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Crystal-liquid crystal binary phase diagrams
Pratyush Dayal, Rushikesh A. Matkar, and Thein Kyua�

Department of Polymer Engineering, University of Akron, Akron, Ohio 44325-0301

�Received 31 January 2006; accepted 7 April 2006; published online 12 June 2006�

We propose a new theoretical scheme for the binary phase diagrams of crystal-liquid crystal
mixtures by a combination of a phase field model of solidification, the Flory-Huggins theory for
liquid-liquid mixing and Maier-Saupe-McMillan �FH-MSM� model for nematic and smectic liquid
crystal orderings. The phase field theory describes the crystal phase transition of anisotropic organic
crystal and/or side chain liquid crystalline polymer crystals while the FH-MSM model explains
isotropic, nematic and smectic-A phase transitions. Self-consistent calculations reveal several
possible phase diagram topologies of the binary crystal-liquid crystal mixtures. The calculated phase
diagrams were found to accord well to the reported experimental results. © 2006 American Institute
of Physics. �DOI: 10.1063/1.2200688�

INTRODUCTION

In recent years, there has been significant interest in de-
scribing the properties of liquid crystal �LC� mixtures and
polymer dispersed liquid crystals �PDLC�, especially in con-
nection with their widespread applications in electro-optical
technology. On the basis of the combination of the classical
Flory-Huggins �FH� theory of isotropic mixing1 and the
Maier-Saupe �MS� theory of nematic ordering,2 Brochard et
al.,3 Paiffy-Muhoray et al.,4 and Chiu and Kyu5 proposed
theoretical descriptions for the binary phase diagrams of
nematic-nematic mixtures, as well as of polymer-nematic liq-
uid crystal mixtures. Liu and Fredrickson6 developed a rig-
orous statistical mechanical description of the free energy of
liquid crystalline polymer blends involving nematic ordering.
Kyu and co-workers7–11 further expanded the polymer/
nematic theory to the polymer/smectic A and the binary
smectic-A system by incorporating the McMillan free energy
of the nematic-smectic-A transition. The resulting Flory-
Huggins Maier-Saupe-McMillan �FH-MSM� theory is ca-
pable of elucidating most phase diagrams of a polymer-
smectic A or binary smectic-A mixture. One important phase
unaccounted for thus far was the crystalline phase.

The understanding of the crystal solidification and the
pattern forming aspects of the emerging crystal structures
had always evolved independently of the phase transition
theory of liquid crystals. Landau12 first outlined the phenom-
enological model of weak crystallization within the frame-
work of his general theory of phase transitions. The theory of
weak crystallization was further refined by Kirzhnits and
Nepomnyaschii13 and Brazovskii.14 In these models, differ-
ent crystal structures, including three-dimensional lattices
�body-centered cubic �BCC�, face-centered cubic �FCC�, and
simple cubic�, two-dimensional hexagonal and one-
dimensional positional ordering were analyzed in terms of
their relative stability. Brazovskii et al.15 discussed these
one-dimensional and two-dimensional structures in more de-

tail and suggested that they represent smectic A and discotic
liquid crystals, respectively. Furthermore, they recognized
the need for the coupling between the orientational and po-
sitional degrees of freedom to properly describe a complete
phase diagram of a liquid crystalline material system.

In this paper, we combine some features of the Maier-
Saupe-McMillan theory of liquid crystal transitions with a
phenomenological theory of crystallization based on the con-
cept of order parameters similar in principle to one adopted
by Oxtoby and Harowell.16 This generalized model will be
used to describe the complete phase diagrams of binary liq-
uid crystal mixtures, including crystalline phases. We have
combined the MSM free energy for the nematic and smectic-
A transition with the Flory-Huggins free energy of liquid-
liquid mixing. Using the methodologies developed for earlier
LC mixtures,9,11 the combined free energy is then minimized
at each temperature and composition with respect to all order
parameters. The equilibrium coexistence points are then cal-
culated self-consistently to compare with the reported experi-
mental phase diagrams.

