5#1/3. ~21!

Liquid viscositym is taken to be dependent on the tempera-
ture at the droplet centerTcen as14

m5m0 expF3.8TbS 1

Tcen
2

1

T0
D G , ~22!

wherem0 is the viscosity at some reference temperatureT0 ,
andTb is the boiling temperature.

Experiments were done with droplets ofn-decane,
n-undecane,n-dodecane, andn-hexadecane. The physical
properties of these fluids are presented in Table I. It was
assumed thatn-decane evaporated by a perceptible amount,
but evaporation of n-undecane, n-dodecane, and
n-hexadecane was imperceptible.

In the experiments, an electrical current through a piece
of nichrome wire~composed of 60% chromium, 16% nickel,
and 24% iron! served as heating source. The heater wire ran
horizontally along thez axis of Fig. 1 ~normal to x and y
axes!, and touched the glass fiber atx50. The current
through the wire was adjusted to control its temperature. A
single silica glass fiber (af50.060 mm) was placed under-
neath the wire. The glass fiber was perpendicular to both the
Earth’s gravity and to the nichrome wire. The properties of
the fiber are shown in Table II. Droplets, of various sizes
~listed in Table III!, of n-decane,n-undecane,n-dodecane,
andn-hexadecane were deposited on the fiber, near the posi-
tion where the hot wire crossed the fiber. In each of the
experiments there was a single droplet on the fiber. The pa-

FIG. 2. Images of ann-decane droplet~am50.22 mm,l 50.72 mm! at vari-
ous times. Both the hot wire and glass fiber were in a horizontal plane; top
view.

TABLE I. Physical properties ofn-decane,n-undecane,n-dodecane, andn-hexadecane atT0520 °C ~293 K!.
A* , B* , andC* are the parameters of the Antoine equation~A20! in the Appendix~see Refs. 15–17!.

Parameter n-decane n-undecane n-dodecane n-hexadecane

Molecular mass,
M v , g/mol

142.28 156.31 170.34 226.45

Density,r l , g/cm3 0.73 0.74 0.7491 0.773
Temperature coefficient of
surface tension,G, g/~s2 K!

20.0919 20.0894 20.0879 20.0843

Viscosity at 293 K,
m0 , g/cm s

0.90731022 1.18231022 1.49231022 3.451231022

Boiling point,
Tb , K

447.15 469.13 489.43 560.2

Latent heat of evaporation,
I v , kJ/kg

351

Specific heat,
cp , kJ/~kg K!

2.28

Diffusion coefficient of
vapor in air,D, cm2/s

0.057 349

A* 16.0114
B* 3456.8
C* 278.67
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rameters of the droplets are given in Table III. When the
nichrome wire was heated toTH , ~;80 °C, 353 K!, the mo-
tion of the droplet was observed through an optical micro-
scope. The surrounding air temperature,TC , was ;20 °C,
293 K. Images were taken through an optical microscope at
30 frames per second by a video camera.

Figure 2 shows images of then-decane droplet whent
,0, and t51, 1.5, 2–36 s after the wire was heated. The
droplet moved along the fiber. The movement was from the
top to bottom in the figure, but in a horizontal plane in the
experiment, to minimize the effect of gravity on the motion,
after the hot wire has begun to heat the glass fiber att50.
The movement of the droplet occurred during the first 3 or 4
s after the wire was heated~Figs. 4–7!.

V. COMPARISON WITH THE THEORY

Figure 3 shows the volume-equivalent radii of a large
droplet~0.0616 mm3 in volume! and a small droplet~0.0181
mm3 in volume! of n-decane versus time. The droplets are
referred to as ‘‘large’’ and ‘‘small’’ according to Table III.
For example, the largen-decane droplet is the one corre-
sponding to the first line in Table III, and so on. The volume
loss att535 s was 67.5% and 28.6% for the small and large
drops of Fig. 3, respectively. The volume decreased at a
higher rate than predicted from the theory@Eq. ~A25!#. Cal-
culations indicate that the evaporation rate is not high
enough to be entirely responsible for the reduction in droplet
size seen in experiments.

