Engineering Conferences International ECI Digital Archives

Pyroliq 2019: Pyrolysis and Liquefaction of Biomass and Wastes

Proceedings

6-19-2019

Ternary system of pyrolytic lignin, mixed solvent, and water: phase diagram and implications

Mingyang Li *Curtin University, Australia,* h.wu@curtin.edu.au

Mingming ZHANG *Curtin University, Australia*

Yun YU *Curtin University, Australia*

Mingyang LI Curtin University, Australia

Follow this and additional works at: https://dc.engconfintl.org/pyroliq_2019 Part of the <u>Engineering Commons</u>

Recommended Citation

Mingyang Li, Mingming ZHANG, Yun YU, and Mingyang LI, "Ternary system of pyrolytic lignin, mixed solvent, and water: phase diagram and implications" in "Pyroliq 2019: Pyrolysis and Liquefaction of Biomass and Wastes", Franco Berruti, ICFAR, Western University, Canada Anthony Dufour, CNRS Nancy, France Wolter Prins, University of Ghent, Belgium Manuel Garcia-Pérez, Washington State University, USA Eds, ECI Symposium Series, (2019). https://dc.engconfintl.org/pyroliq_2019/26

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Pyroliq 2019: Pyrolysis and Liquefaction of Biomass and Wastes by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Ternary System of Pyrolytic Lignin, Mixed Solvent, and Water: Phase Diagram and Implications

Mingyang LI, Mingming ZHANG, Yun YU, and Hongwei WU*

Department of Chemical Engineering, Curtin University, Perth, Western Australia

Introduction

One key consideration: Bio-oil phase separation during processing and handling that cause significant operational challenges.

Research Gaps

- How to understand and control the phase stability of fast pyrolysis bio-oil
- Complete phase diagrams of water-insoluble fraction of bio-oil/water-soluble fraction of bio-oil/water system are not available

Compositions of Fast Pyrolysis Bio-oils

	Content (wt %)				alcohols	1.0-5.0	1.5-7.5	4.5	6.0
fraction/main compounds	1	dry basis water- and PL-free basis	average content (wt %, on a water and PL free basis)	average content in five major chemical families	methanol	0.5-3.5			
	dry basis				ethanol	0.2-1.5			
pyrolytic lignin	16.0-35.0	N.A. ^b	N.A. ^b	N.A. ^b	ethylene glycol	0.2-1.0			
acids	12.5-25	18.5-36.5	27.5	35.0	sugars	3.0-7.0	4.5-10.0	7.3	N.A. ^b
acetic acid	3.0-15.0				levoglucosan	0.5-3.0			
formic acid	0.9-7.6				cellobiosan	0.2-3.0			
propionic acid	0.2-1.3				ducose	04-13			
butanoic acid	0.2-0.5				gincose	10.20	16.20	22	NT A b
pentanoic acid	0.1-0.8				esters and etners	1.0-2.0	1.5-3.0	2.3	N.A.
isocrotonic acid	0.1-1.2				methyl butanoate	0.1-1.3			
butanoic acid, 2-hydroxy-	0.1-1.0				acetic anhydride	0.1-1.3			
phenol and phenol derivates	5.0-10.0	7.5-14.5	11.0	14.0	methyl pyruvate	0.1-0.5			
phenol	0.1-5.0				propane, 1-ethoxy-2-methyl-	0.3-1.0			
cresol (o-cresol, m-cresol, and p- cresol)	0.3-1.5				alkene and alkane	1.0-2.0	1.5-3.5	2.5	N.A. ^b
catechol	0.6-3.0				decane	0.1-0.2			
guaiacol	0.8-2.5				octadecane	0.1			
aldehydes and ketones	8.5-25	12.5-36.5	24.5	31.5	2-hexene	0.1			
hydroxyacetone	1.2-9.5				cyclic alkanes and alkenes	<1.0			
glycolaldehyde (unstable, exist as dimers)	0.5-8.0				nitrogen compounds	<1.0	<1.0	<1.0	N.A. ^b
acetaldehyde	0.1-2.0				aniline	0.1			
acetone	0.1-3.0				pyridine	0.1			
linear ketones (pentanone, octanal etc.)	0.1-2.0				2-hydroxypyridine	trace			
cyclic ketones (C5 and C6 cyclic ketones)	0.5-5				aromatics benzene	<1.0 trace	<1.0	<1.0	N.A. ^b
furan and furan derivates	5.0-10.0	7.5-14.5	11.0	14.0	tolune	trace			
furfural	1.0-5.0				coune	trace			
2(5H)-furanone	0.1-1.5				naphthaiene	trace			
furfural alcohol	0.1-1.0								
methylfurfural	0.1-0.8								

Theoretical Considerations for Formulating the MS

selected compound for the solvent	content (wt %)	solubility parameter, δ (cal ^{1/2} cm ^{-3/2})
acetic acid	33.3	10.45
hydroxyacetone	33.3	13.08
phenol	13.3	11.78
furfual	13.3	12.14
methanol	6.8	14.48

 The closer the solubility parameters of the solute and the solvent are, the more likely the solubility of the solute are high in the given solvent ¹

- The solubility parameters of the solvent and solute must be <2 cal^{1/2} cm^{-3/2 2}
- The δ value of the formulated MS ($\delta_{MS} = 11.99 \text{ cal}^{1/2} \text{ cm}^{-3/2}$)

¹ Hansen, C. M. Hansen Solubility Parameters: A User's Handbook
² Ye, Y.; Liu, Y.; Chang, J. Bio Resources 2014, 9 (2), 3417.

