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Bending instability in electrospinning of nanofibers
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S. Koombhongse and D. H. Renekera)

Maurice Morton Institute of Polymer Science, Department of Polymer Science, The University of Akron,
Akron, Ohio 44325-3909

~Received 17 July 2000; accepted for publication 23 October 2000!

A localized approximation was developed to calculate the bending electric force acting on an
electrified polymer jet, which is a key element of the electrospinning process for manufacturing of
nanofibers. Using this force, a far reaching analogy between the electrically driven bending
instability and the aerodynamically driven instability was established. Continuous,
quasi-one-dimensional, partial differential equations were derived and used to predict the growth
rate of small electrically driven bending perturbations of a liquid column. A discretized form of
these equations, that accounts for solvent evaporation and polymer solidification, was used to
calculate the jet paths during the course of nonlinear bending instability leading to formation of
large loops and resulting in nanofibers. The results of the calculations are compared to the
experimental data acquired in the present work. Agreement of theory and experiment is discussed.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1333035#

I. INTRODUCTION

Electrospinning of polymer solutions and melts is a
promising process for manufacturing fibers with cross-
sectional diameters of about 102 nm.1 Mechanics of this pro-
cess deserve a special attention, since there is an urgent need
for predictive tools to develop deeper understanding and op-
timization. As was shown in a recent publication of this
group,2 the bending instability of electrified polymer jets
plays a central role in the electrospinning process. This re-
lates the electromechanical aspects of the process to the pio-
neering studies of Taylor3 of the instabilities of electrified
liquid jets of low-molecular mass Newtonian liquids. In par-
ticular, Taylor3 recognized that bending instability can occur,
and derived a characteristic equation for small bending per-
turbations of an inviscid liquid column.

Discretized equations describing the dynamics of the
bending instability of electrified jets of polymer solutions
were proposed and solved in Ref. 2. In the present work we
elucidate the relation of these equations to the quasi-one-
dimensional partial differential equations of the dynamics of
thin free liquid jets. The latter were proposed and used
mainly in the studies of the aerodynamically driven bending
instability of liquid jets moving in air with high enough
speed.4,5 The main difference between the electrically and
aerodynamically driven instabilities is in the nature of the
destabilizing force. In Sec. II of the present work we intro-
duce a localized approximation leading to a very simple ex-
pression for the bending force acting on the jet due to mutual
Coulomb interactions. Using this force, in Sec. III we formu-
late the continuous quasi-one-dimensional partial differential
equations of the dynamics of bending electrified jets. We

also show how these equations correspond to the discretized
equations used in Ref. 2.

In Sec. IV we present the expressions for the growth rate
and the wavelength of small electrically driven bending per-
turbations of an electrified liquid column. In Sec. V solvent
evaporation and the related solidification processes are ac-
counted for. Examples of calculations are shown, discussed
and compared with experiment in Sec. VI. Conclusions are
drawn in Sec. VII.

II. LOCALIZED APPROXIMATION

In the dynamics of thin vortices in fluids the localized-
induction approximation is widely used to describe velocity
induced at a given vortex element by the rest of the vortex
line.6–10 A similar approach may be used to calculate the
electric force imposed on a given element of an electrified jet
by the rest of it. Consider an enlarged element of a curved jet
shown in Fig. 1. We assume that the arc lengthj is reckoned
along the jet axis from the central cross section of the ele-
ment wherej50. We denote the coordinates reckoned along
the normal and binormal byy andz, so that the radius vector
of point A on the surface of the elementROA5yn1zb. The
radius vector of pointB at the jet axis close enough to the
element considered is thus given by

ROB5tj1 1
2 uk0uj2n, ~1!

wherek0 is the curvature of the jet axis at pointO andt is a
unit tangent vector. Therefore

RBA5ROA2ROB5@y2 1
2 uk0uj2#n1zb2tj. ~2!