It is easy to show that the discrepancy between the pre-
dicted and measured rate of decrease of the droplet size can-
not be attributed to the enhancement of evaporation rate near
a curved surface~the Kelvin effect!. Indeed, the Kelvin effect
results in a rise of vapor pressure near a curved surface,
where evaporation proceeds easier than near a plane surface,
as per

psat,cur5psatS 11
v

kT

2s

am
D , ~23!

where psat,cur is the vapor pressure near the curved droplet
surface,psat is the vapor pressure near a plane surface,v is
the volume per one molecule in liquid state,k is the Boltz-
mann’s constant,T is the temperature,s is the surface ten-
sion coefficient, andam is the radius of curvature; the vol-
ume v5M v /(r lNA), whereNA is the Avogadro’s number.
For n-decane, given the values ofM v andr l in Table I and
NA56.02531023mol21, we find v50.32310221cm3. For
the estimate we takeam51022 cm andT5300 K. The sur-
face tension ofn-decanes523.2 g/s2 at this temperature;
alsok51.38310216g cm2/(s2 K). Then forn-decane the ra-
tio

v

kT

2s

am
53.5931025, ~24!

which is negligibly small compared to one, and therefore has
no effect in Eq.~23!. This means that these droplets are too
large for Kelvin effect to be significant, andpsat,cur'psat. As
a result, the rate of droplet evaporation given by Eq.~A25! is
practically unaffected in the present case by droplet curva-
ture.

Formation of a thin and unstable liquid film on the fiber
during droplet motion is a plausible reason for the radius
reduction observed in the experiments~Fig. 3!. In the case of
partial wettability that we are dealing with, this invisible film
should break up into a succession of still invisible tiny drop-
lets. The decrease in droplet diameter corresponding to the
images from 22 to 36 s in Fig. 2 shows that the diameter
decreased, after the motion stopped, more rapidly than cal-
culated@Eq. ~A25!# by the evaporation rate theory. This dis-
crepancy suggests inaccuracies in the values of the param-
etersA* , B* , andC* of the Antoine equation~see Table I!.
For n-undecane,n-dodecane, andn-hexadecane, no varia-
tions of droplet radii during experiments were detected.

Figures 4–7 show the positions ofn-decane,
n-undecane,n-dodecane, andn-hexadecane droplets versus
time, compared to the theoretical results of numerical solu-
tion of Eqs.~7!–~9!. It is seen that qualitatively the theory

FIG. 3. Volume-equivalent radii of large and smalln-decane droplets.

TABLE II. Properties of the silica glass fiber as given by the manufacturer.

Parameter Value

Cross-sectional radius,af , mm 0.060
Length,L f , mm 20
Density,r f , g/cm3 2.21
Specific heat,cf , cal/~g K! 0.184
Thermal conductivity,kf , kcal/~m hr K! 0.877
Thermal diffusivity,a f , cm2/s 0.006

TABLE III. Droplet parameters.

Droplet am (mm) l (mm) X0 (mm)

n-decane large 0.22 0.72 0.64
small 0.15 0.50 0.54

n-undecane large 0.29 0.84 0.97
small 0.15 0.48 0.55

n-dodecane large 0.31 0.94 0.77
small 0.16 0.52 0.58

n-hexadecane large 0.26 0.75 0.49
small 0.16 0.47 0.43
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reproduces the main trend found experimentally:all the
droplets move toward the cold region of the fiber. This con-
clusion agrees with the predictions of Ref. 6. On the other
hand, the direction of droplet motion is opposite to that de-
scribed in Refs. 2 and 3, as discussed in Sec. I. The quanti-
tative agreement of the calculated and observed displacement
as a function of time is reasonable, given the simplifications
used in the theoretical model.

