Engineering Conferences International ECI Digital Archives

Pyroliq 2019: Pyrolysis and Liquefaction of Biomass and Wastes

Proceedings

6-18-2019

Hydrothermal liquefaction of organic waste streams on a continuous pilot scale reactor

Patrick Biller

Konstantinos Anastasakis

Aidan Smith

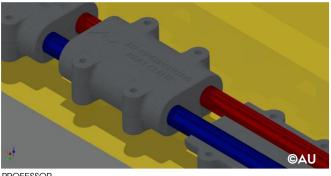
Juliano Souza Dos Passos

Ib Johannsen

Follow this and additional works at: https://dc.engconfintl.org/pyroliq_2019

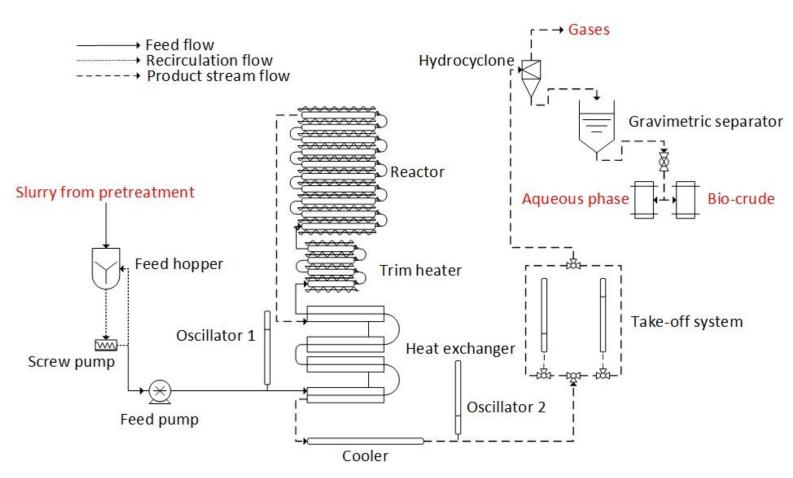
HYDROTHERMAL LIQUEFACTION OF ORGANIC WASTE STREAMS ON A **CONTINUOUS PILOT SCALE** REACTOR

PATRICK BILLER, KOSTAS ANASTASAKIS, JULIANO SOUZA DOS PASSOS, RENE MADSEN, MARIANNE GLASIUS, LARS THOMSEN


PYROLIQ / CORK, IRELAND 2019 | PATRICK BILLER 16 JUNE 2019 | ASSISTANT PROFESSOR

AARHUS HTL PILOT REACTOR

- Capacity of up to 100 L/h
- Cast steel heat clamps used as heat exchangers
- Uniform diameter (14 mm) throughout entire reactor, no size restrictions
- Individual control and monitoring of 32 x 0.5 kW heaters (trim heater) and 5 x 1 kW heaters (reactor)
- 54 thermocouples and 20 pressure transducers



PYROLIQ / CORK, IRELAND 2019 16 JUNE 2019

ASSISTANT PROFESSOR

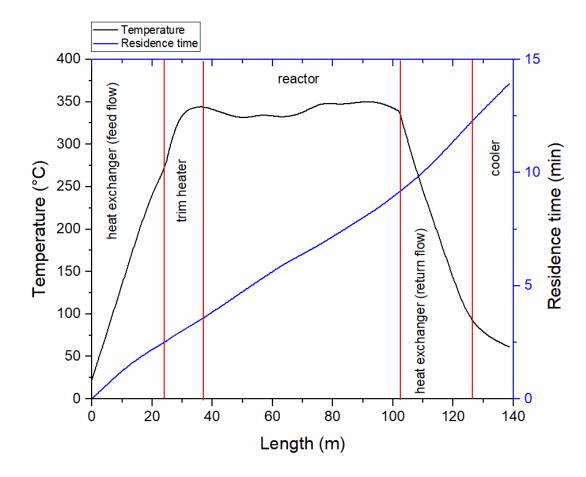
PROCESS FLOW DIAGRAM

7 sections:

- Feed introduction system
- Heat exchanger
- Trim heater
- Reactor
- Oscillation system
- Take-off system
- Product collection zone

Typical conditions:

