OXYGEN NONSTOICHIOMETRY AND THERMODYNAMIC QUANTITIES OF PEROVSKITE-TYPE La_{1-x}Sr_xFeO_{3-δ} (x=0.2, 0.5, 0.8)

Hohan Bae, School of Materials Science and Engineering, Chonnam National University bh20707@gmail.com Jaewoon Hong, School of Materials Science and Engineering, Chonnam National University Mathur Lakshya, School of Materials Science and Engineering, Chonnam National University

Sun-Ju Song, School of Materials Science and Engineering, Chonnam National University

Key Words: Defect chemistry, Thermodynamic properties, Theoretical approaches, Oxide-ion conductors, Mixed conductors

In this work, the defect structure analysis of La_{1-x}Sr_xFeO_{3-δ} (x=0.2, 0.5, 0.8) was presented. Thermogravimetric measurements were performed to determine the change in oxygen nonstoichiometry ($\Delta\delta$) with oxygen partial pressure (pO_2) in $10^{-19} \le (pO_2/\text{atm}) \le 0.21$ and temperature in 750 $\le (T/^{\circ}\text{C}) \le 900$ range. La_{1-x}Sr_xFeO_{3-δ} showed a clear electronic stoichiometric point around $\delta \approx 3$ -x/2. The relative partial molar enthalpy (h₀-h₀^{\operactore}) and entropy (s₀-s₀^{\operactore}) of oxygen were calculated from δ - pO_2 -T relation by using Gibbs-Helmholtz equation. The negative sign of h₀-h₀^{\operactore} and s₀-s₀^{\operactore} indicated that the incorporation of oxygen was an exothermic process and showed that the experimentally observed variations in h₀-h₀^{\operactore} and s₀-s₀^{\operactore} with δ matched well with the statistical thermodynamic model proposed by Mizusaki^[1]. The defect diagram analysis showed that in n-type regime Fe²⁺ concentration varied with (pO_2)^{1/4}.

Reference

[1] J. Mizusaki et al. J. Solid State Chem. 67 (1987) 1-8.