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ABSTRACT 

The bulk of streams in the U.S. have been negatively impacted by anthropogenic 

disturbances and the streams of Kentucky are no exception. In recent decades stream 

restoration has become a common practice in order to improve habitat degradation 

resulting from land use practices such as channelization. Despite the large amount of 

effort and funding stream restoration projects represent, only a small portion have 

undergone post-restoration assessments of the ecological response in the restored 

streams. Slabcamp Creek, a headwater stream located in the Licking River basin in 

eastern Kentucky, underwent a stream-wetland hydrologic restoration in 2010 in order to 

improve hydrologic functioning and degraded habitat that resulted from channelization. 

The goal of this study was to quantify macroinvertebrate assemblages from Slabcamp 

Creek and compare the assemblages to a site representing Kentucky Division of Water’s 

headwater reference conditions and a pre-restoration condition control site. Specific 

objectives included: 1) compare macroinvertebrate assemblage structure and function 

across study sites, 2) determine if mesohabitats (pools and riffles) support unique 

macroinvertebrate assemblages within and between study sites, 3) determine if 

macroinvertebrate assemblages varied at the study sites seasonally between high base 

flow (winter) and low base flow (summer), 4) explore relationships between the 

macroinvertebrate assemblages and microhabitat variables at the study sites, and 5) 

determine how accounting for the availability of mesohabitats at the reach scale (habitat 

weighting the data) compares to patch scale analyses for these objectives.  Overall, 

findings indicated restored Slabcamp Creek was more similar to the reference condition 

site than the pre-restoration condition control site. It appeared that habitat-specific 

sampling may play an important role in assessing hydrologic restoration, since 

invertebrate densities, biomass and assemblage structure and function from riffles were 

fairly similar across sites while stark differences were detected in pools. This could be a 

result of the restoration improving hydrologic functioning and thus the underlying fluvial 

geomorphological processes that create pools which are disrupted by channelization. 

Subsequently, improved hydrologic function may have led to increased habitat 

complexity, substrate stability, and organic matter retention. Post restoration monitoring 

should continue at these study sites to see if these results vary or persist over time. 
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CHAPTER I 

INTRODUCTION 

 

1.1 History and consequences of channel alteration 

 

Prior to European settlement, Kentucky’s freshwater ecosystems likely looked 

and functioned very differently than their modern counterparts. Many of the streams 

Daniel Boone would have laid eyes upon drained old uncut forests; a large portion of 

Kentucky’s streams were likely heavily influenced by natural discontinuities such as 

dams built by native beaver (Castor canadensis).  Natural channel discontinuities create 

intricate connections with wetland habitat in streams’ floodplains (Burchsted et al. 2010, 

Parola and Bigbiehauser 2011). Settlement of the region brought a legacy of 

anthropogenic disturbances that altered the natural structure and hydrologic function of 

many stream and river channels. The intensity and frequency of land use disturbance has 

continued to increase; many streams and rivers have been channelized as a result of 

historical and current human activities in order to control floods, increase space for 

agriculture, and build roads.   

As a result of natural fluvial geomorphological processes, streams in eastern 

Kentucky exhibit channels characterized by features called pools and riffles. Under 

normal flow conditions, shallow, high velocity erosional areas (riffles) alternate with 

deeper, slower velocity depositional areas (pools) within stream channels. Riffles tend to 

be characterized by larger, coarse substrates such as cobble and gravel while pools are 

characterized by finer substrates such as sand, clay, and silt (Allan and Castillo 2007).  
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Pools and riffles are mesohabitats, i.e. “medium-scale habitats which arise through the 

interactions of hydrological and geomorphological forces” (Tickner et al. 2000). Aspects 

of macroinvertebrate and fish assemblages such as abundance, biomass, diversity, and 

assemblage structure have been shown to vary across stream mesohabitats because of 

substrate composition, food availability, water depth and current velocity (Beisel et al. 

1998, Beisel et al. 2000, Jackson et al. 2001, Jowett 2003, Merritt and Cummins 2008, 

Schwartz and Herricks 2008). 

Channelization is the practice of converting a complex meandering stream into a 

simple straight channel, which changes the natural flow regime.  In Kentucky, many 

streams have been straightened and moved to valley sides in order to make more land 

available for growing crops (Parola and Biebighauser 2011). Despite perceived 

advantages, such as creating room for agriculture and flood control, there is a 

preponderance of evidence that suggests many streams and rivers have lost their 

hydrologic function as a result of widespread alteration of channel structure and flow 

regimes, culminating into one of the most severe problems facing streams today (Poff et 

al. 1997, Bunn and Arthington 2002, Elosegi et al. 2010, Bernhardt and Palmer 2011). 

The most recent Kentucky Water Quality Assessment Report indicates 66.8% of 

evaluated miles of streams are impaired under the Clean Water Act (1972) (EPA 2012). 

The ecological consequences of anthropogenic channel alteration are numerous, 

and result in major stressors to biota such as disconnection from the floodplain, drying, 

erosional down cutting that removes substrate and deepens the channel, unstable beds, 

and noncomplex habitat; overall it diminishes the ecosystem’s structure and ability to 

function. Loss of functioning results in a net loss of ecosystem services (e.g., 
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biogeochemical cycling, production, water quality regulation, food, and recreation 

amongst others) (Thorp et al. 2010) and in many instances may facilitate the 

establishment of harmful invasive species; all of which result in the decline of 

biodiversity (Bunn and Arthington 2002). Channelization influences the natural fluvial 

geomorphological processes that create pool and riffle mesohabitats and results in a more 

homogenous channel (Negishi et al. 2002). For instance, channelization can lead to an 

increase in velocity and discharge that increases the stream’s sediment transport capacity 

and thus sediment storage and composition (Montgomery and Buffington 1997). 

Increased sediment transport capacity essentially leads to a decline of the finer substrates 

(both sediments and organic matter) which are characteristic of pool mesohabitat. 

Substrate (sediment) composition and stability is very important to biota and different 

taxa exhibit different substrate preferences (Vannote et al. 1980, Beisel et al. 1998, Beisel 

et al. 2000, Jowett 2003, Merritt and Cummins 2008, Thorp and Covich 2009). A loss of 

fines may have implications on the assemblage structure of channelized streams. 

Substrate serves as refuge, foraging ground, and a place for reproduction and 

development (Allan and Castillo 2007, Merritt and Cummins 2008, Thorp and Covich 

2009). Drying can be a major stressor to biota when channelization disconnects a stream 

from its floodplain and groundwater source, particularly in streams with non-complex 

habitat. During drought events, naturally functioning pools often retain water much 

longer than riffles; although little research has been done, some evidence suggests pools 

can function as a refuge from drying for macroinvertebrate taxa (Miller and Golladay 

1996, Boulton 2003).   
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1.2 Stream Restoration and post restoration monitoring 

 

In order to address the negative consequences of anthropogenic disturbance, 

stream restoration has become an increasingly common and important practice in recent 

decades (Bernhardt et al. 2005, Lake et al. 2007, Bernhardt and Palmer 2011).  Stream 

restoration may occur for mitigation purposes, to enhance habitat for threatened and 

endangered species, or simply to return a stream to its former condition that better 

supported biodiversity and provided ecosystem services. The singular most important 

piece of legislation regarding water quality in the United States names restoration as a 

goal. The Clean Water Act (CWA), the 1972 amendments to the Federal Water Pollution 

Control Act, states its main objective is the restoration and maintenance of the chemical, 

physical, and biological integrity of the Nation’s waters (Clean Water Act of 1972).  

Stream restoration practices are diverse, but the most common practices to date 

involve channel reconfiguration, bank stabilization, introducing various structural 

features such as boulders and woody debris to increase habitat heterogeneity, and 

planting trees in riparian zones (Lave 2009, Tullos et al. 2009, Bernhardt and Palmer 

2011).  In the United States alone these restoration practices represent a substantial 

expenditure of resources, surpassing 1 billion dollars each year (Bernhardt et al. 2005). 

Interestingly enough, despite the large amount of effort and funding represented 

by stream restorations, only a small portion of projects have undergone post-restoration 

assessments of the ecological response (Sudduth et al. 2007, Tullos et al. 2009, Bernhardt 

and Palmer 2011), perhaps due to the additional cost represented by continued 

monitoring.  According to surveyed project managers, common tools for assessing the 
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success of a restoration include the appearance of the restored site and public opinion on 

the project (Bernhardt et al. 2005). In Kentucky, stream restorations have been sparsely 

evaluated for ecological success (Jack et al. 2003, Suddeth et al. 2007). In an instance 

where post-project assessment was attempted in Kentucky, Price and Birge (2005) found 

degraded habitat and no difference in fish species assemblages in two restored reaches 

relative to control reaches.  Given the rise in the number of restoration projects 

throughout the years, as well as the importance of their success in improving the 

ecological integrity of streams and rivers, it has become increasingly important to 

evaluate ecological responses in order to ensure limited resources are maximally utilized 

and efforts are not in vain.  

There is no consensus in the scientific community as to what characteristics a 

“successful” restoration might exhibit (Palmer et al. 2005).  A variety of indicators such 

as aesthetics, stakeholder satisfaction, economic cost or benefit, and biological indicators 

have been used to judge restoration success. Palmer et al. (2005) argues for measures of 

ecological success since the very definition of restoration implicates environmental 

improvement as a goal. Ecological success can be evaluated by summarizing the structure 

of aquatic communities or measuring ecosystem functions (e.g., secondary production, 

decomposition, nutrient retention).  Biological indicators are organisms which are 

commonly used to evaluate the quality or health of an aquatic environment, making them 

ideal measures of the ecological success of stream restoration. The composition of 

macroinvertebrates and fish communities are frequently used to judge the biological 

integrity of streams and rivers (Hughes 1995, Carter and Resh 2001, Merritt and 

Cummins 2008). Benthic macroinvertebrates are especially useful in biomonitoring 
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efforts since they: (1) are diverse and abundant with many taxa varying in their tolerance 

to environmental stressors, (2) occur in a variety of microhabitats, and (3) are relatively 

sedentary (Merritt and Cummins 2008). In addition, macroinvertebrates are important in 

food webs, and they influence ecosystem functions (Wallace and Webster 1996).  