- 60 L/h
- ~20% dry matter
- P=220 bar
- T=350°C


Total Volume of the system ~20

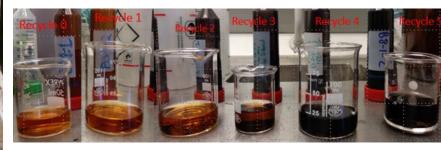
ASSISTANT PROFESSOR

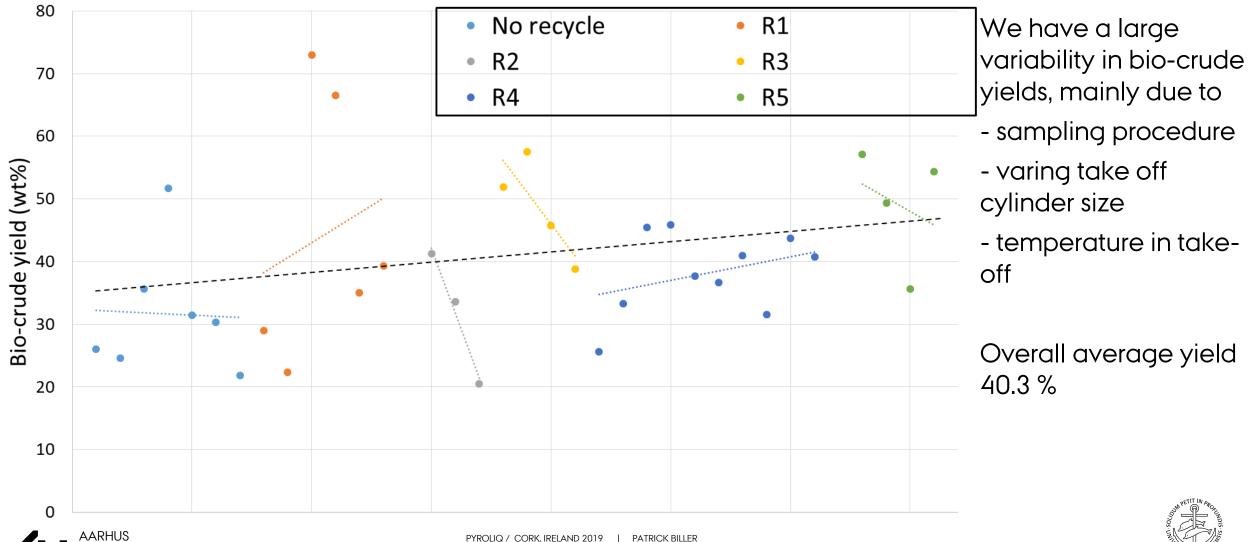
TEMPERATURE AND RESIDENCE TIME DISTRIBUTION

- Incoming feed is heated from ~20°C to ~270°C in the heat exchanger in ~2.5 min
- Heated to reaction temperature (350°C) in the trim heater in 1 min
- Temperature is maintained (330-355°C) for 6 min
- Product is directed to the heat exchanger, where it is cooled to ~80°C in 3 min
- cooling section to 60°C in 1.5 min

WATER PHASE RECYCLING

- An increase in total organic carbon in the process water was observed with each run
- Full recycling was not achieved due to moisture content of feedstock and water use in extruder
- Recycling water allowed higher DM content slurries to be processed
- ➤ Max DM fresh 16%
- ≻ R1 max DM 17.5
- ≻ R2 max M 18%
- ≻ R3 max DM 21.3%




PYROLIQ / CORM

BIO-CRUDE YIELDS

UNIVERSITY DEPARTMENT OF ENGINEERING PYROLIQ / CORK, IRELAND 2019 PATRICK BILLER 16 JUNE 2019 ASSISTANT PROFESSOR

PROCESS EFFICIENCY

	Pine
Flow rate (I/h)	100
DM content	0.20
Time (h)	1
Feedstock consumed (kg, dry)	20
Energy in feedstock (kW, dry)	113.8 (HHV=20.5MJ/kg)
Bio-crude yield (wt.%)	38.2
Energy in bio-crude (kW, dry)	62.4 (HHV=29.4 MJ/kg)
Chemical energy recovery (%)	54.8
Trim heater energy requirement (kW)	9.2
Reactor energy requirement (kW)	2
Main pump energy requirement (kW)	1.3
n _{tot} (%)	49.4
EROI	5