Denote the cross-sectional radius of the jet element by a,
assume that charge is uniformly distributed over the jet sur-
face with the surface densityDe, and denote the charge pera!Electronic mail: dhr@polymer.uakron.edu
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unit jet length bye52paDe. Then the Coulomb force act-
ing at a surface element near pointA from the jet element
situated near pointB is given by

dFBA5
edj•De•adudj

uRBAu3
RBA , ~3!

whereu is the polar angle in the jet cross section.
Substituting Eq.~2! in Eq. ~3! and accounting for the fact
that y5a cosu, andz5a sinu, we obtain from Eq.~3!

dFBA5edjDe•a

3dudj
@~a cosu2uk0uj2/2!n1a sinub2tj#

@a22a cosuuk0uj21uk0u2j4/41j2#3/2.

~4!

For a thin jet, asa→0, all the terms containing a in the
numerator of Eq.~4! can be safely neglected, also in the
denominator the terma•cosuuk0uj2 is negligibly small as
compared toj2. Then using Eq.~4! we calculate the electric
force acting on a particular element of the jet, assuming that
the length of the element is 2L, with L being a cutoff for the
integral, to be determined later on

Fel5E
0

2p

duE
2L

L

dFAB

5e2djE
2L

L

dj
2tj2uk0uj2n/2

@a21j21uk0u2j4/4#3/4. ~5!

The latter yields

Fel5e2djE
2L/a

L/a

dxF 2tx

a~11x2!3/22
uk0ux2n/2

~11x2!3/2G . ~6!

The force in the axial direction obviously cancels, whereas
the force becomes

Fel52e2lnS L

aD ukundj. ~7!

This shows that the net electric force acting on a jet element
is related to its curvaturek5k0 , and acts in the normal~lat-

eral! direction to the jet axis. The magnitude of the net force
acting on a jet element due to the action of the surface ten-
sion forces is equal to

F5pastuj1dj2pastuj5pasukundj, ~8!

wheres is the surface tension coefficient.
Therefore, the net normal~lateral! force acting on a jet ele-
ment is given by the sum of the electric and surface tension
forces, Eqs.~7! and ~8!, as

dF5ukundjFpas2e2ln
L

aG . ~9!

The cutoff lengthL is still to be found. It will be done below
in Sec. IV.

III. CONTINUOUS QUASI-ONE-DIMENSIONAL
EQUATIONS OF THE DYNAMICS OF ELECTRIFIED
LIQUID JETS

For very thin jets we can neglect, in the first approxima-
tion, the effect of the shearing force in the jet cross section,
as well as the bending stiffness~Ref. 5, p. 49!. If we use a
Lagrangian parameters ‘‘frozen’’ into the jet elements, then
the momentless quasi-one-dimensional equations of the jet
dynamics~Ref. 5, Eq.~4.19! p. 49! take the form

l f 5l0f 0 , ~10a!

rl0f 0

]V

]t
5t

]P

]s
1lukuPn2rgl0f 0k1luku

3S pas2e2ln
L

aDn2le
U0

h
k. ~10b!

Equation~10a! is the continuity equation withl being the
geometrical stretching ratio, so thatlds5dj, and f 5pa2

the cross-sectional area. Subscript zero denotes the parameter
values at timet50. Equation~10b! is the momentum balance
equation withr being the liquid density,V its velocity,P the
longitudinal force in the jet cross section~of viscoelastic ori-
gin in the case of electrospinning of polymer jets!, gk gravity
acceleration,U0 /h the outer field strength~the outer field is
assumed to be parallel to the unit vectork, with U0 being the
value of electrical potential at the jet origin, andh the dis-
tance between the origin and a ground plate!. It is empha-
sized that on the right-hand side of the momentum Eq.~10b!
we account for the longitudinal internal force of rheological
origin acting on the jet~the first two terms!, the gravity force
~the third term!, the bending electrical force and the stabiliz-
ing effect of the surface tension@the fourth term following
from Eq.~9!#, and for the electric force acting on the jet from
electric field created by the potential difference of the start-
ing point of the jet and the collector.
Equations~10! are supplemented by the kinematic relation

]R

]t
5V, ~11!

whereR is the radius vector of a point on the axis of the jet.

FIG. 1. Sketch of an enlarged element of a curved jet and the associated
normal, binormal and tangent vectorsn, b, andt.
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Introducing the Cartesian coordinate system associated
with a capillary~the jet origin! or a ground plate, with unit
vectorsi, j , andk, and accounting for

R5 iX1 jY1kZ, ~12a!

