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Spinodals in a polymer dispersed liquid crystal
Chungsea Shen and Thein Kyu
Institute of Polymer Engineering, University of Akron, Akron, Ohio 44325-0301

~Received 22 July 1994; accepted 23 September 1994!

Thermodynamic phase equilibria of a polymer dispersed liquid crystal~PDLC! consisting of
monomeric liquid crystals and a polymer have been investigated theoretically and experimentally.
The equilibrium limits of phase separation as well as phase transition of a PDLC system were
calculated by taking into consideration the Flory–Huggins~FH! theory for the free energy of mixing
of isotropic phases in conjunction with the Maier–Saupe~MS! theory for phase transition of a
nematic liquid crystal. The correspondence between the Landau–de Gennes expansion and the
Maier–Saupe theory was found and the coefficients were evaluated. The calculation based on the
combined FH-MS theory predicted a spinodal line within the coexistence of the nematic–isotropic
region in addition to the conventional liquid–liquid spinodals. The cloud point phase diagram was
determined by means of polarized optical microscopy and light scattering for a polybenzyl
methacrylate/E7~PBMA/E7! PDLC system. The calculated phase diagrams were tested with the
experimental cloud points, assuming the Flory–Huggins interaction parameter simply to be a
function of temperature. ©1995 American Institute of Physics.

I. INTRODUCTION

Inhomogeneous mixtures comprising of random coil
polymers and liquid crystals~LCs! are of interest due to their
potential for application in electro-optical devices.1–3 The
performance of these mixtures, hereafter called polymer dis-
persed liquid crystals~PDLCs!, strongly depends on the final
morphology of the dispersed liquid crystal domains. The size
~length scale! and shape of the liquid crystal domains are
generally determined by both thermodynamics and kinetics
of phase separation during the preparation processes.4 The
PDLC systems are generally prepared from an initially ho-
mogeneous state via a phase separation process. The demix-
ing process has been dominated initially by the liquid–liquid
phase separation in their isotropic state by forming polymer
rich and poor regions. When the LC concentration exceeds
its critical value within the LC rich domains, a nematic phase
develops. It is therefore essential to examine the interplay of
phase separation and phase transition mechanisms of PDLCs
for the improvement of PDLC’s performance.

The phase diagrams for binary mixtures containing an-
isotropic liquid crystals have been simulated by several
researchers,5–10 based on a simple summation of the free
energies from the isotropic mixing and the nematic ordering.
The Flory–Huggins theory was commonly used for the iso-
tropic mixing. In the nematic ordering, Ballauff5 utilized the
Flory–Ronca theory for the system containing liquid crystal-
line polymers. Brochard6 employed the Maier–Saupe theory
for binary nematic mixtures. Palffy-Murhonyet al.7 devel-
oped a more general approach based on the van der Waal
liquid model and subsequently extended to a binary nematic
mixture. Other models had their own molecular basis.8,9 Re-
cently, Fredrickson and Liu10 had incorporated the free ener-
gies from interfaces and fluctuations in their calculation.
However, spinodals were not addressed in the above calcu-
lations, which may be, if not more, equally important in elu-
cidating the structure evolution and mechanisms of phase
transitions of PDLC systems. To fully understand the phase

behavior of a PDLC system, it is important to know whether
or not a spinodal exists within the nematic and isotropic
coexistence region.11 This is the source of our motivation.
Following the reported procedures,6–8we have combined the
Flory–Huggins theory for the mixing of isotropic liquids and
the Maier–Saupe theory for the nematic ordering. The valid-
ity of the calculations has been tested with the experimental
cloud points of a typical PDLC system.

II. EXPERIMENT

The matrix polymer used in this study was polybenzyl
methacrylate~PBMA!, purchased from Scientific Polymer
Products, Inc. The dispersing liquid crystal~E7! was ob-
tained from the EM industries. E7 is basically a eutectic
mixture of cyano-biphenyls~CB! that exhibits a single
nematic–isotropic transition at about 60 °C. Hence, the E7
based PDLC systems may be viewed as a quasibinary sys-
tem. We chose the E7 mixed liquid crystals in preparing
PDLCs because a single component liquid crystal such as
48-n-pentyl-4-cyano-biphenyl~5CB! usually has a nematic–
isotropic transition very close to the crystal–nematic transi-
tion temperature.12

In the preparation of PDLC films, the polymers and liq-
uid crystals were dissolved in a common solvent such as
tetrahydrofuran~THF! or toluene at room temperature. An
aliquot of the solution was spread on a glass slide to form a
thin film. This sample was dried at room temperature under
vacuum for three days. After solvent evaporated, the sample
was heated on a hot stage at 100 °C. Subsequently, a cover
glass was placed on the sample so that the thin PDLC film
was sandwiched between two glasses. Polarized optical mi-
croscopy ~POM! and small angle light scattering~SALS!
were employed to determine the cloud points of the as-
prepared PDLC films of various compositions.