Preparation of pyrolytic lignin and its fractions from bio-oil

Characterisation of PL samples

	PL-LMW ^e	PL ^f	PL-HMW ^g
moisture (wt %, ar ^a)	1.1	1.8	1.8
$ash (wt \%, db^b)$	0.6	1.5	0.9
volatile (wt %, db ^b)	81.8	75.8	68.9
fixed carbon (wt %, db^b)	17.6	22.7	30.2
C (wt %, daf^c)	68.09	66.26	62.79
H (wt %, daf ^c)	6.81	6.37	5.92
N (wt %, daf^c)	0.06	0.11	0.19
O (wt %, daf^c) ^d	25.04	27.26	31.1
atomic H/C	1.20	1.15	1.13
atomic O/C	0.28	0.31	0.37

^{*a*}As received. ^{*b*}Dry basis. ^{*c*}Dry-ash-free basis. ^{*d*}By difference. ^{*e*}PL-LMW: CH₂Cl₂-soluble fraction of pyrolytic lignin. ^{*f*}PL: pyrolytic lignin. ^{*g*}PL-HMW: CH₂Cl₂-insoluble fraction of pyrolytic lignin.

UV-fluorescence spectra and molecular weight of PL samples

UV-fluorescence spectra

- Mainly centred at ~350 nm
- PL-HMW slightly shifts toward higher wavelength

Molecular weight

Previous reports indicated that the Mw value of PL sample are between 649 and 1317 g/mol¹

¹ Meier, D et.al. J Anal Appl Pyrolysis 2001, 58-59, 387-400.

Solubility parameter of PL samples

Lignin has three different units¹

- Differences in the solubility parameters for G, H, and S are very small
- The G/H/S ratios of PL samples are determined by ¹³C NMR.

¹ Wang, Q et.al. BioResources 2011, 6 (3), 3034–3043.

Ternary phase diagram of the PL/MS/water system and solubilities of PL in various MS/water mixtures.

Curtin University is a trademark of Curtin University of Technology CRICOS Provider Code 00301J

Ternary phase diagram of the PL/MS/water system and solubilities of PL in various MS/water mixtures.

- PL has a maximal concentration of ~53 wt % in the PL/MS binary (point A)
- Increasing the water content from point A to point B enhances the solubility of PL in the MS/ water mixture to ~118 g PL per 100 g of MS/water mixture.
- Point C represents the minimal solvent (~35 wt % in the PL/MS/water system) required to possibly form a homogeneous PL/MS/water solution
- A drastic reduction in the solubility of PL in the MS/water mixture is evident as the content of water increases from point D to point E.
- Point E represents the minimal solvent at which a homogeneous solution is always formed for the ternary system

Ternary phase diagrams of PL-HMW/MS/water and PL-LMW/MS/water

Curtin University

Curtin University is a trademark of Curtin University of Technology CRICOS Provider Code 00301J

Ternary phase diagrams of PL-HMW/MS/water and PL-LMW/MS/water

- The solubilities of different PL fractions in the same MS/water mixture follow an order of PL-LMW > PL > PL-HMW.
- The trends of the phase conversion curves for PL fractions follow a similar pattern to that for the PL
- The maximal solubilities of PL-HMW and PL-LMW are ~96 and ~156 g per 100 g of MS/water mixture respectively

Effect of Sugar on Ternary Phase Diagrams of PL and Its Fractions.

Water

- \sim ~5–7 wt % of sugar (mainly in the form of levoglucosan) could be present in the bio-oil used in this study.¹
- The phase conversion curves of the PL/MS/water systems can be greatly affected by the presence of levoglucosan in the system when the water content in the ternary system is low

¹ Yun Yu^{*}, Yee Wen Chua, and Hongwei Wu^{*} Energy Fuels, 2016, 30 (5), pp 4145–4149.

Curtin University is a trademark of Curtin University of Technology CRICOS Provider Code 00301J

Applications of the Ternary Phase Diagram.

- A two-phase bio-oil was easily formed even at a low water-tooil ratio of 10/1
- Accelerated aging experiment of the bio-oil sample was carried out at 80 °C for 4 days.
- The ternary phase diagrams can be very useful in estimating the aging process of bio-oil and the amount of solvent required to prevent phase separation during bio-oil storage

Conclusion

- A mixed solvent (MS) is developed based on the composition of bio-oils in the existing literature
- Several ternary phase diagrams of PL/MS/water systems are constructed for PL and its fractions, and their solubilities in various MS/water mixtures are also estimated.
- The solubilities of different PL fractions indicate that PL solubility is influenced by its average molecular weight
- The presence of free sugar (i.e., levoglucosan) also affects the phase stability of the PL/MS/water system, but only at low water content.

Acknowledgement

Partially financial support from the Australian Research Council via its Discovery Projects scheme

CIPRS Scholarship from Curtin University for PhD Study

> All group members and lab staffs for their support

> Graduate Research School of Curtin University for travel support.

THANK YOU!

TEEH/