Some minor effects were missed by the theoretical pre-
dictions. In the experiments a smaller droplet moved further
than a larger one: in Fig. 4, by 4.4%, Fig. 5, by 22%, Fig. 6,
by 23.4%, and in Fig. 7, by 23.5%. In the theory the bigger
droplet moved further. The reason for this discrepancy may
be in the assumption that liquid in the droplet has the same
temperature as the fiber at the same cross section. In reality
the bigger droplets may be significantly cooler in the regions
farthest from the fiber. Then their motion should be slower
than the theory predicts. In Figs. 4–7, the experimental
curves show the random stick–slip motions of the droplets.

VI. DISCUSSION

Droplet velocity achieves its maximal value very soon
after the heating of the fiber begins att50 andx50. Then
the velocity decreases rapidly. The results shown in Figs.
4–7 imply that droplet displacement takes place for about 5
s; after that the droplets practically stop. It is very instruc-
tive, however, to see that the smallest droplets can be moved
by the temperature gradient to a distance which is more than
ten times larger than their initial volume-equivalent radius.
The interval of time during which droplets move roughly
corresponds to the time during which the section of the tem-
perature profile in the fiber possessing the highest tempera-
ture gradients passes the droplet. A rough estimate of the
time interval, t* , can be obtained using the results for a
transient heat flow in a semi-infinite body~Ref. 13, pp. 136–
137!. The corresponding solution, being much simpler than
the present one given by Eq.~13!, nevertheless shows the
same trend, thus we obtaint* '( l 1X0)2/a f . Taking for the
estimatel 5X050.06 cm anda f50.006 cm2/s ~Tables II and
III !, we obtaint* 52.4 s. After the highest temperature gra-

FIG. 4. Positions of large and smalln-decane droplets as a function of time.

FIG. 5. Positions of large and smalln-undecane droplets as a function of
time.

FIG. 6. Positions of large and smalln-dodecane droplets as a function of
time.

FIG. 7. Positions of large and smalln-hexadecane droplets as a function of
time.
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dients passed, the droplet finds itself in an almost isothermal
environment, where the temperature gradients and expected
motion are small.

It is emphasized that the mechanism of the droplet mo-
tion we are dealing with should not depend on the fiber ma-
terial. To check this, we placed a copper wire parallel to the
glass fiber in a separate series of the experiments. The cross-
sectional radius of the copper wire wasaw50.077 mm, and
n-undecane drops similar to those of Fig. 5 were placed on it.
The glass fiber and a parallel copper wire were heated up by
the same heating wire. We found that the droplets moved on
both the glass fiber and the copper wire. The droplet on the
glass fiber always moved a shorter distance and responded
more slowly. Droplets on the copper wire moved to distances
of the order of several millimeters which were not too dif-
ferent from the values measured on the glass fiber.

The fact that the delay time is shorter on the copper wire
is certainly related to the fact that the thermal diffusivity of
copper,ac51.12 cm2/s, is much higher than that of the glass
a f50.006 cm2/s. Therefore, the delay time on the copper
wire tdc5X0

2/ac is much less than the delay time on the glass
fiber. However, the effect of the heating up of the droplet
itself, which takes time of the order ofl 2/a l should also be
accounted for in the case of the droplets on the copper wire
(a l50.000 86 cm2/s is the thermal diffusivity of the liquid,
n-undecane!. Sincea l and a f!ac and l is of the order of
X0 , we find thatX0

2/ac! l 2/a l and l 2/a l is of the order of
X0

2/a f . Then the total delay time on the copper wire is
mostly determined by the time of the droplet heating up. As
a result, the delay times on the copper wire and on the glass
fiber were not too different.

Similar droplet motions were observed for other fluids
such as transmission oil, lubrication oil, and vegetable oil on
a 16mm-Kevlar® fiber. For the sake of brevity, and due to
the fact that the physical properties of the oils were not
known to the extent needed for the calculations~Table I!, the
corresponding details are omitted here.