The present paper is structured by first describing the
details of the MSM model for a pure liquid crystal material.
Second, the combined FH-MSM expression is derived for
the binary LC mixtures. Subsequently, several phase dia-
grams have been calculated self-consistently for side-chain
liquid crystalline polymer �SCLCP� and low molecular
weight liquid crystal mixtures. Third, the phenomenon of
crystal solidification is treated in the context of the phase
field model and then compared with the experimental phase
diagrams. Finally, we discuss our findings and prospects for
the future development of the model.

MAIER-SAUPE-McMILLAN THEORY OF NEAT LIQUID
CRYSTALS

Consider a liquid crystalline system consisting of
uniaxial nonchiral molecules. The orientation and position of
a molecule can be described by its director, ñ and the posi-
tion of its center of mass, r̃. To characterize the state of a
system, one can introduce a single-particle orientation distri-
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bution function, f�ñ� and a single-particle density, ��r̃�. For
uniaxial systems, the orientational ordering is defined by an
order parameter,

S =
1

2
� f�ñ��3 cos2�ñ, z̃� − 1�d3ñ , �1�

where z̃ is the unit vector in the “preferred” direction.
In the smectic-A phase, the mass density is modulated

along the z̃ direction, i.e., the average director of a molecule
is perpendicular to the smectic layers. If the smectic period
equals Dz, one can introduce a new order parameter m to
signify the strength of smectic ordering potential,

m =� ��0,0,z�cos�2�z

Dz
�dz , �2�

assuming that mass density ��r̃� ,z� has a peak at z=0. For a
weak smectic ordering, the density can be approximated by a
planar wave,

��z� = �0 + �� Re�eiqzz� , �3�

where �0 is the average density, and �� is the amplitude of
the smectic wave. In this case, m��� /�0.

We shall now construct the free energy density encom-
passing, at least qualitatively, nematic and smectic-A phase
transitions among others. This free energy must include, the
Maier-Saupe free energy for the nematic-isotropic �NI� tran-
sition and the McMillan free energy for the nematic-smectic-
A �NA� transition. The most general expression for the
mean-field free energy density of the Maier-Saupe-McMillan
free energy may be written as

�F

N
= − ���S� + ��m�� −

��

2

��NS2 + Mm2 + �m2S + Xm2S2 + ¯ � , �4�

where �=1/kBT, the first two terms ���S� and ��m�� repre-
sent entropy losses due to the orientational and positional
ordering, respectively, and the terms in square brackets de-
scribe potential energy gains due to phase ordering �see Ap-
pendix A�. The higher-order coupling between the order pa-
rameters, denoted by the dots, has been ignored. To further
simplify our calculations, we convert the free energy of Eq.
�1� to the Landau formalism by expanding the entropy terms
up to the fourth order in their respective order parameters,

− ��S� = 1
2aS2 − 1

3bS3 + 1
4dS4, �5�

− ��m� = 1
2xm2 − 1

3�m3 + 1
4um4, �6�

where the parameters a, b, d, x, �, and u, are the coefficients
for the pure material. All these entropy coefficients are cal-
culated with the typical values of a liquid crystal: a=6.75,
b=13.0, d=17.0, x=2.0, �=0.0, and u=1.0 in the context of
a simple mean-field approximation ion in conjunction with
Boltzmann-type trial functions for the single-particle distri-
bution functions as described in the Appendix A. The en-
thalpy relations for the nematic and smectic transitions are
identical to that determined in the Maier-Saupe-McMillan
model. Thus the total free energy is as follows:

�FMSM

N
=

1

2
�a − �	�S2 −

1

3
bS3 +

1

4
dS4 +

1

2
xm2 −

1

2
�m3

+
1

4
um4 −

1

2
�Cm2S , �7�

where 	=�N and C=��. The parameters 	 and C are related
to the transition temperatures as follows:

	 = 4.541TNI,

C · S�TNA� = xTNA. �8�

PHASE FIELD THEORY OF CRYSTALLIZATION
OF NEAT CRYSTALS

Regarding the free energy of crystal solidification, the
individual calculations of entropy and enthalpy are complex
and tedious, as the symmetry of a given crystal geometry of
the material must be specific or known. To avoid invoking
the crystal symmetry, we employ the phase field model of
Oxtoby and Harowell16 and Kyu and co-workers17–19 for the
calculation of the free energy expression of crystal solidifi-
cation in polymers and small molecule systems, i.e.,