Specific aspects of stream restoration practices that influence the distribution and 

abundance of macroinvertebrates in restored channels might be revealed if measures of 

water quality (pH, conductivity), physical habitat (flow, composition of inorganic 

substrate), riparian condition (canopy cover, vegetation assessment), and benthic food 

resources (benthic organic matter, periphyton) are collected concurrently with benthic 

macroinvertebrates.   

Studies using macroinvertebrate communities to judge restoration success indicate 

current restoration practices (i.e., channel reconfiguration and increasing structural 

habitat heterogeneity), have had limited success at eliciting a positive ecological response 

(Miller et al. 2009, Tullos et al. 2009, Palmer et al. 2010). Palmer et al. (2010) found only 

two out of 78 studies reported an increase in macroinvertebrate taxa richness following 

restoration.  Another study from restored streams in North Carolina found restoration 

practices negatively influenced food availability and habitat, leading to benthic 

macroinvertebrate communities dominated by tolerant taxa and species with life histories 

adapted for frequent disturbance (Tullos et al. 2009).  Miller et al. (2009) performed a 

meta-analysis of 24 published restoration studies and found a significant increase in 

macroinvertebrate richness but not density. Density could be a very important measure 

when determining the ecological success of a restoration because it speaks to trophic 
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level dynamics and the ability of an ecosystem to support higher organisms (Lake et al. 

2007).  

 

1.3 Recommendations for improved restoration practices and post restoration monitoring 

 

1.3.1 Restoration practices 

 

The revelation that common restoration practices have had limited success calls 

for a reevaluation of restoration and post restoration monitoring methodology. As a result 

of the above studies and others, many ecologists have pointed out shortcomings of 

current restoration practices and have made recommendations for improving future 

stream restorations (Bernhardt et al. 2005, Lake et al. 2007, Miller et al. 2009, Tullos et 

al. 2009, Burchsted et al. 2010, Palmer et al. 2010, Bernhardt and Palmer 2011). 

Restorations should occur within the context of the disturbances present in individual 

streams and the goals to be achieved (Palmer et al. 2005, Palmer et al. 2010, Bernhardt 

and Palmer 2011). Palmer et al. (2010) points out that despite the great diversity of 

reasons for stream restoration (channelization, agriculture, urbanization, etc.), the 

majority are addressed with the same practices, i.e. practices that focus on channel 

reconfiguration and introduce structural features such as boulders and woody debris to 

increase habitat heterogeneity. Given the lack of biological improvement following these 

types of restoration practices (Miller et al. 2009, Tullos et al. 2009, Palmer et al. 2010), it 

is likely there are other more important factors that need to be addressed depending on 

the individual projects.  



 

8 
 

One important consideration for restorations is the regional species pool. If the 

area (watershed) surrounding a restoration is ecologically impaired it is unlikely a source 

of colonists will be available to recolonize restored sites (Lake et al. 2007, Sundermann et 

al. 2011).  Additionally, Lake et al. (2007) argue that the widespread failure to apply 

ecological theory to restoration practices is responsible for many failures. Many 

restorations are implemented without the input of ecologists or biologists and incorrectly 

focus on improving structural components of habitat while overlooking function 

(ecosystem processes) and life history aspects of the biota, with the assumption that if the 

basic habitat structure is present biota will recover (Hilderbrand et al. 2005, Lake et al. 

2007).  Another consideration that is frequently overlooked is that stream ecosystems are 

intricately connected with surrounding terrestrial ecosystems in terms of trophic level 

dynamics. Allochthonous organic matter inputs from terrestrial ecosystems are an 

important source of energy in the form of food for stream biota, the presence or lack 

thereof can have profound implications on trophic structure. However, organic matter 

inputs and retention within streams are rarely the focus of common restoration practices 

(Lake et al. 2007) and should be an area of greater concern in the future.  Finally, future 

projects should emphasize restoring natural flow regimes and hydrologic functioning 

(Palmer et al. 2010, Bernhardt and Palmer 2011), which could result in more stable and 

complex habitat rather than simply manipulating structural habitat features.  

Restoring hydrology results in streams that are properly connected to their 

floodplain, which prevents channel erosion and allows wetlands to develop adjacent to 

channels (Parola and Biebighauser 2011). The presence of the additional wetland habitat 

in the floodplain creates food and nursery advantages for aquatic organisms and 
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subsequently may increase biodiversity (Bunn and Arthington 2002).  Lateral 

connections to the floodplain and surrounding stream network also improves the dispersal 

and recruitment of aquatic organisms (Bunn and Arthington 2002, Lake et al. 2007).  

Perhaps most importantly, reconnecting streams with their groundwater sources enables 

channels to stay wet longer, which is beneficial to aquatic organisms that would 

otherwise perish during drying events (Parola and Biebighauser 2011). Stream restoration 

goals and practices must vary according to project location, but in order to increase 

restoration success, it is important to recognize the historical condition of watersheds 

prior to the implementation of restoration efforts (Foster et al. 2003). For instance, it is 

often overlooked that before European settlement, many Kentucky streams likely drained 

forested watersheds, and hydrology and habitat were heavily influenced by native beaver 

(Castor canadensis) (Naiman et al. 1988, Parola and Bigbiehauser 2011). Ignoring the 

influence beaver modifications once had on stream hydrology is to ignore the baseline 

conditions and render a return to pre-disturbance conditions impossible in areas where 

they once thrived (McDowell and Naiman 1986, Burchsted et al. 2010).  

 

1.3.2 Post restoration monitoring 

 

There is a general consensus that the first step towards more successful restoration 

practices is to increase both short and long term post-restoration monitoring, preferably 

with a more standardized approach for evaluating success (Jack et al. 2003, Bernhardt et 

al. 2005, Palmer et al. 2005, Bernhardt et al. 2007, Miller et al. 2010). In addition to 

emphasizing ecological indicators as a measure of success in future monitoring projects 
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(Palmer et al. 2005, Lake et al. 2007, Pander and Geist 2013), sampling design and 

methodology need to be carefully considered in the context of the goals of the restoration.  

In terms of using macroinvertebrates as indicators, it is widely thought that 

targeting riffle habitat produces “the most bang for your buck” (Carter and Resh 2001, 

Beauger and Lair 2007), and this is likely true for general bioassessment purposes, such 

as in the case of rapid biomonitoring protocol used for water quality assessments and 

determining use attainment under the Clean Water Act. In addition to targeting one 

specific habitat, many bioassessment protocols choose sampling location based on 

“expert opinion”. Investigators visually inspect the sample reach and collect 

macroinvertebrates in what they believe is the best available riffle habitat (patch scale) 

and then extrapolate their findings to the reach scale (Carter and Resh 2001) without 

considering the amount of available mesohabitat within a given reach. Habitat changes 

both at the patch and reach scale and macroinvertebrate taxa exhibit a diversity of habitat 

preferences. Limiting a study to a single habitat likely does not produce results reflective 

of the macroinvertebrate assemblage structure as a whole (Grubaugh et al. 1996). If the 

goals of a restoration project are to restore hydrologic functioning and subsequently 

improve habitat complexity, it is likely that targeting riffle habitat during post restoration 

monitoring is an insufficient method since improved and more abundant mesohabitats 

may be available. Habitat availability should be accounted for at the reach scale so that 

investigators can adequately detect changes in macroinvertebrate assemblage structure at 

the scale of the restoration. 

When possible, it may be beneficial to incorporate the concept of reference 

condition into post restoration monitoring study designs. Reference condition streams are 
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those that are the least altered or disturbed by human activities, they are thought of as 

representing the most “natural” state of streams observable today and could serve as a 

benchmark for restoration goals (Hughes 1995, Stoddard et al. 2006). In Kentucky, 

reference reaches are used by government agencies to represent the best-attainable 

condition for streams. Reference reaches have “minimal human impact” and exemplify 

the “biological potential” of streams from the same region (Pond et al. 2003). Streams 

representing regional reference conditions were used to develop the Kentucky 

Macroinvertebrate Biotic Index (MBI), which is a tool widely used to judge the use 

attainment of streams throughout Kentucky.  Since reference reaches are the standard to 

which streams are held in Kentucky (and often elsewhere), it could be worthwhile to see 

how the restored streams compare to this “ideal” condition. Not only where samples are 

collected, but how samples are collected should be a careful consideration as well. 

Quantitative sampling methods allow for the calculation of macroinvertebrate densities 

and biomass, which allows investigators to address questions about secondary production 

and trophic level dynamics (Benke 1984).  

 

1.4 A hydrologic restoration in eastern Kentucky: Slabcamp Creek 

 

Stream restoration practices used by the Stream Institute (University of 

Louisville) go beyond common restoration practices and focus on restoring hydrology. In 

addition to restoring hydrologic function, the Stream Institute attempts to address 

hydrologic dynamics once present in Kentucky streams due to beaver influence when 
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feasible and reintroduce stream-wetland complexes along channels. One of the Stream 

Institute’s restoration sites, Slabcamp Creek, was the focus of this study.   

 The Slabcamp Creek restoration was conducted by the Stream Institute on a 3.6 

km first-order section of the stream (see methods section for details on site location and 

description), which was historically damaged by channelization associated with 

agricultural practices. Prior to the restoration, the channel was surrounded by second 

growth forest, but the stream was disconnected from its floodplain and aquifer.  As a 

result, the channel was incised, had unstable substrates and dried during late summer 

(Biebighauser 2006).  