V5 iu1 jv1kw, ~12b!

we obtain from the projections of~10b! and~11! the follow-
ing system of scalar equations:

rl0f 0

]u

]t
5tX

]P

]s
1lukuPnX1luku

3S pas2e2ln
L

aDnX , ~13a!

rl0f 0

]v
]t

5tY

]P

]s
1lukuPnY1luku

3S pas2e2ln
L

aDnY , ~13b!

rl0f 0

]w

]t
5tZ

]P

]s
1lukuPnZ1luku

3S pas2e2ln
L

aDnZ2rgl0f 02le
U0

h
,

~13c!

]X

]t
5u, ~13d!

]Y

]t
5v, ~13e!

]Z

]t
5w. ~13f!

The following geometric relations should be added:

l5~X,s
2 1Y,s

2 1Z,s
2 !1/2, ~14a!

tX5
1

l

]X

]s
, ~14b!

tY5
1

l

]Y

]s
, ~14c!

tZ5
1

l

]Z

]s
, ~14d!

nX5
1

ukul
]tX

]s
, ~14e!

nY5
1

ukul
]tY

]s
, ~14f!

nZ5
1

ukul
]tZ

]s
, ~14g!

uku5F ~X,s
2 1Y,s

2 1Z,s
2 !~X,ss

2 1Y,ss
2 1Z,ss

2 !2~X,sX,ss1Y,sY,ss1Z,sZ,ss!
2

~X,s
2 1Y,s

2 1Z,s
2 !3 G1/2

. ~14h!

Also assuming the simplest version of the upper-convected
Maxwell model of viscoelasticity properly fitted to describe
uniaxial elongation,2,5 we obtain the equation for the normal
stress in the jet cross-sectionstt

]stt

]t
5G

1

l

]l

]t
2

G

m
stt , ~15!

whereG is the modulus of elasticity, andm the viscosity, and

1

l

]l

]t
5

X,su,s1Y,sv ,s1Z,sw,s

l2 . ~16!

Then the longitudinal forceP is given by

P5
l0f 0

l
stt . ~17!

It is emphasized that in Eq.~17! there actually should stand
the normal stress differencestt2snn instead ofstt . How-
ever, in strong uniaxial elongational flows~electrospinning is
an example of such flow! the axial componentstt@snn ,
and the latter can be neglected. A detailed proof of this fact

can be found in Ref. 11.
Also the equation of the charge conservation in a jet element
holds

el5e0l0 . ~18!

The system of the equations presented in this section allows
one to find the jet configuration in space at any moment of
time. It is emphasized that the equations used in Ref. 2 to
calculate the jet evolution in electrospinning represent a dis-
cretized form of those presented here. In Ref. 2 the equations
were derived considering the jet to be a locus of inertial
electrically charged beads connected by the spring and dash-
pot viscoelastic elements. The only difference is in the fact
that here the bending electric force is calculated using the
localized approximation with an appropriate cutoff of the
integral ~cf. Sec. II!, whereas in Ref. 2 the whole integral
responsible for the electric force was accounted for in the
discretized form.
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IV. GROWTH RATE AND WAVELENGTH OF SMALL
BENDING PERTURBATIONS OF ELECTRIFIED
LIQUID COLUMN

In Refs. 4 and 5 the theory of the aerodynamically
driven jet bending was described. In that case, due to the jet
curvature, a distributed lift force acts on the jet~as a conse-
quence of the Bernoulli equation for air flow!, which en-
hances perturbations and makes the perturbations grow. The
aerodynamic bending force per jet lengthdj in the case of
small bending perturbations is given by4,5

Faer52raV0
2pa0

2ukundj, ~19!

wherera is the air density,V0 is the jet velocity, anda0 the
jet cross-sectional radius which does not change for small
perturbations.

