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Relaxation of a rubbed polystyrene surface

Alexander D. Schwab and Ali Dhinojwala*
Department of Polymer Science, The University of Akron, Akron, Ohio 44325

~Received 9 August 2002; revised manuscript received 25 November 2002; published 10 February 2003!

The relaxation dynamics of a rubbed polystyrene~PS! surface have been characterized using infrared-visible
sum frequency generation spectroscopy~SFG!. The SFG results were compared with previous relaxation of
retardation measurements, and the results show that the rubbed PS surface has the sameTg as the bulk where
Tg is defined ast(Tg)55 s, however, the surface has a lower activation energy (DE) and a larger stretching
exponent (bKWW) than bulk PS. This indicates that the surface region relaxes more quickly than the bulk. The
thickness of this region of lowerDE and largerbKWW is estimated to be roughly 12 nm.

DOI: 10.1103/PhysRevE.67.021802 PACS number~s!: 36.20.2r, 61.20.Lc, 64.70.Pf, 68.15.1e

I. INTRODUCTION

The glass transition temperature (Tg) of thin supported
polymer films has been the subject of intense experimental
study over the past few years. Measurements of the average
Tg of atactic polystyrene~PS! films on nonattractive sub-
strates reveal that filmTg drops up to 30 K with decreasing
film thickness@1–7#. Several authors hypothesize on the ex-
istence of a layer with enhanced mobility at the free surface
of the film and that this layer of enhanced mobility domi-
nates the overall film properties as the film thickness de-
creases@1–7#. Attempts have been made to measure the dy-
namic properties of PS free surfaces with conflicting results.
Dynamic atomic force microscope measurements of a PS
free surface find either no change in the surfaceTg @8# or a
significant decrease in the surfaceTg @9# relative to bulk PS.
Near edge x-ray absorption fine structure~NEXAFS! mea-
surements on oriented PS surfaces reveal no enhancement
@10# or significant enhancement@11# of the surface relaxation
dynamics relative to the bulk. Finally, positron annihilation
lifetime spectroscopy measurements of the PS free surface
indicate the surface has the sameTg @12# and aTg 57 K
lower than the bulk@13#.

To better quantify relaxation dynamics at the PS-air inter-
face, we have measured the relaxation of rubbing induced
orientation of PS phenyl side groups using an inherently sur-
face sensitive technique, infrared-visible sum frequency gen-
eration spectroscopy~SFG!. In SFG, the system to be studied
is exposed to a high-intensity visible laser beam~800 nm!
and a tunable infrared laser beam~2750–3150 cm21!. Based
upon a dipole approximation, a group of molecules will emit
no net SFG if the molecular dipoles are centrosymmetric, as
is the case in an amorphous polymer glass such as PS. At the
PS film interfaces, however, this centrosymmetry is broken;
therefore SFG is generated only by the surface.

The surface relaxation data obtained from SFG are also
compared with previous results obtained for near-surface re-
laxations in rubbed PS probed with optical retardation mea-
surements@6,7#. This study shows that the surface has the
sameTg as the bulk, but the temperature dependence of the
surface relaxation times belowTg has a lower activation en-

ergy than in the bulk. Simply stated, at any temperature be-
low Tg , a surface region;12-nm thick relaxes more quickly
than the bulk.

II. EXPERIMENT

A. SFG measurements

The visible and tunable IR laser beams have a pulse width
of 1 ps and a repetition rate of 1 kHz and are produced by a
Spectra Physics Spitfire and OPA-800, respectively. The av-
erage visible and IR intensities are 200 mW and 1–2 mW,
respectively, and the resulting IR pulse energy is well de-
scribed by a Gaussian probability distribution with a stan-
dard deviation of 8.7 cm21. SFG signals from sample inter-
faces are passed through optical notch filters and detected
using a photomultiplier tube with gated photon counting
electronics. SFG signals are normalized to the average IR
intensity obtained by taking a fraction of the IR beam to a
pyroelectric detector.

B. Birefringence measurements

The optical train for the birefringence measurements was
composed of a HeNe laser light source, a polarizer oriented
at 145°, a photoelastic modulator~PEM!, the sample to be
studied mounted on a rotation stage, a polarizer oriented at
245°, and finally a Si photodiode detector. The light inten-
sity at the photodiode was measured at one and two times the
modulation frequency of the PEM and the birefringence was
obtained from these intensities@14#.