 The USDA Forest Service decided in 2006 Slabcamp Creek would be restored to 

pre-settlement conditions for the purpose of improving habitat for wildlife, improving 

water quality, preventing erosion, and reinstating a more natural flooding pattern 

(Biebighauser 2006). The restoration practices involved moving the channel from the side 

of the valley back to the center, removing built up sediment to reinstate long-buried 

natural gravel riffles from the pre-settlement condition stream, planting native vegetation, 

introduction of woody debris and channel discontinuities, which resulted in wetland 

habitat in the floodplain (Parola and Biebighauser 2011). The Slabcamp Creek restoration 

was completed in late 2010.   

 

1.5 Study Objectives 

 

The goal of this study was to quantify macroinvertebrate assemblages from 

Slabcamp Creek and compare the assemblage to a site representing Kentucky Division of 
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Water’s (KDOW) headwater reference conditions (Bucket Branch) and a pre-restoration 

condition control site (White Pine Branch). Specific objectives include:  

1. Compare macroinvertebrate assemblage structure and function at Slabcamp Creek 

to sites that represent the reference condition and the pre-restoration condition (a 

control site).  

2. Determine if mesohabitats (pools and riffles) support unique macroinvertebrate 

assemblages within and between the study sites.  

3. Determine if macroinvertebrate assemblages vary at the study sites seasonally 

between high base flow (winter) and low base flow (summer).  

4. Explore relationships between the macroinvertebrate assemblages and 

microhabitat variables at the study sites. 

5. Determine how accounting for the availability of mesohabitats (pools and riffles) 

at the reach scale (habitat weighting the data) compares to patch scale analyses for 

the above objectives.   

Findings may provide insight into the effectiveness of the stream restoration practices 

used by the Stream Institute at the University of Louisville and could provide guidance 

for future post-restoration monitoring efforts.  
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CHAPTER II 

METHODS 

 

2.1 General study design and study sites 

 

With assistance from the United States Forest Service and the Stream Institute, 

various criteria were established and implemented to select a control site that would 

represent conditions at Slabcamp Creek prior to the restoration: 

1) Located within the North Fork of the Licking River watershed (HUC 10). 

Streams within the same watershed can be expected to be under the influence 

of similar external inputs more so than streams in different watersheds.  This 

criteria aids in controlling for extra variation due to differences in 

environmental and anthropogenic influences on the streams.   

2) Located in the same bioregion. The concept of bioregions has been utilized to 

control for natural variation in biological assemblages that occurs between 

geographic regions with different physical characteristics (Pond et al. 2003).  

3) Drain approximately the same amount of land within its own watershed. 

Streams of a similar size are more comparable than those which are not in 

terms of discharge, physical characteristics and macroinvertebrate fauna.  

4) Defined by similar geologic features. Comparing sites with similar geology 

controls for differences which would be inherent in streams influenced by 

different physical characteristics.  



1All figures and tables are presented in the appendices 
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5) Historically subjected to the same anthropogenic disturbances. Historical 

disturbance was determined by local literature review and ground-truthing via 

visual observation of stream characteristics such as channelization and bank 

stability.  

The reference condition stream was selected using the first four criteria listed 

above for the control reach, as well as reference condition criteria defined by KDOW. 

Various physical criteria applied by KDOW to select reference condition streams include 

a minimal amount of suspended solids present in the stream, a conductivity level not 

above what is normal for the ecoregion, absence of garbage at the site (or at least a 

minimal amount), and no recent disturbance due to a change in land-use. Other criteria 

utilized by KDOW for determining reference condition are scored using a Rapid 

Bioassessment Protocol (RBP) habitat assessment, for example: riparian zone condition, 

bank stability, sedimentation, and habitat availability. These parameters are rated 

numerically and depending on which percentile the score falls into they are assigned a 

number of “habitat stress points” (ex. a parameter scoring in the 50th to 75th percentile 

will receive 1 habitat stress point). The total number of habitat stress points for the RBP 

is then calculated and the site is assigned a “habitat stress code”. A reference condition 

stream should have a habitat stress code 1, which has 0 – 4 habitat stress points (Pond et 

al. 2003).  

The restored (Slabcamp Creek), pre-restoration condition control (White Pine 

Branch), and reference condition (Bucket Branch) reaches for this study are located in 

southern Rowan and northern Morgan counties, Kentucky in the Daniel Boone National 

Forest (Fig. 1 and 2).1 The three study reaches are all first order tributaries within the 
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North Fork Licking River watershed. The study reaches have similar drainage 

areas, geologic features (Western Allegheny Plateau ecoregion), and biology (Mountain 

bioregion) (Table 1). All sites have similar land use and are mostly forested (Table 1, Fig. 

3).  

 

2.2 Sampling design 

 

Study sites consisted of 150-m reaches in each stream.  Each site was sampled 

twice: once during high seasonal base flow in late winter 2014 and once at low seasonal 

base flow during late summer 2014.  During the winter sampling event, benthic samples 

were collected randomly from five riffles and five pools for each site. During the 

summer, riffles did not have adequate flow for sampling in all three streams so they were 

omitted, but five pool replicates were collected from each site. This sampling design 

amounted to five riffle and five pool replicates from each stream during the winter and 

five pool replicates from each stream during the summer, totaling 45 benthic samples for 

the entire study.  

At each sample location, water depth (cm) was measured with a ruler and 

substrate composition was visually estimated before benthic samples were collected. 

Inorganic substrate was estimated as: % cobble, % gravel, % pebble and % fine. A 

quantitative bottom area sampler (modified Hess, 250 µm, 0.086 m2) was used to collect 

macroinvertebrates and benthic organic matter.  The Hess sampler was modified to 

include a bottomless bucket which aids in the collection of fine benthic organic matter 

(FPOM). The sampler was placed in the thalweg of the stream and the benthic material in 
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the bottom was agitated.  If the sample was collected from a riffle where it was difficult 

to maintain a seal between the sampler and the stream bed, a towel was used to prevent 

fine benthic material from escaping from the bottom of the sampler. Once the material in 

the Hess was agitated, a 200-mL subsample of water was collected for fine benthic 

organic matter (FPOM, less than 1 mm) analysis. These samples were transported in ice 

and frozen until analysis. Additionally, water depth inside the sampler was measured at 

four equidistant points to estimate total volume. Following FPOM collection, the 

bottomless bucket was then removed from the Hess and remaining benthic material, 

macroinvertebrates and course benthic organic material (CPOM, organic matter greater 

than 1 mm), were captured in the collecting net as water flowed through the sampler. 

Each sample collected was rinsed into individual plastic bags and preserved with 95% 

ethanol.  Following benthic sampling, wetted area covered by predominant channel 

habitat (riffles, run, pools and bedrock) units was estimated at each site by measuring the 

total length and average width of each habitat type.  Estimating wetted area of these 

habitat units enabled habitat weighted estimates of macroinvertebrate abundance 

(TNI/100 m2) and biomass (mg AFDM/100 m2). 

 

2.3 Laboratory methods 

 

 In the laboratory, benthic samples were rinsed through two stacked sieves (1 mm 

and 250 μm) and material retained on the 250 μm was subsampled with a sample splitter.  

Macroinvertebrates from both sieves were sorted using a dissecting microscope and 

identified to the lowest practical taxonomic level, typically genus, and counted. Early 

instar specimens and Chironomidae (non-biting midges) were left at the family level. 
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Individuals were measured to the nearest 0.5 mm using grid paper behind a clear watch 

glass, and estimates of standing stock biomass (mg AFDM/m2) were calculated from 

previously published methods (Benke et al. 1999).  CPOM captured in the benthic 

samples was dried to a constant weight at 60º C then dry mass was weighed. Fine benthic 

organic matter (FPOM) was filtered onto pre-ignited filter paper and again dry mass was 

weighed. Both CPOM and FPOM were ignited at 500º C and reweighed for ash free dry 

mass (AFDM).  

 

2.4 Data analyses 

 

2.4.1 Macroinvertebrate density and biomass between mesohabitats and seasons 

 

Since a quantitative bottom area sampler was used, macroinvertebrate density and 

standing stock biomass were reported per m2 of stream bottom area.  In order to explore 

the importance of mesohabitat (pool and riffle) availability at the reach scale, analyses 

were run on both patch scale (per m2) and habitat weighted (habitat weighted results will 

be referred to as “reach scale”, per 100 m2) data. Habitat weighting was achieved by 

using estimates of wetted channel units to calculate proportions of available pool and 

riffle habitat in each reach. Habitat-specific (i.e. riffle, pool), patch-scale (m2) density and 

biomass values were then multiplied by the proportion of available habitat, and finally 

multiplied by 100 so habitat weighted values could be expressed per 100 m2 of stream 

reach (Negishi et al. 2002, Grubaugh et al. 1996).  
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Eight separate two-way repeated measures Analysis of Variance (ANOVA) were 

conducted using Minitab Statistical Software (Minitab Inc., PA, USA, 2014) to compare 

macroinvertebrate density (TNI/100 m2) and biomass (mg AFDM/100 m2) at both patch 

and reach scales between the study sites. Habitat and season were not included as factors 

within a single ANOVA as a result of channel drying during the summer collection. The 

first set of four two-way repeated measures ANOVAs analyzed density and biomass at 

the patch and reach scales between mesohabitats among study sites during the winter 

season: site, habitat, and the interaction between site and habitat were included as factors. 

The second set of four two-way repeated measures ANOVAs analyzed density and 

biomass at the patch and reach scales between seasons among study sites: stream (site), 

season, and the interaction between stream and season were included as factors. Prior to 

analyses, assumptions were tested using the Ryan-Joiner test for normality (similar to 

Shapiro-Wilk), Levene’s test for homogeneity of variance, and by visual interpretation of 

probability plots and histograms. Subsequently, in order to satisfy the assumptions of 

ANOVA, the macroinvertebrate data were log10 (X+1) transformed. The log10 (X+1) 

transformation is commonly used in macroinvertebrate analyses due to the clumped 

nature of their distributions (Tiemann et al. 2004, Zar 2007, O’Conner 2016). 

