Engineering Conferences International ECI Digital Archives

Advancing Manufacture of Cell and Gene Therapies VI

Proceedings

1-28-2019

Tangential flow filtration and scalability in viral vector purification

Eni Sterjanaj

Heather Mall

Rachel Legmann

Jacky Dang

Follow this and additional works at: http://dc.engconfintl.org/cell_gene_therapies_vi
Part of the <u>Biomedical Engineering and Bioengineering Commons</u>

Tangential Flow Filtration and Scalability for Gene Therapy Virus Purification (AAV)

Continuously Improving Bioprocesses

This presentation is the confidential work product of Pall Corporation and no portion of this presentation may be copied, published, performed, or redistributed without the express written authority of a Pall corporate officer. © 2019 Pall Corporation.

Introduction

• Gene therapies are becoming more common, practical and effective

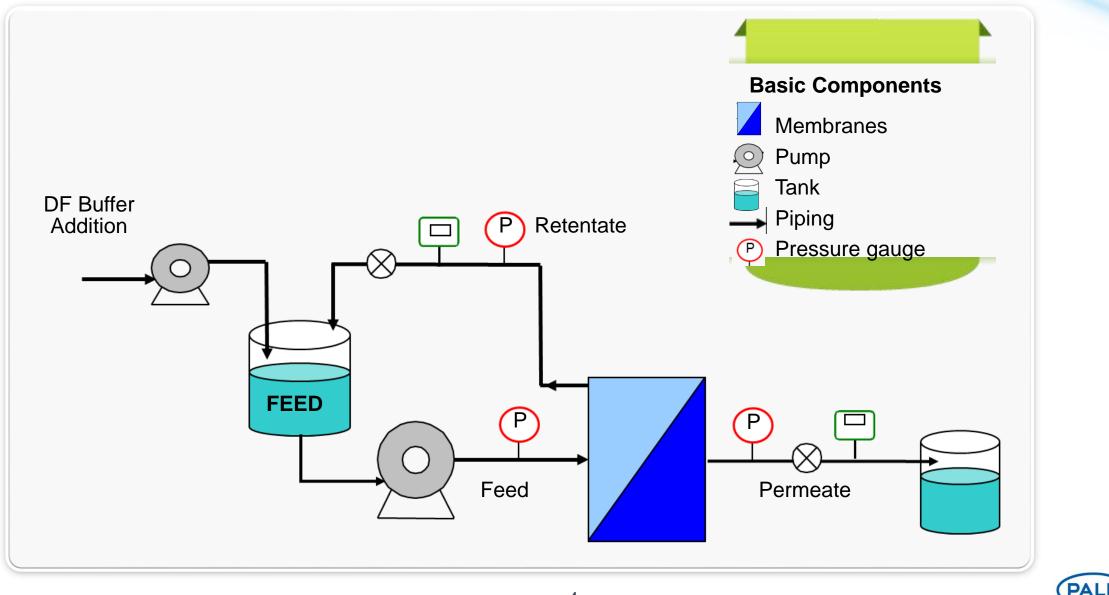
- diabetes, hemophilia, cystic fibrosis, cancer, SMA, Huntigton's,

Advantages of AAV/ADV: easy to concentrate and high rates of infection

- many cell types, dividing/non-dividing

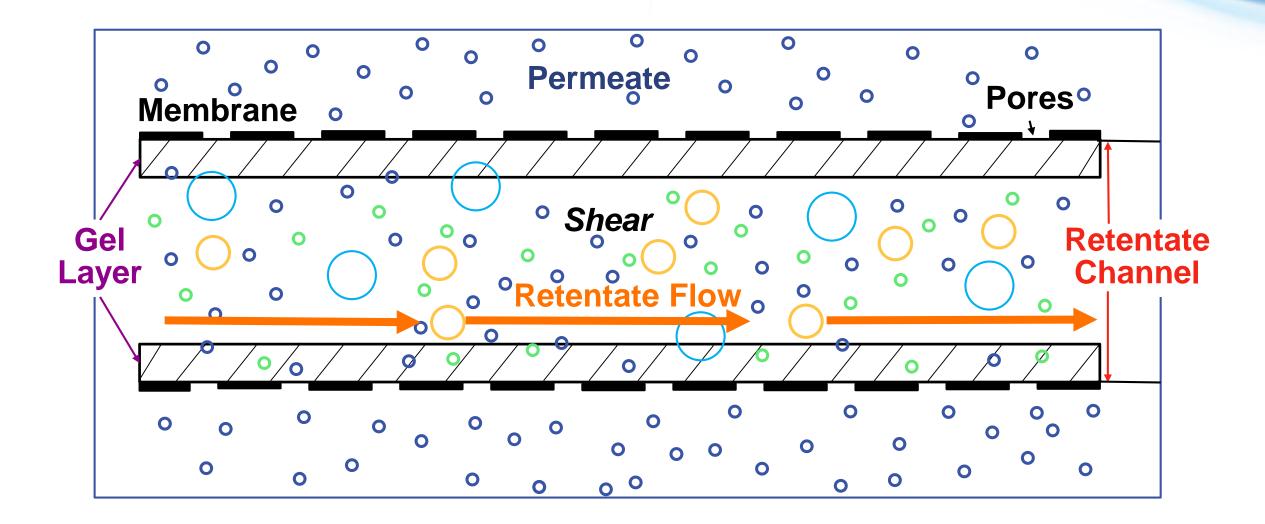
• Downstream purification is a necessary tool in recovering final product