Data used for the calculations were

from the last recycle run and energy

consumption data for the trim

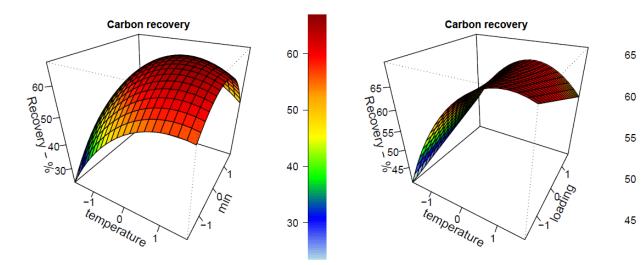
heater and the reactor were during

the last hour of operation

~10% of energy in feedstock

consumed for process

PROCESS EFFICIENCY


	Miscanthus	Spirulina	Sewage sludge
Flow rate (I/h)	60	60	60
DM content	0.15	0.16	0.04
Time (h)	1	1	1
Feedstock consumed (kg, dry)	9	9.8	2.4
Energy in feedstock (kW, dry)	42.7 (HHV=17.1MJ/kg)	63.1 (HHV=23.1MJ/kg)	13.2 (HHV=19.8MJ/kg)
Bio-crude yield (wt.%)	26.2	32.9	24.5
Energy in bio-crude (kW, dry)	19.9 (HHV=30.6 MJ/kg)	32 (HHV=35.6 MJ/kg)	4.4 (HHV=26.8 MJ/kg)
Chemical energy recovery (%)	46.5	50.7	33.2
Trim heater energy requirement (kW)	4.4	5.5	5.4
Reactor energy requirement (kW)	2	2.8	2.5
Main pump energy requirement (kW)	0.7	0.7	0.7
n _{tot} (%)	39.9	44.4	20.1
EROI	2.8	3.5	0.5
	PYROLIQ / CORK, IRELAND 2019 PATRICK BILLE 16 JUNE 2019 ASSISTANT PR	R	The second s

UNIVERSITY DEPARTMENT OF ENGINEERING 16 JUNE 2019 ASSISTANT PROFESSOR

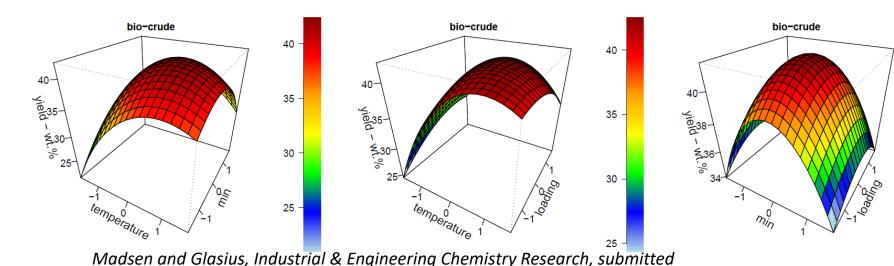
BATCH TESTING OF SLUDGE HTL

- Parametric study of temperature, residence time and solids loading using sludge
- T=250-350°C
- Time=5-35 mins
- Solids loading wt% =5-25
- Optimum condition identified:
- 320 °C, 16-18 min, and 12-15 wt.%

41

40

39


38

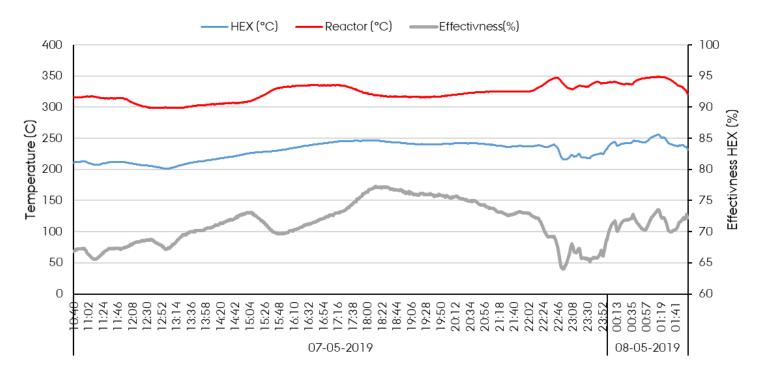
37

36

35

34

PILOT SLUDGE HTL


- In order to validate batch results we had to increase the DM content of sludge from 5→15%
- Added benefit of removing some of the ash from the feedstock

	dry matter (%)	Ash(%)	dry matter ash free (%)
Primary Sludge	4,0%	13%	3,1%
Cake	19,3%	7%	18,5%
Water	0,2%	50%	0,1%