This force is the only difference between the
aerodynamic-and electric-driven bending. Comparing Eq.~7!
~with e5e0) with Eq. ~19!, we see that all the results ob-
tained in Refs. 4 and 5 for the aerodynamic bending may
also be used here in the case of electric bending, if one
replaces the factorraV0

2 by e0
2ln(L/a0)/pa0

2.
Dynamics of small bending perturbations was studied in

Refs. 4 and 5 accounting for the shearing force and moment
in jet cross section@thus, accounting for the bending stiffness
in the equations generalizing Eq.~13!#. For example, the
case of viscous Newtonian fluid was considered. We recast
these results here for the case of an electrified liquid column
of Newtonian fluid of viscositym. This, in particular, gener-
alizes the results of Taylor3 to the viscous case, and allows
us to find the cutoff lengthL.

Recasting the results of Refs. 4 and 5, we find that the
destabilizing electric force overcomes the stabilizing effect
of the surface tension if

e0
2lnS L

a0
D.pa0s. ~20!

If we assumea050.015 cm, and the jet charge of 1
Coulomb/l, thene052120.5 (g cm!1/2/s. Below we show that
a reasonable value ofL is L50.0325 cm. Using it for the
estimate, we find thate0

2ln(L/a0)53.4653106 g cm/s2,
whereaspa0s53.3 g cm/s2 for s570 g/s2. Therefore, in
this case the inequality~20! definitely holds and the bending
instability should set in and grow.

From the results of Refs. 4 and 5 we obtain in the
present case that the wave numberx* and the growth rate
g* of the fastest growing bending perturbation are given by

x* 5H 8

9

ra0
2

m2 Fe0
2ln~L/a0!

pa0
2 2

s

a0
G J 1/6

, ~21a!

g* 5
@e0

2ln~L/a0!/pa02s#2/3

~3mra0
4!1/3 . ~21b!

Herex* 52pa0 / l * , wherel * is the wavelength of the fast-
est growing perturbation.
The results~21! correspond to the maximum of the spectrum
g~x! given by the characteristic equation

g21
3

4

mx4

ra0
2 g1F s

ra0
32

e0
2ln~L/a0!

pra0
4 Gx250. ~22!

This equation is to be compared with the characteristic equa-
tion for electrically driven bending perturbations of an invis-
cid liquid (m50) column derived by Taylor3 @his Eq.~12!#.
Expanding that equation in the long-wave limit asx→0, we
find that it reduces to Eq.~22! with the term ln(1/x* ) in-
stead ofln(L/a0). This fact defines the cutoff lengthL, since
the result of Taylor3 is exact. Thus takingln(L/a0)
5 ln(1/x* ) and neglecting the minor surface tension effect
in Eq. ~21a!, we reduce the latter to the form

x* 5F8

9

r

m2

e0
2

p
lnS 1

x*
D G1/6

, ~23!

which is the equation definingx* ~and thus,L!. Taking the
same values of the parameters as before, as well asr
51 g/cm3 and m5104 g/~cm s) ~remind that e0

52120.5 (g cm!1/2/s), we reduce Eq.~23! to the form

x* 50.483F lnS 1

x*
D G1/6

, ~24!

which yieldsx* 50.462.
Therefore the wavelength of the fastest growing perturbation
l * 52p•0.015/0.46250.204 cm, and the cutoff lengthL
5 l * /2p50.0325 cm. Comparing the latter with the jet
cross-sectional radiusa050.015 cm, we see that the cutoff
length is very short, of the order ofa0 .

Based on the results of Refs. 4 and 5, it also follows that
the bending perturbations of highly viscous liquids grow
much faster than the capillary ones~driven by the surface
tension!, if the condition

pm2

re0
2ln~L/a0!

@1 ~25!

is fulfilled.
For the values of the parameters used in the present section,
the left-hand side of Eq.~25! is equal to 90.7, which shows
that the inequality~25!, indeed, holds. Therefore such a jet
bends with a nearly constant radius.

V. EVAPORATION AND SOLIDIFICATION

In Ref. 2 calculations of the bending polymer jets in the
electrospinning process were done neglecting evaporation
and solidification effects. We account for them in the present
work.

In Ref. 12 the following correlation is given for the Nus-
selt number for a cylinder moving parallel to its axis in air:

Nu50.42 Re1/3, ~26!

where the Reynolds number Re5V2a/na , a is the cross-
sectional radius, andna the kinematic viscosity of air. The
Nusselt number is the dimensionless heat transfer coefficient
describing heat transfer rate.