• Tangential flow filtration (TFF) clears low molecular weight impurities (i.e. less than filter retention rating) and buffer exchange is essential to stability



Abstract

- Pall Biotech has linearly scalable tangential flow filtration (TFF) technology that can process volume ranges from less than 1 L to over 2000 L
- Programmable skids are available for industrial scale volumes
- In this presentation, TFF linear scalability of up to 200 L is covered starting from a 9 L initial volume and maintaining similar pressures, processing times and yields at all scales. Yield was upwards of 90% for both runs
- Using this scalable technology, Pall Biotech enables biologics companies to serve their target markets by going to clinical trials and to commercial scale manufacturing successfully



Basic TFF System Components

Biotech

Close Up of TFF Flow Path

Materials

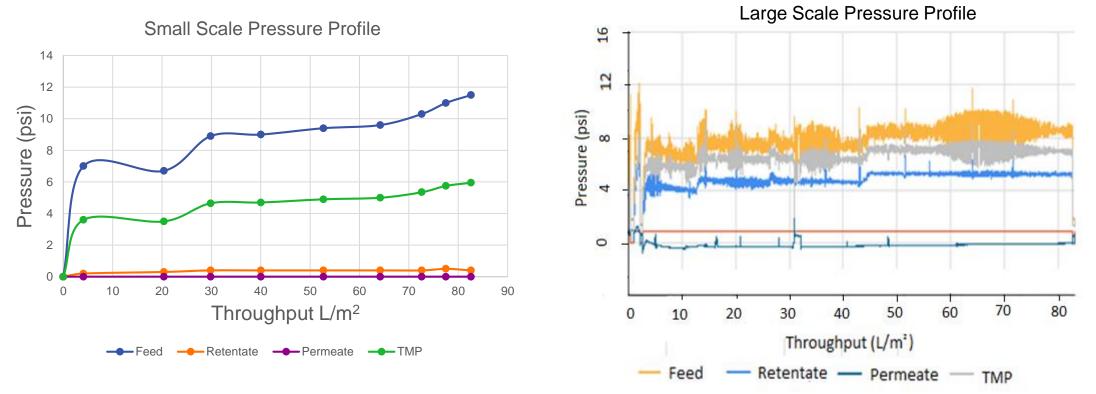
- Cell culture harvest of AAV
- SupraCap100 V100P depth filter (2-4 microns)
- Stax with V100P media for large scale
- Manual TFF assembly (small scale TFF)
- 0.1 m² surface area, 300 kDa Pall Centramate[™] TFF cassette
- 2.5 m² surface area, 300 kDa Pall Centrasette[™] TFF cassette
- Allegro single-use TFF system (CS1000)
- Allegro single-use biocontainer

Methods

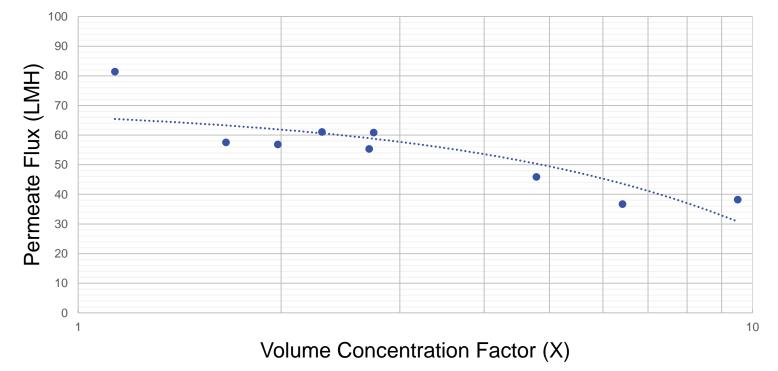
- Cell culture material was clarified through a 2-4 micron pore size depth filter for large and small scale using V100P depth media. Depth filter was flushed with 25 mM Tris, 100 mM NaCl, pH 7.5 to maximize recovery
- Filtrate from the previous step was concentrated 10x in small (0.1m²) and large (2.5m²) scale. TFF set up and buffer exchanged 5x into 25 mM Tris, 100 mM NaCl, 0.005% Tween 20, pH 7.5
- Supor[®] EKV membrane Kleenpak[™] capsule was used for sterilizing grade filtration at the end of the TFF step
- SDS-Page was used to examine impurity clearance per process step
- qPCR was used to determine titer

