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Future needs for transportation fuels change, e.g. 
due to electrification.

Source: www.wikipedia.com

Road transportation may gain electrification 
improvements but heavy-duty road applications 
and aviation fuels will still require liquid fuels.                                                

Percentage of aviation 
and marine fuels in the 

total expected market 
consumption becomes 

higher.

Source: BP Energy Outlook 2019.
PNNL-SA-144454
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Policies for transportation fuels are also 
changing.

Implementation of new sulfur and ethanol 
policies will likely cause changes in fuel 
production and affect the supply chain.

Source: www.eia.com.

PNNL-SA-144454
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Biomass is still considered as a renewable 
source of transportation fuels. 

 Biomass captures CO2
from the atmosphere. 

 Woody biomass can have 
lower sulfur content than 
some crude oil sources.

 Several routes are 
available for biomass 
conversion:

 *Fast pyrolysis
 *Catalytic Fast Pyrolysis
 *Hydrothermal 

Liquefaction
 Gasification  FT 

hydrocarbons, ethanol

* Still require catalytic upgrading

Olarte, et al. (2019). Fuel. 238, 493-506. 
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Flow reactors at PNNL for catalytic 
hydroprocessing. 

20 liter bed + distillation

400/800ml bed

8 x 1.4ml 
beds 

40ml bed
(3 systems)

1 liter fixed and 
moving bed

Catalyst
Discovery

Process
Development

Nominal temperature: Up to 
450C

Nominal pressure:  Up to 
2000psi

Product 
Accrual

PNNL-SA-133096



The advantage of woody biomass is its low sulfur 
and yet a report showed otherwise.

Christensen, et al. (2011). Energy and Fuels. 25, 5462-5471. 

PNNL-SA-144454
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Strategy:  Single type of fast pyrolysis oil, two 
target oxygen levels by adjusting catalysts 

PNNL-SA-144454
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Hydroprocessing: LOC Production

30/60 ml dual T 
zone packed bed 
reactor

400 dual T zone 
packed bed reactors

Ru/C

Comml
HT cat

RuS/C

T = 140-170°C
P = 1200 psig
LHSV = 0.5 ml bio-oil/ 

ml catalyst-hr

T1 = 170-190°C
T2 = 400°C
P = 1800 psig
LHSV = 0.22 ml bio-oil/ 

ml catalyst-hr
(per bed)

T1 = 170-190°C
T2 = 395-405°C
P = 1800 psig
LHSV = 0.28 ml bio-oil/ 

ml catalyst-hr
(per bed)

Olarte, et. al. (2017). Fuel, 202, 620-630.

PNNL-SA-144454



9

Hydroprocessing: MOC production

400 ml dual T zone 
packed bed reactors

Ru/C
Ru/C

Pd/C

T = 140-170°C
P = 1200 psig
LHSV = 0.5 ml bio-oil/ 

ml catalyst-hr

T1 = 170-190°C
T2 = 400°C
P = 1800 psig
LHSV = 0.22 ml bio-oil/ 

ml catalyst-hr
(per bed)

T1 = 170-190°C
T2 = 395-405°C
P = 1800 psig
LHSV = 0.28 ml bio-oil/ 

ml catalyst-hr
(per bed)

Olarte, et. al. (2017). Fuel, 202 (3), 620-630.

PNNL-SA-144454
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Distillation cut-off points for LOC and MOC 
upgraded fractions. 

Fraction 1 20°C-150°C, atmospheric
Fraction 2 150°C-184°C, atmospheric
Fraction 3 184°C-250°C, atmospheric
Fraction 4 250°C-338°C (atm.), vacuum applied (107°C-198°C @ 6 

mmHg)
Fraction 5 >340°C (atm.), vacuum applied (>198°C @ 6 mmHg)

PNNL-SA-144454

Typical 
gasoline 
range
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Distillation cut-off points for LOC and MOC 
upgraded fractions. 

Fraction 1 20°C-150°C, atmospheric
Fraction 2 150°C-184°C, atmospheric
Fraction 3 184°C-250°C, atmospheric
Fraction 4 250°C-338°C (atm.), vacuum applied (107°C-198°C @ 6 

mmHg)
Fraction 5 >340°C (atm.), vacuum applied (>198°C @ 6 mmHg)

PNNL-SA-144454

Typical 
jet fuel 
range
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Distillation cut-off points for LOC and MOC 
upgraded fractions. 

Fraction 1 20°C-150°C, atmospheric
Fraction 2 150°C-184°C, atmospheric
Fraction 3 184°C-250°C, atmospheric
Fraction 4 250°C-338°C (atm.), vacuum applied (107°C-198°C @ 6 

mmHg)
Fraction 5 >340°C (atm.), vacuum applied (>198°C @ 6 mmHg)

PNNL-SA-144454

Typical diesel 
fuel range
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List of characterizations:

• Elemental Analysis
• Density
• Viscosity
• ASTM D2887 – boiling point ranges
• ASTM D6890 – derived cetane
• PIONA analysis – (Paraffins, Isoparaffins, Olefins, Naphthenes, Aromatics) 

functional groups present in the sample
• Total Acid Number
• GC-MS
• S Distribution

PNNL-SA-144454
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Liquid Stream Properties

Oak Pyrolysis 
oil

Pre-treated 
oil

LOC 
composite oil

MOC
composite oil

Carbon (D5373/D5291), dry wt% 45.2 56.92 84.91 81.88
Hydrogen (D5373/D5291), dry wt% 7.09 6.72 13.26 12.25
Nitrogen (D5373/D5291), dry wt% 0.07 0.07 <0.05 <0.05