Taking the Prandtl number of air to be Pr50.72, we can
generalize the correlation~26! for an arbitrary value of the
Prandtl number as

Nu50.495•Re1/3Pr1/2. ~27!
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Similarly to ~27!, we take the following correlation for the
Sherwood number:

Sh50.495•Re1/3
•Sc1/2, ~28!

where Sh5hm2a/Da , wherehm is the mass transfer coeffi-
cient for evaporation,Da is the vapor diffusion coefficient in
air, and the Schmidt number Sc5na /Da . The Sherwood
number is the dimensionless mass transfer coefficient de-
scribing the evaporation rate.

Correlations of the type of Eqs.~26!–~28! are valid for
air (Pr50.72) for Reynolds number in the range 1<Re
<60. For a<1022 cm, V;102– 103 cm/s and na

50.15 cm2/s, the Reynolds number is 10<Re<102 which
corresponds approximately to the range of validity.

The initial mass of polymer in a jet element is given by

M p05r f 0l0ds•cp0 , ~29!

wherecp0 is the initial polymer mass fraction. The variable
solvent content in the element is

Ms5r f lds2r f 0l0ds•cp0 , ~30!

which corresponds to the solvent mass fraction

cs512
f 0l0

f l
cp0 . ~31!

The solvent mass decreases due to evaporation according to
the equation

]Ms

]t
52rhm@cs,eq~T!2cs`#2palds, ~32!

wherecs,eq(T) is the saturation vapor concentration of sol-
vent at temperatureT, andcs` is the vapor concentration in
atmosphere far from the jet.

For water as a solvent, Ref. 13, for example, recom-
mends the following expression forcs,eq(T):

cs,eq5
1

1013
$a01T@a11T~a21T~a31T~a41T

3~a51a6T!!!!#%, ~33!

a056.107799961,
a154.43651852131021,
a251.42894580531022,
a352.65064873131024,
a453.03124039631026,
a552.03408094831028,
a656.136820929310211,

whereT is taken in degrees Celsius.
Concentrationcs` is equal to a relative humidity in atmo-
sphere.

Substituting Eqs.~28! and~30! in Eq. ~32!, we obtain the
equation describing variation of the jet volume

] f l

]t
52Da•0.495•Re1/3Sc1/2@cs,eq~T!2cs`#pl. ~34!

Solvent mass decreases until the solvent mass ratio defined
by Eq. ~32! becomes small enough~say,cs50.1), at which
point the evaporation part of the calculation is stopped and

viscosity remains at a constant value. This cutoff can be
rationalized by the assumption that further evaporation is
reduced because the diffusion coefficient of solvent in the
remaining polymer is small.

When evaporation is accounted for as per Eq.~34!, the
left-hand sides of the equations~10b!, and ~13a!–~13c! be-
come, respectively

r
] f lV

]t
, ~35a!

r
] f lu

]t
, ~35b!

r
] f lv

]t
, ~35c!

r
] f lw

]t
. ~35d!

Also the gravity term in~13c! should containf l instead
of f 0l0 , since due to evaporationf l is not equal tof 0l0

anymore.
If the discretized version2 of the model is used,l in Eq.

~34! is replaced by the distance between two adjoining
beads.

The local polymer mass ratio in the jet is given by

cp5cp0

f 0l0

f l
. ~36!

We account for the solidification process due to solvent
evaporation by employing the following correlation for the
viscosity dependence on polymer concentration:12

m510A310Bcp
m

~37!

with m50.1– 1.
The value of the parameterB is estimated as follows.