Additionally, uncommonly large individuals (>1.5 mg AFDM) such as Cambaridae, 

Tipula, and Pycnospyche were removed from the biomass dataset for all sites. Once the 

data were transformed and large individuals were removed, the assumptions were re-

tested and found to be satisfied. Tukey’s tests were performed for pairwise comparisons 

when ANOVA results were significant. A p-value ≤ 0.05 was considered significant for 

ANOVAs and pairwise comparisons.  
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2.4.2 Exploration of relationships between macroinvertebrate density and biomass and 

microhabitat variables 

 

Pearson correlations were conducted for patch- and reach-scale data using 

Minitab to determine if relationships exist between macroinvertebrate density and 

biomass, organic matter (“food” for many macroinvertebrates), and habitat variables. 

Macroinvertebrate, organic matter, and depth data were transformed using the log(x+1) 

transformation, and the arcsine square root transformation was used on percent substrate 

composition data in order to meet the normality assumption of Pearson’s test (Zar 2007).  

 

2.4.3 Macroinvertebrate assemblage structure between mesohabitats and seasons 

 

Macroinvertebrate assemblage structure was analyzed by conducting two non-

metric multidimensional scaling (NMDS) of density data of each taxon (data were 

grouped by site, habitat, and season), one for patch-scale data and one for habitat-

weighted reach-scale data, using PRIMER version 6 software (PRIMER-E Ltd., 

Plymouth, UK). NMDS is a robust and commonly used multivariate ordination method 

that is ideal for ecological data. NMDS makes few assumptions about the form of the 

data or the relationships among samples, and it has a greater ability to represent 

relationships in fewer dimensions relative to other ordination methods. The measure of fit 

associated with NMDS is known as the stress value. The stress value is a measure of how 

well the ordination summarizes distances between samples and ordinations with a stress 

value of <0.20 can be considered useful (Clarke and Warwick 2001). Prior to analysis, 

rare taxa, i.e., those that made up <0.5% of the total abundance, were removed (see 
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Appendix). The NMDS parameters for both tests were: Bray-Curtis similarity as the 

distance measure, number of restarts = 250, and minimum stress = 0.01. Following the 

NMDS, analyses of similarity (ANOSIM) were performed to test for differences in 

assemblage composition between groups (Bray-Curtis similarity as the distance measure, 

maximum permutations = 999). ANOSIM is a non-parametric permutation test with a test 

statistic, R, that typically ranges from 0 to 1 where an R value of 0 indicates a true null 

hypothesis (no difference between groups) where 1 indicates dissimilarity between 

groups. It is possible to obtain an r value of less than 0, which indicates differences 

within groups are greater than between groups (Clarke and Warwick 2001). ANOSIM R 

values were considered significant if p < 0.01.  

NMDS was also used to analyze macroinvertebrate functional feeding group 

(FFG) data (based on total abundance) at the patch and reach scales. The NMDS 

parameters for both tests were: Bray-Curtis similarity as the distance measure, number of 

restarts = 250, and minimum stress = 0.01. Following NMDS, ANOSIMs were 

performed to test for differences in FFG composition between groups (Bray-Curtis 

similarity as the distance measure, maximum permutations = 999).  

 

2.4.4 Macroinvertebrate assemblage structure based on common water quality metrics 

 

 Metrics commonly used for water quality assessment purposes were calculated to 

summarize various aspects of the assemblages: taxa richness, EPT taxa richness, 

Hilsenhoff’s Biotic Index, and % top five dominant taxa.  Jaccard’s index (Krebs 1999) 

was calculated to examine similarity between sites.  
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CHATPER III 

 

RESULTS 

 

 During winter 2014 Slabcamp Creek and White Pine Branch had similar wetted 

channel areas (approximately 390 m2 each). As a result of large pools and a wider 

channel, Bucket Branch had approximately 160 m2 more wetted area than Slabcamp 

Creek and White Pine Branch (Table 2). During low base flow (summer 2014), wetted 

area decreased as a result of drying at all sites. Slabcamp Creek and Bucket Branch lost 

24% and 20% wetted area, respectively, while White Pine Branch lost 68%. Riffle wetted 

area decreased dramatically at all sites and dried entirely at both Bucket Branch and 

White Pine Branch, while pool wetted area was more apt to be retained (Fig. 4).  

A total of 14,301 macroinvertebrates were collected for the entire study 

(Appendix). See Tables 3 – 4 for mean (±1 SE) macroinvertebrate density and biomass 

reported at the patch and reach scales. For all habitats and seasons combined at the 

sample scale, Slabcamp Creek supported greater macroinvertebrate density and biomass 

(7291 TNI, 231 mg AFDM) than either Bucket Branch (4823 TNI, 170 mg AFDM) or 

White Pine Branch (2187 TNI, 145 mg AFDM).   

 

3.1 Macroinvertebrate density and biomass between mesohabitats 

 

Repeated measures two-way ANOVAs on density at the patch and reach scales 

between mesohabitats among study sites returned some significant results. Density results 

indicated significant differences at the patch scale among sites and between habitats but 
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not the site x habitat interaction (Table 5 A, Fig. 5 A). Macroinvertebrate densities were 

greater from pools (p = 0.003), and Tukey’s pairwise comparisons showed Slabcamp 

Creek had significantly greater densities than White Pine Branch but not Bucket Branch 

(SCxWP p = 0.006, SCxBB p = 0.299, BBxWP p = 0.158). At the reach scale, ANOVAs 

indicated significant differences in density for site, habitat, and the site x habitat 

interaction (Table 6 A, Fig. 5 C). Macroinvertebrate densities were again greater from 

pools (p = 0.015). Tukey’s showed Slabcamp Creek and Bucket Branch were 

significantly different from White Pine Branch but not from one another (SCxWP p < 

0.001, BBxWP p = 0.002, SCxBB p = 0.612). The significant interaction term indicates 

differences in densities between habitats were site dependent. Riffles supported similar 

densities between sites at both the patch and reach scales. However, macroinvertebrate 

densities from pools at Slabcamp Creek and Bucket Branch were several times greater 

than densities from White Pine Branch, and this was especially pronounced from habitat-

weighted data, which accounts for mesohabitat availability at the reach scale (Fig. 5 A 

and C). Additionally, within sites both Slabcamp Creek and Bucket Branch supported 

densities three to four times greater in pools than in riffles, but White Pine Branch pools 

supported less than half the density of its riffles.    

Results of repeated measures two-way ANOVAs on biomass at the patch and 

reach scales between mesohabitats among study sites were not as significant as density 

results. At the patch scale, biomass results indicated significant differences between 

habitats but not sites or the site x habitat interaction (Table 5, Fig. 5 B). At the reach 

scale, no significant differences were found, although p-values were approaching 

significance (Table 6, Fig. 5 D). At the patch scale, biomass was significantly higher in 
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pools (p = 0.015). Although habitat-weighted results were not significant, reach-scale 

biomass was higher in pools than riffles at both Slabcamp and Bucket Branch but not at 

White Pine Branch. White Pine Branch riffles supported more than twice the biomass of 

its pools (Fig. 5 D).  

 

3.2 Macroinvertebrate density and biomass between seasons 

 

 Repeated measures two-way ANOVAs on density at the patch and reach scales 

between seasons among study sites indicated no significant differences between high 

base flow (winter) and low base flow (summer). Both the patch and reach scale density 

models returned significant results for the site factor but not for season or the site x 

season interaction (Tables 7 and 8, Fig. 6 A and C). Slabcamp Creek and Bucket Branch 

supported greater densities than White Pine Branch at both the patch (SCxWP p < 0.001, 

BBxWP p < 0.001, SCxBB p = 0.522) and reach scales (SCxWP p < 0.001, BBxWP p < 

0.001, SCxBB p = 0.906) but were not significantly different from each other.  

Repeated measures two-way ANOVAs on biomass at the patch and reach scale 

between seasons among study sites also indicated no significant differences between high 

base flow (winter) and low base flower (summer). The patch scale model returned no 

significant results, while the reach scale model results indicated site was significant but 

season and the site x season interaction were not (Tables 7 and 8, Fig. 6 B and D). At the 

reach scale, Slabcamp Creek and Bucket Branch supported significantly greater densities 

than White Pine Branch, but were not different from one another (SCxWP p = 0.001, 

BBxWP p < 0.001, SCxBB p = 0.885).   
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3.3 Exploration of relationships between macroinvertebrate density and biomass and 

microhabitat variables 

 

 Pearson correlation results showed that some relationships existed between 

microhabitat variables and the macroinvertebrate assemblages across the study sites 

(Table 9). Macroinvertebrate density and biomass were positively correlated at all sites: 

more so at Slabcamp Creek (patch r = 0.81, reach r = 0.89) and Bucket Branch (patch r  = 

0.78, reach r = 0.83) than White Pine Branch (patch r = 0.67, reach r = 0.60). Organic 

matter, CPOM and FPOM, were also positively correlated with the macroinvertebrate 

assemblages at all sites. In general, stronger relationships existed between the 

assemblages with FPOM than CPOM. Positive correlations between the 

macroinvertebrate assemblages and depth existed at both Slabcamp Creek (reach density 

r = 0.65, reach biomass r = 0.73) and Bucket Branch (patch density r = 0.57, reach 

density r = 0.59), but White Pine Branch macroinvertebrate density was negatively 

correlated with depth (reach density r = -0.58).  At Slabcamp Creek (reach density r = 

0.65, reach biomass r = 0.56) and Bucket Branch (patch density r = 0.69, reach density r 

= 0.77) relationships existed between the macroinvertebrate assemblages and fine 

substrates, whereas at White Pine Branch the macroinvertebrate biomass was correlated 

with pebble substrates (patch biomass r = 0.60, reach biomass r = 0.53). In general, 

habitat weighting to the reach scale improved correlations between the macroinvertebrate 

assemblages and microhabitat variables at Slabcamp Creek and Bucket Branch, but this 

did not appear to be the case at White Pine Branch. For instance, the relationship between 

density and biomass was improved by habitat weighting at Slabcamp Creek (patch r = 
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0.81, reach r = 0.89) and Bucket Branch (patch r = 0.78, reach r = 0.83) but resulted in a 

weaker correlation at White Pine Branch (patch r = 0.67, reach r = 0.60). Similar results 

were seen with density and depth: Slabcamp Creek (patch r = 0.44, reach r = 0.65), 

Bucket Branch (patch r = 0.57, reach r = 0.59), White Pine Branch (patch r = -0.12, reach 

r = -0.58).  