PILOT HTL SLUDGE PROCESSING

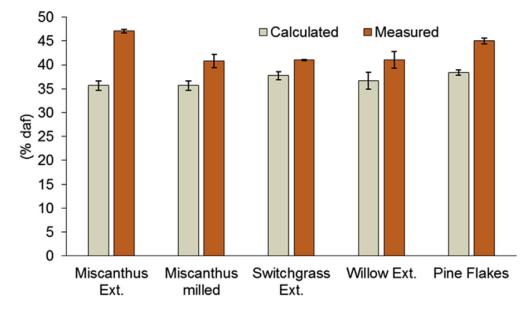
- Temperatures of 300, 325 and 350°C
- Overall bio-crude yield from 14 hour production campaign 46%
- 60 kg of bio-crude produced
- HEX effectiveness not affected by different reactor temperatures (65-77%)
- Considerable ash content in biocrude but reduced to 0.3% after filtration

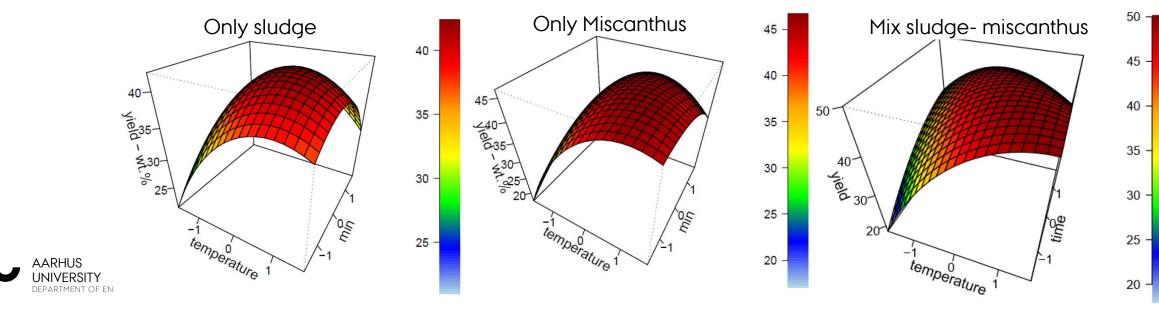
Temperature	C [%]	H [%]	N [%]	S [%]	O [%]	Ash [%]	HHV [MJ/Kg]
300°C	67.1	7.7	3.1	0.7	5.7	15	31.5
325°C	65.6	8.7	2.9	0.6	5.1	16	32.3
350°C	58.0	7.7	2.8	0.6	1.2	27	28.6

PYROLIQ / CORK, IRELAND 2019 16 JUNE 2019

ASSISTANT PROFESSOR

PILOT HTL SLUDGE PROCESSING


- Batch processing data confirmed with best results obtained at 325°C
- Pumping accounts for <5% of total energy consumption
- Heating energy affected by flow and temperature
- ~16% of energy in feedstock required for process energy
- Further improvements possible, especially in DM content


Temperature	°C	300	325	350
Flow rate	L/h	80	51	84
Dry matter content	(%)	15	17	17
Feedstock consumed	(kg, dry)	12.0	8.7	14.3
Energy in Feedstock	(kW, dry)	66.0	47.7	78.5
Bio-crude yield	(wt%)	37.5	57.3	61.2
Bio-crude ash content	(%)	15.0	16.0	27.0
Bio-crude yield filtered	(%)	31.9	48.1	44.7
HHV bio-crude ash free	(MJ/kg)	31.2	32.3	28.6
Energy in Bio-crude	(kW, dry)	33.1	37.4	50.7
Chemical Energy Recovery	(%)	50.1	78.5	64.5
Trim heater energy requirements	(kW)	8.0	5.0	8.0
Reactor energy requirement	(kW)	2.3	1.9	4.2
Main pump energy requirement	(kW)	0.30	0.24	0.62
Efficiency total	(%)	43.2	67.9	55.4
EROI		3.1	5.2	4.0

