
Engineering Conferences International
ECI Digital Archives
Pyroliq 2019: Pyrolysis and Liquefaction of
Biomass and Wastes Proceedings

6-19-2019

Catalytic Pyrolysis
Sasha R.A. Kersten

Follow this and additional works at: https://dc.engconfintl.org/pyroliq_2019

Part of the Engineering Commons

https://dc.engconfintl.org?utm_source=dc.engconfintl.org%2Fpyroliq_2019%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.engconfintl.org/pyroliq_2019?utm_source=dc.engconfintl.org%2Fpyroliq_2019%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.engconfintl.org/pyroliq_2019?utm_source=dc.engconfintl.org%2Fpyroliq_2019%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.engconfintl.org/proceedings?utm_source=dc.engconfintl.org%2Fpyroliq_2019%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.engconfintl.org/pyroliq_2019?utm_source=dc.engconfintl.org%2Fpyroliq_2019%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=dc.engconfintl.org%2Fpyroliq_2019%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages


Catalytic Fast Pyrolysis 
for fuel production

S.R.A. Kersten

June 2019, Cork

Roel Westerhof, Stijn Oudenhoven, Pushkar Marathe, Daniele Castello, Caroline Lievens, Güray Yildiz, Wolter Prins



Some concerns I had

• Limited knowledge of chemistry
• Which reactions are catalyzed?, which ones do we want to catalyze?

• Ill defined goal
• Stabilization of oil (?)
• Oxygen removal (yield often neglected)
• Production of specific compounds – aromatics (yield and separation neglected)
• My goal = fuel precursor

• Catalysts de-activation
• Coke, interaction with K, Cl, Ca, S, etc..

• High reactivity of pyrolysis products
• Solid catalyst - solid biomass? 

• Catalysis of what? Vapors, Gases, Aerosols? 



Agenda

Results of different feeds
using different catalyst (synthetic & ashes in feed)
in different reactors
showing that …… 

Firstly I present experimental results without synthetic catalyst which are of interest for the 
interpretation of results obtained with catalyst



Equipment: pyrolysis

• 50 mg biomass

• Fast heating (5000 oC/s) by hot screen

• Rate of products leaving the reaction zone

controlled by pressure ( 5 Pa – 1 bar)

• Very fast quenching ( < 20 ms)

• 1 kg/h feed

• Fluidized bed

• (also) fast heating ( 10,000 oC/s) 

• 0.5 – 1 bar

• Staged condensation

• 1- 2 s residence time of hot vaporsScreen-Heater (SH)

Fluidized Bed (FB)
In-Situ (CFP)
Ex-situ (CVUP)



Equipment: fluidized bed for catalytic pyrolysis

IN-SITU  FLUIDIZED BED (ISFB)



Equipment: downer for catalytic pyrolysis
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Feeds and catalysts

• Pine

• Straw

• Hay

• Bagasse

• Avicel cellulose

• Cotton 

• Lignins

• ZSM-5

• Na2O on Al2O3

• Ashes, K2CO3

All results at 500 – 530 oC, unless stated otherwise



My model of catalytic pyrolysis
Processes at particle level                    Processes in vapor phase                           Processes on / in catalysts
Mass and Heat transport
Pyrolysis reactions
Catalysis by AAEMs
Char is a catalyst

Gas, Vapors, Aerosols

Homogeneous reactions

Can be studied in Screen -Heater



Influence of AAEMs on yields of lumped product
feed = cellulose
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potassium higher production of water can be expected [2]. Indeed, the fluidized bed 

experiments showed that the water production increases from 11 wt.% to 14 wt.% when 

potassium concentration increased from 1 mg kg
-1

 to 1000 mg kg
-1

, respectively. The number 

of experiments in the screen-heater performed, for each potassium concentration, was at least 

6 at 5 mbar and 2 at 1000 mbar. As can be seen, the reproducibility of the experiments was 

satisfactory, see Figure 3, Figure 4 and Figure 5. 

 

Figure 3: Condensed product yield as a function of potassium concentration. TFS = 530 °C 

Figure 3 shows the condensed product yield as function of the potassium concentration (on 

logarithmic scale) at 5 mbar and at 1000 mbar pressure. The figure includes the data from the 

screen-heater and fluidized bed experiments. It can be seen that, as an effect of increasing 

potassium concentration, the condensed product yield decreases from 0.86 to 0.57 kg kg
-1

 at 

1000 mbar. At 5 mbar the condensed product yield decreases from 0.96 to 0.52 kg kg
-1

.  

A clear difference in condensed product yield can be observed between vacuum and 

atmospheric pressure experiments at low concentration of potassium i.e. up to 1000 mg kg
-1

. 