Vapor outwardflowing from a liquid surface exerts a
thrust force on it, which is termed vapor recoil~Ref. 7 and
the Appendix!. It is emphasized that vapor recoil cannot be
responsible for the observed effect. The peak value of the
thrust force on the droplet, toward the cooler region of the
fiber, due to the vapor recoil effect, appears to be of the order
of P.1028 dyne~the Appendix!. Figures 4–7 show that the
droplet velocity is of the order ofU.1022 cm/s. For the first
10 s, the observed acceleration of the dropletdU/dt is about
1023 cm/s2. Therefore fora'1022 cm, the inertial force as-
sociated with the observed motion of the droplet is of the
order ofr l(4/3)pa3dU/dt'1029 dyne~r l is the liquid den-
sity!. The inertial force can be neglected because it is even
smaller than the slight thrust resulting from vapor recoil. If
vapor recoil were the driving force instead of the thermocap-
illary force, vapor recoil should be balanced only by the
viscous drag, the magnitude of which is of the order of

FD5CmaU, ~25!

for a creeping flow, whereU'1022 cm/s, a'1022 cm, n
.1022 cm2/s, and the Reynolds number Re'1022. In Eq.

~25! C is a dimensionless constant. If vapor recoil was re-
sponsible for the droplet motion, then the dimensionless co-
efficient from Eq.~25! should be equal to

C5
P

maU
. ~26!

Assuming m'1022 g/~cm s), a.1022 cm, U'1022 cm/s,
and P'1028 dyne, Eq.~26! yields C.1022, whereas one
expects a much higher value ofC ~of the order of one! for a
creeping flow of this kind. Indeed, in the kindred problems
on solid, liquid, or gaseous spheres slowly moving in viscous
fluid, the range ofC is 4p<C<6p, which follows from the
Stokes law and the Hadamard–Rybczynski formula.18 Ac-
cording to Eq.~5! C54p/ ln(a/af)'4p/ ln 1055.46. If the
value of C.1022 is true, the gravitational slip of a tiny
droplet down a vertical fiber under the action of the gravita-
tional force,Fg5gr l(4/3)pa3.1023 dyne, would proceed
with a velocity U5Fg /(Cma)'103 cm/s, which was not
observed. Therefore, vapor recoil can be discarded as a driv-
ing force for the droplet motion. Then the most credible
source of the droplet motion is the unconfined thermocapil-
lary Marangoni convection.

According to the photographs of Fig. 2, the shape of the
droplet does not change significantly during its motion,
which means that the paraboloidal approximation of Eq.~19!
holds all the time. This observation has the following expla-
nation: the apparent advancing contact anglega is related to
its static counterpartga,st via Hoffman’s law6,19

ga5ga,st14.54 Ca1/3, ~27!

where the capillary number Ca5Um/s representing the di-
mensionless rate of the contact line motion, should be much
smaller than one. In the present case ofU'1022 cm/s, m
'1022 g/~cm s) ands523.2 g/s2, Ca54.331026!1. From
Eq. ~27! we obtain ga2ga,st57.431022, which corre-
sponds to the difference between the dynamic and static ap-
parent contact angles of only about 4°. This explains why the
droplet shape hardly changes during its motion along the
fiber.

VII. SUMMARY

Tiny droplets begin to move along a fiber when one end
of the fiber is suddenly heated. The motion of the droplet is
always directed toward the cold region, and is opposite to the
motion expected from the confined Marangoni convection of
Refs. 2 and 3. These observations are similar to the uncon-
fined thermocapillary Marangoni convection demonstrated
for thin liquid films in Refs. 4 and 5. In the present experi-
ments tiny droplets were displaced to a distance ten times
their radii in about 10 s.
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APPENDIX: DROPLET EVAPORATION AND VAPOR
RECOIL