C. Sample preparation

For all the measurements presented in this paper, PS
(Mn562 600 g mol21, Mw /Mn51.03) films were prepared
by spin coating from toluene solution on substrates that were
cleaned in a base bath, rinsed with deionized water, dried
with N2 , and Ar plasma cleaned. The films were annealed
10–30 K above bulkTg for at least 2 h and cooled slowly to
room temperature under vacuum. The substrates used de-
pended on the experimental technique used and the type of
experiment. Thin glass microscope cover slides, glass micro-
scope slides, and sapphire prisms were used as substrates for
birefringence measurements, measurements of the in-plane*Corresponding author.
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anisotropy of SFG intensity caused by film rubbing, and re-
laxation of SFG intensity measurements, respectively. The
sapphire prism allowed the use of a total internal reflection
geometry that has been shown to give a significant enhance-
ment in the SFG intensity when the incident angle is near the
critical angle of total internal reflection@15#.

III. RESULTS AND DISCUSSION

A. Static birefringence measurements

The birefringence instrument described in the experimen-
tal section measures the effective retardation of light caused
by the sample as the sample is rotated about the surface
normal by the angleg shown in Fig. 1. The dependence of
the effective retardation on the rotation angle can be deter-
mined by modeling the train of optical elements with Jones
matrices@16#. The resulting expression for the relationship
between the measured effective retardationdeff , the rotation
angleg, and the true sample retardationd, is

udeffu52 sin21Fcos~2g!sinS d

2D G . ~1!

Whendeff is measured over a wide range of rotation angles,
the direction of the optic axes of the sample birefringence as
well as the sign of the birefringence can be determined.
When the sample is oriented withg5k90° (k50,1,2,3), Eq.
~1! becomesdeff5d and the birefringence instrument then
measures the retardation of the sample. The retardationd
represents the phase difference between light transmitted
through the sample polarized in the directions of the sam-
ple’s optic axes. The expression that relates the sample retar-
dation to the birefringence in the sample is

d5E
0

2h 2pDn~z!

l
dz, ~2!

whereh is the film thickness andDn(z) is the birefringence
at a distancez from the PS-air interface (z50). After appli-
cation of some simplifying assumptions that are described
later, the sample’s retardation is the product of the birefrin-
gence in the sample,Dn, and the thickness over which this
birefringence exists,deff :

d5
2pDndeff

l
, ~3!

wherel is the wavelength of light used~632.8 nm! @6,7,17#.
The retardation of a PS film (200610)-nm-thick rubbed

different amounts with a velour cloth and measured at differ-
ent sample orientations~Fig. 1! can be found in Fig. 2. The
birefringence measured by the instrument is at a maximum
wheng5k90° (k50,1,2,3), indicating that the sample’s op-
tic axes are parallel and perpendicular to the rubbing direc-
tion in the film. As the sample is rubbed an increasing num-
ber of times, the retardation of the film increases, and the
optic axes remain parallel and perpendicular to the direction
of rubbing, as seen by the increasing sizes of the effective
retardation lobes in Fig. 2. We were also able to determine
the absolute sign of the retardation by calibrating the instru-
ment with a sample of known retardation. The rubbed PS
film exhibits negative birefringence, meaning the refractive
index of the sample increases perpendicular to the direction
of rubbing. This same phenomenon is found for PS films
uniaxially stretched at elevated temperatures and is attributed
to the highly polarizable phenyl side groups becoming ori-
ented perpendicular to the direction of stretching of the poly-
mer backbone@18#.

Upon inspection of Eqs.~2! and ~3!, it is apparently not
possible to determine whether the increase in retardation
with rubbing is due to an increase in the orientation (Dn) or
an increase in the depth of the rubbing,deff . A study on

FIG. 1. Diagram relating the orientation of the sample relative to
the polarizer (P1) and analyzer (P2) of the birefringence measure-
ment apparatus as well as to the incident and output beams of the
SFG experiment. The rubbing direction on the PS film, indicated by
the dashed arrows, is rotated an angleg with respect to the vertical
plane. This view is drawn looking at the sample surface from the
side of the incident beams.