Oxygen (D5373 mod), dry wt% 47.7 36.34 1.84 5.87
Sulfur (D4239/D1552), ppm <0.02 <0.02 <0.02 <0.03

O/C molar ratio 0.79 0.48 0.02 0.05
H/C molar ratio 1.88 1.42 1.87 1.80

Water content (KF, ASTM D6869), % 19.1 20.35 <0.3 0.6
Total acid number (TAN, ASTM 

D3339), mg KOH/g oil 106.9 109.7 <0.01 39.29

Density, g/cc 1.24 (40°C) 1.23 (40°C) 0.83 (20°C) 0.87 (20°C)

Viscosity, mm2/s 113.71(40°C) 160.77(40°C) 1.82 (20°C) 2.67 (20°C)

Olarte, et. al. (2017). Fuel, 202 (3), 620-630.

PNNL-SA-144454
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Batch distillation closely approximates simulated 
distillation data (ASTM D2887)

LOC
Weight percent, %

MOC
Weight percent, %

BP Range 
(°C) Frxn # SimDist Batch 

Distillation SimDist Batch 
Distillation

0-150 1 34% 29% 28% 32%
150-184 2 9% 12% 11% 10%
184-250 3 16% 16% 18% 19%
250-338 4 20% 19% 27% 24%

>338 5 20% 22% 16% 15%

Olarte, et. al. (2017). Fuel, 202 (3), 620-630.

PNNL-SA-144454
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T10-T90 ranges show boiling range quality of the 
cuts.

 SimDist of fractions
MOC fraction 1 falls within BP 

requirements for gasoline –
however, other considerations 
exist
 LOC and MOC Fraction 3 falls 

within jet BP range
MOC Fraction 4 falls within 

diesel BP range

Olarte, et. al. (2017). Fuel, 202 (3), 620-630.

PNNL-SA-144454
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Satisfying the distillation range does not 
necessarily guarantee good ignition properties.

 Key:
 FP-1-G – MOC 1
 FP-2-G – MOC 2
 FP-8-G – LOC 1
 FP-9-G – LOC 2

Olarte, et al. (2019). Fuel. 238, 493-506. 

 Derived RON – derived Research 
Octane Number
 Calculated measure based on 

derived cetane number (ASTM 
D6890)
 For small amount of samples

 RON – measure of fuel behavior 
during combustion
 Official ASTM sample size requires 

liter levels
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Modified PIONA Analysis (GC method) 

LOC  fraction 1
(vol %)

LOC fraction 2 
(vol %) 

MOC fraction 1 
(vol %)

Paraffin 44.4 21.0 12.9
I-Paraffins 14.0 14.8 12.7
Aromatics 2.8 19.6 2.1
Naphthenes 36.7 30.6 43.9
Olefins 1.6 4.8 1.9
Unidentified 0.5 9.2 14.6
Benzene 0.5 0.0 0.1

RON* 65 38 78
MON* 60 41 59

Olarte, et. al. (2017). Fuel, 202 (3), 620-630.

PNNL-SA-144454

* by GC correlation
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Total Acid Number (TAN) of MOC fractions can be 
quite high.

TAN
(vol %)

LOC frxn 1 <0.01
LOC frxn 2 <0.01
LOC frxn 3 <0.01
LOC frxn 4 <0.01
LOC frxn 5 <0.01
MOC frxn 1 55.31
MOC frxn 2 116.62
MOC frxn 3 39.44
MOC frxn 4 4.77
MOC frxn 5 0.3

Olarte, et. al. (2017). Fuel, 202 (3), 620-630.

PNNL-SA-144454



 Only found in fractions 1 to 3
 LOC has phenols
 MOC has acids and phenols
 Acid: valeric acids (n + iso) > 

butyric acid > acetic acid
 Phenol: o-cresol

20

MOC has more acids and phenols

Olarte, et. al. (2017). Fuel, 202 (3), 620-630.

PNNL-SA-144454
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Elemental distribution has some similarities…  

 As the fraction becomes heavier:
 ↑ C, ↓ H as ↑ BP of fraction
 ↓ H/C – more unsaturation ~ 

aromatics in 13C NMR

Olarte, et. al. (2017). Fuel, 202 (3), 620-630.

PNNL-SA-144454
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… and differences…
 For LOC:
 Almost same O content in all fractions
 Highest S in Fraction 1 – due to 

sulfided catalyst
 Negligible N 

 For MOC:
 ↓ O content
 Lowest S in Fraction 1
Highest N in heaviest fraction
 Lower degree of HDN 

Olarte, et. al. (2017). Fuel, 202 (3), 620-630.

PNNL-SA-144454

MOC used non-sulfided catalysts. S in LOC 
and MOC frxn 2-4 are likely from feed.
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Conclusions

• Presented a comprehensive analysis of distillates with two composite O 
content from a single source.

• Incomplete deoxygenation may reduce cost for hydrotreating requirements but 
will have consequences on the quality of the final product.

• Difference in S distribution was found to be only at the lightest fraction and 
likely due to the use of sulfided and non-sulfided catalysts

• S present in fractions 2 to 4 for both oils suggest S derived from the feedstock.
• May impact sulfur management

• Determining the effect of oxygenate and upgraded compounds from biomass 
on fuel blend qualities is important

• Fractions may be within SimDist boiling point range but not have expected fuel 
properties

PNNL-SA-144454
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 Discussions
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by the U.S. Department of Energy (DOE) Office of Energy 
Efficiency and Renewable Energy (EERE), Bioenergy 
Technologies and Vehicle Technologies Offices.”
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