 

3.4 Macroinvertebrate assemblage structure 

 

A total of 92 taxa were collected from the three study sites during winter and 

summer 2014 (Appendix). Thirty-six taxa were considered rare (those that made up < 

0.5% of the total abundance), and 20 of the rare taxa were unique to one site (Table 10). 

The dominant taxa from riffles and pools varied among study sites (Table 11). In general, 

burrowing taxa (Oligochaeta, and Ephemera, and usually Chironomidae) were 

numerically dominant in the pools at Slabcamp Creek and Bucket Branch during winter 

(76% and 77% respectively), but these taxa comprised only 38% of the pool assemblage 

at White Pine Branch. This pattern was also apparent during summer, although to a lesser 

extent, when taxa exhibiting both burrowing and collecting traits comprised 45 – 53% of 

the pool assemblage at Slabcamp Creek and Bucket Branch, but only 26% in pools of 

White Pine Branch. White Pine Branch pools had greater dominance of clinging taxa 

(22% in winter, 9% in summer) such as Eurylophella, Cinygmula, Haploperla, and 

Psephenus than either Slabcamp Creek (0% in both winter and summer) or Bucket 

Branch (2% in winter, 0% in summer). In riffles, burrowers were again dominant at all 

sites; 34% at Slabcamp Creek, 31% at Bucket Branch, and 30% at White Pine Branch. 

Clingers had a more dominant presence at Slabcamp Creek (Allocapnia - 32%) and 
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White Pine Branch (Cinygmula and Prosimulium - 23%) than Bucket Branch (Neophylax 

and Eurylophella - 7%).  

 

3.4.1 Macroinvertebrate assemblage structure based on taxa densities 

 

The NMDS of patch scale taxa density produced a final stress value of 0.14 (Fig. 

7). Slabcamp Creek riffles grouped together relatively well in ordination space compared 

to Bucket Branch and White Pine Branch riffles, which are more spread out, White Pine 

Branch more so than Bucket Branch.  Slabcamp Creek and Bucket Branch winter and 

pools grouped together relatively closely and were separate from riffles in ordination 

space, whereas White Pine Branch winter pools were separate from the winter pools of 

the other sites and in closer proximity with riffles.  This pattern was also apparent in the 

summer but to a lesser extent, White Pine Branch summer pools were separate from the 

summer pools of the other sites but were further from riffles than White Pine Branch’s 

winter pools were. Eight taxa explaining variation were identified by the analysis and are 

shown as vectors on the plot: Caenis (-0.48, NMDS axis 1), Ceratopogonidae (-0.47, 

NMDS axis 1), Chironomidae (-0.70 NMDS axis 1), Copepoda (-0.40, NMDS axis 1), 

Neophylax (-0.48, NMDS axis 2), Oligochaeta, Paraleptophlebia (0.61, NMDS axis 2), 

and Psephenus (0.52, NMDS axis 2). The taxa that really appear to be driving the 

placement of Slabcamp Creek and Bucket Branch pools in ordination space are often 

associated with depositional (i.e. pool) habitats (especially Caenis and Oligochaeta) and 

exhibit burrowing and sprawling habits (Poff et al. 2006). Psephenus shows up as a 
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vector influencing the placement of White Pine Branch’s pools, Psephenus is a clinger 

associated with erosional (i.e. riffle) habitats (Poff et al. 2006).  

The NMDS of habitat-weighted reach-scale taxa density produced a final stress 

value of 0.12 (Fig. 8).  Compared to the replicates of other groups, Slabcamp Creek and 

Bucket Branch winter and summer pools’ proximity to one another in ordination space 

remained relatively stable between the patch and reach scale ordinations. Slabcamp Creek 

and Bucket Branch winter and summer pool samples grouped together and were separate 

from riffles at both scales. Habitat weighting to the reach scale improved the grouping of 

Slabcamp Creek and Bucket Branch pools relative to the patch scale. White Pine Branch 

winter and summer pools noticeably shifted between the patch- and reach-scale 

ordinations, at the reach scale they became even further separated from the pools of other 

sites (more so in the winter than the summer) and in closer proximity to White Pine 

Branch’s riffles than the other sites’ pools were to their own respective riffles. Five taxa 

explaining variation were identified by the analysis and are shown as vectors on the plot: 

Caenis (-0.49, NMDS axis 1), Ceratopogonidae (-0.56, NMDS axis 1), Chironomidae (-

0.75, NMDS axis 1), Copepoda (-0.44, NMDS axis 1), Oligochaeta (-0.62), and 

Paraleptophlebia (-0.50, NMDS axis 2). Taxa associated with depositional habitats 

(especially Caenis and Oligochaeta) again appeared to be driving the placement of 

Slabcamp Creek and Bucket Branch winter and summer pools. Copepoda influenced the 

placement of summer pools for all sites and Paraleptophlebia’s top dominance (Table 

11) in White Pine Branch’s summer pools appears to have pulled it away from the other 

sites in ordination space.  
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   ANOSIM results for macroinvertebrate taxa density indicated some significant 

differences between sites, habitats, and seasons at both the patch and reach scales (Table 

12). Winter pools and riffles within sites were significantly different from one another in 

both Slabcamp Creek (patch R = 0.61, reach R = 0.74) and Bucket Branch (patch R = 

0.85, reach R = 0.89) at the patch and reach scales, but the comparisons between White 

Pine Branch’s winter pools and riffles (patch R = 0.23, reach R = 0.36) returned low R 

values indicating high similarity between the groups. Slabcamp Creek’s winter pools had 

high similarity to Bucket Branch’s winter pools (patch R = 0.30, reach R = 0.29) and 

were significantly different from White Pine Branch’s at the reach scale (patch R = 0.58, 

reach R = 0.93). This trend was also true for summer pools, Slabcamp Creek was very 

similar to Bucket Branch (patch R = 0.10, reach R = 0.09), but significantly different 

from White Pine Branch (patch R = 0.92, reach R = 0.98). Seasonally, within sites, 

Slabcamp Creek’s winter pools were not significantly different from its summer pools 

(patch R = 0.46, reach R = 0.44) and neither were Bucket Branch’s (patch R = 0.47, reach 

R = 0.38), but White Pine Branch’s winter and summer pools were significantly different 

(patch R = 0.58, reach R = 0.77). 

 

3.4.2 Macroinvertebrate assemblage structure based on functional feeding groups 

 

The NMDS based on density of functional feeding groups (FFG) at the patch 

scale produced an ordination with a final stress value of 0.07 (Fig. 9),  The patch-scale 

FFG NMDS showed trends that were similar to NMDS ordinations based on 

macroinvertebrate taxa densities; Slabcamp Creek and Bucket Branch winter and summer 
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pools grouped together well and were separate from riffles in ordination space, while 

White Pine Branch’s pools were separate from pools of the other sites and in closer 

proximity to its riffles. All five functional feeding groups explained variation on the plot 

and were correlated with NMDS axes: collector-gatherers (0.82, NMDS axis 1), 

collector-filterers (-0.58, NMDS axis), scrapers (-0.52, NMDS axis 2), predators (-0.62, 

NMDS axis 2), and shredders (-0.70, NMDS axis 2). Collector-gatherers, 

macroinvertebrates that feed on fine organic matter (Merritt and Cummins 2008), were 

especially important in driving the placement of Slabcamp Creek and Bucket Branch 

pools, and to a lesser degree some but not all of White Pine Branch’s pools. The other 

four FFGs had more influence on the riffles of all sites and White Pine Branch’s pools. 

Riffles across all sites were spread out in ordination space and intermingled with one 

another. 

 The NMDS of reach-scale functional feeding group density data produced an 

ordination with a final stress value of 0.06 (Fig. 10). The FFG ordinations showed 

Slabcamp Creek and Bucket Branch winter and summer pools’ proximity to one another 

in ordination space remained relatively stable between the patch and reach scales. 

Slabcamp Creek and Bucket Branch winter and summer pool samples grouped together 

and were separate from riffles at both scales. This trend was improved by habitat 

weighting to the reach scale. White Pine Branch winter and summer pools noticeably 

shifted between the patch and reach scale ordinations. At the reach scale White Pine 

Branch’s pools became even further separated from the pools of the other sites (more so 

in the winter than the summer) and remained in close proximity to the riffles from all 

sites. The collector-gatherer influence on and the placement of Slabcamp Creek and 
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Bucket Branch’s pools was stronger in the reach-scale FFG ordination than the patch-

scale FFG ordination (-0.85 NMDS axis 1) while the other four FFGs were associated 

with riffles across sites and White Pine Branch’s pools: collector-filterers (0.56, NMDS 

axis 2), scrapers (-0.35 NMDS axis 1), predators (-0.53, NMDS axis 1), and shredders 

(0.74, NMDS axis 2).  