MIXING OF FEEDSTOCKS

- Synergistic effects on yields between lignocelluloscis and sludge
- For all three parameters (temp, solids loading, residence time) a higher than expected yield is observed for the mixture of sludge-miscanthus
- Lower O, higher HHV and much higher chemical energy recovery than calculated
- Avoids need for alkali catalyst

MANURE

- Manure has been identified as a high impact feedstock in DK
- We performed initial tests with very promising results
- Physical nature of slurry resulted in pump failure after 2 hours
- Composition is favorable with high abundance of alkanes, indoles, fatty acids and fatty acid amides.

0 [%]

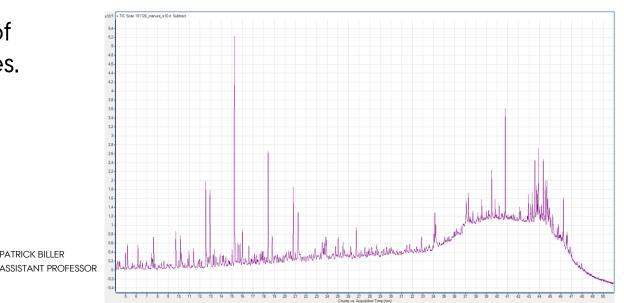
6.587

Ash

ROLIQ / CORK,

16 JUNE 2019

17.37


 Low dry matter content (9%) makes it a good candidate fro co-liquefaction

S [%]

0.081

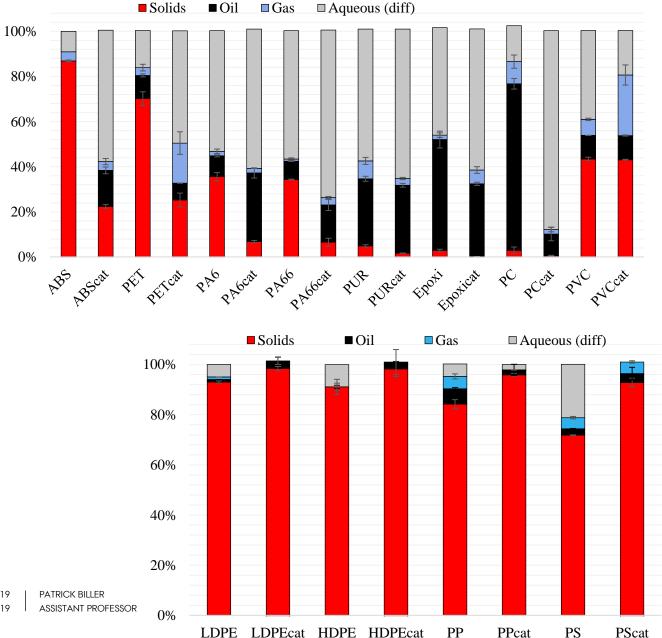
	Yields (%)
Bio-crude	41.7
Char	11.6
Gas	20.6
Water	
soluble	26.1

DEPARTMENT OF ENGINEERING

N [%]

1270

Bio-crude composition


H [%]

C [%]

67.47

HTL OF PLASTICS

- Our new project is investigating end of life plastics for HTL
- Idea is to use mixed and contaminated plastics
- We performed a screening study with/without alkali catalyst
- Poly-ethylene/styrene/propylene are hardly converted
- Focus now on finding synergies and investigating co-liquefaction

PYROLIQ / CORK, IRELAND 2019 16 JUNE 2019

CONCLUSIONS

- Continuous operation of diverse feedstocks has been demonstrated with high efficiencies
- Batch reactor studies are very useful to identify feedstock synergies and optimal process conditions for upscaling and validation at pilot scale
- There is a large potential for mixed wastes/biomass applications to exploit synergies for improved process efficiency
- There are still some engineering challenges remaining such as pumping diverse feedstocks, inline filtering and continuous product separation

Thank you for your attention!

Any questions?

Contact Info

www.hyflexfuel.eu Follow us on Twitter @HyFlexFuel 🔰

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 764734 (HyFlexFuel)

Contact Info

pbiller@eng.au.dk

www.eng.au.dk/biorefining

Patrick Biller