Large Scale Single-Use TFF

CS1000 System		
Tube ID	1⁄2 in.	
Cassette area	$0.5 - 2.5 \text{ m}^2$	
Recirc. Pump capacity	20 – 1000 L/hr	
Typical batch volumes	500 L	
Hold-up volume (volume in feed and retentate)	0.6 L	
Operation	Automatic	



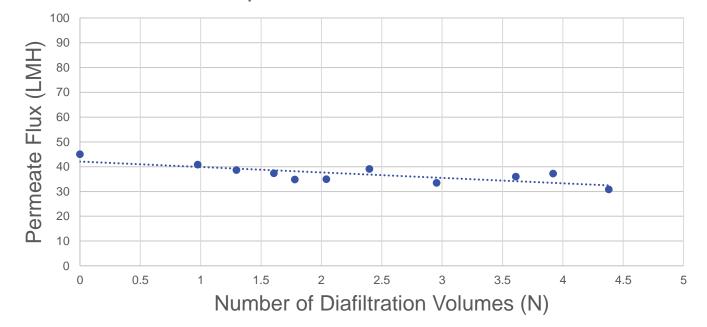
- Pall scale-up TFF systems processing range: <u>20 L to 800 L</u>
- Manual assemblies are usually used to accommodate volumes below 20 L
- The CS1000 system used here
- Intuitive and easy to use user interface
- Methods are easily configurable and automated – alarms in place
- Pressure monitors, flow monitors, and conductivity monitors available to characterize process performance



Pressure Profile for Small (0.1m²) and Large Scale (2.5m²) Runs

- Transmembrane Pressure (TMP): 4-8 psi common
- Large and small scale TFF had similar pressure profiles
- Pressure limit for safe operation 4 barg for reinforced manifold sections

Obtaining average permeate flux for small scale concentration



Permeate Flux vs Volumetric Concentration

Average permeate flux = 54.8 LMH

Obtaining average permeate flux for small scale diafiltration

Jperm For Diafiltration

Average permeate flux = 40.7 LMH

Filter Sizing

- Permeate flux from small scale concentration and diafiltration used to predict filter area for large scale
- Processing time was kept similar for both scales
- Predicted area for large scale = 2.1m²

$$A = \frac{1}{t_T} \left[\frac{V_c}{J_c} + \frac{V_d}{J_d} \right]$$
$$A = \frac{1}{2.7} \left[\frac{180}{54.8} + \frac{100}{40.7} \right]$$

A = 2.1 m² \rightarrow 2.5 m² with ~20% safety factor

A = area tT = total time Vc = volume processed during concentration Vd = volume processed during diafiltration Jc = avg. permeate flux during concentration Jd = avg. permeate flux during diafiltration

Linear scale-up possible by extrapolating graph and deriving appropriate filter area