According to Ref. 12~p. 32!, whencp is doubled, viscosity
of the solution increases by a factor in the range of 10– 102.
Using the value 102 and assuming thatcp increased from 0.1
to 0.2, we find for m51 that B520. The value ofB
517.54 corresponds to the factor of 10 andm50.1. There-
fore the order of magnitude estimate ofB yields the value
B5O(10). The value ofA is unimportant, since the initial

value of the viscositym0510A310Bcp0
m

is assumed to be
known and is used for scaling. On the other hand, the relax-
ation timeu is proportional tocp ~Ref. 5!. Therefore

u

u0
5

cp

cp0
, ~38!

where the initial relaxation time in known.
The modulus of elasticity isG5m/u. Rendering the

equations of the problem dimensionless as in Ref. 2, we
obtain the rheological constitutive Eq.~15! in the following
dimensionless form:

]s̄tt

] t̄
5Ḡ

]l

l] t̄
2

Ḡ

m̄
s̄tt . ~39!
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HereG is rendered dimensionless byG05m0 /u0 , andm by
m0 . Therefore

Ḡ5
10B~cp

m
2cp0

m
!

cp /cp0
, ~40!

m̄510B~cp
m

2cp0
m

! ~41!

with B5O(10).
All the dimensionless groups introduced in Ref. 2 contain
now m0 andG0 . Two new dimensionless groups appear: the
Deborah number

De5
m0 /G0

a0
2/Da

~42!

representing the ratio of the relaxation timeu05m0 /G0 to
the diffusional characteristic timea0

2/Da , and

d5
Lela0

~m0 /G0!na
. ~43!

The latter is based on the ‘‘electric’’ characteristic lengthLel

introduced in Ref. 2. The groupd is involved in the calcula-
tion of the Reynolds number Re. The model of Ref. 2 up-
dated to account for solvent evaporation was used for the
calculations in the present work.

VI. RESULTS AND DISCUSSION

A. Jet path calculated for the electrically driven
bending instability accounting for evaporation and
solidification

As was shown in Ref. 2 the qualitative pattern of the jet
behavior in the electrospinning process can be drawn without
accounting for evaporation and solidification. Only a quanti-
tative comparison can be made for the solidification. Such a
comparison is the aim of the present section. Also, a com-
parison between the results obtained with and without ac-
count for evaporation and solidification will be made here.

Calculations of the present work were done for an aque-
ous solution with initial 6% concentration of poly~ethylene
oxide! studied experimentally in Ref. 2, as well as in the
present work. In Ref. 2 the following values of the dimen-
sional parameters were established: the initial cross-sectional
radius a05150mm, the densityr5103 kg/m3, the surface
tension s50.07 kg/s2, the initial viscosity m0

5103 kg/~m s), the initial relaxation timeu0510 ms, the
charge density 1C/ l , the distance to the collecting plateh
520 cm. In the calculations of the present work we took the
field strengthU0 /h51.5 kV/m. In the experiment, the elec-
tric field was 50 kV/m. The values of the dimensionless
groups introduced in Ref. 2 are now based on the initial
values of the dimensional parameters and are equal toQ
5Fve578 359.57, V547.02, A517.19, KS5100 and H
5626.88, whereasLel50.319 cm. We also take a humidity
of 16.5%,cs`50.165, and a temperature of 20 °C. The best
representation of the envelope cone of the bending loops~see
below! was found atB57 andm50.1 in the solidification
law ~37!, ~40! and ~41!, which agrees with the estimates
known from literature and those discussed in the previous
section. These values were used in the present calculations.

Figure 2~a! shows the path of the jet calculated account-
ing for evaporation and solidification, whereas Fig. 2~b! was
calculated without accounting for these effects. Due to
evaporation and solidification each loop of the jet becomes
more viscous with time, and its elastic modulus increases. As
a result, the bending stiffness increases, and the radius of the
bending loops in Fig. 2~a! ~with evaporation and solidifica-
tion! is smaller than that of Fig. 2~b! ~without evaporation
and solidification!. The radius of the bending perturbations
of the jet calculated accounting for the evaporation and so-
lidification effects is comparable with that found in the ex-
periment ~cf. Fig. 3!, which is illustrated in the following
subsection.

B. Envelope cone

Shape of the envelope cone can be easily seen by a na-
ked eye, or using a camera with long exposure time~cf. Fig.

FIG. 2. ~a! Jet path calculated accounting for evaporation and solidification.
~b! Jet path calculated without accounting for evaporation and solidification.
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4!. The two bright lines bifurcating in Fig. 4 from a point
emphasized by the arrow resulted from specular reflection of
light from segments near the maximum lateral excursion of
each loop. Each loop moved downward during the long ex-
posure time of the camera and created the bright lines seen in
Fig. 4, which define the envelope cone of the bending jet
during the electrospinning process. For comparison with the
results of the calculations, the generatrix of the envelope
cone in Fig. 4 is also represented in Fig. 5.