FIG. 2. Plot of effective retardation,deff as a function of the
rotation angleg as seen in Fig. 1 for a (200610)-nm-thick PS film
rubbed 6, 16, and 48 times with a velour cloth. The lobes at 0°, 90°,
180°, and 270° indicate that the optic axes of the sample are parallel
to and perpendicular to the rubbing direction in the film. The rela-
tive size of the lobes indicates that the sample’s retardation in-
creases with the number of rubbing iterations.
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polyimide films of different thicknesses rubbed with varying
rubbing strengths indicates that the birefringence of the ori-
ented portion of the film is uniform to a certain depth and
that this depth increases with rubbing strength; whereas the
amount of orientation (Dn) is independent of rubbing
strength@6,7,17#. It is based on these findings that Eq.~3!
becomes valid. Therefore, the increase in retardation seen
with rubbing iterations in Fig. 2 is due to the increased depth
of orientation of PS chains rather than the increased magni-
tude of orientation.

B. Static SFG measurements

We have previously characterized both the PS-air and PS-
substrate interfaces of a PS film on sapphire using SFG in the
internal reflection geometry@15#. Phenyl C-H stretching vi-
brations, the most prominent at 3070 cm21 corresponding to
the n2 vibrational mode, dominate the SSP polarized~s-
polarized SFG,s-polarized visible, andp-polarized infrared!
SFG spectrum of the PS-air interface. This is indicative of a
surface populated by phenyl side groups that are oriented
nearly perpendicular to the surface of the film@15,19#. Spec-
tra obtained using external reflection geometry and an inci-
dent angle of;60° appear identical to spectra of the PS-air
interface obtained using internal reflection geometry. Other
results obtained by our group@20# as well as plasma treating
experiments described later in this paper conclusively show
that SFG spectra of PS films taken in an external reflection
geometry are dominated by the PS-air interface. In the exter-
nal reflection geometry, it is possible to search for surface
in-plane anisotropy of phenyl group orientation by observing
the SFG intensity of the aromatic C-H stretch at 3070 cm21

as the sample is rotated about the surface normal as shown in
Fig. 1.

The SFG intensity at 3070 cm21 corresponding to then2

vibrational mode as a function of the rotation angleg for an
unrubbed and two rubbed PS films on glass substrates is
shown in Fig. 3. The intensity for the unrubbed sample is
roughly independent of the rotation angle, whereas the
rubbed sample shows a definite anisotropy in SFG intensity
with respect to the rotation angleg.

The SFG intensity from then2 vibrational mode as a
function of the sample orientation can be predicted for dif-
ferent orientations of the phenyl group with respect to the
surface. The SFG intensity atv11v2 has the following form
@21,22#:

I ~v11v2!5
8p3~v11v2!2

c3n1~v11v2!n1~v1!n1~v2!cos2 f8
uxeffu2I 1~v1!I 2~v2!, ~4!

wherev1 andv2 are the frequencies of the visible~800 nm!
and infrared~3070 cm21! wavelengths, respectively,I 1 and
I 2 are their intensities,n1 is the refractive index of the first
medium,f8 is the angle the SFG output beam makes with
the surface normal, andxeff is the effective surface second
order susceptibility. The effective surface susceptibility takes
into account the magnitude of the electric fields experienced
by the molecules at the interface as well as the relationship
between the surface polarization vector and the magnitude of
the emitted SFG radiation as shown in the following equa-
tion @21,22#:

xeff5 b l%L% ~v11v2!ēSFGcx% : b l%L% ~v1!ē1c b l%L% ~v2!ē2c, ~5!

where the diagonal matricesL% and l% describe the Fresnel

coefficients and the local field corrections for the incident
electric fields; ē1 , ē2 , and ēSFG are the unit polarization
vectors for the visible, infrared, and SFG beams, respec-
tively; andx% is the true surface nonlinear susceptibility.

The true nonlinear surface susceptibility has a resonant,

^b% &, and a nonresonant,x% NR, component:

x% 5x% NR1Ns^b% &5NsE b% ~V! f ~V!dV. ~6!

The value V represents the set of molecular orientation
angles~u, c, f!, and f (V) is the orientation probability dis-
tribution. The resonant component of the nonlinear suscepti-
bility is the product of the number of molecules on the sur-
face, Ns , and the average of the molecular

FIG. 3. Plot of the SFG Intensity at 3070 cm21 as a function of
rotation angleg in Fig. 1 for a PS film (520610)-nm thick before
and after rubbing with a velour cloth. The solid line is the SFG
intensity calculated using Eqs.~4! and ~9! with uxyyzu2/uxxxzu2

50.55 andxxyz50, and the dashed line is a circle of intensity as
predicted by Eqs.~4! and ~13! for the unrubbed PS film.
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hyperpolarizability,b% . In thea, b, c coordinate system of the
phenyl ring as seen in Fig. 4, the hyperpolarizability compo-
nents for a particular molecular vibration mode,q, are the
product of the infrared polarizability derivative]mn /]q and
the Raman polarizability tensor element]a lm /]q of the
form @23#:

b lmn52
1

2vq

]mn

]q

]a lm

]q
. ~7!