The SALS apparatus for the cloud point determination
was designed to monitor the scattered intensity at an arbi-
trary angle ~e.g., 20°! by using a photodiode. A 2 mW
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He–Ne laser light source having a wavelength of 632.8 nm
was utilized. A programmable temperature controller
~Omega CN-2012! was linked with a computer~IBM PC2/
30! to control the ramp rate and also to record the tempera-
ture. The heating rate or cooling rate was 0.5 °C/min unless
indicated otherwise. All specimens were subjected to a heat-
ing and cooling cycle. In the homogeneous state, the scat-
tered intensity was low, but it increased immensely when the
system phase separated into the inhomogeneous two-phase
state during the course of cooling. The temperature where the
scattered intensity changed abruptly was designated as the
cloud point.

As a complementary technique, a polarized optical mi-
croscope equipped with a sample heating chamber and a
temperature controller was employed to determine the cloud
points. The sample was preheated to an elevated temperature
above its homogeneous state, and then quenched to an ex-
perimental temperature under the microscope. After waiting
for about 5 min, we examined whether the two-phase struc-
ture was formed. The quench process was repeated at various
experimental temperatures by lowering 1 °C interval until a
two-phase structure was discerned. The temperature at which
a two-phase structure first appeared was regarded as the
cloud point.

III. PHASE DIAGRAM CALCULATION

A. Free energy contributions from isotropic mixing
and anisotropic ordering

The theoretical model employed here is essentially simi-
lar to those reported in the literature,6–8 but we have empha-
sized on determining a spinodal within the coexistence of the
isotropic and nematic phases. The total Gibbs free energy has
been customarily described in terms of a simple combination
of the free energy of mixing of isotropic liquids,gi , and the
free energy of anisotropic ordering,gn, i.e.,

g5gi1gn, ~1!

whereg represents the dimensionless total free energy den-
sity.

The Flory–Huggins theory has been commonly em-
ployed to describe the free energy mixing of polymer
blends.13,14 For a binary mixture, the free energy may be
expressed as

gi5
Gi

nkT
5

f1

r 1
ln f11

f2

r 2
ln f21xf1f2 , ~2!

wherek is Boltzmann constant,T absolute temperature,Gi

the total free energy of mixing of isotropic liquids. The sub-
script 1 represents the liquid crystal component in a PDLC
system, and the subscript 2 denotes the polymer component.
r 1 is the number of sites occupied by one liquid crystal mol-
ecule, whereasr 2 is the number of segments or sites occu-
pied by a single polymer chain.n1 andn2 are the number of
liquid crystal molecules and polymer segments, respectively,
and n is the total number of segments in the system. The
volume fractions,f1 andf2, are related to the number of
segments as follows:

f15
n1r 1

n1r 11n2r 2
, f25

n2r 2
n1r 11n2r 2

. ~3!

The Flory–Huggins interaction parameter,x, is assumed to
be a function of temperature, i.e.,

x5A1
B

T
, ~4!

whereA andB are constants.
To describe the nematic–isotropic transition, the Maier–

Saupe mean field approach15 has been recognized as a popu-
lar molecular model because of its inherent simplicity. Fur-
ther, de Gennes treated the Maier–Saupe theory as a
simplified version of the Onsager’s expansion,16 in which the
summation of the higher order terms have been replaced by a
quadratic order parameter term involving a quadrupole inter-
action parameter,n. For a binary LC polymer mixture, the
Maier–Saupe equation may be modified to couple with the
Flory–Huggins equation via incorporation of the concentra-
tion of the nematic liquid crystals as

gn5
Gn

nkT
5

f1

r 1
S E f ~u!ln@4p f ~u!#d~cosu!