ANOSIM results for within site comparisons (Table 13) based on FFG densities 

indicated that riffles and pools from Bucket Branch supported significantly different 

assemblages (patch R = 0.76, reach R = 0.83). Slabcamp Creek pools were not 

significantly different from its riffles (patch R = 0.45, reach R = 0.53), but they were not 

as similar as White Pine Branch’s pools were to its riffles (patch R = 0.14, reach R = 

0.37). Comparisons among sites indicated that Slabcamp Creek riffles are similar to both 

Bucket Branch riffles (patch R = 0.03, reach R = 0.25) and White Pine Branch riffles 

(patch R = 0.24, reach R = 0.29). The assemblage from the winter pools of Slabcamp 

Creek were very similar to the pools of Bucket Branch (patch R = 0.11, reach R = 0.10) 

and different from the pools of White Pine Branch (patch R = 0.52, reach R = 0.88). This 

pattern was also evident from summer pools. Slabcamp Creek summer pools were similar 

to Bucket Branch (patch R = 0.24, reach R = -0.13) and significantly different from 

White Pine Branch (patch R = 0.75, reach R = 0.96).   

Visual interpretation of percent FFG composition bar charts (Fig. 11) and percent 

top dominant taxa (Table 11) revealed that collector-gatherers (Chironomidae, 

Oligochaeta, Caenis, Ephemera, Habrophlebia, and Eurylophella) were the numerically-

dominant FFG from pools of Slabcamp Creek and Bucket Branch, and they comprised 

82% and 84% respectively during winter. White Pine Branch winter pools were 43% 
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dominated by the collector-gatherers Chironomidae, Oligochaeta, and Paraleptophlebia. 

Collector-gatherer dominance was high and similar across all sites in summer pools: 82% 

at Slabcamp Creek, 75% at Bucket Branch, and 76% at White Pine Branch. Scrapers 

were not dominant in the pools of Slabcamp Creek or Bucket Branch pools, but the 

scraping macroinvertebrates Cinygmula and Psephenus dominated 14% and 6% of White 

Pine Branch’s winter and summer pools, respectively. The riffles of Slabcamp Creek 

were numerically dominated by the shredding stoneflies Allocapnia and Prostoia (35%) 

and collector-gatherers (Oligochaeta and Chironomidae – 34%). Bucket Branch’s riffles 

were numerically dominated by collector-gatherers (Chironomidae, Paraleptophlebia, 

Eurylophella – 52%) and the shredding stonefly Leuctra (15%). Riffles at White Pine 

Branch were numerically dominated by collector-gatherers (Chironomidae, Oligochaeta, 

Paraleptophlebia – 34%) and the scraping mayfly Cinygmula (19%), scrapers were not 

represented by dominant taxa in either Slabcamp Creek or Bucket Branch.  

 

3.4.3 Macroinvertebrate assemblage structure based on common water quality metrics 

 

Total taxa richness was very similar among sites, and Bucket Branch and White 

Pine Branch supported a few more EPT taxa than Slabcamp Creek (Table 14). Modified 

Hilsenhoff’s Biotic Index results were also similar among sites. Percent top 5 dominant 

taxa was higher at Slabcamp Creek and Bucket Branch than White Pine (Table 14). 

Jaccard’s similarity index showed that Slabcamp Creek and Bucket Branch were more 

similar to one another in terms of macroinvertebrate taxa composition than either was to 

White Pine Branch (Table 15).  
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CHAPTER IV 

 

DISCUSSION 

 

 

Overall, findings from my study indicated that restored Slabcamp Creek was more 

similar to the reference condition site (Bucket Branch) than the pre-restoration control 

condition site (White Pine Branch) in terms of macroinvertebrate density, standing stock 

biomass, and assemblage structure and function. It appears that habitat availability, both 

at the patch and reach scales, could play an important role in assessing stream 

restorations. If this study had not accounted for pool habitat and had instead focused on 

riffles alone, which is a common monitoring practice (Carter and Resh 2001, Beauger 

and Lair 2007), differences between sites would not have been detected because, in 

general, analyses returned similar results for riffles among sites. Analyses showed that 

seasonal influences had less influence on the macroinvertebrate assemblages than habitat.  

 

4.1 Pool and riffle mesohabitats  

 

In general, results indicated that within Slabcamp Creek and Bucket Branch pool 

and riffle mesohabitats supported macroinvertebrate assemblages distinct from one 

another, but this did not appear to be the case at White Pine Branch. Significant or nearly 

significant interaction terms in two reach-scale repeated measures two-way ANOVA 

models suggests that differences in macroinvertebrate densities and biomass between 

pool and riffle mesohabitats were site dependent. Notably, the patch-scale models did not 

return significant results for the site x habitat interaction. This supports the notion that 
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targeting mesohabitats that are preferred by macroinvertebrates at the patch scale, but not 

accounting for the availability of those mesohabitats at the reach scale, may conceal 

differences in macroinvertebrate density and biomass between study sites.  This may be 

of particular importance in the case of post-restoration monitoring because restoration 

generally occurs at the reach scale. This study detected greater differences in 

macroinvertebrate density and biomass among sites at the reach scale than at the patch 

scale. Macroinvertebrates are an important food source for many organisms. Biomass is a 

surrogate measure of secondary production, i.e. macroinvertebrate biomass provides 

energy to food webs both within the stream and the surrounding terrestrial environment 

(Benke et al. 1984, Huryn and Wallace 2000, Stagliano and Whiles 2002).   

In addition to greater densities and biomass, the structure of the macroinvertebrate 

assemblage differed between mesohabitats of the reference and restored sites, but not the 

control site. Pools and riffles of White Pine Branch had similar macroinvertebrate 

assemblage structure, while the pools and riffles of Slabcamp Creek and Bucket Branch 

had distinct assemblage structure. Taxa characteristic of Slabcamp Creek and Bucket 

Branch pools were macroinvertebrates that are often associated with depositional (i.e. 

pool) habitats. Burrowing or sprawling taxa such as Chironomidae, Oligochaeta, Caenis, 

and Ephemera that are typically associated with pools had greater numerical dominance 

in Slabcamp Creek and Bucket Branch than in White Pine Branch pools. Additionally, 

Psephenus’ notable presence in White Pine Branch’s pools was unusual because it is a 

clinger associated with erosional (i.e. riffle) habitats (Poff et al. 2006).  

 The differences within and between study sites’ mesohabitats were likely due to 

the underlying fluvial geomorphological processes at work. Channelization alters 
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processes that create and maintain riffle-pool sequences in streams, and it often leads to 

increased sediment transport capacity and scouring discharge during high flow events 

which impacts a stream’s ability to retain fine substrates (Montgomery and Buffington 

1997). These disruptive processes could be occurring at the pre-restoration condition 

control, White Pine Branch.  

Fine substrates, i.e. organic matter and inorganic sediments, are characteristic of 

pools (Allan and Castillo 2007), which are the preferred habitat of some 

macroinvertebrate taxa. The inability of a stream to retain fine sediment in pools may 

negatively impact macroinvertebrate taxa as well. There is evidence to suggest finer 

sediments have a greater “detritus storage capacity”, that is they hold organic matter 

(“food” for some taxa) better than coarser substrates, which could explain why some 

macroinvertebrates show preference for finer substrates (Rabeni and Minshall 1977, 

Parker 1989). At Slabcamp Creek and Bucket Branch, aspects of the macroinvertebrate 

assemblages were positively correlated with fine substrates and depth (Table 9). At White 

Pine Branch aspects of the assemblage were positively correlated with coarser pebble 

substrates and negatively correlated with depth, this could indicate that areas that would 

normally serve as depositional (pool) habitat where macroinvertebrate density and 

biomass would be concentrated were impaired at White Pine Branch. While processing 

macroinvertebrate samples I observed that early instar juvenile specimens were abundant 

in Slabcamp Creek and Bucket Branch pools but scarce in White Pine Branch.  It is 

possible that juvenile macroinvertebrates within pools influenced the density-biomass 

and density-depth correlations at the study sites. Fewer juveniles in the pools of White 

Pine Branch could indicate mortality due to channel drying or export during high flow 
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events. In sum, the results of this study suggest that habitat at White Pine Branch is 

homogenous; from the macroinvertebrate perspective, pool and riffle mesohabitats at 

White Pine Branch appeared to be functionally similar. 

It is well known that stream ecosystems are intricately connected with their 

surrounding terrestrial ecosystems, but functional aspects of this relationship are often 

difficult to measure (Lake et al. 2007). One simplified way in which benthic ecologists 

address trophic level dynamics is by categorizing taxa according to functional feeding 

groups (FFGs – shredders, predators, scrapers, collector-filterers, and collector-gatherers) 

describing morpho-behavioral mechanisms of food acquisition that reflect 

macroinvertebrates’ adaptations to their environment (Townsend and Hildrew 1994, 

Cummins 2002, Merritt and Cummins 2008). Research conducted on functional feeding 

groups has indicated relationships exist between coarse particulate organic matter 

(CPOM) and shredders, fine particulate organic matter (FPOM) and collectors, and 

primary production and scrapers (Merritt and Cummins 2008). Headwater streams of the 

temperate deciduous region, such as the study sites, are typically allochthonous systems 

meaning they receive a large amount of energy from the surrounding terrestrial 

ecosystems in the form of leaf litter (Vannote et al. 1980, Webster and Wallace 1996, 

Richardson and Danehy 2007). These terrestrial energy inputs are important for food 

webs in forested headwater streams because primary production by photosynthesizing 

organisms, such as algae, is limited by canopy shading (Hill et al. 1995, Richardson and 

Danehy 2007). When CPOM enters streams from the surrounding terrestrial environment, 

shredders process it into finer material (FPOM) as they feed and this has implications on 
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stream detrital processes as well as collector-gatherers and collector-filterers that feed on 

FPOM (Cummins 2002, Merritt and Cummins 2008).  