The molecular hyperpolarizability tensor components can be
estimated by assuming that the additivity of individual C-H
bond polarizabilities and dipole moments is valid. If the
bond polarizability derivatives for the aromatic C-H stretch
as calculated by Whiffen@24# as well as the bond amplitudes
used by Duffyet al. @23# are used, the hyperpolarizability
components for then2 vibrational mode are:

baac'bccc@bbbc , ~8!

where the remaining molecular hyperpolarizability compo-
nents are all zero.

The elements of the laboratory hyperpolarizability tensor
contributing to the SSP SFG intensity can be determined by
performing coordinate transformations on Eq.~5!. In addi-
tion, it is assumed that the surface has symmetry about they
axis ~the rubbing direction! as well as forward-backward
symmetry with respect to the rubbing direction. The assump-
tion of forward-backward symmetry is made because the
SFG intensities atg590° and 270° are nearly equal;
whereas they would be unequal in the presence of significant
forward-backward asymmetry. The effective surface hyper-
polarizability leading to then2 vibrational contribution to the
SSP polarized SFG radiation,xeff,SSP, has the following
form:

xeff,SSP5Lyy~vSFG!Lyy~v1!Lzz~v2!@xxxzsin2 g22xxyzcosg sing1xyyzcos2 g#, ~9!

whereLyy , andLzz are the Fresnel coefficients for light po-
larized parallel to they andz axes shown in Fig. 1, and they
should incorporate the local field corrections following the
procedure described in Refs.@21# and @22#.

The orientation of the phenyl ring moleculara, b, andc
axes with respect to a surface are shown in Fig. 4. The PS-air
interface is parallel to thex-y plane. The anglec, important
in describing in-plane orientation, is the direction of the pro-
jection of the phenylc axis into the plane of the surface

where an anglec590° means the phenylc axis is tilted by
an angleu towards they axis. The anglef represents the
rotation of the phenyl group about the bond connecting it to
the PS backbone. Whenf50°, the plane of the phenyl
group is perpendicular to the plane of the surface. The rela-
tionships between the laboratory hyperpolarizability coeffi-
cients appearing in Eq.~9! and the significant terms of the
molecular hyperpolarizability tensor have the following
forms ~wherer is the ratio ofbaac/bccc):

xxxz5bcccb^cos2 c&$^cos3 u&@r ^cos2 f&21#1^cosu&@12r ~12^cos2 f&!#%1r ^cosu&@12^cos2 f&# c, ~10!

xyyz5bcccb^cos2 c&$2^cos3 u&@r ^cos2 f&21#2^cosu&@12r ~12^cos2 f&!#%1^cos3 u&@r ^cos2 f&21#1^cosu& c,
~11!

xxyz52
r

2
bccĉ cos2 u&^cosf&^sinf&~2^cos3 c&21!. ~12!

FIG. 4. A diagram showing the relationship between the phenyl
group molecular coordinate system~a,b,c! and the laboratory coor-
dinate system~x,y,z! by means of the Euler anglesu, f, andc.
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The SFG intensity at 3070 cm21 from the rubbed PS
samples is anisotropic with respect to the rotation angleg as
seen in Fig. 3. The anisotropy of the SFG intensity expressed
as the ratio of the intensity atg50° to the intensity atg
590° is uxyyzu2/uxxxzu2 as seen in Eqs.~4!, ~5!, and~9!. This
ratio obtained from all of the data atg50°, 180° andg
590°, 270° is (45.166.0)/(81.868.7)50.5560.09. The
same ratio obtained by Oh-e and co-workers for rubbed iso-
tactic PS is 0.6360.07, in agreement with our results@25#. A
plot of the SFG intensity from then2 vibrational mode pre-

dicted usinguxyyzu2/uxxxzu250.55 in Eqs.~9! and ~4! and
assumingxxyz50 is shown as a solid line in Fig. 3. The fact
that uxyyzu2/uxxxzu2,1 indicates that the phenylc axes are
predominantly oriented perpendicular to the rubbing direc-
tion (c50°).