�FPF

N
= W	1

2
e
2 −

1

3
f
3 +

1

4
g
4
 , �9�

where e, f , and g are the coefficients of the Landau expan-
sion of the free energy in terms of a crystal order parameter

; both e and f are considered to be temperature dependent,
viz., e�T�=��T��0�Tm�, f�T�=��T�+�0�Tm�, and g=1. In the
case of polymer crystallization, 
 may be defined as the lin-
ear crystallinity as 
= l / lext, where l and lext are the thickness
and equilibrium thickness of the crystal, respectively.17–19 In
order for the Landau free energy to be applicable to a first
order phase transition such as crystal solidification, it is nec-
essary that the coefficient of the third power term must be
finite, i.e., f �0.20 This free energy is characterized by an
asymmetric double well that involves latent heat. However,
when the coefficient of the third power term is exactly zero,
such free energy, having a symmetric double well, is appli-
cable to a second order phase transition or the first order
transition only at the node. For small molecule systems,
�0=1, whereas for polycrystalline materials it is a function of
the melting temperature of the polymer crystal. In the present
study, we consider only the small anisotropic molecules,
hence, the phase order parameter at the solidification poten-
tial is taken as unity, i.e., �0=1. The coefficients � and W are
calculated using the experimentally assessable materials pa-
rameters such as surface free energy and latent heat of crystal
transition.18,19 Since the model does not take into consider-
ation the columnar phase, it is reasonable to discard the cou-
pling between 
 and S. Also, in the absence of a plastic solid
phase, M =0.

Combining Eqs. �7� and �9�, we obtain the Landau for-
mulism of the generalized free energy density for a single
component system without the columnar phase as

224902-2 Dayal, Matkar, and Kyu J. Chem. Phys. 124, 224902 �2006�



�FMSMPF

N
=

1

2
�a − �	�S2 −

1

3
bS3 +

1

4
dS4 +

1

2
xm2

−
1

3
�m3 +

1

4
um4 −

1

2
�Cm2S

+ W	1

2
e
2 −

1

3
f
3 +

1

4
g
4
 . �10�

Since the phase field model parameters, � and W, can be
obtained from the known physical parameters of the materi-
als, the final free energy expression has virtually little or no
additional adjustable parameters in addition to the original
Maier-Saupe-McMillan theory, yet it could describe addi-
tional phase diagram topologies including crystalline transi-
tions. It is worth noting that the cubic terms of the Landau
expression �� and f� play an important role in determining
the order of the smectic A and crystal phase transitions. In
our calculation, �=0 while f �0. In the McMillan model of
the NA transition, �=0, thus assuring the second-order nature
of this transition, in agreement with the literature findings.21

Halperin et al.22 showed that the fluctuations of the nematic
order parameter could lead, by virtue of the appearance of a
small nonzero �, to the weakly first order nature of the tran-
sition. It should be emphasized that the parameter f in the
Landau expression for crystal solidification must be nonzero
to ensure that the crystal melting occurs via the first order. In
the next section, we shall extend Eq. �10� to describe for a
binary mixture, and subsequently analyze some experimen-
tally observed topologies of phase diagrams.

FREE ENERGY DESCRIPTION FOR
CRYSTAL-CRYSTAL BINARY MIXTURES

The total free energy density for binary mixtures consists
of the Flory-Huggins theory for isotropic mixing, the Maier-
Saupe-McMillan theory for mesophase ordering, and the
phase field theory for crystal solidification, �G=�FFH

+�FMSM+�FPF. For an arbitrary polymer blend, the Flory-
Huggins free energy density is written as

�FFH

N
= ��1/r1�ln �1 + ��2/r2�ln �2 + 12�1�2, �11�

where r1 and r2 are the number of sites occupied by mol-
ecules 1 and 2, respectively �usually, ri=1 for a low-
molecular-weight compound, and is larger than unity for a
polymer�; in the present case both ri values are taken as
unity. �1 and �2 are volume fractions of components 1 and 2
�related by the incompressibility constraint �1+�2=1�. The
parameter 12 �the Flory-Huggins interaction parameter� is
usually written in the form 12=A+B /T, where A and B are
constants. B is proportional to the interchange energy related
to the heats of vaporization of the constituents and 12 is
inversely proportional to absolute temperature. If 12�crit

=0.5�r1
−1/2+r2

−1/2�2, the liquid-liquid phase separation takes
place.

