Engineering Conferences International ECI Digital Archives

Pyroliq 2019: Pyrolysis and Liquefaction of Biomass and Wastes

Proceedings

6-17-2019

Heat of reaction of hydrothermal liquefaction reactions

Morgane Briand CEA-LITEN, France, morgane.briand@cea.fr

Geert Haarlemmer CEA LITEN DTBH/STHB/LTCB

Pascal Fongarland LGPC – Université Lyon 1

Anne Roubaud CEA LITEN DTBH/STHB/LTCB

Follow this and additional works at: https://dc.engconfintl.org/pyroliq_2019 Part of the <u>Engineering Commons</u>

Recommended Citation

Morgane Briand, Geert Haarlemmer, Pascal Fongarland, and Anne Roubaud, "Heat of reaction of hydrothermal liquefaction reactions" in "Pyroliq 2019: Pyrolysis and Liquefaction of Biomass and Wastes", Franco Berruti, ICFAR, Western University, Canada Anthony Dufour, CNRS Nancy, France Wolter Prins, University of Ghent, Belgium Manuel Garcia-Pérez, Washington State University, USA Eds, ECI Symposium Series, (2019). https://dc.engconfintl.org/pyroliq_2019/46

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Pyroliq 2019: Pyrolysis and Liquefaction of Biomass and Wastes by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Ceatech to industry

Agence de l'Environnement et de la Maîtrise de l'Energie

HEAT OF REACTION OF HYDROTHERMAL LIQUEFACTION

PYROLIQ

JUNE 17, 2019

MORGANE BRIAND

GEERT HAARLEMMER, ANNE ROUBAUD

PASCAL FONGARLAND

Ceatech HYDROTHERMAL LIQUEFACTION

Hydrothermal Process

- Water as solvent
- Subcritical conditions :
 - Temperature : 250-370°C
 - Water remains in liquid phase
- Final Products

Biocrude

liien

Aqueous phase

Gaseous phase

 Product with high energy density %C : 70%
 LHV: 30 MJ/kg

(blackcurrant pomace, 300°C)

Robust Process

Heat of the reaction is a key value for the upscaling

Morgane.Briand@cea.fr

Cork-Pyroliq - June 17, 2019

liten

Heat of the reaction

- Sugar Beet pulp, 330°C → Initially endothermic, then mostly exothermic → Enthalpy of reaction : Sugar Beet Pulp : -1 MJ/kg [2]
- Agave pulp and Organic Fraction of Municipal Waste, 220°C. → Enthalpy of reaction : Agave Pulp : -3.1 MJ/kg, Organic Municipal Fraction Waster : -7.3 MJ/kg [3]
- Cellulose, Glucose and Wood, 240°C. → Enthalpy of reaction Cellulose : -1.07 MJ/kg, Glucose : -1.06 MJ/kg, Wood: -0.76 MJ/kg [4]

So far, mostly on carbonization Different methods to estimate the enthalpy of reaction Details on temperature of reactions are not highlighted

[2] F. Goudriaan et Al., Thermal efficiency of the HTU process for Biomass Liquefaction
[3] F. Merzari, Hydrothermal carbonization of biomass : Design of a Bench Scale reactor for evaluation the heat of the reaction, AIDIC, 2018
[4] A. Funke, Heat of reaction measurements or hydrothermal carbonization of biomass, Bioresource technology, 2011

Morgane.Briand@cea.fr

Cork-Pyroliq - June 17, 2019

Ceatech HTL EXPERIMENTS

liten

Batch

- External heating
- Setpoint control
- Manual control
- Slow heating

Ceatech HTL EXPERIMENTS

liten

• Batch

- External heating
- Setpoint control
- Manual control
- Slow heating

Continuous reactor

<u>Ceatech</u> EFFECT OF GRINDING

Calculation of the heat of reaction

- Water as a reference
- Results on the Blackcurrant pomace
- Experiments carried out in the batch reactor
- 3 Methods
 - 1. Imposing temperature, variation of power is recorded
 - 2. Imposing target ramp temperature, variation of power is recorded
 - 3. Imposing power, variation of temperature is recorded

Morgane.Briand@cea.fr

Cork-Pyroliq - June 17, 2019

7

Repeatability between runs \rightarrow Average in the results prior to the estimatation Variations in power curves \rightarrow reveals that heat is released

Sudden decreases in power around 200 and 250°C

Average surface between the power curve of water and power curve of biomass solution = enthalpy of reaction

Morgane.Briand@cea.fr

Cork-Pyroliq - June 17, 2019

• Differences in heating applied

- Experiments performed with constant same ambient temperature (16°C)
- Temperature evolution very close but not identical
- Differences appear at 200°C -250°C
- Heat released by the reaction estimated at 4 MJ/kg based on the difference of applied power curves :
 - Σ Power to water Σ Power to BCP = power of the reaction
 - Time to get to 300°C
 - For 30 g of biomass

Inconvenience of the method

- Thermal losses are different due to different heating coil temperatures
- Time to reach target temperature generated an overestimation of the energy released

Target ramp temperature : 15°C/min

Reproductibility between runs \rightarrow average curves Reproductibility between methods : variations between 200 and 250°C Area between curves returns the enthalpy of reaction

• Hypothesis

- Heat produced during reaction
- Heater control reduces power to compensate for exothermal reaction
- Surface under power difference represents energy supplied from biomass

Heat produced by reaction

- Exothermal reaction
- Estimation 1.3 MJ/kg for blackcurrant pomace
 - Σ Power to water Σ Power to BCP = power of the reaction
 - Time to get to 300°C
 - For 30 g of biomass
- Problem
 - Only beginning of the reaction
 - Reaction continues
 - Underestimation of the heat released

Ceatech HEAT OF REACTION : MANUAL CONTROL

liten

Power

Manual control, Power 2 kW \rightarrow 400W

Differences in final temperatures : Water (300°C) – BCP Solution (308°C) Enthalpy of reaction : Estimated from the difference between final temperatures

- Method
 - Experiments performed with constant same ambient temperature
 - ΔT is took from the maximum temperatures observed with blackcurrant pomace and water

Reaction definitely exothermal

- Heat released by the reaction 1.5 MJ/kg of biomass
 - Average Cp of blackcurrant pomace and reactor * ΔT
 - Minus (Energy vaporisation of water + Energy required to heat the blank to its final temperature)
 - \rightarrow Extra heat = Enthalpy of reaction

Inten

- Constant power so the temperature was settled around 300°C
- 10% D.M of BCP

- Temperature increase 30 °C
- Heat released by the reaction 1.7 MJ/kg

Ceatech conclusions

liten

Exothermal global reaction

- 3 methods presented here from Batch experiments
- 1 continuous experiment
- Always in the sense of exothermic reaction

Results

- Heat released in the range of 1 to 4 MJ/kg of biomass
 - Target temperature (300°C) : 4 MJ/kg
 - Target Ramp temperature (15°C/min) : 1.3 MJ/kg
 - Imposed power : 1.5 MJ/kg (Batch) / 1.7 MJ/kg (Continuous)

Thermal characterisation of reaction is also a step in the understanding of the underlying mechanism in the conversion of biomass

Ceatech THANK YOU FOR YOUR ATTENTION!

Any Questions ?

liten