2
1

2
nf1s

2D , ~5!

whereu is the angle between a reference axis and the direc-
tor of a liquid crystal molecule,f (u) is the director distribu-
tion function, ands represents the orientational order param-
eter which is defined as

s5 1
2~3^cos2 u&21!, ~6!

where ^ & denotes the ensemble average which may be de-
fined as

^cos2 u&5E ~cos2 u! f ~u!d~cosu!. ~7!

Here, the director distribution is considered to be symmetric
around the reference axis. The orientation distribution func-
tion, f (u), can be obtained from the potential by assuming
the Gibbs ensemble as

f ~u!5
1

Z
expF2

u~u!

kT G , ~8!

whereZ is the partition function as defined below

Z5E expF2
u~u!

kT Gd~cosu!. ~9!

The potential of a director orientation,u(u), usually called
the pseudopotential, can be taken to be proportional to the
second order Legendre polynomials viz.,

u~u!

kT
52

1

2
m~3 cos2 u21!, ~10!

wherem is a mean field parameter characterizing the strength
of the potential field, which was originally introduced by de
Gennes and later used by Brochard.6,16

The Maier–Saupe quadrupole interaction parameter,n,
has the inverse temperature dependence as follow:
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n54.54
TNI
T
, ~11!

whereTNI is the nematic–isotropic~NI! transition tempera-
ture of the pure liquid crystal, but the coefficient value, 4.54,
may vary slightly from one material to another.15

B. Free energy expression for anisotropic ordering in
Landau–de Gennes expansion

To calculate the free energy of an anisotropic system, it
is required to know the values of the orientational order pa-
rameter as a function of composition and temperature. The
orientational order parameter may be evaluated based on the
free energy minimization approach by taking the derivative
of Eq. ~5! with respect tos, and then equating it to zero, i.e.,

2
d ln Z

ds
1s

dm

ds
1m2f1ns50. ~12!

Since the first two terms cancel out each other, Eq.~12!
reduces to a simple equation as described below

m5f1ns. ~13!

The Maier–Saupe theory may be rewritten in a more practi-
cal form by inserting Eq.~13! back into Eq.~5!, i.e.,

gn5
Gn

nkT
5

f1

r 1
S 2 ln Z1

1

2
nf1s

2D . ~14!

According to de Gennes,16 the orientational order parameter,
s, may be expressed as a sole function of the mean field
parameter,m. We expresss(m) by expanding in polynomials
to avoid the repetitious numerical integration in the ensemble
averaging as follows:

s~m!5c1m1c2m
21c3m

31c4m
4, ~15!

where c1 , c2 , c3 , and c4 are the coefficients. From the
regression analysis, these coefficients can be estimated to
give

c150.1983; c250.037 68;

c3520.016 53; c450.001 458. ~16!

Here, we adopted the polynomials up to the fourth order to
ensure the precision of the regression.17 Further, the partition
function can be obtained from the integral of the function
s(m) as17

ln Z~m!5 1
2c1m

21 1
3c2m

31 1
4c3m

41 1
5c4m

5. ~17!

Inserting Eq.~17! back to Eq.~14!, one obtains

gn5B1s1B2s
21B3s

31B4s
41B5s

5 ~18!

with the coefficients expressed in terms of the volume frac-
tion as

B150, ~19!

B25
n

2r 1
f1
22

c1n
2

2r 1
f1
3, ~20!

B35
c2n

3

3r 1
f1
4, ~21!

B45
c3n

4

4r 1
f1
5, ~22!

B55
c4n

5

5r 1
f1
6. ~23!

Although our original intention in expandings in terms ofm
was to simplify the tedious numerical integration of the par-
tition function of the Maier–Saupe theory, Eq.~18! basically
corresponds to the Landau–de Gennes free energy expansion
form.16 It is obvious that any free energy functions can be
expanded in the same fashion; therefore, our calculation
should not be limited to the Maier–Saupe theory. This free
energy expansion will be used in the calculation in the sub-
sequent sections.

