Engineering Conferences International ECI Digital Archives

Biological and Pharmaceutical Complex Fluids III: Protein Self-Assembly, Rheology and Interfacial Properties

Proceedings

7-15-2019

Aggregation challenges in the formulation development of multi-dose peptide products

Jingtao Zhang

Katelyn Smith

Wei Xu

Yongchao Su

Suzanne D'Addio

See next page for additional authors

Follow this and additional works at: https://dc.engconfintl.org/bpcf_iii

Authors

Jingtao Zhang, Katelyn Smith, Wei Xu, Yongchao Su, Suzanne D'Addio, Yogita Krishnamachari, Jameson Bothe, Daniel Yin, and Xinpei Mao

AGGREGATION CHALLENGES IN THE FORMULATION DEVELOPMENT OF PEPTIDE PRODUCTS: KINETICS AND ANALYTICS

Jingtao Zhang Principal Scientist Merck & Co., Inc., Kenilworth, NJ, USA

Peptide Therapeutics Constitutes an Unique Modality

• Peptide products differentiate with other modalities in targets requiring high affinity agonist action, especially those associated with natural hormones.

MSD

Peptides Present Unique Challenges for Parenteral Formulation Development

- Formulation goal: bioavailability + <u>stability</u> + sterility...
- Peptides typically don't have well ordered structure and therefore chemical and physical stability could be worse than biologics. Daily use product require >18 month 5°C solution product
- In particular, poor understanding in the developability study for physical stability
- Stability could frequently be the limiting factors in peptide formulation development (e.g. glucagon).

Reversible and Irreversible Aggregation in Synthetic Peptides

Amyloid Fibrils are Supramolecular Assemblies with Highly Ordered Stacking

Science. 2017 Oct 6;358(6359):116-119

5468-5473 | PNAS | April 2, 2013 | vol. 110 | no. 14

Nucleated Polymerization of Fibril Kinetics

Where is the Gap in the Development Knowledge?

• Is it due to the non-ideal behavior in kinetics between accelerated conditions and real time?

High unfolding energy can contribute to the non-Arrhenius behavior.

The AAPS Journal, Vol. 15, No. 3, July 2013

- Is it because the how representative the materials are (both benchmarks and peptide A)?
 - Purity
 - Manufacturing method
 - Counterions
 - Preexisting seeds

• ...

Small Peptides are Conformationally Unstable—Unlike Most Proteins

Helical peptides undergo gradual melting upon heating

• Unfolding is of low cooperativity and reversible.

Formulation	$T_m(^{\circ}C)$	ΔH_m	ΔS_m	$\Delta G_{20 \ ^{\circ}C}$
pН		(kcal/mol)	(cal/mol/K)	(kcal/mol)
pH 6	74.9 ± 1.9	47.7 ± 14.1	137.2 ± 40.5	7.5
pH 7	75.2 ± 2.4	21.2 ± 4.9	60.9 ± 14.0	3.3
pH 8	65.2 ± 0.7	26.2 ± 3.9	77.4 ± 11.4	3.5
pH 9	63.1 ± 1.0	21.5 ± 5.5	64.0 ± 16.4	2.7

Zhang et al. Mol. Pharmaceutics 2018, 15, 5591-5601

Accelerated Study Conditions: Assembly of Peptide Alone Shows Arrhenius Kinetics

Assembly of Peptide Alone Shows Arrhenius Kinetics: Accelerated vs. Real Time

Zhang et al. Mol. Pharmaceutics 2018, 15, 5591–5601

MSD

Can "Seeds" Play a Role in the Kinetics?

- Peptide alone demonstrates an aggregation kinetics that are Arrhenius in nature. i.e accelerated testing at high T and shear could be used to extrapolate to real time.
- Temperature behavior in kinetics cannot explain the observed effects.

- Is it because the how representative the materials are (both benchmarks and peptide 2)?
 - Purity
 - Manufacturing method
 - counterions
 - Preexisting seeds
 - ...

How can Submicron "Seed" Species Influence Product Quality? Can We Detect Them Quantitatively?

Methods explored for detecting of the "seeds"

- Conventional aggregation control method did not work for these purpose.
- Use of the ThioT kinetic test (i.e, assume the lag time correlate with presence of amount of seeds)
- Can we leverage the use of submicron tools, although may need to differentiate between active vs inactive seeds.

Conclusion

- Peptides are uniquely differentiated from protein and small molecules.
- Aggregation is a significant risk for pharmaceutical development of peptide drug products. Understanding of aggregation pathway is highly important to its development.
- Fibrillation kinetics are highly sensitive to its preparation method, purity, existing of seeds etc. Seamless integration between DS and DP are requiredMSD

Acknowledgments

Department of Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ, USA

- Xinpei Mao (co-op)
- Katelyn Smith
- Matthew Lamm
- Eric Kemp
- Yongchao Su
- Wei Xu
- Anthony Leone
- Patrick Ahl

- Yogita Krishnamachari
- Suzanne D'Addio
- Daniel Yin
- Claudia Neri
- Jameson Bothe
- Hao Luo

