#### Engineering Conferences International ECI Digital Archives

Pyroliq 2019: Pyrolysis and Liquefaction of Biomass and Wastes

Proceedings

6-18-2019

#### Comparison among technical and milled wood lignins through principal component analysis of FTIR spectra

Manuel Garcia-Perez

Erika Bartolomei

Yann Le Brech

Anthony Dufour

Evan Terrell

Follow this and additional works at: https://dc.engconfintl.org/pyroliq\_2019 Part of the <u>Engineering Commons</u>



## Co-hydrotreatment of Bio-oil Lignin-rich Fraction and Vegetable Oil

Yinglei Han<sup>1</sup>, Anamaria P.P. Pires<sup>1</sup>, Mariefel Olarte<sup>2</sup>, Manuel Garcia-Perez<sup>1,3</sup>

<sup>1</sup>Biological Systems Engineering, Washington State University, Pullman, WA <sup>2</sup>Pacific Northwest National Laboratory, Richland, WA <sup>3</sup>Bio-products Science and Engineering Laboratory, WA

Pyroliq 2019

Cork, Ireland June 16-20, 2019



#### **Two-Step Hydrotreatment**

To ensure economic competitiveness, bio-oil price needs to be a fraction of molasses (\$ 300-400/ton) and petroleum (\$ 200-700/ton). Bio-oil production cost needs to be below **\$ 150/t**.

In our analysis we used the recommendations made by Lange (2016)

**Product cost** ~ (feed Price + conversion cost) / yield

**Feed Price:** \$ 150/ ton<sub>feed</sub>

**Conversion Cost:** \$ 200/ton<sub>feed</sub>

Yield: 0.33 ton fuel/ton<sub>feed</sub>

**Product Cost:** \$ 1060/ton<sub>feed</sub>

Gasoline market: \$ 700-800/ton<sub>feed</sub>







#### All biomass derived Jet Fuel Production Technologies end-up with a Hydrodeoxygenation step







#### Can the cracking and stabilization step be avoided?



### 3. Experimental Scheme

#### Part 1: Bio-oil Fractionation



#### Part 2: Cohydrotreatment of lignin rich oil (LRO) and Canola oil





## **Bio-oil Pyrolytic Lignin Extraction**

#### Butanol/Water/Bio-oil



Under each picture, the ratio of butanol/water/bio-oil is indicated, for example, Butanol/Water/Bio-oil: 70/20/10 for the first one on the top left.



## **Bio-oil Pyrolytic Lignin Extraction**





## **Bio-oil Pyrolytic Lignin Extraction**

What is the difference between raw bio-oil and the lignin rich oil ?





### 3. Experimental Scheme





# The LRO/Canola blends with and without 1-butanol before and after hydrotreatement





#### Mass balance on co-hydrotreatment of different blends





#### H<sub>2</sub> consumption of cohydrotreatment



Hydrogen consumption decreased with the increase in pyrolytic lignin content



#### Mass balance on co-hydrotreatment of different blends





#### **UV-Fluorescence on all the hydrotreated oils**





#### Van Krevelen plot for LRO, Canola oil, their blends



(yellow zone, ratios with underline, such as <u>1:8</u>, represent the blends with 1-butanol) and the corresponding hydrotreated oils (green zones). Distinctive line patterns can be associated with specific reactions: (A) hydrogenation, (B) decarbonylation, (C) decarboxylation, (D) direct deoxygenation, (E) dehydration, (F) demethoxylation.



#### FTIR on the hydrotreated oils



(a) No BuOH

(b) With BuOH



#### Carbonyl content of the LRO/Canola blends





#### Gaseous products from cohydrotreatment of different blends





#### GC/MS on all the hydrotreated Oils





**Yields of n-Paraffinic products** 



#### **Yields of major Aromatic Products**





# Product distribution of phenolics after co-hydrotreating LRO/Canola blends



LRO/Canola wt ratio



## Hydrocracking and Stabilization



#### **Cracking of LRO:**

Catalyst: Ni/SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>

Solvent used: Methanol, Butanol

#### GC/MS (concentrated by rotavap)

Temperature: 200 °C

Time: 24 hours





#### Product distribution of co-hydrotreatment (after hydrocracking)

|          |                                                | LRO/Canola=1:4  | Cracked LRO*<br>(in MeOH)<br>/Canola=1:4 | Cracked LRO*<br>(in BuOH)<br>/Canola=1:4 | Canola   |
|----------|------------------------------------------------|-----------------|------------------------------------------|------------------------------------------|----------|
|          | Overall produc                                 | ct distribution |                                          |                                          |          |
|          | Liquid                                         | 76.43 %         | 80.69%                                   | 80.72%                                   | 84.31 %  |
|          | Gas                                            | 16.72 %         | 16.14%                                   | 18.16%                                   | 15.65 %  |
|          | Solid                                          | 6.85 %          | 3.18%                                    | 1.13%                                    | → 0.04 % |
|          | Distillation cuts of the resulting oils (wt.%) |                 |                                          |                                          |          |
|          | <71 °C                                         | 0               | 0                                        | 0                                        | 0        |
| aphtha   | 71-182°C                                       | 20.80           | 21.69                                    | 23.08 ←                                  | → 17.88  |
| Kerosene | 182-260 °C                                     | 14.59           | 18.26                                    | 21.24                                    | → 21.67  |
| Diesel   | 260-330 °C                                     | 13.16           | 18.00                                    | 19.52 -                                  | → 20.67  |
|          | 330-566 °C                                     | 29.61           | 24.18                                    | 20.34                                    | 25.37    |
|          | Residue                                        | 10.91           | 7.36                                     | 7.23                                     | 4.44     |
|          | Weight loss                                    | 10.92           | 10.51                                    | 8.58                                     | 9.97     |
|          | Coke formation (LRO basis)                     |                 |                                          |                                          |          |
|          | LRO basis                                      | 34.73 %         | 16.08 %                                  | 6.65%                                    | N/A      |
|          | coke                                           |                 |                                          |                                          |          |

Cracking and stabilization seems to help the hydro-deoxygenation of lignin rich fraction



## Conclusions

- 1. An important HDO had been achieved for the blends of lignin-rich oil and vegetable oil, resulting in a two-phase liquid product formed with the oil stayed on the top and water at the bottom.
- By varying the ratio between lignin rich oil and vegetable oil, some phenolics started to be detected when the weight percentage of lignin oil in the blend increased to 1/3 or above.
- 3. The major components of the hydrotreated oils were paraffinic and aromatic hydrocarbons, with less carbonyl groups than the pristine blends.
- Adding BuOH into the lignin rich oil resulted in more tetramers and pentamers being produced in the oil which on the other hand mitigated the coke formation in cohydotreatments.
- 5. Hydrocracking/stabilization is an efficient step to depolymerize the lignin-rich oil which then effectively reduces the coke formation in the HDO step.



# Thank you!

Acknowledgements:

- DOE Biomass Technolgoy Office(DE-EE0008505)
- Washington State Department of Ecology
- Federal Aviation Administration
- USDA/NIFA
- WSU-BSE colleagues