C. Evaluation of orientational order parameters

For a given set of temperature and composition, the ori-
entational order parameter,s, is the simultaneous solution of
Eqs.~13! and ~15!. If both equations are plotted together in
the form ofs versusm, Eq. ~13! yields a straight line passing
through the origin with a slope of 1/~f1n!, and Eq. ~15!
represents a sigmoidal curve increasing from the origin. Fig-
ure 1 depicts the graphical presentation of the self-consistent
solution giving the order parameter of the Maier–Saupe ap-
proximation. The origin is a trivial solution representing the
isotropic state, and there is no free energy contribution aris-
ing from the nematic ordering. The slopes, 1/~f1n!, give dif-
ferent values that are proportional to temperature, but in-
versely proportional to composition. When the slope is
greater than a critical value, there is no intersection except at
the origin, implying that the system is in the isotropic state,
i.e., the temperature must be above the nematic–isotropic
transition temperature~TNI! or the LC content must be too
low to form a nematic phase. At the critical value, the line
represents a tangent to the sigmoidal curve. The tangent
point yields the critical order parameter,sc , and the critical
mean field parameter,mc , of the nematic phase, viz.,

sc'0.44, mc'2.00. ~24!

Physically, it means that the liquid crystal phase is unstable
below this critical point, but it is stable above it. This gives
the limits of the orientational order parameter where nematic
ordering can be found, i.e.,

sc<s<1. ~25!

FIG. 1. Graphical presentation of the self-consistent solution giving the
orientational order parameters based on the Maier–Saupe approximation.
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The lowest composition to form a nematic phase of a LC/
polymer mixture,fNI , can be calculated from the critical
value,sc , from Eq. ~13!, as follows:

S fsc
T D

f5fNI

5S fsc
T D

f51,T5TNI

, ~26!

fNI5
T

TNI
, T<TNI . ~27!

Therefore, the range of the nematic volume fraction at a
constant temperature may be given as

fNI<f<1. ~28!

If a system hassor f value outside the above limits, the free
energy would have no contribution from the nematic order-
ing, and thusgn is set to be zero.

If the slope is lower than the critical value, two intersec-
tions can be obtained; but only the one greater than thesc
has a valid solution as the lower intersecting point corre-
sponds to the unstable state. Figure 2 shows the variation of
the order parameter versus concentration and temperature for
a PDLC system having aTNI at 60 °C. The corresponding
Maier–Saupe free energy is shown in Fig. 3. It can be no-
ticed that the free energy curve exhibits a subtle curvature.
As will be shown latter, this convex curvature eventually
gives rise to the nematic–liquid material.

D. Calculation of binodals, spinodals, and critical
point

Phase equilibrium requires a condition that any compo-
nents have the same chemical potentials in every phase. For
a binary system, the volume fractions,fa andfb, of the two
equilibrium phases,a andb, can be solved from the follow-
ing equations, i.e.,

m1
a5m1

b , ~29!

m2
a5m2

b . ~30!

The chemical potential,m i , is defined as the partial molar
free energy of componenti. The chemical potentials contri-
bution from the Maier–Saupe theory can be deduced as17

m1
n

kT
52 ln Z1

1

2
nf1

2s2, ~31!

m2
n

kT
5
1

2

r 2
r 1

nf1
2s2. ~32!

Similarly, the chemical potentials contribution from the
Flory–Huggins theory may also be calculated.13 The solu-
tions at different temperatures afford the binodal curves of
the phase diagram.

To check the validity of phase diagram calculation, let us
consider a hypothetical PDLC system with the parameters
such asfc50.6, Tc562 °C, TNI560 °C. With this set of
parameters, the free energy as well as its first and second
derivatives may be calculated as a function of composition at
different temperatures. We considered two situations for il-
lustration, i.e., at 35 and 45 °C. The first situation corre-
sponds to a case where the equilibrium can be established
between the nematic phase and the isotropic polymer-rich
phase. In the second situation, the PDLC system can have
two sets of phase equilibria depending on the initial compo-
sitions; one is the equilibrium of liquid–liquid phases and the
other is the equilibrium between isotropic liquid and nematic
phases. Figures 4 and 5 depict the free energy and its deriva-
tives versus composition for the above two situations, re-
spectively. It is customary to observe a kink in the total free
energy curve atfNI where the nematic ordering free energy
starts to take into effect. Such a kink is due to a step change
of the order parameter~from s50 to s5sc! during the
nematic–isotropic transition which renders the free energy
derivatives discontinuous.

For simplicity, we usef to represent the volume fraction
of the liquid crystal~component 1! with superscripts denot-
ing the phases. The equilibrium was established by means of
a double tangent method18 where the equilibrium volume
fractions ~fa,bb! fall on the same tangent line of the free

FIG. 2. Variation of the orientational order parameter vs temperature at
various concentrations for a PDLC system having aTNI at 60 °C.

