HIGH RESOLUTION THERMOCHEMICAL STUDY OF PHASE STABILITY AND RAPID OXYGEN INCORPORATION IN YBaCo_{4-x}Zn_xO_{7+ δ} 114-COBALTITES

Dmitry Tsvetkov, Institute of Natural Sciences and Mathematics, Ural Federal University, Russia Dmitry.Tsvetkov@urfu.ru Pardha Maram, Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, USA Nadezhda Tsvetkova, Institute of Natural Sciences and Mathematics, Ural Federal University, Russia Andrey Zuev, Institute of Natural Sciences and Mathematics, Ural Federal University, Russia Alexandra Navrotsky, Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, USA

Key Words: calorimetry, 114-oxides, YBaCo₄O₇, thermodynamic stability, oxygen sorption.

The formation enthalpies of YBaCo_{4-x}Zn_xO_{7+ $\delta}$ (x = 0, 1 and 3) oxides were measured by high temperature oxide melt solution calorimetry. All the studied oxides were shown to be thermodynamically metastable at low temperature with respect to a mixture of binary oxides Y₂O₃, BaO, Co₃O₄, CoO and ZnO. The tendency of cobalt to increase oxidation state under oxidizing conditions as well as significant bond valence sum mismatch for Ba and Y in 114-oxides are the main destabilizing factors. As a result, the studied 114-oxides are thermodynamically stable in air only at relatively high temperatures (> ca. 900 °C) when CoO is stable. Oxygen absorption in YBaCo_{4-x}Zn_xO_{7+ δ} (x = 0, 1 and 3) at 350-400 °C was studied by calorimetry combined with precise oxygen dosing. Complex phase evolution in YBaCo₄O_{7+ δ} upon oxygen absorption was revealed. Several single and two phase fields were identified and a sketch of the phase diagram for YBaCo₄O_{7+ δ} was proposed. The calorimetric results support observations using in situ XRD. At the same time, thermochemical measurements were shown to have higher resolution with respect to the amount of oxygen absorbed by YBaCo_{4-x}Zn_xO_{7+ δ} sample under equilibrium conditions.}

This work was supported by the Ural Federal University within the framework of Act 211 of Government of the Russian Federation, agreement № 02.A03.21.0006. The thermochemistry work at Davis was supported by US Department of Energy Grant DE-FG02-03ER46053.