The free energy density of liquid crystal ordering can be
derived from Eq. �4� by separating the interaction terms and
the entropic terms for the Maier-Saupe-McMillan model and
introducing the cross-interaction contributions.

gMSM = �FMSM/NkBT�

= � 1
2a1S1

2 − 1
3b1S1

3 + 1
4d1S1

4 + 1
2x1m1

2 + 1
3�1m1

3 + 1
4u1m1

4��1 + � 1
2a2S2

2 − 1
3b2S2

3 + 1
4d2S2

4 + 1
2x2m2

2 + 1
3�2m2

3 + 1
4u2m2

4��2

− �
2 �	11S1

2�1
2 + 2	12S1S2�1�2 + 	22S2

2�2
2� − �

2 �C11m1
2S1 + 2C12m1m2

�S1S2 + C22m2
2S2� , �12�

where the first two terms represent pure entropic contribu-
tions �entropy losses from orientational and transverse order-
ing for each component�, and the next two terms correspond
to the enthalpic contributions �in units of �=1/kBT�. These
terms represent the nematic ordering, and the McMillan cou-
pling between the orientational and positional degrees of
freedom �smectic A�. The cross terms in the interaction po-
tentials for a given mixture may be evaluated in terms of the
geometric means from the parameters 	11, C11, 	22, C22 that
are specific to pure components 1 and 2, i.e.,

	12 = c	
�	11	22,

�13�
C12 = cc

�C11C22.

In practice, most liquid crystals can crystallize upon
lowering the temperature. To determine the free energy of
mixing of the crystalline species, we propose the existence of

interaction terms that lead to crystal-liquid and crystal-
crystal demixings. In view of the phenomenological argu-
ments, the interaction terms for crystal-liquid segregation are
analogous to the 12 liquid-liquid interaction parameter of
the Flory approach.23 These interaction parameters are de-
ducted to be proportional to the enthalpies of crystallization
such that the intracrystalline chain interaction terms can be
expressed as, �11��H1

c /RT and �22��H2
c /RT, where �H1

c

and �H2
c are enthalpies of crystallization of components 1

and 2, respectively. It should be noted here that intracrystal-
line chain interaction terms �11 and �22 are proportional to
��H1

c +�H1
m� /RT and ��H2

c +�H2
m� /RT, respectively, where

�Hi
m is the heat of mixing for crystal and amorphous parts.

Since the heat of mixing �Hi
m is negligibly small as com-

pared to heat of crystallization, hence we get the aforemen-
tioned expressions for �11 and �22. �12=c�

��11�22 is the
cross-interaction term to describe the crystal-crystal segrega-
tion, where c� is equivalent to the c	 and cc parameter de-
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fined for the case of nematic and smectic mixtures. It is
expressed as the geometric mean of the intracrystal chain
interaction terms9,11 for consistency. c�=1 denotes the ideal
solid solution where the crystal of each component is com-
pletely miscible in the other. However, when c�

=�12/��11�22�1, the dissimilar chains prefer to crystallize
in the mixed crystalline state �hereafter called co-crystals�

and vice versa when, c�=�12/��11�22�1, the individual
chains prefer to crystallize in the pure constituents, thereby
forming separate individual crystals. These neat individual
crystals tend to reject the amorphous materials from their
crystallizing fronts. Thus, the generalized equation for de-
scribing the nematic-smectic-A-crystal transitions may be ex-
pressed in what follows:

gMSMPF = �FMSMPF/NkBT�

= � 1
2a1S1

2 − 1
3b1S1

3 + 1
4d1S1

4 + 1
2x1m1

2 + 1
3�1m1

3 + 1
4u1m1

4��1 + � 1
2a2S2

2 − 1
3b2S2

3 + 1
4d2S2

4 + 1
2x2m2

2 + 1
3�2m2

3 + 1
4u2m2

4��2

− �
2 �	11S1

2�1
2 + 2	12S1S2�1�2 + 	22S2

2�2
2� − �

2 �C11m1
2S1 + 2C12m1m2

�S1S2 + C22m2
2S2�

+ W1� 1
2e1
1

2 − 1
3 f1
1

3 + 1
4g1
1

4��1 + W2� 1
2e2
2

2 − 1
3 f2
2

3 + 1
4g2
2

4��2 − �
2 �1�2��11
1

2 + 2�12
1
2 + �22
2
2� . �14�

As demonstrated in Appendix B, the last term in Eq. �14�
can be expressed in an analogous form of the smectic or
nematic interactions shown in the fourth and fifth terms of
Eq. �14�, except that the second coefficient of the phase field
potential gets modified slightly without sacrificing any physi-
cal significance �see Eq. �B4��. To evaluate the free energy
given by Eq. �14�, each order parameter needs to be evalu-
ated in the mixture as a function of composition and tem-
perature. This can be achieved by minimizing the free energy
with respect to the order parameters: Sj, mj, and 
 j, i.e.,

�gMSMPS

�Sj
= 0,

�gMSMPF

�mj
= 0, and

�gMSMPF

�
 j
= 0. �15�

This approach yields six simultaneous equations which are
solved by an iterative procedure to determine the values of
order parameters as a function of composition and tempera-
ture. Once the order parameters at the phase transition points
have been determined, the free energy can be calculated sub-
sequently by equating the chemical potentials in the two
phases in conjunction with the double-tangent approach.

Figure 1 depicts the phase diagram of a hypothetical
mixture of two components showing nematic, smectic, and
crystal phase transitions. The physical and material param-
eters utilized for construction of this phase diagram are r1

=1, r2=1, A=0, B=730 K, �	11/4.54kB�=385 K,
�	22/4.54kB�=375 K, �C11/kB�=1128 K, �C22/kB�=1096 K,
�H1=12.5 kJ/mol, �H2=12.5 kJ/mol, c	=0.8, cc=0.9, c�

=0.85, TCr1=325 K, and TCr2=315 K. The condition, B
=730 K, makes the FH interaction parameter to be 12

�crit, and thus the upper critical solution temperature
�UCST� envelope protrudes above the coexistence bound-
aries all mesophase transitions manifested by Eq. �14�. At
much lower temperatures, the two crystalline phases �Cr–Cr�
coexist. At an elevated temperature, the coexistence of
nematic-liquid �N–L� occurs at the compositions rich in ei-
ther phase, while the liquid-liquid �L–L� coexistence region
develops at the intermediate compositions. At intermediate
temperatures one can discern the Cr–SmA, SmA–SmA,

N–SmA, N–N, and L–N coexistence regions in ascending
order. At extreme compositions, the neat nematic, neat smec-
tic, and neat crystal regions corresponding to the pure com-
ponents are identifiable. Recall that the cross-interaction
terms, c	, cc, and c�, are the measures of relative strength of
interaction between dissimilar mesogens to that of the same
mesogens. When these values increase the corresponding
phases are more stable in the pure state as compared to the
mixed state, and thereby the coexistence gaps become nar-
rower.

Figure 2 exhibits the binary phase diagram with the
strength of cross-interaction terms being raised to c	=0.96,
cc=0.96, and c�=0.92 from those in Fig. 1 with a critical
temperature of B=430 K, i.e., 12�crit. It should be pointed
out that some gaps can be noticed in the coexistence curves

FIG. 1. Phase diagram of a hypothetical mixture showing various coexist-
ence regions indicated by corresponding symbols, intersecting with various
phase transition lines. The calculation was undertaken using the following
parameters: r1=1, r2=1, A=0, B=730 K, �	11/4.54kB�=385 K,
�	22/4.54kB�=375 K, �C11/kB�=1 128 K, �C22/kB�=1 096 K, �H1