The calculations showed that evaporation and solidifica-
tion have a strong effect on the predicted shape of the enve-
lope cone. Two theoretical curves: without evaporation and
solidification, and with this effect accounted for (m50.1)
are presented in Fig. 5. It is clearly seen that the result ac-
counting for evaporation and solidification agrees fairly well
with the experimental data.

The envelope visible in the experiment does not extend
beyond a radius of about 3 cm, whereas the theory allowed
for the further growth of radius until 10 cm. The reason may
be that after the jet had solidified in the experiment, it be-
came much more rigid, i.e., unstretchable. On the other hand,
in the theoretical calculations the solidified jet is still de-
scribed as a liquid~albeit highly viscous, with a high elastic
modulus!, which still allows for some additional stretching.
Actually, the comparison in Fig. 5 shows that the calcula-
tions should be stopped as the radius of the envelope cone
has achieved the value of 3–4 cm.

C. Jet velocity

Downward velocity in the electrified jet was measured
by following the downward motion of a loop. The compari-

FIG. 3. Image of the electrically driven bending instability taken near the
end of the straight part of the jet in experiment.

FIG. 4. Shape of the envelope cone created by the electrically driven bend-
ing instability. The complicated image in the lower part of the figure is a
consequence of the long exposure time~;16 ms! used to observe the enve-
lope cone, and the time varying path of the jet in that region.

FIG. 5. Shape of the envelope cone: experiment vs theory. Points show
calculated radii of successive loops. Experimental points were measured
from a photograph.

FIG. 6. Downward velocity of the jet: experiment vs theory.B57,
m50.1.
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son of the experimental and theoretical results is shown in
Fig. 6. The velocity is practically independent of time in both
experiment and theory. The theoretical value of the velocity
overestimates the measured value by a factor of 4. Given the
fact that the values of several governing parameters used in
the experiments are only order of magnitude estimates, the
discrepancy represented by the factor of 4 is not dramatic.
Comparing the results shown in Fig. 6 with those shown in
Fig. 18 in Ref. 2, we can conclude that accounting for the
evaporation and solidification improves the trend of the pre-
dictions. In the present work the downward velocity is al-
most constant, as in the experiment, whereas in Ref. 2~with-
out evaporation and solidification! it was increasing with
time. It should be noted that direct comparison with the re-
sult of Ref. 2 is impossible since some of the governing
parameters were different.

D. Elongation and drying of the jet

The theoretical results suggest that stretching of material
elements along the jet makes it possible to achieve very high
draw ratio values in the electrospinning process. In the cal-
culation the initial distance between two successive beads
was 3.9931024 cm, whereas the final distance between the
same two beads was 13.92 cm. Assuming that the initial
polymer concentration in the jet was 6%, the cross-sectional
radius of a dry fiber (af) after elongation and solvent evapo-
ration have been completed is related to the initial radius of
the jet (a0) by the material balance equation

paf
2
•13.925pa0

2
•3.99•1024

•0.06. ~44!

For a05150mm this yieldsaf5196.7 nm. The correspond-
ing draw ratio due to elongation~cf. Ref. 2! is equal to
(a0 /af)

2
•0.06534 815.

Figure 7 shows the calculated trajectories of two succes-
sive beads of the jet in the course of electrospinning. The
trajectories are shown by solid lines, and the positions of the
beads by black squares and circles. The lines that have
longer dashes connect the positions of the adjacent beads. To
simplify, not every connection is shown. The projections of
the dashed line ontoX-Y plane are shown by the lines with
shorter dashes. TheX-Y projection of the bead positions are
shown by gray squares or circles. The dashed lines connect-
ing the two beads at a given time represent the elongating
segment. Its increase in length illustrates stretching of the jet
element between the two beads. The initial distance between
the beads was 3.9931024 cm, as mentioned above. The time
interval covered by Fig. 7 is 6.5 ms. The corresponding draw
ratio is shown in Fig. 8 versus the vertical distance of the
segment from the tip. It is instructive to see the envelope
cone, too~the dashed line in Fig. 8!, since it shows where the
draw ratio grows. Along the straight part of the jet, which is
about 6 cm long, the draw ratio achieves a value of about
1000. In the bending loops inside the envelope cone the draw
ratio increases, by another factor of 25, to the value of
25 000. Without evaporation and solidification in the model,
the draw ratio extracted from the calculation in Ref. 2 in-
creased very rapidly, as shown in Fig. 8.