FIG. 3. Variation of the Maier–Saupe free energy vs concentration for vari-
ous temperature of a PDLC system having aTNI at 60 °C.
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energy curve, and the first derivatives of the free energy are
equal at these two compositions, implying that the isotropic
liquid phase,fa, is in equilibrium with a nematic phase,fb.
At a higher temperature, the equilibrium may be established
for two sets of compositions,~fa1, fb1! and ~fa2, fb2!, as
shown in Fig. 5. The first set is the liquid–liquid equilibrium
which may be described simply by the Flory–Huggins equa-
tion. The second set represents the liquid–nematic equilib-
rium. Similar calculations have been performed for various
temperatures to establish a phase diagram for this hypotheti-
cal PDLC. As shown in Fig. 6, the phase diagram consists of
an upper critical solution temperature~UCST! overlapping
with the nematic–isotropic transition.

Now, we turn our attention to the calculation of spin-
odals. The stable condition requires that the second deriva-
tive of the total free energy is greater than zero~d2g.0!,
whereas the unstable condition gives the convexity of the
free energy curve. The spinodal, that separates the metastable
from the unstable state, is defined as the inflection point of
the free energy curve~d2g50!. In a PDLC system, the spin-
odals may be solved according to

S ]2g

]f2D
T,P

5S ]2gi

]f2 D
T,P

1S ]2gn

]f2 D
T,P

50. ~33!

The second derivatives for the Flory–Huggins theory and
Maier–Saupe theory may be obtained as follows:17

S ]2gi

]f2 D
T,P

5
1

r 1f
1

1

r 2~12f!
22x, ~34!

S ]2gn

]f2 D
T,P

52
1

r 1

d ln Z

df
, ~35!

where the volume fraction derivative of the partition function
can be derived by using Eqs.~13! and ~15!,17 i.e.,

d ln Z

df
5ns2S 12nf

ds

dmD 21

. ~36!

FIG. 4. Variation of free energy and its derivatives as a function of compo-
sition for a PDLC system exhibiting one double tangent line in the free
energy curve.

FIG. 5. Variation of free energy and its derivatives as a function of compo-
sition for a PDLC system exhibiting two double tangent lines in the free
energy curve.

FIG. 6. Phase diagram of a hypothetical PDLC system with parameters used
in the calculation.

560 C. Shen and T. Kyu: Spinodals in a liquid crystal mixture

J. Chem. Phys., Vol. 102, No. 1, 1 January 1995



There are at most three solutions at a given temperature from
Eq. ~33!, which may be represented byf1s, f2s, andf3s.
The first two solutions,f1s andf2s, represent the conven-
tional liquid–liquid spinodal points. The third spinodal point,
f3s, refers to the spinodal within the coexistence of the
nematic–isotropic liquid phase, which will be called hereaf-
ter the nematic–liquid spinodal or the NL spinodal.

When the composition is higher than the nematic order-
ing composition,fNI , the contribution from the Maier–
Saupe free energy must be taken into account. Equation~33!
suggests that one of the LL spinodals,f2s, cannot exist in a
composition greater than thefNI . The temperature at which
f2s is equal tofNI , hereafter denotedTLL ~point B in Fig.
6!, is the lower bound of this LL spinodal.

The spinodals of the hypothetical PDLC at both 35 and
45 °C can be obtained as shown in Figs. 4 and 5, respec-
tively. Theg9(f) curve crossing the zero line determines the
spinodals. In both temperatures, three spinodal points were
found,f1s, f2s, andf3s. The last one,f3s, is the NL spin-
odal point. As the temperature increases,f3s gradually
moves toward thefNI , and finallyf3smerges to thefNI line
~point A in Fig. 6!. The merged point represents the upper
bound for the NL spinodal, wheref3s is equal tofNI . How-
ever, the upper bound of the liquid–liquid spinodal curves,
f1s, andf2s, is essentially the critical point,fc, having a
critical temperature,Tc .

The existence of the NL spinodal is mainly due to the
suble inflection of the free energy curve within the nematic–
isotropic coexistence region. This inflection is resulted from
the delicate balance between the concave free energy curves
of the isotropic mixing and the convex free energy curve
from the anisotropic ordering. Physically, the composition
above the NL spinodal line is metastable against the nematic
ordering. However, the composition below this NL spinodal
line may be unstable or metastable against composition de-
pending on whether the temperature is below or above the
TLL . To the best of our knowledge, the existence of this NL
spinodal line has not been reported in the literature;6–10 our
calculation is probably the first to predict the spinodal line
within the nematic–isotropic region.