To estimate the evaporation rate and vapor recoil rate we
consider the case of a spherically symmetric droplet. First,
we shall find a local relation between the pressure at the
liquid side of the interface and vapor density near it. Then we
shall introduce the effect of a nonuniform temperature distri-
bution leading to an overall thrust force acting on the droplet.
We assume that liquid vapor and air are the only substances
in contact with droplet surface. Then the continuity equation
and the conservation equations for vapor and air read20

d

dr
~rv r r

2!50, ~A1a!

d

dr
~rv r r

2Yv!5
d

dr S rDr 2
dYv

dr D , ~A1b!

d

dr
~rv r r

2Ya!5
d

dr S rDr 2
dYa

dr D , ~A1c!

wherer is the density of the mixture of vapor and air,v r is
the radial velocity of the mixture,r is the radial coordinate,
D the diffusion coefficient, andYv andYa the mass fractions
of vapor and air, respectively.

Integrating Eqs.~A1!, we obtain

rv r r
25

ṁ

4p
, ~A2a!

ṁ

4p
Yv2rDr 2

dYv

dr
5

ṁ

4p
, ~A2b!

ṁ

4p
Ya2rDr 2

dYa

dr
50, ~A2c!

where the constants of integration were found using the fact
that the droplet surface is permeable for liquid vapor only,
andṁ is the total mass flux from the whole droplet surface.

Solving the differential Eq.~A2b! with the boundary
condition

r 5`, Yv5Yv` , ~A3!

whereYv` is the mass fraction of vapor at infinity, we obtain

Yv512~12Yv`!expS 2
ṁ

4prDr D . ~A4!

At the droplet surfacer 5a ~a is the droplet radius! the mass
fraction of vapor is equal to the saturation value~described
below! Yvs , which allows us to find from Eq.~A4! the total
mass fluxṁ as in Ref. 20:

ṁ54pr Da ln~11B!, ~A5!

where

B5
Yvs2Yv`

12Yvs
~A6!

is the Spalding transfer number.
Expressions~A5! and ~A6! can also be obtained from

Eq. ~A2c! given the fact that

Yv1Ya51. ~A7!

Using Eqs.~A2b!, ~A5!, and~A6!, we find the mass flux of
the vapor at the droplet surface,j 52rD(dYv /dr)ur 5a , as

j 5rhm~Yvs2Yv`!, ~A8a!

hm5
D

a

ln~11B!

B
, ~A8b!

wherehm is the mass transfer coefficient.
The corresponding Sherwood number reads20

Sh5
hm2a

D
52

ln~11B!

B
. ~A9!

The momentum balance at the droplet surface is given by

p1rv r
25pl1r lv l

2, ~A10!

wherep andpl are the pressures on the vapor/air and liquid
sides, respectively,r l is the liquid density, andv l is the ve-
locity of the surface motion relative to the liquid.

Due to the mass conservation of liquid and its vapor

r lv l5S rv rYv2rD
dYv

dr D U
r 5a

, ~A11!

and thus, using Eqs.~A2a!, ~A2b!, and~A5!, we find

r lv l5
ṁ

4pa2 5r
D

a
ln~11B!. ~A12!

Also, from Eqs.~A2a! and ~A5!

rv r ur 5a5r
D

a
ln~11B!. ~A13!

Substituting Eqs.~A12! and ~A13! in Eq. ~A10!, we obtain

p1rS D

a D 2

ln2~11B!5pl1
r

r l
rS D

a D 2

ln2~11B!.

~A14!

Since the ratior/r l!1, we can neglect the last term in Eq.
~A14!, and find

pl5p1rS D

a D 2

ln2~11B!. ~A15!

Typically, Yv`50 ~no vapor far from the droplet!, andYvs

!1, which allows one to reduce Eq.~A15!, using Eq.~A6!,
to the following form:

pl5p1
cvs

2

r S D

a D 2

, ~A16!

where the vapor densitycvs5rYvs , and the Stefan flux20 at
the droplet surface is neglected.