=12.5 kJ/mol, �H2=12.5 kJ/mol, c	=0.8, cc=0.9, c�=0.85, TCr1=325 K,
and TCr2=315 K.
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which are the consequence of the very narrow coexistence
region in which the free energy minima are no longer well
resolved. Even after increasing the grid resolution for two
orders of magnitude, there remain some gaps, but smaller, in
the phase diagrams �Fig. 2�. Despite the existence of such
gaps in the plot, the trend can still be captured. In the de-
scending order of temperature, one can identify the
isotropic+nematic, pure nematics, nematic+smectic, pure
smectics, and smectic+crystal coexistence regions. The co-
existence of the crystal-crystal phases occurs at a much
lower temperature as depicted in Fig. 2. If these cross-
interaction terms were raised to an ideal situation, i.e., c�

=1.0, cc=1.0, and c�=1.0, all the liquids and solidus lines
virtually coincide on each other and vary linearly with com-
position, which is representative of the ideal mixture �figure
not shown, because the same trends of nematics and smectics
have been reported elsewhere7�.

In Fig. 3 is shown the phase diagram when the strength
of cross interaction were further increased to c	=1.10, cc

=1.10, and c�=1.10. Since all these cross-interaction terms
are larger than unity, the nematic, smectic, and crystal phases
are favored to form between dissimilar mesogens relative to
those of the neat mesogens. That is to say the mesophase
structures are more stable in the mixed state than those of
their neat phases, as demonstrated by the enhanced transition
temperatures at the intermediate compositions. Except for
the crystal azeotrope, the enhanced transition temperatures
have been experimentally verified for the nematics7 and
smectics.10 It should also be noted that although the value of
parameter B=730 K is the same as that in the first case, the
liquid-liquid coexistence has now vanished.

In order to illustrate the predictive capabilities of the
present generalized theory, we have calculated phase dia-
grams for some specific liquid crystal mixtures. First, we
performed an experiment on a mixture of smectic liquid
crystal, viz., cyanobiphenyl derivative �12CB� �commer-
cially known as K36� and side-on SCLCP �i.e., poly-

methacrylate backbone grafted with 2,5 bis-�4-butoxy ben-
zoyloxy� benzoate mesogen connected by a butyl group,
hereafter abbreviated as sSCLCP�. The liquid crystal K36
has a phase sequence of I–SmA–Cr, whereas the sSCLCP
polymer exhibits only the I–N transition in the temperature
range investigated. In our experiments, a distinct smectic-
A-crystal transition was observed in the differential scanning
calirometry �DSC� studies for several compositions as shown
by the symbols in the phase diagram �Fig. 4�. In a second
experiment, we utilized a binary mixture of octylcyanobiphe-
nyl �8CB� and octyloxycyanobiphenyl �8OCB� which
are 4-cyano-4-alkylbiphenyls �nCB� and 4-cyano-
4�-alkoxybiphenyls �nOCB�, respectively, where n denotes

FIG. 2. Phase diagram of a hypothetical mixture showing the isotropic,
nematic, smectic A, and solid crystal coexistence regions. The calculation
was undertaken with the parameters of Fig. 1, except c	=0.96, cc=0.96, and
c�=0.92.

FIG. 3. Azeotrope phase diagram of a hypothetical mixture showing the
isotropic, nematic, smectic A, solid crystal, and crystal-crystal coexistence
regions. The calculation was undertaken with the parameters of Fig. 1,
except c	=1.10, cc=1.10, and c�=1.10.

FIG. 4. Comparison between the calculated and experimental phase diagram
of a K36/sSCLCP calculated using the following values: r1=1, r2=2.25, A
=0, B=129 K, �	11/4.54kB�=327 K, �	22/4.54kB�=385 K, �C11/kB�
=1 360 K, �C22/kB�=0 K, �H1=29.3 kJ/mol, �H2=13.2 kJ/mol, c	=0.9,
cc=1.0, c�=1.0, TCr1=306 K, and TCr2=94 K. The symbols indicate the
phase transition points by DSC experiments scanned at 10 °C/min.
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the number of carbon atoms in the alkyl group.24 The se-
quence of phase transitions for 8CB and 8OCB is
Cr–SmA–N–I in both cases. The experimental phase dia-
gram of this system was reported to obtain by DSC.24

To calculate the phase diagram, we conducted numerical
minimization of the free energy of Eq. �14� for a broad range
of temperatures by varying the volume fractions of compo-
nents between 0 and 1 with a grid step of 0.001. For each
temperature-composition point, free energy was calculated
for each of the four phases �isotropic, nematic, smectic A,
and crystal�; within each phase �except isotropic�, we used
the iterative procedure, which provides a better convergence
than the conventional steepest decent method in minimizing
the free energy with respect to all relevant order parameters.
A common tangent algorithm was utilized to determine the
coexistence regions between different phases.