FIG. 7. Stretching of a segment of the jet. Each solid line represents a
trajectory of one of the two successive beads. The dashed lines represent the
segment of the jet between the successive beads. The length of the segment
increases with time as a result of the jet stretching during the course of
electrospinning.B57, m50.1. The projection of the bead positions onto the
X-Y plane are shown by the gray symbols.

FIG. 8. Calculated draw ratio of a segment of the jet along its length.B
57, m50.1. The dotted line was generated using the results from Ref. 2.

FIG. 9. Calculated viscosity along the jet;t56 ms, B57 andm50.1. The
calculated radius of the envelope cone continued to grow after the viscosity
reached the plateau.
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E. Viscosity profile in the bending jet

The distribution of the viscosity along the jet att
56 ms is shown by the solid line in Fig. 9. Viscosity slowly
increases along the straight part of the jet. When bending
perturbations begin to grow rapidly, velocity of the motion
increases, and the evaporation process strongly intensifies. It
is clearly seen when comparing the viscosity profile with that
of the envelope cone shown in Fig. 9 by the dashed line. Fast
evaporation strongly increases the polymer fraction in the jet,
which leads to solidification manifested by the appearance of
the high viscosity plateau at a distance of about 2 cm from
the beginning of the envelope cone. The calculation showed
that at the beginning of the viscosity plateau, nanofibers have
already been formed, since the cross-sectional radius of the
fiber is already reduced to about 640 nm.

VII. CONCLUDING REMARKS

The localized approximation introduced in the present
work utilized a far reaching analogy between the electrically
driven bending instability in the electrospinning process and
the aerodynamically driven bending instability studied
before.2,4,5 The quasi-one-dimensional partial differential
equations of the jet dynamics that describe the course of
electrospinning were established. It was shown that the equa-
tions derived in Ref. 2 represent a discrete form of the partial
differential equations derived in this article.

Based on the partial differential equations of the jet dy-
namics, the growth rate and the wavelength of the electri-
cally driven bending perturbations of a viscous liquid col-
umn were calculated and the conditions characterizing the
onset of such perturbations were elucidated.

In Ref. 2 the bending instability of jets in electrospinning
responsible for the formation of nanofibers was explained as
a particular case of a very general basic instability of a sys-
tem of charged particles corresponding to Earnshaw’s theo-
rem. The quantitative description of Ref. 2, however, lacked
the effects of solvent evaporation and solidification of the
polymer jets leading to formation of dry nanofibers. In the
present work a description of the evaporation and solidifica-
tion was added to the model of Ref. 2. As a result, a reason-
ably quantitative description of the experimental data was
achieved, which allowed us to calculate the shape of the
envelope cone which surrounds the bending loops of the jet
in the course of electrospinning. Also, the downward veloc-
ity of the jet can be calculated to be within an order of
magnitude of the observed velocity. The theoretical results

also allow for the calculation of the elongation of material
elements of the jet. The calculated results also illustrate the
increase in viscosity of segments of the jet as the solvent
evaporates during the course of electrospinning.

It is emphasized that presently, information on the rheo-
logical behavior of polymer solution being elongated at the
rate and other conditions encountered during electrospinning
is rather scarce. Data on evaporation and solidification of
polymer solutions in the electrospinning process are practi-
cally unavailable. Therefore at present a number of the pa-
rameters in this calculation can only be estimated by the
order of magnitude, or found from experimental observations
of the electrospinning process. Material science data ac-
quired for the electrospinning process will allow researchers
to avoid such obstacles in future. Also, a more detailed de-
scription of the nature of the solvent~in this case, mixture of
water and ethanol with a variable evaporation rate! may be
very helpful for a further upgrading of the present model.
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