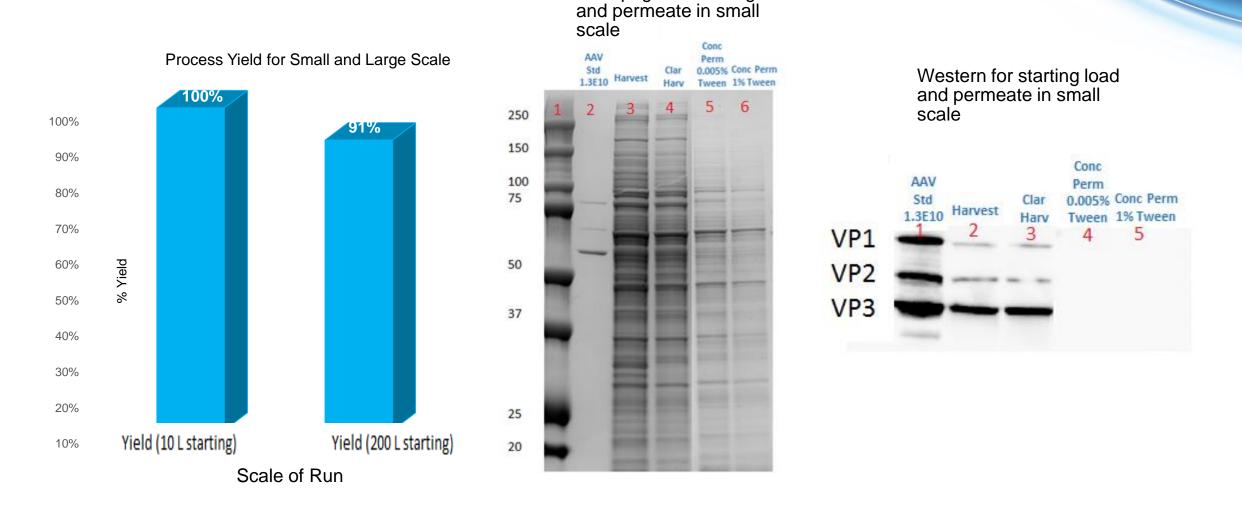
Small and Large Scale Process Variables Comparison

Process Parameters Table

Parameter	Small Scale	Large Scale
	(~9 L Clarified bulk)	(~200 L)
Processing time (concentration)	~1 h 30 m	~1 h 15 m
Processing time (buffer exchange)	~1 h 10 m	~1 h 5 m
Feed flux (concentration)	500 mL/min (300 LMH)	12.5 L/min (300 LMH)
Feed flux (buffer exchange)	500 mL/min (300 LMH)	12.5 L/min (300 LMH)
AVG Permeate flux (concentration)	54 LMH	60 LMH
AVG Permeate flow rate (buffer exchange)	40 LMH	38 LMH
Membrane surface area	0.1 m ²	2.5 m ²
Volume processed	9 L	~200 L
Titer (yield by qPCR)	99%	91%
Flow decay	~ 50%	NA

 Comparable processing times at both scales

Similar yield at both scales (within assay variability range)


 $LMH = liters/meter^{2}/hour$

 $LMM = liters/minute/meter^2$

 gc/cm^2 = gene copies per centimeter²

Virus Recovery for Small and Large Scale and impurity clorence for small scale

Recovery is in the 90% range for small and large scale TFF as tested by qPCR

Biotech

PALL

Pall Virus Hardware Platform

Adherent seed train: Xpansion multiplate bioreactor

Adherent bioreactor: iCELLis 500 bioreactor

Stax depth filter systems

Purification: Allegro single-use chromatography system

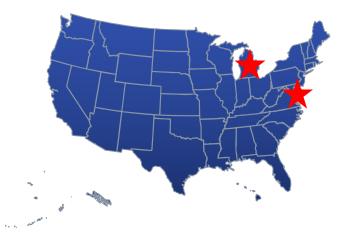
Concentration: Allegro single-use tangential flow filtration systems

Sterile filtration: Allegro MVP single-use system

Suspension seed train and bioreactor: Allegro STR 200, 1000 and 2000 L bioreactors

Media/buffer mixing: Allegro 50L mixer, Mag Mixer

Media/buffer storage/handling: Allegro plastic/stainless steel totes


- TFF linear scalability from 9L to 200 L was successfully demonstrated.
- Pressures, processing times and yields at both scales were kept in the same range.
- Pall has scalable TFF solutions for gene therapy application as well as other biologics.

Process Development Services (PDS): UK and US Development Laboratories

Portsmouth, United Kingdom

- 200 m² of configurable BL2-grade suites
- Newly designed flexible laboratories
- Equipped with Pall systems for suspension and adherent culture
- Latest innovations in Pall technology for large scale downstream processing (DSP)
- Advanced analytics on site including Q-TOF, H-Class Bio UPLC and Pall's ForteBio Octet[®] systems

Westborough, Massachusetts, USA

- 500 m² of configurable laboratory space
- Class 10,000 cleanrooms and BL2-grade suites
- Newly designed laboratories with a focus on recombinant protein and cell therapy processes
- Advanced analytics on site including qPCR, Flow Cytometry, HPLC and Pall's ForteBio Octet[®] systems

Ann Arbor, Michigan, USA

- 200 m² of laboratory space
- Three rooms for BL-2 support
- Focus on adherent microcarrier process development and training on techniques

Pall PDS Global – Shared expertise on applications, harmonized procedures and equipment portfolio ensuring the best service for our customers wherever the location

Thank You

Continuously Improving Bioprocesses