In this range, the condensed product yield was higher at 5 mbar compared to at 1000 mbar 

experiments. A plausible explanation is that under vacuum the escape rate of pyrolysis 

products from the hot reacting particle is faster resulting in a shorter contact time, or even no 

contact at all, between the hot products and the AAEMs. The pyrolysis time at 5 mbar is ~ 79 

ms. which implies a very high product escape rates from the hot reacting particle. Moreover, 

even in this short pyrolysis time, potassium causes the oil yield to decrease dramatically. 
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Influence negative ion
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Influence of AAEMs on sugar chemistry

FB

1 bar

Hardly sugars in contact with catalyst



Production of sugars – effect of pressure
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Pyrolysis of Lignin Lignin Code C H O * N H/C <Mw> ** Đ β-O-4 linkages 

(-) (-) (% on mass basis, dry) (mole mole-1) (Da) (-) (per 100 Ar units)  

SL 1 66.9 6 27 0.1 1.1 2515 2.1 1.8 

L-SL 2 - - - - - 1591 1.7 - 

H-SL 3 - - - - - 3462 1.8 - 

WSL 4 64.8 5.8 28.6 0.8 1.1 2043 2.0 8.6 

L-WSL 5 - - - - - 1449 1.7 - 

H-WSL 6 - - - - - 2601 2.0 - 

PL1 7 68.1 6.3 25.5 0.1 1.1 725 1.5 - 

L-PL1 8 - - - - - 670 1.5 - 

H-PL1 9 - - - - - 1047 1.6 - 

PL2 10 64.8 6.5 28.6 0.1 1.2 616 1.6 0 

L-PL2 11 - - - - - 588 1.6 - 

H-PL2 12 - - - - - 1241 2.0 - 

SOL 13 63.9 5.7 30.3 0.1 1.1 1858 2.2 7.8 

MWL 14 60.7 6.3 33 <0.1 1.2 3596 2.5 34.5 

* Oxygen content by difference: (100 – C – H – N); ** <Mw> is calculated from UV detector response; 

– Not measured 

 

• Processed/extracted lignins
• Solvolysis
• Pyrolytic

• Milled wood lignin
(closest to native)

• Similar C, H, O

• 600 –3600 Da (weight averaged)

• 0 – 35% b-O-4



Molecular weight distribution

100 1000 10000

0.0

0.1

0.2

0.3

0.4

100 1000 10000

0.0

0.1

0.2

0.3

0.4
 Lignin 11

          500 Pa oil

 Experiment    Model

          10
5
 Pa oil

 Experiment    Model

w
 (

-)

M
w
 (Da)

A
 Lignin 14

          500 Pa oil

 Experiment    Model

          10
5
 Pa oil

 Experiment    Model

M
w
 (Da)

BLight Lignin Heavy Lignin

SH



MW of oil vs. MW of Lignin
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Bond balance

Oxygen
Bonds

Milled wood
lignin

Oil at 500 Pa Oil at 1 bar

β-aryl ether 34.4 9.9 0.0

Phenylcoumaran 14.1 4.3 0.6

Resinol 11.1 1.6 0.6

Total 59.5 15.8 1.3

‘Lignin’ that is in contact with the catalyst hardly  contains C-O-C bonds, 
instead it is C-C bonded



Intermediate conclusion

The catalyst is in contact with:

Light decay products of sugars (highly oxygenated)

Re-polymerized C-C bonded Lignin of ~ 500 Da

Most likely aerosols



Interpretation of catalytic fast pyrolysis experiments

Naturally 
(CFP)

Pyrolysis 
oil

Water addition 
(FP)

Phase separation

Aqueous phase organics (APO)
O = 50 wt%
MW = 100 Da
Mainly sugar based

Oil phase organics (OPO)
O = 35 wt%
MW = 600 Da
Mainly lignin based



Our first results with ZSM-5 

< 20 wt% oil yield
Oxygen content of 20 wt% 

CFP and CVUP



Cracking: MWD of oils

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

10 100 1000 10000

a
.u

.

MMW [Da]

Thermal Zeolite Na ex-situ



Coke, water & gas yields
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Yield and Oxygen % of the aqueous phase organics
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Yield and Oxygen % of the oil phase organics
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Conversion of sugars over regenerated  ZSM-5

ISFB



ZSM-5 + ashes

ISFB



Catalytic pyrolysis
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Take home messages

• Different reactor, different feedstocks, different contacting modes: 
never more that 20C% yield and lowest O content was 15% (10)

• The whole sugar fraction (2/3 of initial thermal oil) is lost to coke, 
water and gas.

• Only solution: new catalysis converting the sugar fraction into fuel.
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