#### Engineering Conferences International ECI Digital Archives

Pyroliq 2019: Pyrolysis and Liquefaction of Biomass and Wastes

Proceedings

6-19-2019



Sasha R.A. Kersten

Follow this and additional works at: https://dc.engconfintl.org/pyroliq\_2019 Part of the <u>Engineering Commons</u>

# Catalytic Fast Pyrolysis for fuel production

S.R.A. Kersten June 2019, Cork

Roel Westerhof, Stijn Oudenhoven, Pushkar Marathe, Daniele Castello, Caroline Lievens, Güray Yildiz, Wolter Prins

# Some concerns I had

- Limited knowledge of chemistry
  - Which reactions are catalyzed?, which ones do we want to catalyze?
- Ill defined goal
  - Stabilization of oil (?)
  - Oxygen removal (yield often neglected)
  - Production of specific compounds aromatics (yield and separation neglected)
  - My goal = fuel precursor
- Catalysts de-activation
  - Coke, interaction with K, Cl, Ca, S, etc..
- High reactivity of pyrolysis products
- Solid catalyst solid biomass?
  - Catalysis of what? Vapors, Gases, Aerosols?



Results of different feeds using different catalyst (synthetic & ashes in feed) in different reactors showing that .....

Firstly I present experimental results without synthetic catalyst which are of interest for the interpretation of results obtained with catalyst

# Equipment: pyrolysis

- 50 mg biomass
- Fast heating (5000 °C/s) by hot screen
- Rate of products leaving the reaction zone controlled by pressure ( 5 Pa – 1 bar)
- Very fast quenching ( < 20 ms)



Screen-Heater (SH)

Fluidized Bed (FB) In-Situ (CFP) Ex-situ (CVUP)



- 1 kg/h feed
- Fluidized bed
- (also) fast heating ( 10,000 °C/s)
- 0.5 1 bar
- Staged condensation
- 1-2 s residence time of hot vapors

#### Equipment: fluidized bed for catalytic pyrolysis



#### Equipment: downer for catalytic pyrolysis



# Feeds and catalysts

- Pine
- Straw
- Hay
- Bagasse
- Avicel cellulose
- Cotton
- Lignins
- ZSM-5
- $Na_2O \text{ on } Al_2O_3$
- Ashes, K<sub>2</sub>CO<sub>3</sub>

All results at 500 – 530 °C, unless stated otherwise

# My model of catalytic pyrolysis



#### Influence of AAEMs on yields of lumped product feed = cellulose



AAEMs = natural catalyst (they accumulate on the catalyst)

#### Influence negative ion



#### Influence of AAEMs on sugar chemistry



# Production of sugars – effect of pressure



# Pyrolysis of Lignin

- Processed/extracted lignins
  - Solvolysis
  - Pyrolytic
- Milled wood lignin (closest to native)
- Similar C, H, O
- 600 3600 Da (weight averaged)
- 0-35% β-O-4

| Lignin | Code | С    | Н      | 0 *      | N      | H/C                        | $< M_w > **$ | Ð   | β-O-4 linkages     |
|--------|------|------|--------|----------|--------|----------------------------|--------------|-----|--------------------|
| (-)    | (-)  | (% ( | on mas | ss basis | , dry) | (mole mole <sup>-1</sup> ) | (Da)         | (-) | (per 100 Ar units) |
| SL     | 1    | 66.9 | 6      | 27       | 0.1    | 1.1                        | 2515         | 2.1 | 1.8                |
| L-SL   | 2    | -    | -      | -        | -      | -                          | 1591         | 1.7 | -                  |
| H-SL   | 3    | -    | -      | -        | -      | -                          | 3462         | 1.8 | -                  |
| WSL    | 4    | 64.8 | 5.8    | 28.6     | 0.8    | 1.1                        | 2043         | 2.0 | 8.6                |
| L-WSL  | 5    | -    | -      | -        | -      | -                          | 1449         | 1.7 | -                  |
| H-WSL  | 6    | -    | -      | -        | -      | -                          | 2601         | 2.0 | -                  |
| PL1    | 7    | 68.1 | 6.3    | 25.5     | 0.1    | 1.1                        | 725          | 1.5 | -                  |
| L-PL1  | 8    | -    | -      | -        | -      | -                          | 670          | 1.5 | -                  |
| H-PL1  | 9    | -    | -      | -        | -      | -                          | 1047         | 1.6 | -                  |
| PL2    | 10   | 64.8 | 6.5    | 28.6     | 0.1    | 1.2                        | 616          | 1.6 | 0                  |
| L-PL2  | 11   | -    | -      | -        | -      | -                          | 588          | 1.6 | -                  |
| H-PL2  | 12   | -    | -      | -        | -      | -                          | 1241         | 2.0 | -                  |
| SOL    | 13   | 63.9 | 5.7    | 30.3     | 0.1    | 1.1                        | 1858         | 2.2 | 7.8                |
| MWL    | 14   | 60.7 | 6.3    | 33       | < 0.1  | 1.2                        | 3596         | 2.5 | 34.5               |

\* Oxygen content by difference: (100 - C - H - N); \*\*  $< M_w >$  is calculated from UV detector response; - Not measured

# Molecular weight distribution



# MW of oil vs. MW of Lignin



'Lignin' on contact with catalyst is of rather small MW

# Bond balance

| Oxygen<br>Bonds | Milled wood<br>lignin | Oil at 500 Pa | Oil at 1 bar |
|-----------------|-----------------------|---------------|--------------|
| β-aryl ether    | 34.4                  | 9.9           | 0.0          |
| Phenylcoumaran  | 14.1                  | 4.3           | 0.6          |
| Resinol         | 11.1                  | 1.6           | 0.6          |
| Total           | 59.5                  | 15.8          | 1.3          |

'Lignin' that is in contact with the catalyst hardly contains C-O-C bonds, instead it is C-C bonded

#### Intermediate conclusion

The catalyst is in contact with:

Light decay products of sugars (highly oxygenated) Re-polymerized C-C bonded Lignin of ~ 500 Da Most likely aerosols

# Interpretation of catalytic fast pyrolysis experiments



#### Our first results with ZSM-5



#### < 20 wt% oil yield Oxygen content of 20 wt%

#### **CFP and CVUP**

# Cracking: MWD of oils



# Coke, water & gas yields





# Yield and Oxygen % of the aqueous phase organics



Aqueous phase organics (APO)  $\rightarrow$  coke + water + gas No de-oxyygenation of APO

(ESD & ISD)

#### Yield and Oxygen % of the oil phase organics



(ESD & ISD)

#### Conversion of sugars over regenerated ZSM-5

NC R0 R1 R2 R3 R4 R5 R6 R7 R8



#### ZSM-5 + ashes



•

.

#### Catalytic pyrolysis



Organics yield [%]

#### Take home messages

- Different reactor, different feedstocks, different contacting modes: never more that 20C% yield and lowest O content was 15% (10)
- The whole sugar fraction (2/3 of initial thermal oil) is lost to coke, water and gas.
- Only solution: new catalysis converting the sugar fraction into fuel.