The SSP polarized SFG intensity of the unrubbed PS sur-
face is nearly independent of the orientation angle,g in Fig.
3. This occurs when the orientation of the phenyl rings be-
comes isotropic inc, as in the following equation for the
effective surface hyperpolarizability:

xeff,SSP5
1
8 Lyy~v1!Lyy~vs!Lzz~v2!sin~f1!$bccc~4^cosu&26^cos3 u&!1baac@2^cos3 u&~11^cos2 f&!12^cosu&#%.

~13!

It can be seen thatxeff,SSPbecomes independent ofg when
all possible angles forc become equally probable.

C. Plasma treatment of a rubbed PS surface

As a demonstration of the relative surface sensitivity of
the optical retardation and SFG techniques, we performed a
simple experiment where a rubbed PS film was exposed to a
5-s Ar plasma treatment in a Harrick PDC-32G plasma
cleaner. The plasma treatment of a PS film has been shown to
destroy the phenyl groups at the PS-air interface, but not at
the hidden PS-substrate interface@15,26#. The external re-
flection geometry SFG spectrum of a rubbed PS film exposed
to the plasma can be seen in Fig. 5~a!. The peaks in the
spectrum associated with the aromatic C-H stretches~3020–
3080 cm21! are eliminated showing that the surface function-
ality has been destroyed and that PS SFG spectra obtained in
external reflection geometry are sensitive only to the PS-air
interface. Retardation measurements on a similarly rubbed
and plasma treated sample show that the retardation is not
completely destroyed by the plasma treatment as seen in Fig.
5~b!. This demonstrates that the SFG measurements are sen-
sitive to a region very close to the surface.

D. Relaxation of a rubbed PS surface upon heating

Having shown that SFG is sensitive to the in-plane orien-
tation of phenyl rings at the rubbed PS-air interface, we can
study the relaxation of the orientation of a PS free surface. In
this portion of the study, PS films were created on sapphire
prism substrates. The prism substrate allows SFG spectra to
be taken in an internal reflection geometry that yields an
enhancement in the SFG intensity from the PS-air interface
when the incident angle is equal to the critical angle for total
internal reflection at the PS-air interface~36°! @15#. The films
on the prisms are rubbed and mounted on a controlled heat-
ing stage withg590°. Inspection of Fig. 3 reveals that at
g590°, the SFG intensity should decrease as the surface
orientation of the phenyl groups relaxes from the rubbed
state to the unrubbed state upon heating. Figure 6 shows the
SFG intensity of then2 vibrational mode at 3070 cm21 as a
rubbed PS film is heated and then cooled at a rate of 1

K min21. It is clear that the intensity does decrease as the
rubbed film is heated due to surface relaxation. Furthermore,
the SFG intensity decreases to;60% of its initial value after
being heated to;370 K. The magnitude of this drop is con-
sistent with that expected by inspection of Fig. 3 if a rubbed
film aligned withg590° went from the rubbed state to the
isotropic, or unrubbed state.

At this point, we would like to address concerns that the
SFG intensity changes observed are due to shifts in the criti-
cal angle for total internal reflection caused by temperature
induced changes in the refractive indices of PS or sapphire.
Equations~4! and~5! show that the SFG intensity is propor-
tional to the Fresnel coefficients, which are in turn sensitive
to the incident angles,f1 , f2 , andf3 , relative to the criti-
cal angles for total internal reflection. Snell’s law for a three
layer system@27# states thatn1 sinf15n2 sinf25n3 sinf3,
where materials 1, 2, and 3 are sapphire, PS, and air, respec-
tively. The observed critical angle for total internal reflection
at the PS-air interface occurs whenf3590°. The experi-
mental PS-air critical angle occurs whenf15sin21(n3 /n1)
and is independent of the refractive index of PS. This means
any changes in the refractive index of rubbed PS due to
relaxation of birefringence will have no effect on the ob-
served position of the critical angle. The critical angle is,
however, affected by changes in the refractive index of sap-
phire, assuming the refractive index of air does not change
significantly over the temperature range of the experiment.
Therefore, changes in the critical angle with temperature
caused by changes in the sapphire prism’s refractive index
are expected to be reversible in temperature. The SFG inten-
sity seen in Fig. 6 does not return upon cooling, indicating
that any shifts in the PS-air critical angle have no effect on
the changes in SFG intensity seen upon heating a rubbed PS
sample.

