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Introduction  

Solid solutions of general formula Si6–zAlzOzN8–z (z = 0.0–4.2) are known for their excellent hardness, strength, and wear/corrosion resistance, which explains their wide use in various engineering 

applications such as refractory materials, bearings, and cutting instruments [1]. Functionality of β-SiAlON ceramics can be markedly improved upon addition of other refractory compounds with 

strongly different physical parameters such as Young modulus, thermal/electrical conductivity, thermal expansion, etc. The addition of hexagonal boron nitride (h-BN), TiN, and SiC to ceramic 

composites is known to improve their fracture toughness, thermal shock resistance, tribological properties, thermal/electrical conductivity, and machinability.  

Combustion synthesis (CS) is a rapidly developing research area oriented on fast and energy efficient production of high-melting compounds and materials. For example, infiltration-mediated CS 

in nitrogen is a convenient technique for production of α- and β-SiAlON powders with different phase and elemental composition, particle size, and morphology [2]. Spark plasma sintering (SPS) is 

a newly developed process that uses dc pulses for sample heating. As compared to conventional hot pressing, SPS ensures higher heating rates and very short holding times and has been widely 

recognized as a rapid and effective method for densification of various materials [3]. So the combination of CS and SPS techniques seems rather promising for R & D of β-SiAlON-based ceramics 

with widened functionality. 
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Results and Discussion 
According to XRD results, the raw powders of β-Si5AlON7, h-BN, and TiN did not contain impurity phases while β-SiC had trace 

amounts of Si3N4. According to SEM results, all as-synthesized powders appeared largely as agglomerates (Fig. 1). Their specific 

surface was about 1.3 m2/g for β-Si5AlON7 powders, and from 9.8 to 22.8 m2/g for h-BN, β-SiC, and TiN fine powders. After ball 

milling, the specific surface increased by a factor of 4–6. Simultaneously, the particle size distribution of h-BN-containing mixtures 

always exhibited an additional peak around 20–60 µm, thus indicating the formation of secondary huge agglomerates from initially 

fine particles.  

Figures 2 and 3 show relative density rel of sintered samples as a function of temperature T. The sintering of pure β-Si5AlON7 was 

accompanied by marked intensification of the consolidation process at temperatures above 1400°С (curve 1 in Fig. 2) probably due 

to formation of SiO2 and Al2O3 eutectics. Upon further increase in T, relative density of sintered β-Si5AlON7 gradually grows up to 

87% (curve 1 in Fig. 3). Our SEM observations suggest (Fig. 4) that at 1550°C the particles remain practically unchanged (Fig. 4a) 

and the formation of bottle necks gets started at higher temperatures. According to XRD data, pure β-Si5AlON7 sintered above 

1750°C exhibits the traces of AlN formed upon thermal decomposition of β-Si5AlON7. This is also evidenced by some increase in gas 

pressure in the SPS chamber observed above 1600°C caused by the release of appropriate gaseous decomposition products, N2 and 

SiO. Note that the release of gaseous products was observed only for sintered materials with rel < 87%. In case of denser materials 

with no open porosity, the decomposition of β-Si5AlON7 were completely suppressed. The addition of h-BN improves the 

compactibility of sintered powder mixtures. Under a compressive stress of 50 MPa at 600°C, the initial value of rel exceeds 80% for 

the compact containing 30 wt % BN and 60% for that of pure β-Si5AlON7 (Fig. 2).  

  

Conclusion 
High-density β-SiAlON–based ceramic composites can be prepared by fast and energy efficient techniques: CS of raw 

powder materials and subsequent SPS. Thus obtained ceramics seem promising for fabrication of items for operating 

in conditions of strong thermal shock and in corrosive media. 
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Experimental  
Infiltration-mediated CS of β-Si5AlON7 and h-BN powders in nitrogen gas was carried out by the following schemes: Green mixtures also contained some amount of homemade diluents, β-Si5AlON7 and h-BN respectively, in order to improve extent of conversion. 

Combustion was performed in a 2-L reactor at P(N2) = 8–10 MPa. The CS of β-SiC was carried out by using multistep chemical reactions in the Si–C–N system [4] and TiN fine powders with added NH4Cl as a gasifying agent [5]. Aliquot amounts of combustion-

synthesized raw powders were intermixed in a high-energy planetary steel-ball mill. Ball milling time (800 rpm, ball/mill ratio 10 : 1) was 5 min. Then milled powders (about 0.5 g) were placed into a graphite die 10.4 mm in inner diameter and sintered in a Labox 

625 SPS facility under vacuum (below 10 Pa). The pieces of carbon paper and carbon felt were put between the powder and graphite die to exclude high-temperature reaction during sintering, as well as to easily get the sample out after sintering. The heating rate 

was 50 deg/min. The sintered compacts were heated from room temperature to 600°C without applied load and then to 1550–1800°C at a compressive stress of 50 MPa. The compacts were held at a desired temperature for 5 min before the power was turned off. 