In Fig. 4, the calculated phase diagram for the K36-
sSCLCP system is shown together with some experimental
points �filled diamonds�.10 The experimental material param-
eters and conditions utilized are r1=1, r2=2.25, A=0,
B=129 K, �	11/4.54kB�=327 K, �	22/4.54kB�=385 K,
�C11/kB�=1360 K, �C22/kB�=0 K, �H1=29.3 kJ/mol, �H2

=13.2 kJ/mol, c	=0.9, cc=1.0, c�=1.0, TCr1=306 K, and
TCr2=94 K. It is apparent that the present generalized free
energy is capable of describing the phase diagram of the
K36-sSCLCP system reasonably well. At low temperatures,
increasing the concentration of K36 leads to the N–Cr tran-
sition, showing a broad coexistence region. Above 305 K,
the LC �K36� is in the smectic phase, but it coexists with
nematic phase of sSCLCP, exhibiting a broad two-phase re-
gion. At T=330 K, there is a triple point I+N+SmA. Be-
tween 330 and 340 K, one observes the coexistence of
N–I–SmA phases. Above 340 K, only the nematic-isotropic
transition is discernible.

Figure 5 exhibits the calculated phase diagram of 8CB/

8OCB system utilizing the following experimental and ma-
terial parameters: r1=1, r2=1, A=0, B=141.4 K,
�	11/4.54kB�=355 K, �	22/4.54kB�=315 K, �C11/kB�
=1214 K, �C22/kB�=1118 K, �H1=9.6 kJ/mol, �H2

=3.8 kJ/mol, c	=1.0, cc=1.0, c�=0.5, TCr1=330 K, and
TCr2=295 K. It is evident that the theoretical predictions are
in good accord with the experimental coexistence lines. Be-
low, the triple point at T=284 K, the crystal phase of 8CB is
in equilibrium with crystal phase of 8OCB. As the tempera-
ture is increased, Cr–SmA, SmA–N, and N–I transitions are
observed in sequel.

CONCLUSIONS

We have developed a generalized theory consisting of
FH free energy of mixing, MSM free energy of LC phase
transition and the Landau-type free energy �also known as
the phase field model� of solidification. We have demon-
strated that this new model is capable of describing the phase
behavior of binary liquid crystal and crystal mixtures, cover-
ing a crystalline phase together with the liquid crystalline
�nematic and smectic� and isotropic phases. The present
model has been tested satisfactorily to conform to the experi-
mental phase diagram of the liquid crystal—sSCLCP system
�K36/sSCLCP�, as well as those of the liquid crystal mix-
tures �8CB/8OCB�. It is concluded that the present model
can describe most topologies of binary crystal/liquid crystal
equilibrium phase diagrams, except for re-entrant, columnar,
and tilted smectics.
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APPENDIX A: CALCULATION OF ENTROPIC TERMS
FOR THE PURE COMPONENTS

In order to determine the coefficients of the Landau ex-
pansion of the orientational and one-dimensional �smectic�
positional entropies, we first write down their “ideal-gas”
mean-field expressions in terms of single-particle distribu-
tion functions,

��S� = −� f�n�ln�4�f�n��d3n , �A1�

��m� = −� ��z�ln���z�/�0�dz . �A2�

The single-particle distribution functions are parameterized
as follows:

f�n� = A exp�L�3 cos2�n,z� − 1�/2� , �A3�

��z� = �0B exp�M cos�2�z/Dz�� , �A4�

where A and B are normalization constants, while L and M
determine the strengths of orientational and positional order-
ing, respectively.