In order to compare the surface relaxation results obtained
with SFG to those obtained from birefringence, it is neces-
sary to take an in-depth look at what type of orientation the
two techniques are probing. The relationship between bire-
fringence and orientation in uniaxially stretched polymer ma-
terials is described by the Hermans orientation function@28#
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Dn5Dnint

3^cos2h&21

2
, ~14!

whereh is the average angle a polymer repeat unit backbone
makes with the drawing direction andDnint is the intrinsic
birefringence of the polymer repeat unit. The SFG intensity,
on the other hand, is proportional toua^cos2 c&1bu2 as seen
in Eq. ~10!, where the coefficientsa andb are dependent on
the Fresnel coefficients, the molecular hyperpolarizability
tensor elements, and the molecular orientation anglesu and
f. If the square root of the SFG intensity during relaxation,
AI SSP, is subtracted from the square root of the SFG intensity
after relaxation is complete,AI SSP,̀ , and the anglesu andf
are assumed to be constant, the following expression is ob-
tained:

AI SSP2AI SSP,̀ }a~^cos2 c&2 1
2 !. ~15!

The expression in Eq.~15! represents a way to present the
SFG relaxation data to obtain an order parameter in terms of
^cos2 c&. Assuming that the PS backbone segments lie in the
plane of the surface and the PS phenyl side groups are ori-
ented roughly perpendicular to the polymer backbone, the
anglec represents the surface or two-dimensional analog of
the angleh. In essence, the SFG order parameter as pre-
sented in Eq.~15! can be directly compared to the order
parameter obtained from birefringence~optical retardation!
measurements.

In Fig. 7~a! are the relaxation of birefringence data for a
lightly rubbed thick~10 mm! PS film and a highly rubbed
thick PS film obtained in previous studies@6,7#. As men-
tioned earlier, the orientation in a lightly rubbed film does
not penetrate as deep into the film as the orientation in a
highly rubbed film. We have estimated the penetration depth
of the orientation,deff , to be 7 and 28 nm for the lightly
rubbed and highly rubbed thick films, respectively@6,7#. The
relaxation behavior exhibited for these films should therefore
probe the average relaxation dynamics in the top 7 and 28
nm of the lightly and highly rubbed thick films, respectively.
Figure 7~b! shows the results of a surface relaxation mea-
surement with the SFG intensity presented as in Eq.~15!. By
comparing the data in Figs. 7~a! and 7~b!, it can be seen that
the surface relaxation appears very similar to that of the
lightly rubbed thick PS film.

The retardation and SFG relaxation data can be fit using a
constant heating rate relaxation model previously developed
@6,7# and seen in Eq.~16!. The model assumes a Kohlrausch-
William-Watts ~KWW! @29# stretched exponential time de-
pendence for the retardation,d with a stretching exponent
bKWW , temperature dependent relaxation timet, for experi-
ments performed at a constant linear heating rate ofA,

FIG. 5. ~a! SFG spectrum of the PS-air interface before and after
a 5-s Ar plasma treatment. The disappearance of the broad peak
centered at 3070 cm21 indicates the elimination of the phenyl moi-
ety from the PS-air interface.~b! The effective retardation,deff , of a
PS film 200-nm thick before and after a 5-s Ar plasma treatment. A
slight decrease in the retardation magnitude in the plasma treated
sample is due to the surface alteration effects of the plasma.

FIG. 6. Relaxation of the SFG intensity at 3070 cm21 in a
rubbed PS film (520610)-nm thick mounted withg590° and
heated at a constant rate of 1 K min21. Also included is the SFG
intensity at 3070 cm21 as the same film is cooled from 390 to 320
K at a rate of 1 K min21.

A. D. SCHWAB AND A. DHINOJWALA PHYSICAL REVIEW E 67, 021802 ~2003!

021802-6



d~T!5do expF2E
To

T bKWW~T2To!bKWW21

@At~T!#bKWW
dTG . ~16!

The relaxation time is assumed to follow an Arrhenius tem-
perature dependence belowTg and a Williams-Landel-Ferry
~WLF! temperature dependence@30# aboveTg as seen in Eq.
~17!,

t~T!5H t~Tg!expF2
DE

R S 1

T
2

1

Tg
D G , T,Tg

t~Tg!3102c1~T2Tg!/~c21T2Tg!, T>Tg

J .

