Engineering Conferences International ECI Digital Archives

Pyroliq 2019: Pyrolysis and Liquefaction of Biomass and Wastes

Proceedings

6-20-2019

Slow pyrolysis of lignin rich residue from lignocellulosic biorefining operations

Paola Giudicianni Research Institute on Combustion, CNR, Naples, Italy, giudicianni@irc.cnr.it

Corinna Maria Grottola Leibniz Institute for Plasma Science and Technology, Greifswald, Germany

Raffaele Ragucci Research Institute on Combustion, CNR, Naples, Italy

Follow this and additional works at: https://dc.engconfintl.org/pyroliq_2019 Part of the <u>Engineering Commons</u>

Recommended Citation

Paola Giudicianni, Corinna Maria Grottola, and Raffaele Ragucci, "Slow pyrolysis of lignin rich residue from lignocellulosic biorefining operations" in "Pyroliq 2019: Pyrolysis and Liquefaction of Biomass and Wastes", Franco Berruti, ICFAR, Western University, Canada Anthony Dufour, CNRS Nancy, France Wolter Prins, University of Ghent, Belgium Manuel Garcia-Pérez, Washington State University, USA Eds, ECI Symposium Series, (2019). https://dc.engconfintl.org/pyroliq_2019/15

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Pyroliq 2019: Pyrolysis and Liquefaction of Biomass and Wastes by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Slow pyrolysis of lignin rich residue from lignocellulosic biorefining operations

P. Giudicianni¹, C.M. Grottola^{*1, 2}, R. Ragucci¹

¹Istituto di Ricerche sulla Combustione, IRC-CNR – Naples, Italy

²Leibniz Institute for Plasma Science and Technology, INP – Greifswald, Germany

Lignin rich residue from bioethanol production

World 1st generation fuel ethanol producion (ISO, 2014)

Research projects in EU

15 research project have been selected for EU funding and have signed a grant agreement with INEA by 30 June 2017.

Commercial-Scale Cellulosic Ethanol Projects Using Sugar Platform (AEC, 2012.)

Location	Opening Year	Capacity/ Year Million Gallons (in Liters)	Feedstock
USA	2014	25 (95)	Corn stover, wheat straw and grasses
Italy	2014	20 (76)	Wheat straw
Brazil	2014	22 (83)	Sugarcane, straw
USA	2014	20 (76)	Corn stover and cobs
Brazil	2015	10 (38)	Sugarcane bagasse
USA	2015	25 (95)	Corn stover
USA	2015	10 (38)	Wheat straw
Canada	delayed	20 (76)	Hardwood and pulpwood
Denmark	2016	20 (76)	Wheat straw
USA	2016	20 (76)	Energy grass
USA	2017	25 (95)	Energy cane
Slovakia	2017	16.5 (62)	Wheat and rapeseed straw
Brazil	2017	16.9 (64)	Sugarcane bagasse

In 2018, with the acquisition of the production site of Crescentino, ENI consolidated the plan of producing bioethanol from biomass residues

ISO, 2014. Ethanol Year Book 2014. International Sugar Organization, London,

Strategies for lignin rich residue conversion

- high yield,
- low condensation of lignin structures.

The identification of catalysts that allow selective degradation/conversion of lignin under mild conditions is the most promising but still most challenging approach

Relaxing the lignin purity constrain

'Char' stands for a wide range of carbonaceous products from biomass pyrolysis.

...

For some applications different biochars satisfying certain characteristics can produce similar effects.

Literature background

Fast pyrolysis of lignin/lignin rich residues for phenols recovery were widely studied.

Less work has been done on slow pyrolysis of lignin rich residue from bioethanol production

Literature background

Fast pyrolysis of lignin/lignin rich residues for phenols recovery were widely studied.

Less work has been done on slow pyrolysis of lignin rich residue from bioethanol production

Literature background

Fast pyrolysis of lignin/lignin rich residues for phenols recovery were widely studied.