FIG. 5. Comparison between the calculated and experimental phase diagram
of a 8CB/8OCB calculated using the following values: r1=1, r2=1, A=0,
B=141.4 K, �	11/4.54kB�=355 K, �	22/4.54kB�=315 K, �C11/kB�=1 214 K,
�C22/kB�=1 118 K, �H1=9.6 kJ/mol, �H2=3.8 kJ/mol, c	=1.0, cc=1.0,
c�=0.5, TCr1=330 K, and TCr2=295 K. The symbols indicate the phase tran-
sition points by DSC experiments scanned at 10 °C/min.
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To approximate Eq. �A1� with a fourth-degree polyno-
mial in S, we compute ��S� and S for a set of one hundred
values of L uniformly distributed between 0 and 15 �corre-
sponding to the values of S between 0 and 0.95�. Then, the
obtained function ��S� is approximated by a polynomial �2�
whose coefficients are determined by the least-squares ap-
proach. The resulting values are a=6.75, b=13.0, and d
=17.0; the subscripts 1 and 2 are not necessary because these
parameters are meant for the pure components. Minimizing
the Maier-Saupe free energy with these coefficients yields
the following relationship between the transition temperature
T and the potential strength 	:

	 = 4.54TNI, �A5�

which agrees very well with the exact Maier-Saupe relation-
ship 	=4.54T. In fact, the agreement is much better than if
we would simply expand the �implicit� function ��S� in a
Taylor series near S=0 up to the fourth order, since in the
nematic phase, S is usually in the range of 0.5–0.8.

It is possible to use a similar technique in describing the
smectic entropy Eq. �A2�. However, for the smectic phase,
the ordering is usually small, and it is more important to
correctly capture the limit of small m. Thus, one can expand
Eq. �A4� in powers of M by substituting this expansion into
Eq. �A2�, and calculating the entropy as a function of M.
After some tedious algebra, we get

− ��m� =
M2

4
−

3M4

64
. �A6�

The relationship between M and m is given by

M = 2m�1 +
m2

4
� , �A7�

so the final result is �in the limit of small m�:

− ��m� = m2 +
m4

4
. �A8�

Thus, x=2.0, 	=0, and u=1.0.

APPENDIX B: ANALOGY BETWEEN FREE ENERGY
DESCRIPTIONS OF SOLIDIFICATION OF
BINARY CRYSTAL/CRYSTAL BLENDS AND OF
CRYSTAL/LIQUID CRYSTAL BLENDS

The free energy for a two-crystalline system may be ex-
pressed in the context of a phase field theory of crystal so-
lidification as follows:

gPF = W1� 1
2e1
1

2 − 1
3 f1
1

3 + 1
4g1
1

4��1 + W2� 1
2e2
2

2 − 1
3 f2
2

3

+ 1
4g2
2

4��2 + �
2 �1�2��11
1

2 − 2�12
1
2 + �2
2� .

�B1�

By virtue of the incompressibility conditions, �1+�2=1, Eq.
�B1� can be rewritten as

gPF = W1� 1
2e1
1

2 − 1
3 f1
1

3 + 1
4g1
1

4��1 + W2� 1
2e2
2

2 − 1
3 f2
2

3

+ 1
4g2
2

4��2 + �
2 ��11
1

2�1�1 − �1� − 2�12
1
2�1�2

+ �22
2
2�2�1 − �2�� �B2�

or,

gPF = W1� 1
2e1
1

2 − 1
3 f1
1

3 + 1
4g1
1

4��1 + W2� 1
2e2
2

2 − 1
3 f2
2

3

+ 1
4g2
2

4��2 − �
2 ��11
1

2�1
2 + 2�12
1
2�1�2

+ �22
2
2�2

2� + �
2 �11
1

2�1 + �
2 �22
2

2�2. �B3�

Rearranging the terms leads to

gPF = W1	1

2
�e1 +

��11

W1
�
1

2 −
1

3
f1
1

3 +
1

4
g1
1

4
�1

+ W2	1

2
�e2 +

��22

W2
�
2

2 −
1

3
f2
2

3 +
1

4
g2
2

4
�2

−
�

2
��11
1

2�1
2 + 2�12
1
2�1�2 + �22
2

2�2
2� . �B4�

Equation �B4� is the free energy of the crystal/liquid crystal
blend written in the analogous form of the free energy de-
scription for the crystal/crystal blend �Eq. �B1��, except that
the coefficient of the second order term in the Landau expan-
sion gets modified as exemplified in Eq. �B4�.
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