The critical point, defined as the third derivative of free
energy to be zero, can be found consistently from the mini-
mum of theg9~f! curves at both 35 and 45 °C cases as
depicted in Figs. 4 and 5, respectively.

E. Nematic phase limit

If the liquid crystal rich phase is very close to the nem-
atic phase limit~fb;1!, the binodal calculation needs to be
modified in order to avoid a trivial solution. Since the chemi-
cal potential of the polymer~component 2! approach nega-
tive infinity, Eq. ~29! can be dropped out andfb can be set
to unity. The equilibrium composition,fa, may be solved
from the following:

~m1
i !f5fa5~m1

n!f51 . ~37!

The PDLC system would reach the nematic phase limit
under two conditions; one is at temperatures far belowTNI
~T!TNI!, and the other is at temperatures very close to the
TNI . At the nematic phase limit, the nematic rich phase con-

tains exclusively the liquid crystal molecules in which the
polymer molecules may be totally rejected out of the nematic
phase. However, the isotropic phase~polymer-rich phase!
may still contain some dissolved liquid crystal molecules,
which is usually observed in most PDLC systems.

F. Test with experimental results

For the comparison with the experimental cloud points, a
parameter,wn, is introduced to account for the relative con-
tributions of different kinds of potentials. The total free en-
ergy, Eq.~1!, is then modified as

g5~12wn!gi1wngn, ~38!

wherewn may be related to polymer–nematic interfaces.17

Correspondingly, Eqs.~33! and~37! may be modified as fol-
lows:

S ]2g

]f2D
T,P

5~12wn!S ]2gi

]f2 D
T,P

1wnS ]2gn

]f2 D
T,P

50, ~39!

~12wn!~m1
i !f5fa5wn~m1

n!f51 . ~40!

The temperature versus composition phase diagrams were
calculated for various values ofwn and compared with the
experimental cloud points of the PBMA/E7 mixture in Fig.
7. The isotropic liquid–liquid phase separation region covers
only a small temperature gap. The calculated nematic bin-
odal line is very close to the nematic phase limit, indicating
that polymer chains could be excluded totally from the nem-
atic phase. Figure 8 shows a typical polarized optical micro-
graph of the~50/50! PBMA/E7 mixture that was quenched
from the isotropic region~80 °C! to room temperature. The
dispersed droplets are strongly birefringent due to the nem-
atic ordering within the domains, whereas the continuum is
dark as the polymer-rich phase is isotropic. It may be postu-
lated that the droplet PDLC structure formed because of the
off-critical quenching into the metastable region.

It should be pointed out that thex parameter used here
does not account for the molecular weight and volume de-

FIG. 7. A calculated phase diagram in comparison with the cloud points of
the PBMA/E7 system, showing thewn dependence.

561C. Shen and T. Kyu: Spinodals in a liquid crystal mixture

J. Chem. Phys., Vol. 102, No. 1, 1 January 1995



pendence. On the same token, the quadrupole interaction pa-
rameter of nematics,n, was assumed to be simply a function
of temperature without considering its volume dependence.
In fact the original Maier–Saupe theory15 predicted thatn
has an inverse volume square dependence.19 However,
Cotter20 argued thatn should have an inverse volume depen-
dence irrespective of the nature of intermolecular pair poten-
tial. The present calculation is not intended to fit the experi-
mental results quantitatively, but merely to demonstrate the
qualitative comparison. It is reasonable to conclude that the
calculated binodal curves certainly capture the trend of the
experimental cloud points for the present PDLC system at
least qualitatively.

IV. CONCLUSIONS

The combination of free energy of Flory–Huggins and
Maier–Saupe free energy predicted the complex phase dia-

gram comprising the liquid–liquid equilibrium and the
nematic–isotropic transition. Our calculation predicted a
nematic–liquid spinodal within the nematic–isotropic coex-
istence region in addition to the conventional liquid–liquid
spinodals. The nematic–liquid spinodal curve has an upper
bound and one of the liquid–liquid spinodals has a lower
bound. Both limits fall on thefNI line representing the onset
of the nematic–isotropic transition. We believe that both
spinodals should play important roles in the dynamics of
phase separation and pattern formation of PDLC systems.
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