Temperature monitoring during sintering between 600C and final sintering temperature was carried out using an optical pyrometer focused on a hole in the carbon die. The particle size distribution of milled powders was determined with Fritsch Analysette 22 

device. The BET analysis (N2 sorption) was performed by using a Sorbi-M surface area analyzer. The raw powders and sintered compacts were characterized by XRD (DRON-3.0) and SEM (JEOL 6610L). Sample densities were determined by hydrostatic 

weighing. Flexural strength (f) was measured for bending a thin disk on a ring base in a testing machine Instron-5966.  
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In parallel, an increase in h-BN content suppresses the consolidation processes due to formation of liquid eutectics. At 30 wt % 

BN (curve 4 in Fig. 2), the temperature dependence of rel becomes much more aligned.  As is seen in Fig. 5a (10 wt % BN), the 

small flaky h-BN particles are uniformly distributed over the surface of larger β-Si5AlON7 particulates. At 30 wt % BN (Fig. 5b), 

the h-BN particles (unwettable with oxide melt) fully separate the β-Si5AlON7 particles apart. It is clear that in such systems a 

contribution from liquid-phase processes to consolidation cannot be important. In case of 10 and 20 wt % h-BN, the processes 

associated with formation of liquid eutectics are more or less pronounced, so that high relative density (close to theoretical one) 

can be attained (see curve 3 in Fig. 3). The addition of fine β-SiC and TiN powders worsens the compactibility of sintered powder 

mixtures under a compressive stress at the initial stage (Fig. 6). As a result, the highest value of relative density for sintered 

ceramic composites containing β-SiC can only be achieved at 1750°C (curve 2 in Fig. 3). Meanwhile, the addition of TiN powder 

is seen to facilitate c the efficiency of sintering above 900°С (curves 2, 3 in Fig. 6) and the highest values of rel can be achieved 

already at 1550°C (curve 4 in Fig. 3). Figure 7a illustrates flexural strength f as a function of rel. Our results well agree with 

those reported for similar ceramic composites prepared by other techniques [6–7]. SPS method affords to produce ceramic 

composites with higher relative density and flexural strength (up to 400 MPa). In our case, the flexural strength of sintered 

ceramic composites was found to depend on the BN content only slightly (Fig. 8b). A marked increase in f (up to 40%) can be 

achieved upon replacement of 40 wt % of relatively coarse β-SiAlON particles in sintered ceramic composites by finer β-SiC and 

TiN particles (curve 2 in Fig. 7a).  

Figure 1. SEM images of starting β-Si5AlON7 (a), h-BN (b), β-SiC (c), and TiN (d) powders.  

Figure 2. Relative density rel as a function of 

temperature T for: β-Si5AlON7 (1), β-Si5AlON7–BN 

(10 wt %) (2), β-Si5AlON7–BN (20 wt %) (3), and 

β-Si5AlON7–BN (30 wt %) (4); Tmax = 1650°C.  

Figure 4. Fracture surface of β-Si5AlON7 sintered at 1550 (a), 1600 (b), 1700 (c), and 1800°C (d).  

Figure 5. Fracture surface of sintered ceramic composites: (a) β-Si5AlON7–BN (10 wt %), (b) β-Si5AlON7–BN (30 wt %), 

(c) β-Si5AlON7–SiC (40 wt %)–BN (10 wt %), and (d) β-Si5AlON7–TiN (40 wt %)–BN (10 wt %); Tmax = 1750°C.  

Figure 7. Flexural strength f as a function of: (a) relative density rel for (○) β-Si5AlON7–BN (0–30 wt %) - curve 1, (▼) β-

Si5AlON7–TiN(20 wt %)–BN(10 wt %), () β-Si5AlON7–TiN(40 wt %)–BN(10 wt %) - curve 2, (▲) β-Si5AlON7–SiC(20 wt 

%)–BN(10 wt %), (∆) β-Si5AlON7–SiC(40 wt %)–BN(10 wt %) - curve 2, and (b) BN content in β-Si5AlON7–BN (10–30 wt 

%) (rel = 95–98 %). 

Figure 6. Relative density rel as a function of temperature T for: (a) β-Si5AlON7–BN (10 wt %) (1), β-Si5AlON7–SiC 

(20 wt %)–BN (10 wt %) (2), and β-Si5AlON7–SiC (40 wt %)–BN (10 wt %) (3); and (b) β-Si5AlON7–BN (10 wt %) (1), 

β-Si5AlON7–TiN (20 wt %)–BN (10 wt %) (2), and β-Si5AlON7–TiN (40 wt %)–BN (10 wt %) (3); Tmax = 1750°C. 

Figure 3. Relative density ρrelas a function of Tmax for: 

(■) β-Si5AlON7 - curve 1, (○) β-Si5AlON7–BN (10–30 

wt %) - curve 3, (▼) β-Si5AlON7–TiN (20 wt %)–BN (10 

wt %) - curve 3, ( ) β-Si5AlON7–TiN (40 wt %)–BN (10 

wt %) - curve 4, (▲) β-Si5AlON7–SiC (20 wt %)–BN (10 

wt %) - curve 2, (∆) β-Si5AlON7–SiC (40 wt %)–BN (10 

wt %) - curve 2.  
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