~17!

The WLF parametersc1 andc2 are 13.7 and 50.0 K, respec-
tively. The relaxation time atTg , t(Tg), is assumed to be 5
s based on experimental measurements of relaxation times in

PS nearTg @31–36#. We have also conducted isothermal bi-
refringence relaxation measurements belowTg and the re-
sults are in good agreement with those obtained using a con-
stant heating rate of 1 K min21 @37#. This indicates that a
KWW equation along with Arrhenius temperature depen-
dence is a good model for relaxation belowTg .

The relaxation curves in Fig. 7 as well as other data pre-
sented previously@6,7# can be fit with Eqs.~16! and ~17! to
obtain useful relaxation parameters such as the stretching
exponentbKWW , the activation energyDE, and the glass
transition temperatureTg . In the analysis presented origi-
nally, the retardation relaxation curves from 10-mm-thick PS
films rubbed to different strengths were fit with the activation
energyDE and bKWW fixed at 205 kJ mol21 and 0.36, re-
spectively@6,7#. This procedure was adopted because similar
measurements on films of varying thicknesses indicated that
DE andbKWW did not vary with film thickness. A better fit
of the data was obtained by floating all three parameters,
DE, bKWW , andTg and the results are summarized in Fig. 8.
The results indicate that the activation energy and relaxation
exponent of the near surface region are actually different
than those of the bulk. The relaxation parameters are plotted
as a function of the initial retardation as well as the estimated
depth of orientation,deff . The SFG relaxation data of this
study are represented asdeff50 because it is a measure of the
surface dynamics.

It can clearly be seen in Fig. 8~a! that the activation en-
ergy DE of the surface is lower than that of the bulk. The
most highly rubbed PS thick film relaxation data presented in
Fig. 8 are indicative of bulk relaxation dynamics. In addition,
the stretching exponentbKWW of surface is larger than that in
the bulk, indicating a narrower distribution of relaxation
times at the surface relative to the bulk@Fig. 8~b!#. The
stretching exponent can be used to account for a distribution
of relaxation times where a decreasingbKWW value repre-
sents a broader distribution of relaxation times. Both the
lower activation energy and largerbKWW value of the surface
can be rationalized by the existence of a relatively free en-
vironment at the surface with less hindrance to relaxation
processes.

In contrast to the generally held belief, the SFG relaxation
data indicate that the surface does not have a significantly
lower glass transition temperature than the bulk@Tg (deff
50)5365.062.6 K andTg (deff531.9 nm)5366.160.9 K].
This difference inTg is not as large as 57 K as seen in
positron annihilation measurements@13#, nor does it indicate
the surface has aTg of 305 K as expected from theoretical
models applied to supported thin film data@38#. The glass
transition temperature is defined here as the temperature
whent55 s. The enhanced mobility believed to exist at the
surface does actually appear belowTg as demonstrated in
Fig. 9. A lower surface activation energy naturally causes
surface relaxation times at any temperature belowTg to be
lower than those of bulk PS. Though the mobility of the
surface is enhanced, it is not a liquid, where our current
definition of a liquid would requiret,5 s. Little comment
can be made, unfortunately, on the temperature dependence
of the surface relaxation times aboveTg because they cannot
be adequately captured using the current experimental setup.

FIG. 7. ~a! Relaxation of retardation for a lightly rubbed and a
highly rubbed PS film~10-mm thick! heated at a rate of 1 K min21

@6,7#. ~b! Relaxation of SFG intensity modified as per Eq.~15! and
as described in text. All relaxation curves are normalized to their
initial values before the onset of heating. The solid lines represent
the fits to the data obtained using the relaxation model shown in
Eqs.~16! and ~17!.
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Figure 9 also illustrates the dangers of attempting to infer
changes inTg for polymer surfaces and for thin polymer
films from dynamic or diffusion experiments performed at a
single temperature. The observation of faster relaxation times
or faster diffusion in a polymer film or near a polymer sur-
face does not necessarily indicate that the film has a lower
glass transition temperature. It may, rather, indicate that the
temperature dependence of the diffusion or relaxation pro-
cesses have changed with film thickness.