Less work has been done on slow pyrolysis of lignin rich residue from bioethanol production

Few data are available referring to:

- different raw biomasses
- different bioethanol production processes
- different pyrolysis conditions

(F. Melligan et al., 2012; Nanda et al., 2014; Ghysels et al., 2019)

Aim of the work

To expand the knowledge on the characteristics of the chars from the slow pyrolysis of lignin rich residue in the better known landscape of biomass derived chars

- The feedstock was characterized and the effect of different pyrolysis temperatures on the char quality and quantity was analyzed and quantified
- Comparison with chars obtained in the same conditions from raw biomasses

Feedstock

Biomass	Pretreatment	sug Fermen	ar tation	Biofuel Recovery		Lignin Rich Residue			
& storage		С	Н	Ν	Ο	Volatiles	Fixed carbon	Ash	
			wt %	ő, daf		wt %, db			
	LRR	52.1	6.2	0.3	41.3	69.6	22.4	8	
	Alkali lignin	65.0	5.9	n.d.	29.1	49.9	40.1	10	
	Arundo donax	47.6	5.8	0.1	46.1	75.8	17.4	6.8	

Grass abd woody biomasses

Na	K	Ca	Mg	Р
		ppm, db		
142	6875	1791	302	804

Experimental set-up

Thermogravimetric analysis

Final temperature: **700** °C Heating rate: **5** °C/min Carrier gas: **N**₂ Operating conditions in the pyrolysis tests Final temperature: **300-700** °C Heating rate: **5** °C/min Carrier gas: N₂

Experimental procedures

Determination of products yields and composition

Gas: construction of releasing rate curves starting from micro GC/TCD analysis performed every 120 s

- Column 1: Molsieve 5A to detect H₂, O₂, N₂, CO, CH₄.
- Column 2: Plot U to detect CO₂, C₂H₄, C₂H₆.

Char: gravimetrically with respect to the feedstock.

- pH (deionized water 1:20 wt/wt ASTM D4972-13)
- N₂ adsorption porosimetry
- Elemental analysis (CEN/TS 15104)
- Proximate analysis (ASTM E870)
- ICP/MS analysis
- Scanning Electron Microscopy

Liquid: amount needed to complete the mass balance.

Understanding the thermal behavior of LRR

EmicelluloseCellulose

- The presence of volatiles from the cellulose fraction could have a beneficial effect on the development of char porosity during pyrolysis
- It is possible to modulate the char characteristics withouth compromising the yield too much

Products yield and gas release rate

the

low

of

Char composition: Elemetal and proximate analysis

	Temperature, °C							
	300	400	500	600	700			
C, wt % db	58.5	63.6	69.4	69.8	71.6			
H , wt % db	4.6	3.2	2.4	1.7	0.9			
N , wt % db	0.5	0.4	0.4	0.4	0.4			
O, wt % db	23.6	15.1	6.5	6.0	4.5			
H/C	0.94	0.60	0.41	0.29	0.15			
O/C	0.30	0.18	0.07	0.06	0.05			
Moisture, wt%	2.4	4.2	4.3	3.1	3.6			
Volatiles, wt%	47.4	26.9	17.2	13.7	10.6			
Fixed Carbon, wt%	37.8	51.8	58.1	61.7	64.1			
Ash, wt%	12.5	17.0	20.4	21.5	21.8			

Char composition: Elemetal and proximate analysis

Char composition: Elemetal and proximate analysis

Char composition: inorganics distribution and pH

	Temperature, °C							
	25	300	400	500	600	700		
рН	5.9	7.8	9.9	9.9	10.0	10.1		

Char structure: porosimetry

Char structure: SEM

Raw biomass

Arundo donax

alkali lignin

Conclusions and perspectives

LRR still contains high amounts of cellulose and ash

The thermal behaviour of LRR residues is very different from the one of alkali lignin typically used as reference compound for biomass lignin.

The produced chars meet the International Biochar Initiative and European Biochar Certificate standards (H/Corg<0.7 and O/Corg<0.4), even at low temperature when biochar yield is still high

pH cannot be easily modulated by increasing the pyrolysis temperature

The main inorganics are retained in the chars even at high pyrolysis temperature but their bioavailability should be assessed

The porous character of the chars encourages to test their potential in applications involving surface phenomena: we are currently testing the chars for the synthesis of polymer composite with electrical properties