During the restoration at Slabcamp Creek trees were removed so that engineers 

could reconnect the stream with its groundwater source (Parola and Biebighauser 2011), 

and thus it might be expected that shredding macroinvertebrates that feed on CPOM 

would be scarce at Slabcamp Creek relative to Bucket Branch and White Pine Branch. 

However, shredders represented a greater proportion of the abundance at Slabcamp Creek 

than either Bucket Branch or White Pine Branch.  The shredding stoneflies, Allocapnia 

and Prostoia, were dominant (35%) in Slabcamp Creek riffles. At Bucket Branch the 

shredding stonefly, Leuctra, was 15% dominant in riffles. There were no dominant 

shredding taxa in White Pine Branch riffles. A scraping mayfly taxon, Cinygmula, was 

the numerically dominant taxon (19%) in White Pine Branch riffles while there were no 

dominant scraping taxa in either Slabcamp Creek or Bucket Branch riffles. Scrapers 

graze on periphyton, algae, and microbiota attached to substrates (Wallace and Webster 

1996). Scraper dominance at the pre-restoration condition control, White Pine Branch, 

suggests that organic material inputs from the surrounding forest may not be retained 

well and the system has become more autochthonous, i.e. the food web may be more 

heavily fueled by energy from primary production than what might be considered typical 

of a forested headwater stream. Stone and Wallace (1998) found that a mountain stream 

disturbed by clear cutting experienced a shift from an allochthonous to an autochthonous 

based system and an increase in scraper secondary production. Shredder dominance in 

Slabcamp Creek riffles could be a product of improved organic material retention at 

Slabcamp due to the hydrologic restoration.  
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The composition of FFGs in pools at Slabcamp Creek were more similar to 

Bucket Branch than White Pine Branch. Collector-gatherers, macroinvertebrates that feed 

on FPOM, made up a greater proportion of the total abundance in Slabcamp Creek and 

Bucket Branch pools than White Pine Branch pools, particularly in the winter, this could 

be a result of the lack of shredders at White Pine Branch. Scraping taxa were not 

numerically dominant in Slabcamp Creek or Bucket Branch pools, but scrapers were 

numerically dominant in White Pine Branch pools during the winter (Cinygmula) and the 

summer (Psephenus). The dominant presence of scrapers in White Pine Branch riffles 

and pools again demonstrates that habitat is likely functionally homogenous at the control 

site. The higher dominance of collector-gatherers in Slabcamp Creek relative to White 

Pine Branch is further evidence of improved organic material retention at the restored 

site.  

 

4.2 Season 

 

Based on the results of statistical analyses of this study, seasonal influences had a 

lesser impact on macroinvertebrate assemblages from study sites than habitat does.  

During winter Slabcamp Creek and White Pine Branch had similar wetted channel areas, 

approximately 390 m2 each, and Bucket Branch had approximately 160 m2 more wetted 

area as a result of large pools and a wider channel. During summer, wetted area 

decreased as a result of drying at all sites. Slabcamp Creek and Bucket Branch lost 24% 

and 20% wetted area, respectively, while White Pine Branch lost 68%. Riffle wetted area 

decreased dramatically at all sites (78% loss at Slabcamp Creek and 100% loss at Bucket 
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Branch and White Pine Branch), while pool wetted area was retained at all sites. Due to 

drying, riffle samples could not be part of the statistical analyses.  Although sampling and 

analysis methods did not allow me to express this quantitatively, Slabcamp Creek 

retained water in riffles during the summer and thus provided habitat for aquatic 

macroinvertebrates while Bucket Branch and White Pine Branch riffles did not. The 

habitat weighting method used in this study used proportions of available pool and riffle 

mesohabitats at each study site, rather than absolute area, which may have masked 

seasonal differences within and between sites. If habitat weighting had been done using 

absolute area, the extreme loss of wetted area at White Pine Branch during the summer 

relative to the other study sites may have had more noticeable impacts on 

macroinvertebrate density and biomass analyses results.  

The differences seen between seasons in the NMDS ordinations could be 

attributable to natural seasonal variation in macroinvertebrate assemblage structure 

(Beche et al. 2006, Sporka et al. 2006) rather than a seasonally driven disturbance acting 

as a stressor on the pools of any of the sites. Beche et al. (2006) found although 

taxonomic composition and abundance varies significantly across seasons, trait 

composition (including functional feeding group composition) is relatively stable. This 

could explain why winter and summer pools grouped together more closely in the FFG 

ordination than they do in the total abundance ordination. Although the taxa themselves 

change seasonally, the proportions of feeding habits exhibited by taxa were relatively the 

same.  

In summary, considering the extent of wetted area loss at the pre-restoration 

condition control site relative to the restored and reference sites, it seems likely that 
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seasonal drying negatively influenced the macroinvertebrate assemblage at White Pine 

Branch. However, the results of this study indicate that homogenous habitat was the 

greater stressor. Drying was not nearly as extensive at Slabcamp Creek, likely as a result 

of the hydrologic restoration that reconnected the channel with its groundwater source 

(Parola and Biebighauser 2011).  

 

4.3 Habitat weighting – implications for post restoration monitoring  

 

In general, it appears that habitat weighting the data better enabled analyses to 

detect differences among study sites. Results indicated that at the patch scale 

mesohabitats are similar among study sites but at the reach scale mesohabitats are not 

equally available, which influences macroinvertebrate density and biomass. It appears 

that patch scale analyses of targeted habitat mask differences between study sites. Stream 

restorations typically occur at the reach scale, if improving habitat for biota is a 

restoration goal then monitoring should account for habitat availability at the scale of the 

restoration. This is particularly important in terms of trophic dynamics and ecosystem 

functioning.  

 

4.4 Macroinvertebrate assemblage structure based on common water quality metrics  

 

Commonly used water quality metrics such as total taxa richness, EPT taxa 

richness, modified Hilsenoff’s Biotic Index (mHBI), and percent top 5 dominant taxa did 

not detect differences between study sites as clearly or conclusively as the more detailed 
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analyses of this study. The results of these metrics could be considered inconclusive or 

even contradictory with the more detailed macroinvertebrate density, biomass, and 

assemblage structure/function analyses. For instance, White Pine Branch had the lowest 

scores for mHBI and percent 5 dominant taxa, which might seem to indicate the 

macroinvertebrate assemblage is “healthier” at the control site than the restored or 

reference condition sites. Jaccard’s similarity index simply indicated that the 

macroinvertebrate assemblage at Slabcamp Creek is more similar to Bucket Branch than 

White Pine Branch. These metric results, and results of other analyses that did not detect 

strong differences in riffle mesohabitats among sites, suggest that current rapid sampling 

methods (many protocols target riffle habitat) and metrics commonly employed for 

general water quality assessment purposes may not be appropriate for assessing 

hydrologic restorations.    

Rapid sampling methods are used for a variety of reasons. Less man power is 

required and sampling takes less time, so resource expenditure is reduced and more sites 

can be visited. Additionally, results are more easily summarized and interpreted by 

politicians and the general public. However, there is a tradeoff between these perceived 

advantages and the quality of the data that is obtained (Hannaford and Resh 1995). There 

are few comparable studies on macroinvertebrates, restoration, and the effectiveness of 

rapid sampling methods. One study on the Environmental Protection Agency’s Rapid 

Bioassessment Protocol showed that rapid sampling method is also likely not appropriate 

for assessing restorations (Hannaford and Resh 1995). A variety of studies have shown 

rapid methods in general have limitations compared to quantitative sampling (Dolph et al. 

2015, Verdonschot et al. 2015, Everall et al. 2017). 
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4.5 Conclusion  

 

Due to the design of this study, the conclusions that may be drawn about 

hydrologic restoration are limited. In the case of Slabcamp Creek, the hydrologic 

restoration appears to have shifted macroinvertebrates (in terms of density, biomass, and 

assemblage structure) away from the pre-restoration control condition (White Pine 

Branch) towards Kentucky’s headwater reference condition (Bucket Branch). This could 

be a result of the restoration improving hydrologic functioning and thus habitat 

complexity, substrate stability, and organic matter retention. Post-restoration monitoring 

should continue at these study sites to see if these results vary or persist over time. If 

future studies were to replicate at the stream level (multiple restoration, control, and 

reference condition treatments) it is possible that more overarching conclusions about the 

success of hydrologic restoration could be made.  

The results of this study imply that habitat may be critical for evaluating 

restoration success. Completely random sampling within study reaches would likely 

eliminate the bias created by targeting habitats preferred by macroinvertebrates at the 

patch scale, but if improving habitat for biota is a restoration goal it may be desirable to 

target specific habitats. Future studies that target habitats should account for both habitat 

type and availability at the reach scales. Habitat weighting appears to better enable 

analyses to detect differences between study sites. When possible, comparisons to the 

regional reference condition could be beneficial. Regions similar to eastern Kentucky 

with streams dominated by riffle-pool morphology that have been subjected to 

channelization may benefit from a focus on pool habitats. It is possible 
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macroinvertebrates in pools are more susceptible to the damage caused by channelization 

that restoration seeks to improve. Measuring habitat at any scale can be a laborious and 

time-consuming process, however the end likely justifies the means. I recommend future 

restoration studies invest in more intensive, quantitative habitat measures than those 

employed by my study, such as pebble counts, which would result in more accurate 

measures of substrate composition than visual estimates of percent composition.  