Furthermore, the temperature dependence of dynamic me-
chanical properties measured at a single frequency cannot
necessarily provide correct information on surfaceTg . In
these types of experiments, surfaceTg is assumed to be the
temperature where the surface mechanical properties change
from being elastic to rubbery or liquidlike. From Fig. 9, it
can be seen that the frequency of the measurement should
affect the ‘‘Tg’’ determined in this manner. For example,

measurements performed at higher frequencies should yield
values for ‘‘Tg’’ that are higher than comparable measure-
ments performed at lower frequencies. Furthermore, the dif-
ference in the surface and bulk ‘‘Tg’’ as determined by dy-
namic measurements of this type should increase with
decreasing measurement frequency.

This is exactly the behavior that has been seen using
atomic force microscopy to study surface mechanical prop-
erties. Dinelli et al. find that the surfaceTg determined by
measuring the temperature dependence of the frictional force
between an atomic force microscope~AFM! tip sliding at a
constant velocity and a PS surface increases with increasing
sliding velocity ~;frequency! @39#. Kajiyama et al. also
showed that the surface frictional properties at different slid-
ing rates and temperatures appeared to follow time tempera-
ture superposition, and the shift factor appeared to follow an
Arrhenius temperature dependence@40#. A lower surface ac-
tivation energy also resolves the discrepancy between Refs.
@9# and @8#. Kajiyama et al. find that the PS surfaceTg is
lower than the bulk, especially at lower molecular weights,
as determined using an AFM tip sliding velocity of 1mm s21

@9#. Ge et al., on the other hand, use an oscillatory sliding
motion for the AFM tip with an amplitude of 3 nm and a
frequency of 1400 Hz@8#. This correlates to a peak sliding
velocity of 26mm s21, which may explain why they find that
the surfaceTg is not lower than bulkTg regardless of the PS
molecular weight@8#.

The estimated size of the surface region of lower
activation energy also helps to explain the discrepancy
between previous NEXAFS results@10,11#. Liu et al. used a

FIG. 8. Plot of~a! activation energyDE, ~b! stretching exponent
bKWW , and ~c! glass transition temperatureTg , as a function of
rubbing strength quantified as the initial retardationdo in thick ~10
mm! PS films. The top horizontal axes represent an estimation of
the effective rubbing depthdeff obtained for each rubbing strength.
The surface sensitive results of this work are represented as having
an effective depth of zero (deff50).

FIG. 9. Conceptual plot illustrating the differences in relaxation
times obtained for bulk and surface relaxation times in PS. The
solid lines indicate the average relaxation time and the dashed lines
are indicative of the breadth of the relaxation time distribution as
determined frombKWW . Experimentally, the activation energy of
the surface@DE515363 kJ mol21# was found to be lower than
that of the bulk@DE5206620 kJ mol21#, and the stretching expo-
nent of the surface (bKWW50.4460.01) was found to be higher
than that of the bulk (bKWW50.3760.06). The surface relaxation
dynamics aboveTg could not be characterized in this study.
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NEXAFS technique and found that the top 1 nm of a rubbed
PS film does not relax more quickly than the top 10 nm@10#.
Wallaceet al., on the other hand find that the top 2 nm of a
uniaxially drawn PS film relax more quickly than the top 200
nm @11#. The results shown in Fig. 8 clearly show little dif-
ference between the surface relaxation parameters (deff50)
and the relaxation parameters obtained for the top 10 nm,
thereby explaining the discrepancy between the results of
Liu et al. and Wallaceet al.

Finally, some comment should be made on the relation-
ship between the length scales of the surface region with
enhanced mobility and the length scale where thin filmTg
begins to significantly drop. The region of enhanced mobility
near the surface of PS appears to be roughly;12-nm thick
as seen in Fig. 8. Similarly, significant drop in PS filmTg
occurs when PS film thickness drops below;30 nm
@1–3,6,7#. Exactly how this surface region of reduced acti-
vation energy later manifests itself as a decreasingTg with
decreasing film thickness is not entirely clear, but the reduc-

tion in film Tg does not apparently occur until the entire
volume of the film is composed of similarly affected surface
regions.

IV. CONCLUSIONS

Many experiments@1–7# and computer simulations@41–
43# have indicated the existence of a surface layer with en-
hanced mobility at the free surface of a glassy polymer, and
the measurements presented here are conclusive evidence for
its existence belowTg . This layer, estimated to be;12-nm
thick, is well characterized as having an lower activation
energy and a narrower distribution of relaxation times rela-
tive to those of bulk PS.
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