The vapor densitycvs at the surface depends on the sur-
face temperature of the droplet. Since in the present case the
temperature distribution is expected to be nonuniform over
the droplet surface, the last term in Eq.~A16! will be respon-
sible for the thrust applied to the droplet due to vapor recoil.
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The contribution of the first term on the right-hand side in
Eq. ~A16! will be zero, since the total pressurep is uniform
over the droplet surface.

The magnitude of the thrustP is given by

P5U22pa2E
0

p

plnx sinuduU, ~A17!

wherenx5cosu is the projection of the outer unit normal to
the surface onto the axis of the tiny fiber supporting the
droplet, andu is the meridional angular spherical coordinate.

From the equation of state of the vapor, its density is
given by

cvs5
psatM v

RgT
, ~A18!

wherepsat(T) is the saturation pressure of the vapor at the
surface temperatureT, M v is the molecular mass of the va-
por, andRg is the absolute gas constant.

Substituting Eqs.~A16! and ~A18! in Eq. ~A17!, we ar-
rive at

P5U2 2p

r S DM v

Rg
D 2E

0

pS psat~T!

T D 2

sinu cosuduU.
~A19!

The saturation pressure of several liquids is given as a func-
tion of the temperature by the Antoine equation15

psat50.001 333 224 expS A* 2
B*

T1C*
D , ~A20!

wherepsat is given in bar (1 bar5105 N m22), andT is taken
in degrees Kelvin. The values of the parametersA* , B* ,
andC* for n-decane are shown in Table I.

For tiny droplets on tiny fibers we expect that droplet
surface temperature is close to that of the fiber at a given
cross section, and thus the thrust given by Eq.~A19! takes
the form

P5
2p

r S DM v

Rg
D 2E

21

1 S psat~T!

T D 2

jdj, ~A21a!

j5
X2x

a
, ~A21b!

with T5Tf2DT, whereDT is discussed below@Eq. ~A27!#.
Decrease of the droplet volume-equivalent radius and

droplet cooling due to evaporation should be accounted for
to describe the droplet motion. In the limit of a small Spal-
ding numberB!1, whereYvs!1, the mass transfer coeffi-
cient given by Eq.~A8b! reduces to

hm5
D

a
. ~A22!

Therefore the mass flux of vapor~for n-decaneYv`50! ac-
cording to Eqs.~A8a!, ~A18!, and~A22! is given by

j 5r
D

a
Yvs5

D

a
cvs5

D M v

Rga

psat~T!

T
. ~A23!

Integrating Eq.~A23! over the droplet surface, we obtain the
mass balance equation for the droplet in the following form

d

dt S r l

4

3
pa3D52

D M v

Rga
2pa2E

0

p psat~T!

T
sinu du,

~A24!

which reduces to the equation describing the volume-
equivalent droplet radius

da

dt
52

D M v

2r lRga E21

1 psat~T!

T
dj, ~A25!

definingE in Eq. ~8!. Here, as before,psat(T) is given by the
Antoine equation~A20!.

Temperature in a droplet cross-sectionT will be reduced
as compared to the corresponding value ofTf due to the
evaporation cooling. The relevant thermal balance reads

d

dt S r lcpTcen

4

3
pa3D5cpTcen

d

dt S r l

4

3
pa3D

1I v

d

dt S r l

4

3
pa3D . ~A26!

Here I v is the latent heat of evaporation,cp is the specific
heat of the liquid, andTcen5Tuj50 .

The term on the left-hand side of Eq.~A26! implies the
general decrease of the droplet energy, whereas the two
terms on the right-hand side describe two sources of energy
decrease: convective losses due to vapor outflow, and evapo-
ration cooling, respectively.

Equation~A26! can be integrated, which yields the re-
duction of the droplet temperature as compared toTf by the
following value:

DT5Tcen,02Tcen5
I v

cp
lnS a0

a D 3

, ~A27!

where Tcen,0 and a0 are the values of the temperature and
radius without evaporation being accounted for.
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