Measures of ecosystem function at restored, pre-restoration condition controls and 

reference condition sites could provide valuable information as well (Lake et al. 2007). I 

recommend future investigators consider incorporating measures of ecosystem processes, 

such as decomposition or organic matter and nutrients retention into their studies. Results 

from this study and future studies could help guide future post restoration monitoring 

efforts towards a more effective and standardized approach.  
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Taxa List. Macroinvertebrate abundance from samples collected from pool and riffle 

mesohabitats during winter and summer 2014 at restored Slabcamp Creek, reference 

condition Bucket Branch, and pre-restoration condition control White Pine Branch 

located in eastern Kentucky. Values are the total number of individuals from five Hess 

samples. Superscripts R indicate rare taxa in the collection where total abundance 

<0.05%, number superscripts indicate taxa that required a length-mass substitution for 

biomass estimates, * indicates taxa that were omitted from functional feeding group 

analyses and metric calculations due to a lack of species traits information. 
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Taxa list (continued) 
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Table 1. Summary information for the study reaches: restored Slabcamp Creek, reference 

condition Bucket Branch, and pre-restoration condition control White Pine Branch 

located in eastern Kentucky. 

 

 
 

Table 2. Reach scale physical habitat measurements from winter and summer 2014 at 

restored Slabcamp Creek, reference condition Bucket Branch, and pre-restoration 

condition control White Pine Branch located in eastern Kentucky. Values are means (± 1 

SE).  
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Table 3. Mean (±1 SE) macroinvertebrate density at the patch and reach scales for the 

study sites during winter and summer 2014: restored Slabcamp Creek, reference 

condition Bucket Branch, and pre-restoration condition control White Pine Branch 

located in eastern Kentucky. Sample sizes for each of the nine groups are even (N = 5). 

TNI = total number of individuals. 

 

 

 

Table 4. Mean (±1SE) macroinvertebrate biomass* at the patch and reach scales for the 

study sites during winter and summer 2014: restored Slabcamp Creek, reference 

condition Bucket Branch, and pre-restoration condition control White Pine Branch 

located in eastern Kentucky. Sample sizes for each of the nine groups are even (N = 5). 

AFDM = ash free dry mass.  
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Table 5. Two-way Repeated Measures Analyses of Variance results for patch scale 

macroinvertebrate density and biomass between mesohabitats (pools and riffles) and 

among sites (restored Slabcamp Creek, reference condition Bucket Branch, and pre-

restoration condition control White Pine Branch) located in eastern Kentucky.  

 

 
 

 

Table 6. Two-way Repeated Measures Analyses of Variance results for habitat-weighted 

(reach scale) for macroinvertebrate density and biomass between mesohabitats (pools and 

riffles) and among study sites (restored Slabcamp Creek, reference condition Bucket 

Branch, and pre-restoration condition control White Pine Branch) located in eastern 

Kentucky.  
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Table 7. Two-Way Repeated Measures Analyses of Variance results for patch scale 

macroinvertebrate density and biomass between seasons (winter and summer 2014) and 

among sites (restored Slabcamp Creek, reference condition Bucket Branch, and pre-

restoration condition control White Pine Branch) located in eastern Kentucky.  

 

 

 

Table 8. Two-way Repeated Measures Analyses of Variance results for reach scale 

(habitat weighted) macroinvertebrate density and biomass between seasons (winter and 

summer 2014) and among study sites (restored Slabcamp Creek, reference condition 

Bucket Branch, and pre-restoration condition control White Pine Branch) located in 

eastern Kentucky.  

 



59 
 

Table 9. Pearson correlations for macroinvertebrate, organic matter, and habitat data at 

the patch and reach scales for the study sites: restored Slabcamp Creek, reference 

condition Bucket Branch, and pre-restoration condition control White Pine Branch 

located in eastern Kentucky. CPOM = coarse benthic organic matter, FPOM = fine 

benthic organic matter. 
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Table 10. Macroinvertebrate taxa that were unique to one of the three study sites: restored 

Slabcamp Creek, reference condition Bucket Branch, and pre-restoration condition 

control White Pine Branch located in eastern Kentucky. 
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Table 11. Top five dominant macroinvertebrate taxa in pool and riffle mesohabitats for 

the study sites in winter and summer 2014: restored Slabcamp Creek, reference condition 

Bucket Branch, and pre-restoration condition control White Pine Branch located in 

eastern Kentucky. Numbers are percentages calculated from total abundance. Sample 

sizes for each of the nine groups are even (N = 5). 
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Table 12. R values from Analysis of Similarity (ANOSIM) tests (conducted at the patch 

and reach scales) based on density of macroinvertebrates from pool and riffle 

mesohabitats of the study sites during winter and summer 2014: restored Slabcamp 

Creek, reference condition Bucket Branch, and pre-restoration condition control White 

Pine Branch located in eastern Kentucky. SC = Slabcamp Creek, BB = Bucket Branch, 

WP = White Pine Branch, W = winter, S = summer, P = pools, R = riffles. 
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Table 13. R values from Analysis of Similarity (ANOSIM) tests (conducted at the patch 

and reach scales) based on the density of macroinvertebrate functional feeding groups 

from pool and riffle mesohabitats of the study sites during winter and summer 2014: 

restored Slabcamp Creek, reference condition Bucket Branch, and pre-restoration 

condition control White Pine Branch located in eastern Kentucky. SC = Slabcamp Creek, 

BB = Bucket Branch, WP = White Pine Branch, W = winter, S = summer, P = pools, R = 

riffles. 

 

 
 

 

Table 14. Macroinvertebrate metrics commonly used in water quality assessment for the 

three study sites: restored Slabcamp Creek, reference condition Bucket Branch, and pre-

restoration condition control White Pine Branch located in eastern Kentucky.  
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Table 15. Jaccard’s similarity index for the three study sites: restored Slabcamp Creek, 

reference condition Bucket Branch, and pre-restoration condition control White Pine 

Branch located in eastern Kentucky. 
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Figure 1. Approximate location of study reaches within their watersheds: restored 

Slabcamp Creek (38.12282, -83.3527), reference condition Bucket Branch (38.05474, -

83.3162), and pre-restoration condition control White Pine Branch (38.07482, -83.3845) 

located in eastern Kentucky.  
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Figure 2. Study site photos. From left to right images are: restored Slabcamp Creek in 

summer 2014 (38.12282, -83.3527), reference condition Bucket Branch in spring 2015 

(38.05474, -83.3162), and pre-restoration condition control White Pine Branch in 

summer 2014 (38.07482, -83.3845) located in eastern Kentucky. 
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Figure 3.  Land use within study reaches’ watersheds: restored Slabcamp Creek 

(38.12282, -83.3527), reference condition Bucket Branch (38.05474, -83.3162), and pre-

restoration condition control White Pine Branch (38.07482, -83.3845) located in eastern 

Kentucky. Compiled using Landsat 8 imagery and ERDAS imagine remote sensing 

software. 

 

 



69 
 

 
 

Figure 4. Habitat composition at the reach scale (150m) during 2014 sampling events for 

restored Slabcamp Creek, reference condition Bucket Branch, and pre-restoration 

condition control White Pine Branch located in eastern Kentucky. Pie chart size decrease 

within sites from winter to summer is proportional to the amount of wetted area lost as a 

result of drying.   
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Figure 5. Mean (±1SE) macroinvertebrate density (TNI/100m2) and biomass (mg 

AFDM/100m2) in riffle and pool mesohabitats at the patch and reach scales for the study 

sites during winter 2014: restored Slabcamp Creek, reference condition Bucket Branch, 

and pre-restoration condition control White Pine Branch located in eastern Kentucky.  
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Figure 6. Mean (±1SE) macroinvertebrate density (TNI/100m2) and biomass (mg 

AFDM/100m2) in pool mesohabitat at the patch and reach scales for the study sites 

during winter and summer 2014: restored Slabcamp Creek, reference condition Bucket 

Branch, and pre-restoration condition White Pine Branch located in eastern Kentucky. 
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Figure 7. Nonmetric multidimensional scaling of macroinvertebrate taxa density data 

from riffle and pool mesohabitats at the patch scale for the study sites during winter and 

summer 2014: restored Slabcamp Creek, reference condition Bucket Branch, and pre-

restoration condition control White Pine Branch located in eastern Kentucky. 

Macroinvertebrate taxa explaining variation are shown as vectors on the plot.  

 

 
 

Figure 8. Nonmetric multidimensional scaling of macroinvertebrate taxa density data 

from pool and riffle mesohabitats at the reach scale for the study sites during winter and 

summer 2014: restored Slabcamp Creek, reference condition Bucket Branch, and pre-

restoration condition control White Pine Branch located in eastern Kentucky. 

Macroinvertebrate taxa explaining variation are shown as vectors on the plot. 
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Figure 9. Nonmetric multidimensional scaling of macroinvertebrate functional feeding 

group density data from pool and riffle mesohabitats at the patch scale for the study sites 

during winter and summer 2014: restored Slabcamp Creek, reference condition Bucket 

Branch, and pre-restoration condition control White Pine Branch located in eastern 

Kentucky. Functional feeding groups explaining variation are shown as vectors on the 

plot. CG = collector-gatherers, CF = collector-filterers, SC = scrapers, PR = predators, 

SH = shredders.  
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Figure 10. Nonmetric multidimensional scaling of macroinvertebrate functional feeding 

group density data from pool and riffle mesohabitats at the reach scale for the study sites 

during winter and summer 2014: restored Slabcamp Creek, reference condition Bucket 

Branch, and pre-restoration condition control White Pine Branch located in eastern 

Kentucky. Functional feeding groups explaining variation are shown as vectors on the 

plot. CG = collector-gatherers, CF = collector-filterers, SC = scrapers, PR = predators, 

SH = shredders.  
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Figure 11. Macroinvertebrate assemblage composition based on the abundance of 

functional feeding groups from pool and riffle mesohabitats of the study sites during 

winter and summer 2014: restored Slabcamp Creek, reference condition Bucket Branch, 

and pre-restoration condition control White Pine Branch located in eastern Kentucky.  
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